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THE FLUTTER OF A TWO-DIMENSIONAL WING WITH SIMPLE AERODYNAMICS

bY

Ll. T. Niblett

SUMMARY

The flutter stability of a rigid wing with two degrees-of-freedom and

subject to the simplest aerodynamic forces including damping is considered. The
limits of combinations of nodal axis positions which can lead to flutter are

found and a fairly simple expression from which the flutter speed can be found

is given. The results are compared with those from simple frequency-coalescence

theory. The comparison shows that the present theory indicates that flutter will

occur more extensively than indicated by frequency-coalescence theory both in

terms of nodal axis combinations and range of airspeed.

* Replaces RAE Technical Report 75008 - ARC 36164
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I INTRODUCTION

Large flexibly-mounted stores can have a considerable effect on the

flutter stability of an aircraft wing. The flutter speed of the wing, store

combination will vary not only with the inertial properties of the store but

also with the flexibilities of the connections. Since these latter are difficult

to estimate it is generally thought prudent, in the design of aircraft, to

calculate flutter speeds for enough values of the mounting stiffnesses to cover

all those probable as well as covering the range of inertial properties of the

stores. Whilst there is a case for treating specific aircraft problems in this

way the results obtained add little to the general knowledge of the effect of

wing stores on flutter. From this point of view it might be more profitable to

split an investigation in two; one part being the determination of the effect

of the stores on the deflections of the wing in the normal modes of the air-

craft and the other the determination of the effect of the modal shapes of the

wing on the flutter stability - for in general the wing is effectively the sole

source of aerodynamic force. What follows is concerned with the second part of

the problem.

It was thought that the investigation of the heave, pitch flutter of a

rigid wing under aerodynamic forces as given by Minhinnick derivatives (see

section 6.2) would be a useful preliminary study of the effect of wing deflec-

tion shapes on flutter, combining the simplest structural assumptions with the

simplest credible aerodynamic assumptions to comprehend the damping forces even

though the concept of a typical section would be needed to apply the results

to a deforming wing.

In what follows the theory is first developed for the flutter of a rigid

wing which can pitch about two spanwise  axes, in modes which are orthogonal

with respect to the structural mass and stiffness, under the general type of

aerodynamic forces to which Minhinnick and piston-theory derivatives 1
belong.

The ranges of combinations of pitching axes positions over which flutter is

possible are found and it is shown that the stiffness at which flutter occurs

at a nominated critical equivalent speed is the sum of two terms, one indepen-

dent of the relative density of the body and the fluid and the other, which

always reduces the stiffness, linear in the relative density. A comparison is

then made with the results of applying frequency-coalescence theory, in which

the damping terms are omitted, to the same system. The stability of the system

is also examined with the help of a graphical representation 2 of the flutter

equations.
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2 EQUATIONS OF PARTICULAR SYSTEM

2.1 Basic flutter equation

The system considered is a two-dimensional rigid wing which can pitch

about two axes. The wing's positions at any particular time is described in

terms of two generalised coordinates which are orthogonal with respect to

inertia and structural stiffness. The unit amplitudes in the generalised

coordinates are such that each generalised inertia coefficient is unity when the

equations have been made non-dimensional.

The flutter equation, for unit span, can be written

Wh

4 2r.2- ~k?~u*I  + ipe3wuB  + pe2u2C  + ~9,  o. oJ = 0

2ere p is a nominal wing mass density, (mass per unit span)/&

R is the chord of the wing

w is the flutter frequency

I is the unit matrix

P is the air density

U is the flutter speed

B and C are real square matrices of non-dimensional aerodynamic
coefficients

wO is a nominal frequency, and

(1)

ies pertinent2L2 r2 2w. o, = wl,w5  where w, and
*2

are the still-air frequent

to the normal coordinates, w2 being the higher.
7 3

Dividing each element by pR‘-u" and substituting u for P/P , A for

iptlw(pd  u)-' and x for the flutter equation can be written

I IX2 + o'BA + C + ~2; = 0

X is hereina fter called the stiffness number and xf

flutter speed, i.e. a value that satisfies equation (2),

(2)

ts value at a critical

is called the flutter

stiffness number. The value of this number can be taken as a measure of the

propensity of the system to flutter in that the higher it is the lower will be

the critical flutter speed.



2.2 Generalised coordinates

The inertia matrix in equation (1) is diagonal as a consequence of the

assumption that the generalised coordinates are orthogonal with respect to

inertia. That the inertia matrix is unit implies that the generalised

coordinates are normalised in some way.

