

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Growth of the Turbulent Wake Close

 Behind an Aerofoil at IncidenceBy
D. A. Spence,
Cambridge University Aeronautics Laboratory.

Growth of the Turbulent Vake Close

 Behind an Aerofoil at Incidence- By -

D. A. Spence,
Cambridge Unaversity Aeronautics Laboratory.

Communicated by P.D.S.R.(A), Ministry of Supply

29th May, 1952.

Summary
Knowledge of the variation close behind a trailing edge of the wake displacement thickness

$$
8^{*}=\int\left(1-\frac{u}{U}\right) d y
$$

is necessary in calculations of the circulation round an arrofoil. Examination of data now available reveals that in the wake: (i) velocity profiles on either side of the line of minimum velocity may be derived from the corresponding trailing-edge koundary-layer profiles by change of scale of each co-ordinate; (ii) the velocity defect at corresponding points follows a universal recovery law of the form $K\left(x-x_{0}\right)^{-\frac{1}{2}}$ even close to the trailing edge. An mmediate consequence of these two empirical properties is a simple relation for the form parameter $H=\delta^{*} / \theta$ at points in the wake in terms of trailing edge values. In conjunction with the momentum equation this makes δ^{*} determinate. dgreement with experiment is very satisfactory.

List of Symbols

x, y	Streammise and normal coordinates.
u, v	Streamwise and normal components of velocity in wake.
U	Velocity at edge of wake.
U	Velocity at infinity.
$u_{L_{12}}, v_{m}$	Velocity components on wake centre line.
δ^{*}	$\text { Displacement thickness }=\int\left(1-\frac{u}{U}\right) d y \text {. }$
θ	Momentum thickness $=\int \frac{u}{U}\left(1-\frac{u}{U}\right) d y$.
H	Forw parameter $=\delta^{*} / \theta$.
$A(x)$	Universal function depending on velocity defect at centre of wake.
$b(x)$	Width of half wake.
I_{1}, I_{2}	Integrals defined from trailing edge profile.
T, U, 2	Suffixes referring to trailing edge and to upper and lower halves of wake.
η	y - coordinate of centre line.
c	Chord of aerofoil.
σ	Rate of transfer of momentum across wake centre line.

1. Introduction

In theoretical investigations into the sectional characteristics of aerofolls it is necessary to know how the displacement flux

$$
\psi^{*}=\int(U-u) d y=U \delta^{*}
$$

varies in the trailing edge region. inethods are alrcady avazlable for calculating this variation for turbulent boundary layers, but the corresponding problem for turbulont wakos has hitherto received little attontion. An invostigation is now presented into the distribution of mean velocity in such wokes, and a mothod doveloped for prodicting the variation of displacoment thzcknoss, starting from a trailing edge at which the boundary layer volocity profiles are known. Cases in which separation has occurrod ahoad of tho trailing odge are excluded from the investigatzon, and the volocity $U(x)$ at the odge of tho walce is assumed known。

As for turbulent boundary layors, the calculation proceeds by means of tho momentum oquation together with on expression for the form parameter H, and the problom is to find this latter. A convenient coordinate systen is that composed of the streamlines and equipotontials of ideal flow past the aorofoil. Sinco there is no skan friction, the momentum equation is simply

$$
\frac{d \theta}{d x}+(H+2) \frac{\theta}{U} \frac{d U}{d x}=0 \quad \cdots \quad \cdots \quad \cdots \quad \text { (1) }
$$

(The integrols defining θ and $\delta^{*}=H \theta$ now extend across the whole width of the wake.)

