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SUMMARY 

The Report describes a method for obtaining the incompressible flow over a 

given two-dimensional aerofoil at incidence, in which the rigid body and its 

boundary layer and wake are considered as forming a single semi-infinite body 

past which the inviscid fluid flows. The objective is to enable the viscous 

effects to be accommodated directly into an inviscid calculation, particularly 

near the sharp trailing-edge, where the singular point is in reality smoothed 

over by the boundary layer, and in the thin wake, whose shape has to be 

determined. By a conformal mapping to a halfplane an iterative cycle is set up 

to compute the solution, each iteration starting with a given shape, from which 

velocities are found, and ending with a suitable new guess for the wake shape, 

subject to certain conditions on the pressure and slope discontinuities across 

the wake. Results are presented for a Karman-Trefftz section of medium camber, 

both in the inviscid limit of zero displacement thickness (in which there is 

very good agreement with the exact solution) and for small nonzero displacement 

thicknesses near the trailing edge and in the wake. The method should be 

applicable to further problems. 

This work was done under the Zink between the University of Southampton 
and the RAE while the author was a research feZlow at Southampton. 
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1 INTRODUCTION 

This Report is concerned with the classical problem of finding the two- 

dimensional fluid flow at high Reynolds number past a given aerofoil section. 

The development by Catherall, Foster and Sells' of a conformal mapping method 

for determining the inviscid incompressible motion about a finite aerofoil 

brought about a substantial advance in the field of inviscid flow calculations. 

Their numerical technique necessitates finding the transformation that takes the 

exterior of the given body to the exterior of a circle. It has subsequently 

been applied in the method of SellsL to solving compressible flows for sub- 

critical conditions and by Garabedian and his collaborators 3-6 to solving 

transonic motions including weak shocks, although to cope with the source and 

vortex singularities at infinity in the physical plane the map to the interior 

of a circle has proved to be more convenient. 

The comparisons made by Foster' of various other methods in use, e.g. the 

surface-singularity treatment by Smith8 and the Thwaites-Theodorsen 9,lO method, 

and the later comparisons by Catherall et az.', indicate that the basic 

Catherall-Foster-Sells technique is definitely the most successful to date. 

More recently, with a view to predicting transonic flows, a number of other 

methodsll-1' have evolved, while a quasi-linearised approach to the subcritical 

problem, developed by Firmin 15 with the eventual aim of application to three- 

dimensional motions,embodies an appreciation of the viscous effects similar to 

that in Powell's 16 scheme, but incorporating an improved treatment of the wake. 

Apart from the difficulties encountered in computing realistic transonic 

solutions, perhaps the most serious drawback in many current procedures lies in 

the treatment of the interaction between the inviscid pressure distribution and 

the viscous effects. As yet the process of incorporating in the inviscid 

calculation the influence of the viscous layers, on and behind the aerofoil, has 

not been possible in a wholly consistent or direct way. Usually the inviscid 

flow is first calculated, the displacement thicknesses are then derived for the 

boundary layer subject to the inviscid pressure distribution along the body, and 

these are fed back into the original inviscid scheme to produce a corrected, 

effective, body shape. However, this cycle automatically involves considerable 

difficulties. For example, if the trailing edge is sharp the Kutta-Joukowski 

condition, requiring a zero velocity there , produces an associated sharp adverse 

pressure gradient which then causes the boundary layer calculation to break down 

and can even provoke an unrealistic separation, unless some intuitive smoothing 
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is performed locally. Moreover, at the third stage of the cycle outlined above, 

the body with its displacement thickness forms a shape of infinite extent 

whereas nearly all the present accurate inviscid programs can be used only for 

finite bodies, necessitating a cutting off of the wake at an arbitrary point 

downstream. 

In an attempt to provide a more satisfactory description of the actual 

airflow, a method is here developed for calculating the inviscid incompressible 

flow over the effective shape consisting of the original rigid body plus its 

viscous layers. Alternatively, this approach may be considered for the third 

stage of the cycle detailed in the previous paragraph - this aspect is expounded 

in section 5. In reality a sharp or cusped trailing edge is smoothed over 

locally by the viscous boundary layer and downstream the wake is of finite 

thickness. These features are incorporated directly by commencing with an 

estimate of the combined shape and, to solve for the resultant flow, the 

exterior of this shape is mapped conformally to an upper halfplane. The 

cusping effect of the (thin) viscous layer at the rear end of the aerofoil is 

accounted for by moving the singularity creating the stagnation point just 

inside the effective body (although the conventional inviscid problem of zero 

displacement thickness can also be dealt with as a special case). The problem 

thus set reduces to computing, by an iterative process, the modulus of the 

transformation; and the shape of the wake, upon which certain criteria on the 

jumps in slope and pressure are enforced, also comes out in the course of the 

calculations. In fact the method of derivation of the wake shape, step-by-step, 

forms a most significant part of the routine (see sections 2.4 and 3.4). 

For zero displacement thickness the method is 'exact' in the numerical sense, 

while for nonzero displacement thickness there are a number of free parameters 

whose values depend on the assumed boundary-layer calculation. The further 

possibilities of adding a fast intermediate viscous calculation, to confirm the 

displacement thickness, and/or of extending the work to compressible conditions, 

are discussed. 

2 THE BASIC CONCEPT 

By including, right from the start, a boundary layer on the given profile 

and also a wake downstream, the task of determining the incompressible flow over 

the finite aerofoil (and in particular calculating the pressure coefficient on 

the surface) is recast into the problem of finding the flow past the semi- 

infinite body that comprises both the aerofoil and the induced viscous layers. 
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The shape and size of the boundary layer and wake must be considered unknown, 

although assuming no large-scale separation occurs it is reasonable to suppose 

them to be relatively thin. Incorporating the displacement surface does of 

course introduce some difficulties inherent in dealing with an infinitely long 

body, but these are largely offset by the number of advantages to our approach. 