Each of the generalised coordinates that will be used is a rotation about

a nodal axis at some chordwise position. It will be convenient to describe the

distance of the nodal axis in front of the aerodynamic axis as II tan $ and.
unit amplitude in the unnormalised coordinate as cos $ .

An inertia coefficient is derived by summing the products of masses and

the squares of their deflections when there is unit amplitude in the coordinate.

Consider a wing, of mass per unit span M , with an inertia axis a distance

x8
behind the aerodynamic axis and radius of gyration about the inertia axis

of k . The dimensioned unnormalised inertia coefficient will be

{
2M (a tan + + xg> + k2 1 cos 24 *

The factor used to non-dimensionalise the inertia coefficients is (pa 4 -1)

(see equation (1)) so the dimensionless unnormalised coefficient will be

(M/02) { ( sin $ + x R -1
cos $)

2 + k2k-2 cos
g 24j *

The normalising factor, K , is the inverse of the square root of this

coefficient and unit deflection in the normalised coordinate is a rotation of

K COS $' .

2.3 Aerodynamic coefficients

Let the aerodynamic matrices B and C be given by

C =
(3)
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where Rcr is the vertical amplitude of a reference axis and a is ther
incidence for unit amplitude in the rth coordinate. The particular aerodynamic

forces used here are those given by aerodynamic derivatives which are related

to each other by the equations

and (4)

The derivatives are thus referred to an axis which is both the aerodynamic axis

Cm a = 0) and the axis of independence (~10  = 0).2

Let the non-dimensional vertical deflection of this reference axis and the

pitch of the wing be given by

say, where the factors KI9 K2 have been included so that account may be taken

of the normalisation of the coordinates to give unit generalised inertias. The

'r lie in the range -rr/2  G $r G n/2 and the coordinates are rotations about

axes R tan +r in front of the reference axes.

Substituting from equations (4) and (5) in equations (3) gives the

aerodynamic coefficient matrices as

and

and

B =

C =
c1 KlK2S1C2  La

2=1 K;S2C2 I

ICI = 0

2 2
K, (s I + BS,Cl

K,K2(Sls2  + Bs2C

(6)

K 1 K 2 (s s1 2 + OSlC2 + "1'2) 1 'a
2 2 (7)

K2(S2 + BS2C2  + VC;,



and

IBI = KIS

K C1

Further,

IB+CI  =

2
1 K2s2

1 K2c2  0  y

K2K2(S  C1 2  1 2 - s2cl)2yei l

Hence,

2.4

2  2K1K2(S1C2 - S2C,)
2

1 1 + 8 af = IB/ . (8)

0 Y

bll b12 + 5 1 c12 = IB + Cl - IBI - IC( =

c21 c22 b21 b22

Conditions for stability

If the expansion of equation (2) is written

A4 + p1A3 + P2X
2
+ p3x + p4 = 0 ,

the full conditions for stability are that all the p coefficients

2
T3(=  pIP2P3  - ~1P4 - Pg)

are positive. From equations (6) to (9)

PI = PI0 = 0 1 (bl 1 + b22)

P2 = P2(-J  + XP21 = 7 1 + c22 + ajB[ + X(&f  + +

P3 = XP3, = 1u X(b& + b22+

P4 = X(P41 + XP42) = XCc,,iz + C22Gf

0 . (9)

(10)

and

I
(11)



2 2
T3 = - p10p41 + x(p10p21p31  - ‘10’42 - P;,)}  =

=  u,~blI  +  b22)((cl,  +  c22  +  b)(b$ +  b22+ - (Q +  b22)(cllj; +  ~2~$))

+ b22) + ii;)  (b, ,k;  + b22+ - (bll
-2 -2

+ b22)W1W2 1
- (b$; + b22+2

t 1 =

= ax
L

+- xblIb2,(;;  - +21 (12)

where b E a[Bj .