At a great dastance, U and therefore θ become constant; moreover

$$
\theta=\int_{-\infty}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y \rightarrow \int_{-\infty}^{\infty}\left(1-\frac{u}{U}\right) d y=\delta^{*}
$$

and $H \rightarrow 1$.
Squire and Young ${ }^{(1)}$ gave the form parameter relation

$$
\log \frac{U_{0}}{U} \quad a(H-1) \quad \ldots \quad \ldots \quad \ldots \quad \text { (2) }
$$

for use an calculating profile drag, 'hich depends on θ and involves H only indirectly. The equation cloarly expressos the correct behaviour of H as $U \rightarrow U_{0}$ downstream, but unfortunately it is not sufficiently accurate in the neighbourhood of the trozling edge. The relation was dorived from the limatod data then availablo, obteaned by B. M. Jones (2) on a wing at small incidences for which the trazling adge value H_{T} did not excood I. ${ }^{4+}$ measurenents, with considerably higher values of H_{T} made at the N.P. L_{0} by Preston (3), (4) and at Langley Field by Mondelsohn(5) do not agree at all woll with the relatıon, which was in any case tentativo. It has thereforc soemed profitable to make a fresh investigation in the light of these measurements, and two empirical properties of the volocity profiles have energed: (1) geometrical strilarity of the half profiles on either side of the wake centre to the corresponding trailing odge profile with its cusp removed, and (ii) a universal law for recovory of velocity at the centre of the woke in terns of distance downstrear. Taken together, these lead to a relation
for the variation of H in terms of H_{y}, and distance downstream.

2. Velocaty Profiles in the Vake

Inatially the wakc is asymotrical because of the different historios of the uppor and lovor boundary layers; as it sproads, its asy.unctry is decrcased by transverse mixing in the fully turbulent core. Tho typical statc of affairs is shown diagrametically in Figuro 1.

Fig. ${ }^{2}$

The dotted line passing through the points of manmum velocity u_{m} on succeeding profiles will be called the "wake centre line". In the region of asymatry this is not expected to be a streamine, but since $\partial u / \partial y=0$, shear stress vanishes along it, except at the actual trailing edge, where there is a discontznuity in shear, and a very complicated mixing process takes place. For cunvenaence it will be assumed throughout that, as happens on an acrofoil at positive incidense, the upper boundary layer is thicker at the trailing edge than the lower cne, and is nearer to separation in the senso of having a higher H.

At great distances fron the aerofoil the velocity distribution and turbulence pattorn may bo expected to resomble those at oomparable distances behind a circular cylinder, the asymetry due to aerofoil incidence having been renoved by turbulent mixing. The latter case has rccently been fully irvostigated by Townsend(6), whoso construction of the wake appoars to justify the conventional assumption that the mean profiles sufficiently many diameters from the cylinder are geometricelly similar, with the form

$$
\begin{equation*}
U_{0}-u=U_{0} A(x) f(y / b) \tag{3}
\end{equation*}
$$

where $b=\frac{b}{g}(x)$ and f is a universal function. This form has always been assumed in mathematical investigations such as those by Schlichting and others described in Ref.7. From purely dimensional considerations $2 t$ may be shown that

$$
\begin{aligned}
& A(x) \propto\left(x-x_{0}\right)^{-\frac{1}{2}} \\
& b(x) \propto\left(x-x_{0}\right)^{\frac{1}{2}} \quad \ldots \quad \ldots \quad \ldots \quad \ldots
\end{aligned}
$$

Where $x-x_{0}$ is the distance from the virtual origin of the weke. s(x) neasures the velocity defect at the centre of a profile, which is in fact found experimentally to fall off as $\left(x-x_{0}\right)^{-\frac{1}{2}}$. (Schlichting used a maxang length relation to find the form of f, thus assuming dynamical similamty of the turbulent motion. This is open to considerable doubt, except at great distancos from the cylinder.)

The similarity relation (3) does not hold in the dead water region immediately behind a circular cylinder, but it is not obviously impossible for such a relation to exist for the flow amnediately behind a streamline body. Clearly profiles of velocity from one side of the weke to the other cannot be expected to be similar, becausc of the initial difference in thickness of the two holves (which ultimately dasappears). On the other hand half profiles appear to be so, each having broadly spoaking a "half orror curve" shapo. Successive half profilies in the downstroam daroction duffor only in beang broader and in having smaller velocity defocts ($U-u_{m}$) at their pentres. a dotailod oxamination of profiles measured by Preston(3), (4), Viendelsohn(5) and Jones (2) shows that for these at least, such similerity exists vary closaly. The funation f is no longer universal, being determned now by the boundery layer profiles at the trailing edgo.

