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ITERATIVE DESIGN TECHNIQUES FOR THICK CAMBERED WINGS IN SUBCRITICAL FLOW 

C. C. L. Sells 

SUMMARY 

The author's method for computing steady, inviscid, subcritical flow past 

a thick cambered wing is extended to design applications. Four problems are 

considered: (1) given thickness and doublet (first-order loading) distributions; 

(2) given thickness and upper-surface pressure distributions; (3) given loading 

and upper-surface pressure distributions; (4) a hybrid of (2) and (3) in which 

the thickness is specified everywhere except near the root, and is determined 

near the root when the doublet distribution is constrained to exhibit spanwise 

invariance in that region. Convergence for the first problem is excellent. 

For all problems, good convergence is obtained outboard. For the single case 

reported of the second problem, convergence was secured near the root but cannot 

yet be guaranteed. Near the root, slow convergence was obtained for the third 

problem, rather better convergence for the fourth problem. This hybrid option 

is tentatively recommended. 

* Replaces RAE Technical Report 76027 - ARC 36857. 
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1 INTRODUCTION 

This Report describes the development of computer programs to design 

camber and twist distributions, and in some applications thickness distributions 

also, for a wing without dihedral in steady inviscid incompressible (or sub- 

critical) flow. The programs are extensions of the author's direct-calculation 

program, described in Ref.], in which the flow field is represented by suitable 

source and doublet distributions in the wing chordal surface. A computer sub- 

routine is available 293 to calculate the corresponding flow fields. Linear 

compressibility effects are accounted for by working in the affine (Prandtl- 

Glauert) space. 

The design methods are based on the second-order small-perturbation theory 

of Weber4; the idea is to obtain an approximation for the planar source distri- 

bution, and the planar doublet distribution when appropriate, compute the flow 

fields due to these singularities, calculate the residual errors in the boundary 

conditions on the upper and lower surfaces, and adjust the source distribution 

using the symmetrical part of the error field, and the camber and twist distri- 

bution using the antisymmetrical part. Four problems are studied. 

In the first problem the thickness and doublet distributions are prescribed; 

the doublet distribution is equivalent to the load distribution in linear theory, 

and is roughly equal to the difference in lower and upper surface pressure 

coefficients on the real, thick wing. The upper-surface (and of course the 

lower-surface) pressure distribution is found as part of the solution, along 

with the camber and twist. This method, which requires nothing beyond the 

suggestions of Weber4 , converges very quickly, and takes comparatively little 

computer time, as the velocity field on the fixed thickness surface due to the 

fixed doublet distribution can be calculated once for all. 

In the second problem, the thickness and upper-surface pressure distribu- 

tions are prescribed. The doublet strength now has to be determined iteratively. 

Weber has suggested4 a procedure for this task, in which we seek to cancel the 

difference between the target pressure distribution and that achieved so far, by 

a simple addition of suitable planar doublet strength at each point, the idea 

being that the resulting extra streamwash will dominate. For the cases tried, 

this method converges quite well in mid-semispan and - perhaps surprisingly - 

near the tip, but near the root cf a swept wing there are difficulties, in that 

a small change in doublet strength, particularly near the root trailing edge, 

does not necessarily produce a small change in the other two components, 
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sidewash and upwash, or in the residual error which determines the next source 
distribution. This leads to a situation of the tail wagging the dog. Various 
under-relaxation schemes have been tried, with limited success. More successful 
was an inner iteration scheme in which the extra sidewash and upwash due to the 
new doublet increments are estimated (on the chordal surface, with a direct 
vortex lattice representation for the upwash), the new upper-surface pressure 
distribution estimated and another increment in doublet strength obtained. This 
inner iteration has increased the scope of the method, but there are still some 
cases when it fails to converge , probably because for the prevailing local and 
temporal conditions the pressure is bounded away from the target, just as a 
quadratic is bounded away from certain regions. For this case an optimization 
routine would be appropriate, but has not been included in the program. Thus 
at the moment, this option cannot be guaranteed to work near the root of a swept 
wing. 