If x , which must obviously be positive, is varied continuously from an

i n i t i a l  s t a b l e  c o n d i t i o n  f l u t t e r  o c c u r s  a t  t h e  f i r s t  v a l u e  w h i c h  s a t i s f i e s

T3 = 0 0 A t  l ow  a i r speeds  x is large and the sign of T3
is the same as that

o f  t h e  c o e f f i c i e n t  o f  x2 i n  e q u a t i o n  ( 1 2 )  a n d  w i l l  b e  p o s i t i v e  i f  s i n g l e

d e g r e e - o f - f r e e d o m  i n s t a b i l i t y  i s  a b s e n t . T h e r e  a r e  t w o  v a l u e s  o f  x for which

T3 = 0 . One is zero which indicates that all systems tend to neutral stability

a s  t h e  a i r s p e e d  t e n d s  t o  i n f i n i t y . The other is given by

(bl 1 + b22)((cHb22  - C22bl 1) -
b(bl  Ij;  + b22j:) (;; - ;y1

Xf = -=
b, Ib22(i; - if)

- UYRJS c1 2
- s2cl)2(K;bl”;  + K;b2;;)  (,; - $)-I, >

blb2(w;  - ;;,

=
(t& + K;b2)eaFo

b,b2(j;  - ;;)
, (13)
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after substitution from equations (6) and (7) and with

and

br = 2 2s + Bs cr r r + "r

FO =

fo =

(s c12 - s2c,) (YCIC2 - s,s2)

(SlC2  - S2C,)(YC,C2 - S]S2)
-1 .

The flutter frequency, Wf ' is given by the solution of the imaginary

part of equation'(l0)  when X is purely imaginary, i.e.

(bll + b22)hf2  + (bl$ + b22+xf = 0

There is a possibility that the system diverges steadily. This first

happens at an airspeed which corresponds to a value of x which satisfies

p4 = o . Again

X2 is positive

given by

(14)

the system is stable at low airspeeds since the coefficient of

(last of equations (11)). The divergence stiffness number is

-2 -2
cllw2 + c22wl

xd = - -2A2
VW2

(K2S c ii211 12 + K2S c G2)2 221= -
*2-2 .

w1w2

(15)

3 UPPER BOUND OF FLUTTER STIFFNESS NUMBER

The flutter stiffness number, xf , has the form of a typical structural

stiffness divided by the dynamic head at a critical flutter speed and hence, if

the structural stiffness and air density are constant, the flutter speed varies

inversely as its square root. Equation (13) gives the flutter stiffness

number as the difference between two terms, the second of which has the density

of the fluid relative to the body, a , as a factor. It can be seen from the

penultimate form of the equation that each of the factors in this second term



IO

is positive since 4y > B2 (equation (4)) for freedom from instability in a

single degree-of-freedom and that the flutter stiffness number decreases with

increase in the relative density u . Thus the flutter speed, as an equivalent

airspeed, increases with increase in relative density and indeed a flutter

might be eliminated by such an increase. Therefore if the second term is taken

to be zero an upper bound of the flutter stiffness number, corresponding to a

lower bound of the equivalent flutter speed is obtained.

The abbreviation of equation (13) which gives an upper bound of the

flutter stiffness number can be written

2 2!-yg II 2 2
a

Xf = ~ = -2(w -2
2
-w>

1
i FL+2 !b2 b, FO .

The following comments are of interest in the context of the evaluation

of structural stiffnesses from measurements of natural frequencies and

generalised inertias in still-air resonance tests. If the mass density of the

wing is changed whilst its stiffnesses and nodal axes remain the same the

flutter speed vf will be constant for 2
wO will vary inversely as the mass

density. But if the frequencies rather than the stiffnesses remain the same

the flutter speed will vary as the square root of the mass density. Thus

uniform inaccuracies in the generalised inertias assumed for the modes have no

effect on the estimate of the lower bound of the flutter speed unless they are

used in conjunction with the natural frequencies to obtain the structural

stiffnesses. Non-uniform inaccuracies affect the K and through these the

estimate of the lower bound.

The K were introduced in section 2.2 to allow for the normalisation

of the unit amplitudes in the coordinates with a consequent simplification of

the flutter equation. From the expressions given in that section it can be

seen that unit amplitude before normalisation tends to a pure heave deflection

of a chord's length as the distance between the nodal and aerodynamic axes

tends to infinity and is a pitch deflection of one radian when the nodal and

aerodynamic axes are coincident. For a wing of mass per unit span of pQ2 ,

K is unity in the first case and the inverse of the radius of gyration about

the aerodynamic axis (in chords) in the second. If the mass per unit span is

pe2i , these values are factored by G- 1 .



If u* is always the larger of the i the terms on the right-hand side

of equation (16) are all necessarily positive apart from FO ; aa ,
A2 62(0 -w>,

2 2 and b
2 1 K1 and K2 by definition and b, 2 because only systems

free from single degree-of-freedom instabilities are considered. Thus the

system will be assuredly stable* if FO is negative.