The set of profiles in Figure 2 illustrates this. The points are taken from experimental profiles, and the solid lines which fit their upper and lower halves belong to femilies derived by affine transformation (i.e. by change of scalo of each coordinate exis) from tho uppor and lower halves respectively of the initiol profile. This latter has been chosen as the trailing edga profile, fairod across a very narrow part of its'centre to remove the cusp; the fairung is not sufficzent to alter the values of δ^{*} and θ. The profile at $x / \mathrm{c}=.40$ in Figure 2 departs slightiy from the interpolated curvo, in such a way as to restore symmetry between tho tro halves, end it must be concludod that the shape imposed on the velocity proinile by trazling edge conditions, al though preserved for distances of the order of a quarter chord or more, is ultarately modiriced by turbulont mixing to a universol asymptotic form.

The calculations of the next scction concern only the region close to the trailing edge, and the velocity distribution is assumed to be expressible there by

$$
\begin{equation*}
U-u=U \Delta(x) f(y / b) \tag{5}
\end{equation*}
$$

Where $b(x)$ is a representative width and y is measured from the wake centre line. f and b are different for the upper and lower halves, but the velocity $U(x)$ at the edge of the wake is the sane for each half. Without loss of generalaty f may be normolized so as to make $f(0)=1$. Thon

$$
L(x)=\left(U-u_{m}\right) / U .
$$

3. Velocity at Centre of Wake

It seened possible that the curves of $h(x)$ obtained froa different aerofoils might satisfy a gonerol lam fur recovory of velocaty at the
centre of the wake, and accordingly the ratio u_{m} / U was plotted against $x / 0$, the non-dimenszonal distance behind the trailing edge, for the data obtained by Preston and by Jones. c is the aerofoil chord, an approprate length to represent the history of the boundary layers. The result is shown in Fig.3. is single curve can in fact be drawn through the points from the five sets of measurements plotted, with very little scatter. Mendelsohn's points, all of which are in the immediate vicinity of the trailing edge ($x / c \leqslant 0.10$) also agroc well with the curve given, but they have been omitted to avoid over-crowding the figure. We conelude that at any rate as a good approximation h is a universal function of x / c. The interpolated curve in the figure is

$$
\begin{equation*}
\left(U-u_{m}\right) / U=0.1265(x / c+0.025)^{-\frac{1}{2}} \quad \ldots \quad \ldots \tag{6}
\end{equation*}
$$

The form is chosen in order to give the variation, already reformed to, proportional to $\left(x-x_{0}\right)^{-\frac{1}{2}}$ at large distances, and the constants 0.1265 and 0.025 give the best fit with experiment. The trailing edge value $(x / c=0)$ is then $u_{m} / U=0.2$; this graves a consistent means of faring the trailing edge velocity profiles so as to treat them as belonging to the wake. It must be remarked that all the data lies in the Reynolds number range $0.5 \times 10^{6}-5 \times 10^{6}$. The similarity of profiles is probably independent of Reynolds number, but the curve of velocity recovery on the centre lane would perhaps show a scale effect outside this range.
4. Variation of H is a half wake

The typical width b may most conveniently be defined as the width (assumed) finite) of a half velocity profile, so that $f(1)=0$. The integral characteristics of the half wake are then

$$
\begin{aligned}
\delta^{*} & =\int_{0}^{b}\left(1-\frac{u}{U}\right) d y=b a(x) \int_{0}^{1} f(\xi) d \xi \\
\theta & =\int_{0}^{b} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=b_{a}(x) \int_{0}^{1} f(\xi)\left\{1-L(x) \cdot \frac{f}{F}(\xi)\right\} d \xi .
\end{aligned}
$$