In the third problem, the loading and upper-surface pressure distributions 
are prescribed, and the thickness is to be determined as well as the camber and 
twist. Since it is the doublet strength, and not the exact lower-surface 
pressure distribution, that is prescribed, this is not the same thing as the 
specification of both upper- and lower-surface pressure distributions, only 
nearly so. This time, after the computation of the first set of velocity fields, 
the shortfall in suction is regarded as a shortfall in streamwash due to sources, 
and this is turned into a perturbation thickness distribution by making use of 
the approximate formula of the RAE Standard Method6 as suggested in earlier work 

by Weber'. Good convergence is achieved everywhere except near the root of a 

swept wing, where over-relaxation, or an inner iteration scheme similar to that 
described for the second problem, to take account roughly of the changes in 
velocity components due to the change in the thickness surface, might speed up 
convergence but have not been programmed. 

The fourth problem is a hybrid of the second and third problems. Again 
the upper-surface pressure distribution is prescribed everywhere. A chordwise 

section, n = n* in the non-dimensional spanwise variable, is chosen near the 

root. Outboard of this section, the thickness distribution is prescribed, as 

in the second problem. This forms the basis for an iterative computation of the 

outboard doublet distribution. The condition is now imposed that inboard of 

rl = 0" the chordwise variation of the doublet distribution shall be the same 

as at 77 = n* . In this way we expect to be able to maintain good upper surface 
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flow quality and wing loading right into the root, which should also be useful in 

obtaining root stall rather than tip stall at high off-design incidence. 

Finally, to secure the required upper-surface pressure distribution inboard of 

rl = rl* , the thickness in that region is allowed to vary as in the third 

problem. At each iteration the computed thickness distribution is faired into 

the given outboard distribution by a least squares method; this means a certain 

loss of freedom, as the upper-surface pressure condition may be satisfied only 

in a spanwise mean sense, but it is judged important to take this precaution, in 

order to avoid problems in final manufacture and attachment of the wing. 

As for the second problem, good convergence is found in mid-semispan and 

near the tip, and we can expect better convergence near the root since the diffi- 

culty associated with the second problem in that region has been bypassed. 

Since there is more internal freedom than in the third problem, the most we can 

really expect a priori is that convergence near the root will not be worse than 

for that problem, and in fact it is slightly better for the case reported here. 

In our example cases for the second and third problems, the final results 

are noticeably different from those which we would have obtained using first- 

order theory, which has been the basis of classical design methods for many 

years, and is used here to provide first estimates with which to start the 

iterations. Thus, these programs should at least be useful tools for checking 

and refining the results of classical low-speed wing design calculations. It 

seems likely that the program for the fourth problem, which treats what seems to 

be a quite practical mixture of design conditions, will also be useful. 

For the cases considered here, which are slight variations of RAE wing 

'B' 8 , acceptable convergence was obtained for the first problem in two or three 

iterations, for the second in four, for the third in five (except near the root) 

and for the fourth in five (including the root). Thus the second, third and 

fourth problems take around twice as long as the direct program'. This is 

unfortunate, and may mean that the method is less competitive than the repeated 

use of the BAC program' in an incremental mode. But there is the possibility of 

performing only one iteration at small cost and having a look at the results, 

then deciding whether to continue or to change an unpromising set of design 

distributions and start again, without incurring a large penalty in computer 

time. 
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Two separate programs have been written, one for the first and second 

problems, one for the third and fourth. The programs are written in Fortran 

and occupy about 45K words of core store, with arrays dimensioned for a 12 x 15 

collocation grid. The vortex lattice matrix is stored on a disc. 

2 BASIC EQUATIONS 

In this section, we summarize the basic equations and boundary conditions 

as set out in detail in Ref.]. 

We consider a finite wing in a uniform free stream with speed unity and 

Mach number Mco < 1 . We take Cartesian coordinates (x*,y,z*) with origin 0* 

at the apex of the wing, with the x*-axis 0*x* in the free stream direction, 

o*Y to starboard and O*z* upwards, Z* = 0 then defining the datum plane of 

the wing, so that at any plane station y = constant, the local wing section 

incidence is just the angle of twist a,(Y) ; in what follows the distribution 

aT has to be determined as part of the design problem. In any plane 

Y = constant, we define local Cartesian coordinates (x,z) such that the x-axis 

is parallel to the local section chordline, the z-axis completes a right-handed 

set with the x- and y-axes, and the origin 0 is the z-projection of the apex 0* 

(Fig.1). These axes can be got by rotating the (x*,y*)-axes through the angle 

a,(y) . Wing thickness (zt) and camber (zs) ordinates are defined as ordinates 

z 
W 

normal to the local chord: 

Zw (X,Y> = + Z$,Y) + zs (x,y) . (2-l) 

Both zt and z 
S 

vanish at leading and trailing edges. 