FO ' it will be remembered (equation (13)) is (s1c2  - s2c1)(yc1c2  - S1S2)

and will have the same sign as (t, - t2)(y - tlt2). Hence the stability

boundaries in the 0, - $2 plane are given by 6, = $2 and tan $, tan 4, = y .

When y is zero the second of these equations reduces to $9, = 0 , so the

axes themselves are boundaries. (t -1 t2) is negative in the second to fifth

octants inclusive and (-tlt2) is negative in the first, second, fifth and sixth

octants. Thus stability is assured for systems represented by points in the

first, third, fourth and sixth octant:  (see Fig.2); i.e. when the nodal line of

the graver mode is downwind of the reference axis and the other nodal line is

upwind of the axis or when both nodal lines are on the same side of the axis

and that of the graver mode is the further upwind.

When y is positive the axes are replaced as stability boundaries by two

curves, one of which lies wholly in the first quadrant and the other completely

in the third (see Fig.3). This change in the boundaries changes the stability

position only when both nodal lines are on one side of the reference axis and

one of them is sufficiently close to the axis.

4 COMPARISON WITH FREQUENCY-COALESCENCE THEORY

The values of x at flutter which result from the application of
2

frequency-coalescence theory are those for which p2 = 4p4 , with b taken as
zero (equations (10) and (ll)), i.e. the values given by

1 + c22 + & + ii,)'  = 4x{+; + C22i;
A2A.2

c11 + xy5 >
which can be reduced to

*2
(w -w>-2 2 x22 1 - 2(Cll - c,,)(L;  -2- qx + cc 1 1 + c22)2  = 0

(w -2 -w>x -2
2

= - + - - +2 1 fc c11 c22 J cc 11 c22) (Cl ] c2z12

(17)

(18)

= + 2J- c=11 - c22 - lP22 (19)

* 'Assuredly stable' means here 'stable at all airspeeds'.
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A.2
(W

2 2
2 KISICl -K s c + 2K,K2  y-s, c1s2c22 2 2 - . (20)

The condition for xfc to be real is that W22 is negative which means

that $1 and $2 have to be of opposite sign. Now (cl1 - c22) 2 is not less

than (-4~ lP22) and xfc will have the sign of (cl, - c22). Hence the

conditions for a positive real value of xfc are that c11 must be positive

and c22 negative, i.e. the point in the $, - 42 plane representing the

system must lie in the fourth quadrant. For xfc to correspond to true flutter

there is a further condqtion  which is that the pertinent h 2 must be negative,

i.e. the frequency must be real.

2
xfc =

p2- -
2

and, using equation (19) to substitute for xf ' the flutter frequency is given

by

cc -f- c2,,(;;  - ;;, + (ii; + -11
,f){c,,

c22 + 265 1c22= }- - - - - - - - - =
2
k
Cl1 - c22 t 2$ 1c22

)
-2 -2 -2 -2

cllw2 - c22y  * (w, + w1wcllc22
= - - - - - - (211

.  I

+2&---Y51 - c22 - 11 22

The sign

denominator is

numerator will

The lower xfc
*2

cc, p2 - c22w;)

of this depends solely on the sign of the numerator since the

necessarily positive in the cases considered. The sign of the

be positive for the higher xfc ' -2
slnce2(c,  ,w2 - c22G2) is positive.1

will not be meaningful if - c11c22(w2  1+ j2)2 is greater than
2 9 a condition that can be reduced to

- c22G; -cc],?“‘;  < - c22G; . (22)

The expressions for xf given by frequency-coalescence and the present

theory with zero mass density ratio u seem to have few points in common which

is perhaps not surprising since frequency-coalescence theory takes no account of

the damping terms which are prominent in equation (16). Frequency-coalescence
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theory says that only systems represented by points in the fourth quadrant of

the $1 - $2 plane are flutter-prone whilst the present theory includes parts

of the first and third quadrants as well. Coalescence theory says that there

will be an upper critical speed under certain circumstances whilst the present

theory says that all systems will tend to oscillations of constant amplitude

when the airspeed approaches infinity. Comparing (16) and (20) it will be seen

that Xfc is given by a more complicated expression than xf in that it is

not possible to extract an expression as simple as that for
F. l

The result's for systems in which the graver mode is pure heave (cl1 = 0)

typify the kind of discrepancy that exists between the two theories. Substitu-

tion of zero for c11 in equation (19) immediately gives the square of the

frequency-coalescence flutter speed as proportional to (-Cam) -1 . Substitution

for cl1 in the first form of equation (13) (with b zero) gives the square of

the flutter speed as proportional to b22(bll + b22)-1(-c22)-1  . Further in the

case of coalescence theory the upper and lower speeds are identical and there

is no speed at which the amplitude of the oscillation grows.