Now let

$$
\begin{aligned}
& \int_{0}^{1} f(\xi) d \xi=I_{1} \\
& \int_{0}^{1}[f(\xi)]^{2} d \xi=I_{2} .
\end{aligned}
$$

Then I_{1}, I_{2} are independent of x_{3} beng fixer by the initial profile, The integrals become

$$
\begin{aligned}
& \delta^{*}=\mathrm{b} \mu(\mathrm{x}) \cdot I_{1} \\
& \theta=\mathrm{bL}(\mathrm{x})\left[I_{1}-L(\mathrm{x}) \mathrm{I}_{2}\right] \\
& \frac{\theta}{\delta^{*}}=\frac{1}{\mathrm{H}}=1-\mathrm{s}(\mathrm{x}) \frac{I_{2}}{I_{1}} \\
& \therefore\left(I-\frac{I}{H}\right) \propto L(x) \\
& \propto(\mathrm{x} / \mathrm{c}+0.025)^{-\frac{1}{2}}
\end{aligned}
$$

Therefore if H_{T} is the trailing edge value for the corresponding boundary layer

$$
\frac{1-\frac{1}{H}}{1-\frac{1}{H_{T}}}=\left(\frac{\frac{x}{c}+0.025}{0.025}\right)^{-\frac{1}{2}}=\left(1+40 \frac{x}{c}\right)^{-\frac{1}{2}} \ldots
$$

Thus the variation of H a given distance downstream in the half wake depends only on H_{T}. Curves of this variation, for initial values $H_{T}=1.4,1.8,2.2,2.6$ and 3.0 are shown in Fig.4. These illustrate the fact, also found experinentally, that most of the decrease from H_{T} to the asymptotic value 1 takes place close behind the trailing edge. it distances at which the velocjty profile has begun to depart from the geometrically similar form described by (5), H has decreased almost to unity, and the resultant error is insignificant. The analysas for the asymptotenc case as gaven in liodern Developments assumes $H=1$, so cannot be used to predict the way in which this value is approached.
5. Variation of H in a Whole Wake
(Hexe subscrapts $u, ~ \imath$ refer to upper (i.e., thicker) and lower halves of the wake respectively. Symbols without subscripts refer to the whole wake). Fron the defintions it follows that:-

$$
\begin{aligned}
& \theta=\theta_{u}+\theta_{\imath} \\
& \delta^{*}=\delta_{u}^{*}+\delta^{*} \eta
\end{aligned}
$$

and therefore

$$
H=\left(H_{u} \theta_{u}+H_{\imath} \theta_{\imath}\right) / \theta \quad \ldots \quad \ldots \quad \text { (8) }
$$

H_{u} and H_{2} may be calculated from the form paraneter aquation (7) but it is not possible to colculate θ_{u} and θ soparately, since the momentum equation (I) applies only to the whole wako. In the sppendix it is shown that for the uppor holf wake, using η for the y co-ordinate of the centro line and v_{m} for the transverse valocity there, the momentam
equation is

$$
\frac{d \theta_{u}}{d x}+\left(H_{u}+2\right) \frac{\theta_{u}}{U} \frac{d U}{d x}=\frac{U-u_{m}}{U}\left(\frac{v_{m}}{U}-\frac{u_{m}}{U} \frac{d \eta}{d x}\right)
$$

$$
\begin{equation*}
=\sigma / \rho U^{2} \quad \ldots \quad \ldots \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\rho\left(U-u_{m}\right)\left(v_{m}-u_{m} \frac{d \eta}{d x}\right) \quad \bullet \cdots \cdots \tag{10}
\end{equation*}
$$