For the new combined profile now contains no sharp corners or cusped points, in 

contrast with the usual aerofoils considered; a sharp trailing-edge, for 

instance, is replaced by the smooth layer of boundary layer thickness sweeping 

past it. Further, the inclusion of the displacement effect, especially at the 
. 

trailing edge, is certainly more sensible on purely physical grounds than the 

Kutta-Joukowski condition hatitually applied there. Finally, there is much 

simplification in the mathematics involved in the conformal mapping routine 

employed to solve the central fluid motion problem, and this we now set out to 

describe. 

2.1 Conformal mapping to a halfplane 

The given body, which is smooth except for a sharp rear edge (the analysis 

is easily modified to treat a cusped edge) of angle d , is supposed fixed in a 

fluid that far upstream is moving with a uniform velocity U , at an angle a 

to the axis Ox of a Cartesian coordinate system, Oxy(z = x + iy) . The 

domain exterior to the combined profile {given body + viscous layers) in the 

physical- or z-plane is mapped conformally to the upper half of the Z-plane in 

such a way that the whole profile corresponds to the real axis of Z , as 

depicted in Fig.1. The trailing streamline acts as a cut in the z-plane, and 

the map is so chosen that the upper and lower sides of the wake are taken to the 

intervals X > 1 and X < - 1 , respectively, of the X-axis, where Z = X + iY , 

while the remaining shape defined by the original body plus its boundary layer 

maps to the zone -lc;X,<l of Y=O. 

If we write the complex potential for the flow in either plane as F , 

then the complex velocities in the physical plane and working (Z-) plane are 

given by 

dF -i0 dF 
-i0 

dz =qe , dZ 
= q,e ' (2-l) 

in turn, with q denoting the speed and 8 the flow inclination at any point 

of the z-plane, and correspondingly for q,, ec in the Z-plane. The two 

velocity vectors are therefore related by 



-iB -i0 c dZ 
qe = qce ( ) dz l 

(2-Z) 

Since the map z -+ Z is conformal 
dz 

0 dZ 
is nonzero in ImZ 2 0 , and provided 

the front stagnation point on the effective body - this is the sole remaining 

stagnation point outside or on the body - in the z-plane transforms exactly to 

a stagnation point in the Z-plane (in fact, on the X-axis), we may then take 

logarithms of both sides in (2-2). Hence 

In (g) = In (:) + i(e - SC) 

is a function of Z analytic in the upper halfplane, with 

h = In (4,/q) , 9 = (e - ec) 

(2-3) 

(2-h) 

its real and imaginary parts respectively. From complex variable theory it 

follows that, if one of the functions h, 4 is known, the other is determined 

uniquely to within an arbitrary constant, and the idea now is to express their 

relationship in a closed, integral, form (see section 2-2). 

Before doing this, however, it is necessary to consider the incompressible 

flow in the Z-plane that we are looking for. It must merely have a stagnation 

point somewhere along the real axis and, by analogy with the map z1 = Z2 which 

transforms the whole zl-plane with a cut along yl= 0, xl > 0 into the upper 

half of the Z-plane, its complex potential must behave like a constant multiple 

of z 2 at infinity. Suitably normalized, the required solution is 

F(Z) = ;AZ2 + BZ (Z-5) 

-ie 
implying qce C =AZ+B. Here A and B are real constants, so that the 

one stagnation point is on the real axis at X =-B/A . On the effective 

profile, i.e. along the X-axis, q, = IAX + BI and 8 
C 

is zero to the right of 

X =-B/A and -TT to the left. We observe that in our notation 0 also jumps 

by -IT as we pass through the front stagnation point in the direction Q to 

P on the body, making I$ continuous at X =-B/A , and it proves to be 

expedient to re-define 8, e cs q and 4, at this juncture. Along the X-axis we 

now add IT to the above values of e and ec for all X < -B/A and 



simultaneously make q and q 
C 

change sign in X < - B/A . The definitions 

throughout the flow field are altered likewise, and this has the advantage of 

rendering q, qc, 0 and ec , as well as h and 4 , continuous for all X . 

Also, on the body, which is itself a streamline, 0(s) can now be specified as 

the continuous profile slope, without prior knowledge of A or B ; e.g. for a 

symmetrical profile, e(s) changes continuously along the upper surface from 

the value -d/2 at the trailing edge to IT/~ at the leading edge and then, on 

the lower surface, from IT/~ to (r + d/2) at the trailing edge. The functions 

h and 6 are unaltered by these definitions, but now, on Y = 0 , 

9, = AX+B, 8 = 0 for all X . (2-6) 

If s measures distances along this body from some fixed origin then, on putting 

Y = 0 in the real part of (2-2) and in (2-4), 

ds 
dX= 

AX+B = eh(X) 
q co 

. (2-J’) 

The other stagnation point in the z-plane, which by the Kutta-Joukowski 

condition is associated with the sharp rear edge T of the rigid aerofoil, has 

been supposed smoothed over by the boundary layer at the trailing edge (see 

Fig.1) and so lies between the upper and lower streamlines of the combined shape 

near T . Unlike the front stagnation point, it does not appear in the flow in 

the Z-plane (2-5) but rather in the map function z-+-z. When the conformal 

mapping is applied, the actual trailing edge point T is transformed into two 

points in the Z-plane situated immediately below the real axis at X = f 1 

where the body region joins the wake region. Specifically, we therefore require 

x= 1 - icl(T' in Fig.1) 
q = 0 at (Z-8) 

X = - 1 - ic2(T") 

where the unknown parameters El' s2 are non-negative and, assuming the viscous 

layer near T is thin, are relatively small. Thus the Kutta-Joukowski condi- 

tion has been replaced by the more realistic requirement that a stagnation point 

should be present at a small distance inside the effective body surface 

(although ~1 = .s2 = 0 can be taken as a special case - see section 4). 
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2.2 The h-4 relationship 

Considering now the relationship existing between h and 9 , the analytic 

function (h + i$) E In is slightly inappropriate to deal with as it 

stands because 

(i> from (2-3) and since 141 + U as Iz] + 03 , (h c i-4) grows like 

In ((AZ + B)/Uf + ia + O(1) as IZI j. ~0 

(ii) from (2-4), (2-8) and using the modulus of (2-5) for q, , (h + i.4) 

has a logarithmic singularity at T' and T" . 