The relationship between frequency-coalescence and more comprehensive

theories of flutter is clarified by a graphical representation of the flutter

equations and this is examined next.

5 GRAPHICAL  REPRESENTATION

A graphical representation2 of the flutter equations obtained by tracing

the curves whose equations are the real and imaginary parts of equation (10)

when X is purely imaginary has been found to be an aid in distinguishing

between types of flutter. In the present case the equations of the curves can

be written.

A4 + p2h2 + p4 = 0
I

PIA + p3 = 0 * 1

If ICI1 - c221 %- +I 9 P2 can be approximated to be (c,, + c22) +

A2
(W 1 and the two equations can be written

(23)
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x4 + (Cl, + c& -2
+ (0 (c

-2 -2 -2 -2
1 I I02 +  c22w1)  +  up2x = 0

(24)

(b,l + b2,)h2  + (b,+;  + b22i+x  = ’ l

Then, remembering that AX -’ = i; , replacing x -1
by Y and choosing

2 2 2
=w +ow. 1 2 ’

equivalents of the equations can be written

-4
w - (Cl, +  c22)i2y  - ii2 + (c, +; +  c22j:)Y  +  G+; = 0

1

(25)

(bl  1 + b2,)i2
A2 - 2

= bllw2  + b22Wl

which can be recognised as the equations of a conic and a straight line in the

y,i2 plane. It is shown in Ref.2 that critical flutter speeds are given by

intersections of the straight line and the conic in the first quadrant and the

possibilities are analysed. Employing the findings of this analysis in the

present case it can be said that

(a> the conic will intersect the j2 axis at -2 and -2
9 O2 with slopes at

the intersections of c1l and
c22

respectively;

(b) the conic will be an NS hyperbola for systems represented by points in the

first and third $1 9 9, quadrants and an EW hyperbola for systems in the

second and fourth quadrants;

cc> the centre of the hyperbola will be at negative y for systems represented
by points in the second $1 , 4, quadrant and at positive y for systems in

the fourth quadrant, i.e. (c I 1 - c22)
is positive;

Cd) the slopes of the asymptotes of the hyperbola will be (c,l + c22) and zero

and their intersections with the i2 -1

and (c -2
II*2 + c22j:) (Cl ] + c22)

-1
axis will be at (c,,;: + ~2~~~)(c~l  + c22)

respectively;

(e) -2the damping line will be a line of zero slope at an o of

cb IlO2-2 + b22$(bl,  + b22)-1.

The stabilities of systems which are represented by EW hyperbolas with

centres at positive or negative ys (fourth or second $,, $2 quadrants

respectively) are easily seen to be consistent with these properties. In the

case of the system considered in the last section in which the graver mode is

pure heave the conic degenerates into two straight lines, the flutter speed
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from the present theory is given by the intersection of the damping line with

the conic line of non-zero slope and the identical upper and lower frequency

coalescence speeds by the centre of the conic where the straight lines intersect

each other.

In the first and third +I- $2 quadrants signum y at the centre of the

(NS) hyperbolas is given by signum (cl 1 - c22) and since cl1 and c22 depend

on the K as well as the $ , it is not immediately obvious how the stability

boundaries given by the present theory are independent of K . Fig.4 shows the

two types of hyperbola possible when the system can be represented by a point

in the first +I - $J~ quadrant. For both types of hyperbola flutter at some air-

speed will occur if the damping line is closer to the origin than the zero-slope

asymptote. From (d) and (e) above the inequality to be satisfied is

(b llW2n2 + b22+(bl,  + b22)-1 < (c& + c~~;;)(c~~  + Cam)-'

or

cc
-2

llW2 + c22+ (bl 1 + b22> - (b,$ + b22+(cl  1 + c22) > 0

which reduces to

cc llb22 - c22b,l)(;;  - ;;, E K~K~F  (w2 -1 2 0  2 iif, > 0 . (26)

A similar inequality holds for points in the third $,, $2 quadrant. This

confirms that the flutter boundary is independent of K but the critical air-

speeds of systems that are unstable will depend on the values of the K .