Simlarly for the lower half it is

$$
\frac{d \theta_{\eta}}{d x}+\left(H_{\eta}+2\right) \frac{\theta_{\eta}}{U} \frac{d U}{d x}=-\frac{\sigma}{\rho U^{2}} \cdot \ldots \ldots \text { (Il) }
$$

idding (9) and (11) gives equation (1).
$-\sigma(x)$ then represents the rate of transport of momentum downwards across the wake centre line by turbulent mixing, which takes place in such a way as to restore symmetry. It is evident fron Fig. 2 that this occurs, since b_{2} groves more rapidly than b_{y} until ultamately they become equal. Unfortunntely there is no way of finding the quantities $\mathrm{d} \eta / d x$ and $\mathrm{V}_{\mathrm{m}} / \mathrm{U}$, so (9) and (11) cannot be solved separately. Thus H for the whole wake cannot be found exactly. However linits are known between which $\theta_{U} / \theta=I-\theta_{l} / \theta$ varies, and thus limits may be obtained for the variation of H. In fact θ / θ decreases from Its traling edge value $\left(\theta \|(\theta)_{T}\right.$ to $\frac{1}{2}$, so that the true H lies between the curves of

$$
\begin{equation*}
\mathrm{H}=\left(\frac{{ }^{\theta} \mathrm{u}}{\theta}\right)_{\mathrm{T}} H_{u}+\left(\frac{\theta_{\eta}}{\theta}\right)_{\mathrm{T}} H_{\imath} \ldots \ldots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
H=\frac{1}{2}\left(H_{u}+H_{\imath}\right) \tag{13}
\end{equation*}
$$

Where H_{u} and H_{2} are oalculated from their trailing edge values by means of (7). The accurate solution for H is a curve which agrees with that given by (12) at the trailing edge but ultimately approaches that gaven by (13). However the curves gaven by (7) for different valuos of H_{T} all lie close together beyond about a quarter of a chord downstream, and the departure of the true H from that given by (12) is very small. Equation (12) expresses H as a linear interpolation between the curves of H_{u} and H_{2}, and thus gives to the first order a curve of the family to which H_{u} and H_{2} belong; the curve of this famly, in fact, which has the anitial value

$$
H_{T}=\left(H_{u} \theta_{u}+H_{\eta} \theta_{\eta}\right)_{T} / \theta_{T}
$$

This curve could therefore be treated as an approximation to the true solution.

A rather extrene case has been colculated to estamate the error in this approximate procedure, and the result is shown in Figure 5. The trailing edge conditions assumed are $\theta_{u}=4 \theta_{i}, H_{u}=2.49$ $H_{2}=1.4$. Then $H_{T}=2.2$. The difforonce betreen the fojred curve, which is intended to represent the true solution, and the linesr interpolation, is nowhere more than $2 \frac{1}{2}$ per cent. The latter curve
differs by less than 1 per cent from that given by equation (7). Thus the theoretical variation of H in a whole vake is given with reasonable accuracy in terins of $2 t s$ trailing edge volue by (7).

For one of the cases measured by Preston (3) namely the wake bohind a symmetrical Joukowski aerofoil at 6° incidence, the satisfactory agreement betwoen theory and experament is illustrated in Figure 6. Such discrepancy as occurs would be compensated by the fairing process just described. Similar agrement has been found in all cases.

6. Discussion

The theory is purely emparical, but seems acceptable in the light of present knowledge of turbulent shear flows. It is most accurate at poants moderatoly close to the aerofoil, and only such points need be considered in estinating the influonco of the wake on aerofoll characteristics. The investigation has been made maznly to find a consistent way of carrying out this estamation, without necessarily layng great strass on accuracy. In fact it was found in the investagation of laf't doscribod an Reforence 8 that the streamlane shift produced by the displacoment thackness usually accounts for only a small part of the loss of lift below that of ideal fluzd theory, and the approxinations used in this paper are not sufficient to introduce errors into lift predictions. The strowline shift from the pattern of ideal flow arises from the sharp contraction in displacement thzckness behznd the trailing edge. This is a consequence of the rapid drop in H, which is predicted by the theory, and is found experimentally.