It is preferable to consider a related function analytic in ImZ >, 0 that is 

bounded at infinity and further, from the computational standpoint, this 

function should be free of singularities at T', T" or anywhere within a close 

neighbourhood of the boundary Y = 0 of our zone of interest. For otherwise, 

even though In (dz/dZ) is mathematically well-behaved on the real axis near 

x=*1, in practice the existence of the two singular points at small 

distances ~1, c2 below the axis would considerably distort the numerical 

accuracy there. 

To accomplish these requirements the irregular behaviour in (h + i$) is 

subtracted out, a procedure equivalent to performing an intermediate mapping as 

done by Catherall et a2.l. For (i) the function [ln {(AZ + B)/U + i\ + io] 

eliminates the growth at infinity without bringing in any other irregularities 

in ImZ>,O. To accommodate (ii) we need an expression for the behaviour of 

(h + 3) around T' and T" , and for this purpose the rear end of the profile 

(Fig.2) may be viewed locally as a sharp corner, for which the map to a half- 

plane is well-known. We thereby find that, since ~1 and s2 are small, 

dl - 7 In (Z - 1 + icl) + O(1) near T' 

h+i$ X 

d2 - -rr In (Z + 1 + ie2) + O(1) near T" 

(2-9) 

The unknown angles dl, d2 , satisfying dl + d2 = d , are defined in Fig.2, 

and (2-9) allows for the singularities in (dz/dZ) near Z = & 1 as required, 

in that along the trailing streamline arg(dz/dZ) jumps by -dl at P' and 

by -d2 at Q' . Hence in the vicinity of X = + 1, Y = 0 the term 
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dl d2 - 7 In (Z - 1 + isl) - -;;- In (Z + 1 f ic2) (2-10) 

should be removed from (h + i4) . At the same time, rather than introduce the 
growth (2-10) for lZl % 1 , another term, -(d/r) In (Z + i) , is included, 

which cancels with (2-10) as IZI -+ OJ since d = d, + d2 and leaves a 

singularity only at Z = - i , a satisfactory distance (in the numerical sense) 

away from the flowfield ImZ >, 0 . 

Summarizing, the new function 

(H + i@)(Z) E (h + i$) -bn(AZ;B+i) -I-iu}+>ln (Z-l+isl) 

d2 + -;r In (2 + 1 + is2) - + In (Z + i) (2-11) 

has the desirable properties that it is analytic everywhere in ImZ ) 0 and 

within small distances of the real axis, and tends to zero as IZI -3-00 in 

ImZ>O. Stemming directly from this are the following relationships between 

the real and imaginary parts H(X), Q(X) , the values of H, @ on Y = 0 : 

H(X) = - (2-12a) 

which may be arrived at by application of Cauchy's integral formula or by 
Fourier transform techniques (Carrier, Krook and Pearson17). Here f denotes 

co 

f H(S)dS - x-s (2-12b) 

the principal value of an integral, and from (2-6) and (2-ll), with "Z = X , 

H(X) and @(X) may be written down explicitly as 
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dl 7 = e(x) -a+_llt,n-1 x-l 
i > 

d2 -1 s2 -1 1 
@ a> + 7 tan - 

( > x+1 
- + tan 

0 i-f 

- tan -1 
(2-13b) 

with h and $ substituted from (2-4). For definiteness we have taken 

06 tan -1 < IT in (2-13b). 

2.3 Determination of A and B 

The constant A is simply a stretching factor ensuring that the 

difference [s<x = 1) - s(X = - l)] is exactly the distance round the effective 

aerofoil, from P to Q , and is quite easily calculated (see section 3.2). 

The determination of B is somewhat more involved and relies on the asymptotic 

result, for 1x1 + 0) , 

H(X) = fzT; dl) + --$ (dlL; + d2c; - 2d - $)+ o(X-~) (2-14) 

proved in Appendix A. But alternatively (2-12a) implies, on taking care over 

the principal value involved and knowing the asymptotic form of a,(X) (see 

Appendix A), that 

co 

H(X) - - $ 
f 

@(S)dS 
-0D 

and so (2-14) places on @(X) the requirement 

for 1x1 + 1 

@(X)dX = (dl - d2) l (2-15) 

Inserting the definition of @ , in (2-13b), into (2-15) and integrating the 

inverse tangent terms, we deduce the formula 

03 0 
B -T- = [e(X) - o]dX + 

I 
[e(x) - TT - u]dx , 

A 
(2-16) 

0 -Q) 
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For known shape of body and wake, (2-16) fixes B . It is noteworthy that, for 

a symmetrical aerofoil at zero incidence, B = 0 and the solution is completely 

symmetrical about the Y-axis, as we should expect. 

2.4 The mixed boundary conditions 

Finally in this section we observe that, because of the essential 

difference between the flow problem over the body and that in the wake, both 

(2-12a) and (2-12b) are of importance in the solution. If the function s(X) , 

the principal unknown,were given, then on the body, 1x1 c 1 , since the shape 

e(s) is prescribed, Q(X) is known (from (2-13b)) so that (2-12a), relating 

H(X) and hence q(X) to Q(X) , is the relevant integral relation. In the 

wake part, 1x1 > 1 , on the other hand, both e(s) and q(s) are unknown - 

what can be prescribed are two sets of jump conditions (see sections 3.1 and 

3.4) on the 0, q values either side of the wake, each set constituting a 

'half-condition'. Thus the solution in I4 ' * calls for the use of the 

alternative integral formula (2-12b), as well as (2-12a), to allow the wake to 

develop towards its correct shape. The way this was done in practice is 

described in section 3.4 below. 