The velocity in the (x,y,z> system is now made up of the free stream 

velocity 

u = 
--m (cos aT,O,sin aT) 

and a perturbation velocity field 

u = (u ,v ,w> 

which is to satisfy the wing surface boundary condition 

(!A, - +u> . grad(zw - z) = 0 . 

Q-2) 

(Z-3) 

For compressible flow, with Mm > 0 , we transform into the affine 

(Prandtl-Glauert, or Goethert) space (%,y,z) with the corresponding affine 

perturbation velocity 
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x = 33 

u = ii/t3 > 
(2-4) 

where 8 2 = 1 - M 2 
co l 

To a first approximation, the problem is reduced to an incompressible flow 

problem in the affine space, which we proceed to tackle by placing source and 

doublet distributions q(W,y), R(B,y) on the chordal surface of the analogous 

wing. These distributions will generate the affine perturbation velocity field 

ii . We assume that at each station y = constant , 2 will not be significantly 

affected if the source and doublet distributions are considered as lying in the 

local plane 2 = 0 , so that it can be calculated using the Ledger-Sells 293 

computer subroutine. 

Using this subroutine, the separate perturbation velocities a, 
i&9 !A& 9 due 

to sources and doublets respectively, will be calculated on the 'thickness 

surface' z=z 
t ' 

and their values on the actual wing surface z=z will be W 
derived using the first two terms of a Taylor expansion in zs . The upwash 

wt due to the sources, and the streamwash iill and sidewash vR due to the 

doublets, change sign on going from z=z t to z = -z 
t ' 

and so the components 

of -. 
zt and i& are: 

2t = 
i 

aii 
ii fz t avt 

SZT’ Vt +z - saz 9 +w 4-z awt 
t t S3-F 

) 

i& = 
i 

aiill 
f. cik + zs r , aVR + VR + zs r , aWR 

WR * zs az- 
) 

evaluated at z=z 
t l 

Upper and lower signs correspond to upper and lower 

wing surfaces, respectively. 

For the complete velocity U = L + I& + u = (LJ,V,W) , making use of 4 
(Z-4), we then have 
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u = cos aT+$[(Gt+ zs>)k (J+q] 

v = (vt+zsqk fs>+q 

w = sinaT+ ks$+wJi (wt+zs>)* 

(2-S) 

(Z-6) 

(2-7) 

These equations can now be used in the boundary condition (2-3) and will 
also be needed to obtain the total velocity Q from Q2 = U2 + V2 + W2 and the 

pressure coefficient C from 
P 

or 

C = 
P 

1 - Q2 CM-a2 = 0) 

1 

: 

(Z-8) 

I + i(Y - l)Mt(l - 
C t Q2)] 

Y/O-I) 
- I 

5 
P jrM2 

CM, ' 0) , 
cm J 

where Y is the ratio of specific heats, taken here as 1.4. 

Within second-order theory, for the boundary condition and for the calcula- 
tion of C we can write 

(but not wEen calculating 

sina +a T T in (2-7), and for the boundary condition 

Cp) we can write cos aT + 1 in (2-S). Making these 

changes, we have 

u = ljo'ijl 

v = Q, * Q, (2-9) 

w = Q, + Q, 

with 



avt 
Q, = zs r + v R 

aWR 
9, = wt + zs r 

awt Q, = aT + zs r + W 
R ’ 

Q, = vt + zs az- 

Substituting from (2-l) and (2-9) in the boundary condition (2-3), we find 

+R+R =O 
t R 

whence we obtain the symmetric part of the boundary condition 

Rt = 0 

and the antisymmetric part 

RR = 0 

where the residuaZs Rt and RR are given by 

ii, 32, 0, azs a=t 
a2 

R = t -Y--+BTg 8 ax + Q2 F + Q, $ - Q4 

RR = 
do azs G1 22, a=s azt 
~~+~~+Q2~+Q3~-Q5 ' 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 
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It is convenient here to introduce the coordinate system used for compu- 
tations, which is the same as that of Ref.]. The local percentage chord is 
given by 