Use of the predicted variatzon of H in the momentum equation should increaso the accuracy of drag predictions by the Squire-Young method, although this is probably unnecessary. For lift calculations a furthor conjecture must bo made for the position of the wake streamlines. Flow leaves the trailing edge as snoothly as possible, and this may be represonted anpimcally by assuning the trazling streamline to agreo initially with that of ideol flow, which bisects the trailing edge angle. In uppor and lower halves the momentum equation takes the form (1) If shear stress on the streamine is neglected. Solution in each half soparatoly is then justifiable by an argument bimilar to that of section 5. In numerical examples it has been found sufficiently accurate to calculate δ^{*} for each half keeping θ constant, since H accounts for the greater part of the variation.

The rate of transfer of momentum across the wake centre line, represented by the quantity σ defined in equation (10), cannot be determined by analysis which involves only nean velocity quantities. Investigation of the factors influencing this transfer would be an interesting contribution to the theory of turbulent shear flow.

7. icknowledgment

I an andebted to the Assistant Director of Scientafic Research (Air), Ministry of Supply, for financial support while this work was done, and to Dr. J. H. Preston and Dr. G. K. Batchelor for discussions.

Roferences

No. huthor(s)

1 H. B. Squire and A. D. Young

2 Cambridge University heronautics Lab.
J. H. Preston and N. E. Sweeting

4 J. H. Preston, N. E. Sweeting and Niss D. K. Cox

5 R. A. Mendelsohn

6 H. A. Townsend

7 S. Goldstein (Ed)

8 D. A. Spence

Title, etc.

The calculation of the profile drag of aerofolls. (November, 1937). R. \& 31. 1838.

The measurement of profile drag by the pitot-traverse method. (February, 1936). R. \& II. 1688.

The experimental deteraination of the boundary layer and wake characteristics of a simple Joukowski aerofoil, with particular reference to the trailing edge region. (ilarch, 1943). R. \& M. 1998 。

The experimental determination of the boundary layer and wake characteristics of a Piercy 1240 aerofoll with particular reference to the trailing edge region. (February, 1945). R. \& M. 2013.

Wind tumel investigation of the boundary layer and wake and their relation to airfoil charcoteristics. (1947). NHCA. T.N. 1304.

Donentum and energy diffusion in the turbulent wake of a cylinder. (1949). Proc. Roy. Soc. (A) 197, pp. 124-140.
:odern Developments in Fluid Dynamics. (1938).

Vol. II, Ch. 13, pp. 581-586.
Prediction of the characteristics of twoainensional aerofoils. (December, 1952). A.R.C. Report 15,504.

APPENDIX

Monenturn Equation for a Half Vake

The equation of motion is

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=U \frac{d U}{\partial x}+\frac{\partial}{\partial y}\binom{\tau}{\frac{\rho}{\rho}} \cdot \quad \ldots \quad \ldots \tag{1}
\end{equation*}
$$

Let $y=\delta$ be the edge of the wake, $y=\eta$ the centre line, U_{m} and ∇_{m} the velocity components on the centre line. We define the integral characteristics of the half wake by

$$
\begin{align*}
& \delta^{*}=\int_{\eta}^{\delta}\left(1-\frac{u}{v}\right) d y=F \theta_{\theta} \quad \ldots \quad \ldots \tag{2}\\
& \theta=\int_{\eta}^{\delta} \frac{u}{U}\left(I-\frac{u}{U}\right) d y . \\
& \ldots \text {... ... (3) }
\end{align*}
$$

(1) with respect of y from η to $\delta, 1$.e. from the relation

$$
\begin{equation*}
\int_{\eta}^{\delta} \partial y\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=\int_{\eta}^{\delta} d y\left(U \frac{d U}{d x}+\frac{I}{\rho} \frac{\partial \tau}{\partial y}\right) \cdot \ldots \tag{4}
\end{equation*}
$$