3 THE NUMERICAL SCHEME 

3.1 Formulating the problem 

The process of mapping to the halfplane as set out in section 2.1 is in 

principle remarkably simple. A major task now is to decide which quantities are 

given, and which are to be found, during the calculation routine, and in this 

connection it is necessary to stress the two fundamental ways in which our 

method could be of use. The first is as an extension, of the existing methods 

for obtaining the inviscid flow and (then) the associated boundary layer thick- 

ness. Here the present work should increase their combined accuracy by 

determining the flow past the known body together with its quite precisely 

calculated displacement surface. Secondly, the method may be used c& initio 

(and with 7' e2 zero or nonzero) as a direct alternative to the existing 

inviscid-flow numerical schemes, and it is this situation, where the displace- 

ment surface is not yet known, that we shall subsequently be concerned with in 

the main. 

It is supposed therefore that the basic profile is specified in terms of 

its (x,y) coordinates and that U, d and c1 are prescribed, Additionally, 

(s,6> values are set to describe an initial guess for the wake shape, an unknown, 
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le and the (x,y) values are then converted (see be low) to produce a reference tab 

of (s,e) coordinates defined as in section 2.1. For convenience, the total 

distance round the profile from P to Q is written as 2sQ and the origin 

is selected such that 

S 

s(P) = -so, s(Q) = so . (3-1) 

So far we have in practice neglected the viscous displacement on the rigid 

profile, i.e. in 1x1 1 1 , save near the trailing edge T where it is of 

course crucial, for the local calculation at least, to consider a displacement 

of the stagnation point inside the effective body. Either side of T the 

profile is therefore joined smoothly to the wake by fixing appropriate values 

for 8 at P, Q and just upstream. The wake is not necessarily made to fare 

into a single streamline aft of the body; rather, a thin wake of uniform thick- 

ness is allowed to develop downstream (see section 3.4), as a physically 

reasonable first approximation, when E 1 and E2 are nonzero. 

Thus in our formulation we commence with a known body profile 9(s) in 

ISI 4 so and a first guess for the wake shape e(s) in IsI > so . Small 

values for 5' &2 are set to allow for the boundary layer thickness near T 

(at X=f I), the thickness being controlled by sl and E2 and being zero 

if and only if cl and ~~ are zero (see section 4). The objective is to 

determine q(s) , the wake shape e(s) and the displacement near the trailing 

edge for given 5 and c2 * 

The eventual solution for the wake shape has so far been made to satisfy 

the criteria that at corresponding points on either side of the trailing stream- 

line the flow speeds and directions must be the same. This means that, if 

supercripts 2 refer to values on the upper and lower surfaces respectively, 
+ 

then we insist that q+ = - q-, 13 = 8- - IT 
+ 

when s = - s - for IsI >sO. 

Provided the forces due to wake curvature are fairly negligible (cf. FirminIs), 

the condition on q is equivalent to the requirement of no transverse force on 

the wake, while that on 0 likewise neglects viscous effects within the wake. 

In fact the inclusion of the proper viscous corrections would not be too 

difficult a step. 

Applying the q+ = - q- condition at X = + 1 (i.e. at P and Q in 

Fig.2) would yield &2 in terms of ~1 at any stage, but in general both ~1 

and c 2 have been kept as free parameters because it is not entirely clear if 
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the condition is appropriate near the trailing edge. Further discussion is 

presented in section 5. 

3.2 The iterative routine for solution 

The problem posed is of a mixed boundary-value type and is solved 

numerically by an iterative scheme. Letting (4 signify nth approximations, 

the logic consists of the following consecutive steps, executed until 

successive iterates are sufficiently close in value. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

3.3 

Given e(s) in IsI < s0 , guess e(s) in IsI > SO and s (l)(X) for 

all X . Put A(l) = 2~0 , dl(l) = dil) = d/2 . Set n = 2 and go to 

(4). 

Integrate (2-7) to obtain s cd co , starting from s 

and scale A, B to make s +I> = so . 

b-d (-1) = - so , 

Derive 8 +X) by interpolation in the 3-s reference table to find 

the value 9 (4 corresponding to each s b) . 

Calculate B(n) from (2-16) and hence Cp (qx) f rom (2-13b). 

Use (2-12a) to evaluate H (n) co , and then (2-13a) to give a new 

distribution q (n) (x) . 

Revise the wake part of the reference table, e"(s) , to keep the q' 

condition satisfied, and calculate d (n), d(n) 
1 2 ' as explained in 

section 3.4 below. Increase n by 1, return to (2) and continue. 

Finer points of the calculations 

In discretizing the method, a large number M of points Xi(l < i 4 M) 

is laid down on the X-axis at small equal intervals (X i+l - Xi) = A . Two of 

these points coincide with X = f 1 , say XJ = - 1, XK = 1 , and (K - J + 1) 

is usually the number of profile points specified or a multiple thereof, while 

for symmetry we set M - K + 1 = J . Therefore XN = 0 where 2N = K + J . 

The subscript i describes values at X = Xi . 

The guesses in step (1) above should be sensible, in that the 8' 

conditions are obeyed, and we initially place 8 
+ 

, (e- - T) equal to c1 and 

q+, -q- equal to U at the extreme ends i = 1, i = M , If the program is 

not supplied with aerofoil coordinates in (s,e> form, but with (x,y> data, 

these are converted using Freeland's 18 cubic spline fit scheme and, if 

necessary, parabolic smoothing (see Catherall et aZ.'> near the leading edge, 
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to produce a good representation of the aerofoil's slope. To give an initial 

guess, SC1 ) (X) , for the s. values, the values of s in the 0-s reference 1 
table are taken. 