2 = ji,(Y) + “c(Y)S (2-15) 

where jt(Y) is the leading-edge ordinate, and E(Y) the local chord, of the 
analogous wing. The computation grid is then defined chordwise by equal 
intervals of the angular chordwise coordinate C/I where 

5 = f<l - cos 4) . 

We use the nondimensional spanwise coordinate n = y/s . (The semispan s will 

be taken as 1.) We also define a spanwise variable ij = y to go with 5 , and 
use a/a? to denote partial derivative with respect to ii along lines of 
constant percentage chord 5 . Then 

a 1 a 
E = 7’ 

and 

a a - a ay = z-tan125 

(2-16) 

(2-17) 

where i = arctan (2 + 2 c) is the local sweep angle (for the analogous wing). 

3 THE DESIGN PROBLEMS STUDIED 

3.1 First problem: specified loading and thickness distributions 

In this problem, the camber and twist distributions z s' "T are to be 
determined, and the upper-surface pressure distribution is found as part of the 
solution. We have only to determine, in addition, the auxiliary unknown source 
distribution, since the doublet distribution R(Z,y) (which is equivalent to 
the loading distribution in linear theory) is known in advance. 

Since the doublet distribution is fixed, we can compute the velocity 
field ii on the thickness surface 2=2 once for all, 

t(n> 
Let us assume that 

-R 
we have also determined an approximation q (2,~) to the final source 
distribution, and that we have computed the corresponding velocity field - h> 

2t l 
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We suppose also that estimates for the camber distribution (4 

b) 
zs and twist 

distribution aT are available. Using (2-13), (2-14), we compute the 
corresponding residuals ,h>, ,(d 

(2-ll), (2-12) are satisfi:d. 
R and examine how well the boundary conditions 

h) Consider the first of these. The residual Rt 

can be thought of as a deficiency in w through the term (-Q,), and so we 

attempt to cancel it by adding to q (dt a source distribution 

Aq = 2RL") , (3-l) 

exactly as in Ref.1. To start the iteration and obtain the first estimate 
(the basic source distribution p) (0) qR), we take the situation where -t , za 
are both zero , giving the linear-theory result 

R(o) = 1 azt azt -- = 
t i3 a2 ax-' 

again as in Ref.1. 

The residual error (d RE in the other boundary condition can be used to 

adjust the current values z Cd 
S 

, a( ) 4 
T n of 2 

S’ aT as shown by Weber . Putting 

(n> Z = z + AZ S S s ' 
Cd 

'T = "T + Aa T 

in (2-14), neglecting products of the perturbations AZ s' AaT with other 

perturbation quantities, and invoking (2-12), we have 

1 aAzs BT-h" = T -Ra(n) . O-2) 

To obtain the basic camber and twist distributions zsB, aTB with which to start 
the iteration, we compute wEB(X,y,zt) or estimate wLB(jt,y,O) from the basic 
doublet distribution RR , and then (2-14) gives 

R(O) = 
!2 - WRB 

to be substituted in (3-2), which leads to the standard result of linear wing 
design theory. 
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Integrating (3-2) from 0 to 5 , using (2-16) 

Azs(S;n) 
5 

,(n> Q W;rMC 
0 I 

where, since Azs(I;n) = 0 , we have 

AaT = ,h> Q W;n)dC* . 
0 

(3-3) 

(3-4) 

The integrals in (3-3), (3-4) are evaluated using Simpson's rule with 4 
as the independent variable. Then the accumulated zs, aT are extrapolated to 
the wing root and tip stations, and the spanwise derivative azs/aij (also 
needed in the Taylor series expansions) is computed at each collocation point 
by a cubic spline fitting routine. 