6 FO CONTOURS

6.1 Piston theory

Piston theory, without thickness effects, gives aerodynamic forces of the

type considered. The aerodynamic axis is at mid chord and the only non-zero

aerodynamic derivatives with this as reference axis are R cL (and hence "; )

and m* . ilcL has the value 2M-*a , where M is the Mach number, and (-m;)  is

&c/12, i.e. y is l/12. Since g; is zero, B is zero and the aerodynamic

axis is also the axis of minimum damping coefficient (b,).

Contours of positive FO for the 4, - +2 plane are given in Fig.5.

The maximum value of F. occurs when the nodal line in the graver mode is about
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513 chords in front of the aerodynamic axis and the other nodal line is the same

distance behind. The contours can be plotted as continuous curves if the

appropriate ranges of $1 and $2
1are chosen, i.e. (- arc tan y ) < 4 <

(2n 1- arc tan y > and (- 1 1
1

arc tan y ) > $2 > (- 27r  + arc tan y > but it is

thought that the presentation given here allows easier appreciation of the

results.

FO gives the dependence of the flutter stiffness number on the nodal

line positions only in part. The more comprehensive expression is

k;/b2  + r;/bl)Fo  . Contours of positive FOb;' are given in Fig.6. The

maximum value of FOb;l occurs when the nodal line of the graver mode is just

aft of 20% chord and the other nodal line is about three cllords  behind the

trailing edge. Since br is symmetric about the reference axis, contours of

Fob;' are the reflections of those of F b -I
0 1 in the line Q] + +2 = 0 ,

i.e. Fig.6 gives contours of -1FOb2 if the positive $1 axis is taken to be the

negative $2 axis and vice versa. The maximum value of F b -1
0 2

occurs when the

nodal line of the graver mode is about three chords in front of the leading edge

and the other nodal line is just forward of 80% chord.

With the aid of Fig.6 one can obtain an upper limit of the flutter stiff-

ness number from the mass, stiffness, natural frequency ratio, nodal line

positions and Mach number.

6.2 Minhinnick derivatives

Minhinnick suggested that the oscillatory aerodynamic derivatives for wings

of fairly-low aspect ratio in incompressible flow were approximated to by the

steady state values where there were relatives. In this way values can be

obtained for R
Z ’ mz9 ilo Rz) m2 a and ma from the fact that steady lift is

independent of vertical position and from the lift coefficient and the position

of the aerodynamic axis. Minhinnick further suggested that the ratios of '1;

and rno to IIa a should be taken to have the values given by the two-dimensional

derivatives when the frequency parameter tends to infinity. These asymptotic

values are IO/II  for (L;/Lu) and 9/22 for (- m;/Lu)  when the leading edge of the

wing is the reference axis. The aerodynamic axis for this type of flow is at

the quarter chord and this is the axis for which equation (4) is applicable.

f3 and y are 29144 and Z/l1 respectively, br has its minimum value, 0.0696,

when the nodal line is at about 60% chord and its maximum value, 1 .116,  when the

nodal line is about 21 chords in front of the leading edge. This contrasts with

piston theory which gives B zero and only one turning point.
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Contours of positive FO are given in Fig.7. The maximum value occurs

when the nodal line in the graver mode is about 8/5 chords in front of the

reference axis and the other nodal line is the same distance behind. Contours

of positive -1Fob1 are given in Fig.8. The maximum value occurs when the nodal

line in the graver mode is almost l/5 of the chord in front of the leading edge

and the other nodal line is just over If chords aft of the trailing edge. Since

the value of the damping coefficient is not symmetric  about the aerodynamic axis

there is no simple relationship between FOb;l -1

positive FObi1

and FOb2  . Contours of

.are given in Fig.9. The maximum value occurs when the nodal

line in graver mode is two chords in front of the leading edge and the other

nodal  line is at almost 70% chord, The maximum of Fob;' is almost ten times

that of F b-1
01 *

7 EFFECT OF DENSITY RATIO

The fractional reduction in flutter stiffness number when the density ratio

is non-zero is

uy2afu(Kl  P2 + K2 2 1% A.2 % 2) cc; - iif, -I
from equation (13). All the terms in this expression are necessarily positive

except for fo . fo is (SIC2 - S2CI) (YCIC2'  S,S2)
-1 and hence has the same

sign as FO but whereas FO tends to zero at the boundaries of the region in

which it is positive, f ~ tends to zero at the (4, = I$,)  limit and infinity at

the (tan $1 tan $2 = y) limit. Full account of the effect of nodal line position

requires consideration of f b rather than f u alone (cf. Fob:' and Fo).