At stage (2) it is safe to integrate the ratio (AX + B)/q in (2-7) 

straightforwardly, starting with SJ = - SO and marching forwards or backwards 

with the two-point formuia 

+B 
s. - s. = 

1 1-l ) 
(3-z) 

except through the troublesome points X = + 1, X = - B/A . Now q is always 

defined by 

[(x 

d2/2r 

-H(X) - 1)2 + c;] 

d,/2r 
+ 1) 

q(X) = (AX + B)e 
2 + s;] 

Cl+ x > 
2 d/2n[[AX; B)' + ,I' (3-3) 

where all the factors excluding CM + B) are nonzero and well-behaved for 

c1*c2 >o. Hence (2-7) can easily be taken through X = - B/A , either by 

cancelling the factors (AX + B) in formulae (2-7) and (3-3) or by forming 

(ds/dX)(X = - B/A) = A 
I( 1 

2 (X = - B/A) and interpolating between points either 

side of the stagnation point. The other difficulties, at X = 2 1 , are due to 

the (integrable) singularities at X = 1 - icl, X = - 1 - ie2 which, as in 

section 2.2, could upset the local calculations even for nonzero El, E2 if no 

special treatment were employed; moreover we wish to be free to set the special 

case 7 = E2 = 0 that recovers the conventional Kutta-Joukowski condition. 

Consequently a localised allowance is made for the erratic behaviour by 

replacing (3-2) with 

-. 

H 
2 d/2r 

S. -s ='e Cl+ x > 
1 i-l 

1 
(x+1) 2 
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for i=J,J- 1 and similarly at i = K - 1, K . The integral here is 

I = 

1 

i 
0 

dt 2 d1’2n 
( 1 
t2 + “r 

A2 

A 
I-d+r 

(3-5) 

and is evaluated numerically using a trapezoided rule if 

I=A 
I-d+ 

I 

EIZO. When cl =0, 

(1 - d+d . 

b-4 Having obtained si values for I d i G M , with (n) = _ 
sJ so ' a new 

result A (4 is determined by 

(3-b) 

The linearity of this transformation arises from the integration of (m + B)/q 

with the known q-values or alternatively by inserting (3-3) into (2-7). Multi- 

plying B by the same factor i and scaling the h> si in accord: 

(3-7) 

we comply with the constraint sK b-d = s o as well as retaining (2-7). 

Cd To find the ei corresponding to the SF) 

point method similar 
l1 

values (step (3)) a two- 

to that of Catherall et al. is adopted. If s(n) lies 
i 

between the values s. , si +1 of the original B-s table the value 
il 1 

is written as the appropriate linear interpolation between ei , 8; +l . We 
11 

note that the re-definition of the 8's made in section 2.1 greatly facilitates 

this step. 

In proceeding from stage (2), and in stage (3), an under-relaxation 

procedure is adopted. Instead of the 

combinations ,h) 
i 

= ws(n> + cl _ ,;~n+Y' 
evaluated in stage (2) the linear 

i 
are taken as the new s-values. Next, 

eW 2 se(n) + (-I _ a)g(n-l) for the new 8's we then take i i i for J<i<K, 
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the 8(*) i here being the values obtained as in the previous paragraph. 
-Cl) Initially si , ;(I) 

i 
are put equal to the numbers in the 0-s table. The 

relaxation parameters w, R were vital to the success of the scheme for, when 

w = 1 and/or R = 1 were imposed, convergence was not obtained. w and R 

were usually set equal to 0.5 at the outset and halved after a few iterations, 

and this gave reasonably fast convergence. Relaxation was not applied to the 

'i in the wake part for reasons given in section 3.4 below. 

The calculation pf ,(*I at step (4) employs the trapezium rule applied 

to the integral between X1(= - R , say) and XM(= R) , but to increase the 

accuracy the approximate contribution from the integrand beyond I4 = R is 

brought in, involving the asymptotic forms 

e+(x) - a 
-LL.+ 

ITAX~ 
o(x-2) 

c-(X) - 7-r - a 
for 1x1 -+ m (3-8) 

(see Appendix A) and inserting them into (2-16) for 1x1 > R . Since r , the 

circulation round the aerofoil, is 2B, the resultant discrete version of (2-16) 

is 

. . . . . . (3-9) 

The @(*) i then follow from (2-13b), taking suitable action, particularly at 

P', Q' and near X = - B/A , to keep 0 d tan -1 \<Tr. 

In step (5) the i ,(*I are also worked out from the trapezium rule applied 

for 151 d R in (2-12a) and again the finite extent of the integration range is 

corrected for by including the asymptotic contribution from 151 >R. Initially 

therefore, 

,(*> = 
i 
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is evaluated for 2 4 i 6 M - 1 to give a second-order accurate principal value 

of the integral from -R to R , incorporating a consistent Taylor expansion 

around j = i . Cd Next, we add to each Hi of (3-10) the value of 

- dlEl ln R+lR-X d2c2 - 
T2(X - 1) lT2(x + 1) 

U 
T(AX+B)'~ (3-11) 

at X = Xi , except at P', Q' and near X = - B/A where limiting values in 

(3-11) must be substituted. The leading term in (3-11) comes from the asymptotic 

form (3-g) of the (0 - a) term of (2-13b) and then insertion into (2-12a) for 

151 ' R , while the other expressions in (3-11) are from the expansions, also 

accurate to o(x-2) , of the inverse tangents in (2-13b). The end conditions 

stipulated are ";"I = $' = 0 , The corresponding variation of q(x) follows 

immediately from (3-3). 

3.4 Finding the s% of the wake - -- 

The final step in the iterative cycle is always reached with the 8' 

condition satisfied but the q' one slightly awry. In other words, the wake is 

still thin but of the wrong shape. To compensate we revise the basic 0-s table 

in IsI > so at each iteration, exploiting the relation (2-12b), the inverse of 

(2-12a), to deal with the mixed boundary-value nature of the problem. First, the 
+ + 

'i 
values (for i < J, i > K) are adjusted to make q = - q- when s =-s , 

which is achieved by means of an averaging process: for each i<J we find 

S. ,s. ,i >K, suchthat s. l]-l 
< 

l]--1 l1 1 -s.<s. , 1 ll 
then interpolate linearly 

between q. -], q. 
5 

to find the value q' corresponding approximately to q. 
5 

1 

and reset 
+ 

q. 1 equal to the average of -q and the original qi . Thus we take, 

instead of qi , the value 

ii = 1 q; + 1 ki + sil)qil-l - ki + sil-l)9il 

t 

(3-l 2a) 
s. - s. 