We remark that the calculation of Azs, AaT does not disturb the field 
values ii N -t* EQ On z=z t ' and so after finding AZ s' "T via the residual 
error field from Taylor series, it is worthwhile to execute the Taylor series 
sequence again with the updated values of zs, a T . This updates the successive 
estimates for the other residual field R 

t ' as well as the upper-surface 
pressure distribution, which we shall need in the other design problems to be 
considered. 

3.2 Second problem: specified thickness and upper-surface pressure 
distributions 

In this problem, the doublet distribution Q is to be determined 
iteratively, as well as the source distribution q and the camber and twist 
distributions zs, aT . A sequence of upper-surface pressure distributions 
c b-9 
Pu 

is generated, which (it is hoped) will tend to the specified or target 
distribution 'c 

Pu l 

Again following Weber4 in broad outline, successive 
increments AR in Q are determined from the shortfall in C 

Pu 
; then, just 

as in the first problem, successive increments Aq are found from the sequence 
of residual errors R b-4 

t , and successive increments AZ s' "T from the 
sequence of residual errors ,(d 

Q l 

A first estimate RR for Q is provided by Lock5. From the target 
distribution ‘c 

Pu 
and the appropriate equation (2-8), we derive the target 

upper-surface total speed distribution g , and insert it into Lock's formula: 
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tB cos a T + %B ( 
1 + SC31 set AtlBn 

(3) 
2 

+ COS a T + v set Ai/Bn 

(D - I) sin2Ax cos2aT . (3-5) 

The symbols D , etc. are defined in Appendix A. The velocity components are 

taken in the plane 2= 0 , so that the doublet strength is connected to the 
(physical) component uRB by 

$B = 4Bu,, . 

If we tentatively assume that vRB depends linearly on uRB through a 
relation 

%B = - %B tan A 
V (3-6) 

where A 
V 

is also defined in Appendix A, then equation (3-5) becomes a quad- 

ratic in uRB (all other quantities being known), and one of the two roots can 

be picked out as the required solution. 

We can improve this first estimate in an iterative way, calculating vR 
from the current estimate for uR and the equation of irrotational flow and 

using this value instead of the assumption (3-6). Details are again set out in 

Appendix A. This is in principle an inner iteration, performed before the 
-(I) *(I) velocity fields zt ' Z& are computed accurately in the main iteration 

cycle. In practice, one inner iteration is sufficient. 

In an inner iteration cycle such as this, in order to estimate the 
successive camber and twist distributions we would like to obtain a quick 
estimate for the upwash corresponding to a current, or intermediate, estimate of 
the doublet field without performing the time-consuming Ledger-Sells double 
integration for each intermediate estimate in turn. To do this, we use a direct 

vortex lattice representation, as in Ref.]; the vortex lattice influence matrix 

is not inverted (but as appreciable time is needed to generate it, it is stored 

on a scratch disc by the computer after the first pass through the vortex 
lattice subroutine). Near the root and tip, the vortex lattice method is not 

very accurate and tends to overestimate the upwash or downwash, and so the out- 
put values are multiplied by a spanwise under-relaxation factor Dv tentatively 
taken (after numerical experiments) as: 
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WV = 
(1 + 1K2jj2 

K2 is a spanwise interpolation function, similar to that of the RAE Standard 

Method, and defined in Ref.]. The errors in the resulting estimates for camber 

and twist will not matter greatly, since they will be nearly corrected auto- 

matically when ilk is computed accurately in the main iteration cycle. 

As remarked earlier, after the calculation of Q (n> and C (4 at the 
Pu 

end of the nth main iteration, we have next to generate an increment AR in the 

doublet strength from the shortfall in C 
Pu ' 

This shortfall is, in principle, 

a second-order quantity and from it, following Weber 4 , we can derive a second- 

order expression for the corresponding increment Au 
R 

in (physical) streamwash 

due to AR , where as usual AR = 4BAu, . Using the suffix u to represent 

upper-surface values in the velocity components (U,V,W) from (2-5) to (2-7), we 

have Q(n)2 = U2 + V2 + W2 
U U U u ’ 

and to second-order accuracy 

-2 
Q 

2 + (uu + Auk) + V2 + W2 
U U 

= : Q;j2 + 2UUAuR 

whence 
-2 
Q _ Q(d2 

AuR = 2UuU l 

(3-7) 

We now have all the equations needed to set up a closed iteration cycle for 

this problem. 