Consider the various teras:-
(i) τ vanishes at $y=\eta$ since $\partial u / \partial y=0$ there; and also at the edge of the wake, so that the last term on the right does not contribute to the integral.
(1i)

$$
\begin{aligned}
\int_{\eta}^{\delta} \frac{\partial u}{\partial y} d y & =[v u]_{\eta}^{\delta}-\int_{\eta}^{\delta} u \frac{\partial v}{\partial y} d y \\
& =[v u]_{\eta}^{\delta}+\int_{\eta}^{\delta} u \frac{\partial u}{\partial x} d y
\end{aligned}
$$

by continuity.
Sinnlarly

$$
v_{\mathrm{y}}=\delta=\mathrm{v}_{\mathrm{m}}+\int_{\eta}^{\delta} \frac{\partial \mathrm{v}}{\partial \mathrm{y}} \mathrm{dy}=\mathrm{v}_{\mathrm{m}}-\int_{\eta}^{\delta \partial \mathrm{u}} \frac{\mathrm{x}}{\mathrm{x}} \mathrm{dy} .
$$

Thus

$$
\int_{\eta}^{\delta} \stackrel{\partial u}{v-d y}=U v_{m}-U \int_{\eta}^{\delta} \frac{\partial u}{\partial x} d y-v_{\mathrm{m}} u_{\mathrm{T}}+\int_{\eta}^{\delta} u \frac{\partial u}{\partial x} d y
$$

and altogether (4) becomes

$$
U^{2} \int_{\eta}^{\delta} d y\left\{\begin{array}{ll}
1 & d U \tag{5}\\
- & - \\
U & d x
\end{array}+\left(\begin{array}{rr}
1 & -2 \\
\hline
\end{array}\right) \begin{array}{cc}
1 & \partial u \\
- & - \\
U & \partial x
\end{array}\right\}=v_{m}\left(U-u_{\mathrm{r}}\right) .
$$

Now consider the toms on the left hand side of the momenturn equation:-
(1) $\frac{d \theta}{d x}=\frac{d}{d x} \int_{\eta}^{\delta}\left(\begin{array}{l}u \\ - \\ \frac{u}{u} \\ u^{2}\end{array}\right) d y$

(ii) $(H+2) \frac{\theta d U}{U-\overline{d x}}=\frac{1}{U} \frac{d U}{U d x} \int_{\eta}^{\delta}\left(1+\frac{u}{U}-\frac{2 u^{2}}{U^{2}}\right) d y$

The integral in (6) as the saio as that in (5), and eluinating it from the two equations givos

$$
\frac{d \theta}{d x}+(H+2) \frac{\theta d U}{---}=\left(\begin{array}{lll}
v_{n 1} & u_{11} & d \eta \\
-\frac{-}{U} & -\frac{1}{U} & \frac{d x}{U}
\end{array}\right)\left(\begin{array}{rr}
1 & -\frac{u_{1}}{-} \\
U
\end{array}\right) \quad \ldots(7)
$$

or

$$
\begin{equation*}
\frac{d \theta}{d x}+(H+2) \frac{\theta d U}{U d x}=\frac{\sigma}{\rho U^{2}} \tag{8}
\end{equation*}
$$

where

$$
\sigma=\rho\left(\mathrm{U}-\mathrm{u}_{\mathrm{m}}\right) \quad\left(\mathrm{v}_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}} \frac{\mathrm{~d} \eta}{\mathrm{dx}}\right)
$$

is the rate at which momentun crosses the wake centre line.

VELOCITY PROFILES IN A TURBULENT WAKE

Fig 4

Fio. 5

VARIATION OF H IN WAKE BEHIND JOUKOWSKI AEROFOIL AT 6° INCIDENCE.
C.P No 125
(A.R C. 14,953)

A R.C Technical Report

CROWN COPYRIGHT RESERVED

Printed and published by her majesty's stationery office
To be purchased from
York House, Kingsway, London, w.c 2423 Oxford Street, London, w. 1
P O. Box 569, LONDON, se. 1
13a Castle Street, minburgh, 2 ISt Andrew's Crescent, Cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1953
Price 3s 6d net
printed in areat gritain