1 lj-1 i 
1 

for all i < J . Similarly, each qi for i > K is subsequently replaced by 

the value 
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ii = {ki + 'i,)ail+* - ki + sil+l)'i~/(sil - 'i]+l) (3-12b) 

where now -'iI+ < S. < - Si , and so the q' condition is arrived at, but 
1 1 

with the formula (2-12b) usually being violated. 

Secondly, therefore, with the new qi values in the wake, we work back- 

wards, calculating new H. values in 1x1 > 1 using (2-13a), then deriving 

'i in 1x1 & 1 from a tcapezoidal interpretation of (2-12b), and hence obtain 

new 8: values (i < J, i > K) from (2-l3b). Specifically the discretization 

used for (2-l2b), i,< J, i & K , is 

M-1 
Qi = 

c i j=l 
(j*i,i-1) 

(d2 + -ld1' In (s)i + 2 [dlE: + d2si - 2d - 3 x 
TT2X. 

C3-13) 

which is an O(A2) accurate integration between X = t R followed by an 

allowance of the contributions from the integrand beyond 1x1 = R arising from 

the asymptotic result (2-14) for the decay of H(S) as 161 +O” l 

Finally, an averaging technique is also performed on the new 0: values, 

since the 8' constraint will not in general be satisfied as the original wake 
thickness has now been disturbed. This again involve,s finding points of equal 

I4 throughout 1x1 > 1 and then taking the mean value of the slopes there, 
+ 

using two-point interpolation; effectively, 8. - 71 
( J 

qf respectively in (3-12a) and 0: + IT 
( 1 

I1 + 
and of replace -4: 

+ 5' 
and 0. 

=I 1 replace -q': , qi 
=I 

respectively in (3-12b), and the f3& condition is thereby reached. The values 

of 8, s in the reference table for IsI > so now also take on the newly- 
calculated wake values, so that the basic 8-s table, although it is permanently 

fixed for the rigid body part IsI 4 so , is continually being updated in the 

wake IsI > so by our program to keep in line with the constraints for a 
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well-defined wake. It is partly for this reason that relaxation is not applied 

in 1x1 > 1 . 

The angle d1 is effectively the direction of the trailing streamline at 

the rear edge T and can now be evaluated from the @J, (PK values derived in 

(3-13). Examination of the values of @ at T' and T" , using (2-11) and 

(2-4) and with the limiting values for the inverse tangents there, gives, on 

averaging consistent with the previous paragraph, 

dt") [I + & Ian-1 (A) + tan-l (&)}I 

= 1(@ J - s-1) + E2(HJ+1 - HJ-i )I 

- iiK + a + 1 Fan-' (A) - tan-1 (&) + tan-1 (ui+Ai1) - tan-1 (I-VAi'jl 

+ & kan-' (2) - tan-l ("' 2 ")I (3-14) 

h 
, where 8 K 

is the (known) inclination of the rigid profile's upper 

surface at T . If ~1 > Ed, tan 
-I 

must be substituted for 

- tan in (3-14). The angle (4 d2 is then equated to (d-din)) . 

4 EXAMPLES 

The results presented here are all for the medium camber Karman-Trefftz 

profile (see Foster7), for which d = 10'. In Fig.3a are shown the results 

obtained at a = O0 in the classical limit of zero displacement thickness, 

7 = E2 = 0 . In this case most of the preceding analysis still applies on 

setting El =E~=O, but some care is needed in defining the inverse tangents, 

in evaluating B in (3-9) and especially in interpolating in the 8-s reference 

table which is now discontinuous at s=fs 0 - The visual agreement between 

the known exact solution for the pressure coefficient and the calculated values 

is very good everywhere, and Fig.3b gives a close-up of the upper surface peak 

where the results are also compared with those of Catherall et al.' (the most 

accurate to date) and those of the SmithS singularity approach. The errors in 
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the present method are comparable with those of the calculations of Catherall 

et aZ. but are an order of magnitude smaller than Smith's 
8 

. Fig.3c depicts the 

solution for the wake shape. 

For cl=s2 = 0 the profile shape is known and the problem is well- 

posed. When Ed and s2 are nonzero, however, there are a number of free 

parameters present which, for their proper specification, would need to be 

determined from a viscous calculation near the profile and in the wake (see 

section 5). These parcmeters are cl, ~2 and the effective profile shape 

upstream of P and Q . Without the viscous calculation, we have examined the 

behaviour of the solution for different values of Ed and c2 and for a given 

profile shape near T , in order to gauge the effects of the displacement, 

locally and globally, and the accuracy required of a boundary-layer calculation. 

In Fig.4a are shown the solutions for the three sets of values 

E. = 10-3, 10 -4 
1 , 10D5 (i = 1,2) together with the exact solution (for ci = 0) 

for the Karman-Trefftz section at c1 = Op. The typical smoothing performed near T 

made 8 equal to (6, + d/4) (iK 

equtl to (iJ 

is defined at the end of section 3.4) and 

6J - d/4) , with the four e-values just upstream on each surface 

(K - 1 +K- 4,J+l+J+4) interpolated linearly from the profile to eK' 

eJ respectively. The influence of the values of cl, c2 is almost negligible 

over most of the profile but quite pronounced near Is1 = so , as might be 

expected. The trailing-edge area is shown in more detail in Fig.4b to emphasize 

the local differences in the solutions and results for ~~ = 10 
-2 

and for 
-3 El = 5x10 ,& 2 

= 10-3 , both of which produce a quite smooth transition of 

C 
P 

past the trailing-edge, are also included. Fig.4c is another close-up of 

the upper surface peak, demonstrating the relatively small overall effect of 

changes in c 1 and E2 l 

This was also demonstrated by the close agreement in 

the lift coefficients cL l 

The CL values were evaluated from the solutions 

for q(s) but, as a check, CL should be equal to twice the circulation (see, 

e.g. Sells'), or 4B in our treatment, and this was found to hold true to 

within 1% of CL for each set of E. values, With Ed kept equal to c2 the 1 
lift increased steadily with increasing ~~ , varying from 1.23 at ~~ = 0 to 

1.26 at ~~ = 10 -2 
. With the value of the displacement on the upper surface 

set larger than that on the lower surface, which for the present airfoil at 

a= O0 is probably a more realistic assumption, one would intuitively expect 

there to be a decrease in lift; in fact, because of the discrepancies (mentioned 

in the next paragraph) in profile shape near T , an increase in Ed from 
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1o-3 to 5 x 1o-3 with s2 kept fixed at 10 -3 resulted in a slight increase, 

of about l%, in lift coefficient and similarly for the upper surface pressure 

peak in Fig.4c. 