In order to control some overshoot near the tip (and as a partial control 

near the root also - this will be discussed further, later), it has been found 

helpful to introduce an under-relaxation factor s for the doublet strength 

perturbations, again depending on the spanwise factor K2 : 

CD = (1 + jK,j,-’ . 

Near a wing tip of finite chord, the loading is expected (apart from the effect 

of corner singularities) to decay elliptically; the factor .DD is not expected 

to represent this spanwise decay precisely, but is intended to introduce some 

decay, under control, which seems in practice to be better than introducing none 

at all. 
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It will be remembered' that, to assist the solution of the direct problem, 

line source and doublet distributions were introduced on the wing centre line 

Y =z=(-j to reduce the residual errors R t' R R at the root y = 0. In the 
present design problem, just as we adjust the planar doublet strength to produce 
an extra AuR to correct the upper-surface pressure distribution outboard, it 
is natural to try to adjust the line doublet strength to produce an extra strew 
wash AuRD to do the same job at the root. The resulting upwash adjustment 

AWRD would then be incorporated into the camber and twist distribution at and 
near the root. The difficulty is, that whereas (in the direct problem) a change 
in line doublet strength to produce a certain Aw RD did not tend to produce a 
large change AuRD , a change to produce a certain Au RD does tend to produce a 
large change AwkD ; in other words, this calculation, although well-conditioned 
in one direction, is ill-conditioned in the other. It was found that line 
sources also tended to destabilise the iteration scheme; so the line singularity 
technique has been abandoned and no target distribution is prescribed at the 
wing root (though we can approach it quite closely with a suitable choice of 

spanwise stations); all quantities such as zs, q, R are extrapolated para- 
bolically to the root (but et, i& are still evaluated using the Ledger-Sells 
subroutine), and the final residual errors and pressure coefficients at the root 

are left to take care of themselves. 

As in the direct program], we can seek to reduce the number of iterations 
by generating improved estimates for the perturbation quantities. The additional 
velocity fields due to the perturbation source and doublet fields, calculated 
in the main iteration cycle, can be estimated using the RAE Standard Method6 and 
so it is possible in effect to perform one iteration cycle and to obtain a 
further set of perturbation quantities, without actually performing the accurate 
but lengthy Ledger-Sells calculations. To estimate the new residual errors, we 

again invoke Maclaurin series (expansions about z=o, rather than 2 = z,>, 
modified to take account of concurrent changes in camber. The algebra is set 
out in Appendix B. This can indeed be incorporated in a further inner iteration 
cycle, but it has been found inadvisable to do it more than once or twice; 
convergence of the main iteration cycle is rather sensitive, perhaps because of 
the level of feedback involved between the three unknown and interacting field 
quantities, and it seems likely that any further benefit derived after the first 

or second inner iteration is outweighed by the feedback effect due to the 
accumulating errors in the successive estimates from each cycle. 
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In the course of developing the program, a difficulty has arisen which has 
still not been satisfactorily resolved. The symptom of this difficulty is the 
onset of oscillations or divergence in C v WR' pu and R t near the root 
trailing edge. In this region there seems to be a close coupling between all 
the velocity components so that a small change in R and hence in iiQ does not 
necessarily produce a negligible change in VP WR and in the residual error 

Rt ; thus the effect of the small change AR given by (3-7) does not have the 
required effect on Q 

u l 

To prevent Rt and the resulting extra source distributions from growing 
too large, after the first guesses for source and doublet fields the program has 
been arranged to do two successive perturbation source calculations (including 
Maclaurin series calculations), just as if it were performing two iterations of 
the first problem, before calculating another perturbation doublet field. This 
is an unfortunate necessity, but as the Ledger-Sells subroutine is adaptive, the 
calculation times should decrease as the iterations proceed and R t decreases. 