Contours of positive fa an: rfob2 for piston theory are given in Figs.10 and

11. The fob1 contours are the reflection of the f ba 2 contours in the line

0, + 0, - 0 - Contours of positive fo, fob,, fob2 for Minhinnick  derivatives

are given in Figs.12-14.

Some of the other factors in the expression are identical to factors in

the expression for the upper bound of flutter stiffness number (equation (16))

and the effects tend to cancel each other. Thus if the upper bound is high due

to large 11 the fractional decrease will also tend to bea or small (;z - $1,

large for the same reason.
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8 CONCLUDING REMARKS

The flutter of a two-dimensional wing under simple aerodynamic forces has

been analysed. The forces differ from those assumed in frequency-coalescence

theory in that forces in phase with the velocity of displacement are included.

The inclusion of these damping forces results in increased possibilities of

flutter in terms of combinations of nodal-line positions which can lead to

instability over those given by frequency-coalescence theory. I?hich  extra

combinations of nodal-line positions make flutter a possibility is dependent to

some extent on the aerodynamic damping moment about the aerodynamic axis

(Cf. Figs.2 and 3). This damping moment in pitch is also a significant factor in

determining which combinations of nodal lines lead to minimum flutter speeds as

well as the actual value of these minimum speeds. It also determines the only

nodal-line positions, one for the lower- and one for the higher-frequency mode,

which eliminate the possibility of flutter altogether.

The expression for the upper bound of the flutter stiffness number given

in equation (16) is disappointing in that it contains terms depending on

generalised masses in the modes. However, contour plots are given from which it

is possible to obtain the value of the upper bound for any combination of nodal

line positions once the generalised masses are known. This dependence on

generalised masses is also present in the case of frequency-coalescence theory

but complicates the equations to an extent such that comparable contours cannot

be drawn.

The effect of the density ratio is complicated and involves the relative

frequencies of the modes as well as the generalised masses. Contour plots,

however, are again given to aid the evaluation of the effect in specific cases.

Two points are of general applicability. One is that the drop in flutter stiff-

ness number is proportional to the damping in pitch. The other is that if the

value of the upper bound of flutter stiffness number is large due to the

proximity of the frequencies, the drop in stiffness number due to density-ratio

effects will also be large.



Appendix

MAXIMA OF F. AND Fob;' (EQUATION (16))

FO will have maxima with respect to 01 when 92 is constant and it can
be shown that these will occur when

tan 41 = -T2 + (T;+ I) 1 (A-1 >

where T = (1 -1
- v)t,(t,2  + Y> . It can also be shown that the maxima with

respect :o I$,,  0, constant, occur when

tan$2 = -Tl 1-(T;+l)  . (A-2 >

FO will also have an absolute maximum with respect to $1 and 92 * This lies
on the line @I = -9 2 and is at

2tan2$1  = - 2 tan2 0, = 3(1 - Y> + r (A-3)

where r :Jw and this maximum value will be

J2(3(1 -y> +rp (3(1 + y) + rjj5 - 3y + r[
64(1 - Y) . (A-4)

-1
FObl

-1and Fob2 will also have maxima and absolute maxima. The maxima of
Fob;' , 9, constant, -1

locations as those of
and those of Fob2  , $2 constant, will have the sy

FO under the same conditions but the maxima of FObl
with 9 2 constant are all at tan $1 = y 1 -1and those of Fob2 with

1 $1
constant are all at tan $2 = -y , The values of the maxima are

-1
FObl = (y 1 - t2j2(2yi  + fg(1  + ty

and
-1

Fob2 = (Y 4 - t,)2(2Y 1 - BP (1 + t2>-'1 *

(A-5a)

(A-5b)

The absolute maximum of -1
FObl

1is located at (arc tan y , arc tan y -1 ) and

(Fob;l)-  = 1(Y + 1)(2Y + B)

-1
l (A-6a)
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That of Fob;’ is located  a: (2.x tan y -4 49 arc tan -y > and

(Fob;l:mw  = (y + 1)(2Y 1 - 61-l  s (A-6b)
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