In Fig.4d are sketched the wake and body shapes that resulted for &i = 0, 

1 = 10e3 and ~1 = 5 -3 E. x10 ,E 2 
= 1o-3 . It is somewhat difficult to form 

precise conclusions about the profile shapes near T from the results alone, 

owing to the loss of closure 1 involved in the smoothing of the profile and to 

numerical errors, but this minor weakness can be eradicated by a local analysis 

of the solution near T , some details of which are given in section 5 below, 

equation (5-l). Also in Fig.4d, in order to bring the final computed profile 

for E~=E~ = 0 into closed form at the trailing edge, some allowance has been 

made for this loss of clarity by subtracting off the error in closure. 

For 10' incidence the calculated solutions for ~1 = e2 = 10 -4 and 

El = E2 = 0 are presented in Fig.5a, with the exact analytic solution for 

8. = 1 0 , and again the accuracy is generally very good. Near the upper surface 

peak there is some discrepancy although the probable cause was insufficient 

precision in the representation of the leading-edge zone of the section. It is 

noteworthy that the map to the halfplane naturally tends to create a denser 

grouping of points around the front stagnation point than elsewhere, so that 

usually use of.the constant steplength A , rather than a refined mesh near the 

leading-edge, is accurate enough for good definition. The wake shape for 

a = loo is drawn in Fig.5b. 

All the above predictions were obtained using 72 points to define the 

profile. With 36 points the accuracy was diminished although only by an amount 

comparable with the corresponding results of Catherall et a2.l. Another 

possible source of error apart from mesh size is that due to simulating the 

range (-=,a) by (-R,R) . The above results were calculated using only R a 3 

which corresponded to about 6 chord lengths range in the physical plane and no 

graphically distinguishable effects have been found when R = 2 or R = 4 has 

been taken instead. Other sections tested have been the NACA 0012 and RAE 101 

aerofoils but these have more well-behaved profiles than the above Karman- 

Trefftz aerofoil and excellent agreement was obtained. 

The scheme, when programmed on the CDC 6400 computer at Imperial College, 

needed between 30000 and 40000 octal words and usually took about 30 iterations, 

and 700 seconds including compilation and output, to converge to within a 

tolerance of 10 -4 in the s. values. 1 



22 

5 FURTHER DISCUSSION 

The method presented above for the solution of the incompressible flow- 

field is generally about as accurate as the circle-transformation method* for 

the conventional problem with zero displacement, but one advantage is that it 

also allows the thickening effect of the viscous layers, particularly near the 

trailing-edge and in the wake, to be accommodated in the solution, for example 

by choice of nonzero cl, ~~ . Again, downstream of the rigid body suitable (e.g. 

wake) conditions can be imposed right on the displacement surface because the 

method treats the body, together with its wake and displacement thickness, as 

an infinitely long profile. Thus, if viscous wake corrections to the solution 

were desired they could easily be applied (as (small) jumps in flow inclination 

and pressure across the wake) on the effective surface, and similarly for such 

situations as a trailing jetstream where again the downstream conditions make 

the problem mixed in nature. 

The shape and size of the rear-edge displacement are governed by the 

parameters ~1, s2 and by the values of 8 near T , and would presumably be 

best derived from a boundary layer calculation married to the present approach. 

If, for instance, a guess were made for El3 E2(*w , the boundary layer could 

be integrated past T using the resultant inviscid pressure distribution 

(Cp < 1 at P, Q) and hence a new value for the displacement thickness 

reached. The procedure could than be repeated for a number of different values 

of El' 3 , using the first sets of solutions as initial guesses to speed up 

the convergence, and the relationship between 8. 

l 

and the viscous displacement 

thickness thus desired. In fact if the condition 14Jl = lqJJ is imposed, s2 

is controlled by ~1 since (3.3) implies, on neglecting terms of relative order 

E2 , 

dl id2 (H 
e J 

-J+$dd2 
E2 = El 

d2d2 

, 

Also, to the same accuracy, we may integrate the equation 

x2 
I-+/d2 

. 

dz AZ + B 
dZ= 

eHei@ ei"(Z + i)d'T(z - 1 + iel) 
-dl/" 

(Z + 1 + is2) 
-d2h 

U 
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between T' and Q' and between T" and P' (where dZ = idY) to obtain 

the displacements ITQl, ITPI explicitly: 

IN = 

/TP/ = 

% e 

eHJ 

AiB [i ) 2 

TJ 

A-B2 

[i ) U 

1 1 + 1 
1 1 

+I 

d -d /27r 
2l 2 (1 

d -d /HIT 
22 ' (1 

5-1) 

Judging from our results it does appear, however, that errors in the boundary- 

layer calculation near T can have little overall influence on the solution, 

provided they are not too large. 

Concerning the other natural extension to attempt with our method, that of 

predicting compressible flows, some difficulty is envisaged because the modulus 

of the map function Idz/dZI , between the physical plane and the halfplane, now 

occurs in the equations of motion in the Z-plane. (The compressible equations 

and boundary conditions are given in Appendix B.) So the wake shape must again 

be determined as part of the calculation, not only for the map itself but also 

for the flow in the Z-plane, and in applying the conditions on pressure and 

shape across it we cannot definitely appeal to formulae such as (2-12a, b) to 

relate slopes and velocities, since these are essentially incompressible results 

only. The revision of the wake shape, then, would seem to be the most trouble- 

some aspect here although the flow equations are quite straightforward. It may 

be however that the incompressible shape would provide a good starting point and 

that another, intuitive, scheme of converging to the required shape can be 

devised even without explicit results such as (2-12b). 

Work is currently in progress on extending the method, firstly to predict 

the effects of a trailing jet, secondly to include a turbulent boundary layer 

calculation, and thirdly to solve the compressible problem. 
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Appendix A 

SOME ASPECTS OF THE MAP FOR INCOMPRESSIBLE FLOWS 

For incompressible motions, the profile produces disturbances just like 

those of a circle (cf. Sells', for example) as IzI + 00 , so that 

. . 
F - Ue-laz + J$ In 2 + (constant) + o(l) as IzI -+a, . (A-1 > 

. 

On the other hand, F is known exactly in the Z-plane, by equation (2-5), and 

so, on equating (A-l) and (2-5) and expanding asymptotically, we find 

g - (AZ; Bjeia {1 - 2 + o(z-2)} . 

Along the wake Z = X > 0, 0 + c. and hence, since 9(X) = 0(X> and 

h + i+ = In (dz/dZ) , . 

f.3 (x) = c)(X) “a --J--+ o(x-2) 
TAX2 

h(X) - In 

(A-2) 

(A-3) 

as x-ta, and similarly for x+--a,. The decay of H(X) in (2-14) then 

follows from (2-13a). 

Further, the circulation r is equal to the jump in the velocity potential 

x across the wake. But from (2-5) 

X = Re(F(Z)) = &X2 + BX 

along the wake, Y=O. Taking the jump at the wake points X = + 1 , therefore 

r = X(1) - x(- 1) = 2B , (A-4) 
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Appendix B 

THE GOVERNING EQUATIONS IN THE Z-PLANE FOR COMPRESSIBLE FLOWS 

First we express the equations of compressible motion in terms of the 

velocity potential X , starting from the following equations, holding in the 

physical plane, for the velocity field (u,v) = VX (cf. Garabedian and Korn3): 

(a 
2 2 au 

-u)--uv + (a2 - v ) - 2 av = 0 
ax ay 

14 
2 a2 

(B-1) 
1 

+--=-i= Y 
;+ 

(Y - l)$ 

where q = (u2 2 !i +v> is the flowspeed, a is the local speed of sound, and 

the freestream has Mach number M, < 1 and unit speed. Transforming to the 

X, Y coordinates of the Z-plane and de notin g f - Idz/dZI , (B-l) yields 

2 
2 XX 

Xxxa -7 - ( ) 2xXxY 
XxY f2 + XYY 1 

a2 -5 x; + xy’ 
f3 

i 

(xxfx + xyfy> = 0 

q2 = x; + x; 
f2 

as the equations of motion in the Z-plane. 

Secondly, using the alternative governing equations 

& CPU) + & (pv) = 0 

av au 
ax-ay = 

0 
I 

produces (cf. Sells2) 

and 

I (B-2) 

03-3) 

(B-4) p 1 1 

(-Y - l)$ 
+ = 

(Y - 1)M; 
+- 

2 
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in the X, Y coordinates, where the stream function JI is defined by 

w PfU = ay’ pfv = a$ 
-ax (B-5) 

and p is the density, so that q 

Solving (B-4) for the stream function J, and density p would be 

equivalent to Sells 2 
treatment of the subcritical problem using the circle 

transformation, while (B-2) for the velocity potential x corresponds to the 

equations solved by Garabedian and Korn 3 for transonic calculations. The 

behaviour of X, $, p and f at infinity, required to eliminate the singu- 

larities there, can be worked out by systematically expanding about the 

incompressible farfield (Appendix A) and it is found that, if R2 = x2 + Y2 ) 

x - iAR2 cos 20 + BR cos @ - ; 

+ - im2 sin 20 + BR sin 0 + & (1 - Mzf In (1 - Mi sin' 26)) 

f2 - A2R2 + 2ABR cos @ + B2 sin 20 

P - I- 

as R+m , where @ = tan-' (Y/X) . These agree with (A-l) for M, = 0 . The 

other boundary conditions, on the body and wake, are ax - = JI = 0 along Y = 0 ay 
in the halfplane, with appropriate discontinuity constraints across the wake 

(1x1 ’ 1) l 
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A 
B 
d 

dl' d2 
F 
it 
h 

H 
I 

4 
R 
s 

sO 
U 

x9 Y 
x, y 
29 Z 
a 
r 

A 

9 s2 
8 

4, @ 

SYMBOLS 

unknown stretching-factor, equations (2-5) and (3-6) 
unknown circulation-factor, equations (2-5) and (2-16) 
trailing-edge angle 
trailing streamline angles, Fig.2 

complex potential 
scale factor, equation (3-6) 
Re[ln (dz/dZ)l 
well-balanced function related to k , equations (2-11) and (2-13) 
integral in (3-4) 
flowspeed 

34 
distance along aerofoil section 

half the total arclength of the aerofoil 
freestream speed 
aerofoil coordinates in Cartesian axes 

'coordinates in the transformed plane 
z=x+iy,Z=X+iY 
angle of incidence 
circulation (= 4B) 

constant steplength along X-axis 
small displacements below Z = + 1 

flow inclination 
Im [In (dz/dZ)] and related function (see (2-11) and (2-13)), 
respectively 

Affices 

C values in the Z-plane 

i values at X = X., i = I to M 1 
J,N,K,M values of i at X = - 1, 0, 1 and at R , the end-point, respectively 
A values on the rigid body 

upper and lower wake surfaces 
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Fig-1 The map of the flowfield (2) to the upper half plane (2) 
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Fig. 2 The flow near the trailing-edge point T 
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Fig. 3c The body and wake shape for oc = 0: Et=&& =0 
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