The destabilizing effect of AvR and AwR is not so easily dealt with. 
An attempt to take them into account in the derivation of equation (3-7), even 
when only linear terms are included, leads to some heavy matrix algebra and 
programming, and fails in the end because the non-linear terms are not negligible 
in practice. For some of the cases studied, instability was successfully 
averted by a simple addition to the inner iteration scheme, in which we take 
account of the approximate values of AGE, Av Aw 

R' R (and also of AC t5 Avt, Awt 
generated within the Maclaurin series sequence, when appropriate) to update 
approximately the upper-surface velocity components U , V 

U’ 
W and the total 

speed Q, and hence to generate a further perturbatio: double: field using (3-7) 
again. This part of the inner iteration cycle can now be repeated until the 
changes in doublet strength are sufficiently small, or for a maximum of 

(currently) nine inner cycles. This inner iteration scheme can also be 
profitably applied to the rest of the wing surface, even though the effect of 

A% and AwR on Qu is not so great. 

This artifice has enabled us to obtain a solution for at least one case 
which we could not treat without it. But there seems to be a class of cases for 
which the program so far described still does not work; for these cases, it is 
the inner iteration which oscillates or diverges. Relaxation methods do not 
seem to help. A study of the computer output indicates that, even though a 
numerically exact solution of the whole problem is known (derived from the 
program for the first problem, for instance), the unconverged state of the 
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accurately calculated parts of m % and ii -!?, ' and the approximations used for 

*;a. in terms of AR in the inner iteration scheme, are such that Q has a 
U 

minimum value which is higher than the design value 6 ) just as a quadratic 
in a real variable is bounded away from certain values. Thus in this situation 
we cannot find a AR to give Q, = 6 everywhere, using just the inner 
iteration scheme. An optimization sequence within this scheme, to detect the 
situation and to seek a solution minimizing the overall differences between Q 

U 

and 0 (by least squares, perhaps) is indicated, but has not been devised at 

the time of writing. 

3.3 Third problem: specified loading and upper-surface pressure distributions 

In this problem, the thickness distribution % is to be determined 
iteratively, as well as the camber and twist distributions z s' aT and the 

associated source distribution q . Again a sequence of upper-surface pressure 
distributions C b> 

Pu is generated, which (it is hoped) will tend to the target 
distribution !! 

Pu l 

As in the first and second problems, successive source increments Aq are 

found from the sequence of residual errors ,(n> t , and successive camber and 
twist increments Azs, AaT from the sequence of residual errors ,(d R . This 
leaves the successive thickness increments Azt to be determined from the 

shortfall in upper-surface C 
Pu l 

We can do this approximately, making use of 

results from the RAE Standard Method', if this shortfall can be converted 
approximately into a shortfall Alit in ai, . We may consider the following 

three sets of circumstances: 

(9 At the outset, we have no estimate at all for zt . Given the 
design upper-surface velocity 6 and the chordal-surface streamwash w 

U 
uRB due 

to the specified load (doublet) distribution, we have a simple basic estimate 

for the strewash due to sources: 

UtB = B(g - I) - i$B . 

This will lead to a first estimate ztB for the thickness distribution. 

(ii) We can modify this initial crude estimate for zt with the help of 

Lock's formula (3-5). From the known doublet strength, we again have 5&B 

(hence %B ) and also v RB ' on the chordal surface. If we assume that utB , 

in the first term on the right side of (3-5), dominates the equation as far as 
sources are concerned, we can substitute for all the other source terms, such as 
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VtB ' 
the values determined from the initial estimate z 

tB and obtain a 

revised estimate for " ut (and h ence a revised estimate for zt). The details 

are filled in at the end of Appendix A. 

(iii) After computing ,(n) . pu In the nth main iteration, just as in the 

second problem we can derive a simple second-order expression for the required 

physical increment Au 
t 

= AGt/B due to the required extra thickness distribution 

Azt . This expression is just the right side of equation (3-7) again: 

Aut = [G* - Qp)iJ/2Uu . 

After a Maclaurin series cycle, the velocity components in this expression can 

be approximately updated, as in the second problem. 

The perturbation velocity AGt and the extra thickness Azt (which can 

be thought of as an extra source distribution 2aAzJZ) are connected approxi- 

mately by the formula of the RAE Standard Method6: 

with 

(3-B) 

f = $ In 
1 + sin i 
l+sin3; ' 

K2 is the spanwise interpolation function, defined in Ref.]. One way of 

dealing with this equation is to set up an iterative cycle in which the last 

term (with 'Riegels factor') is treated as small and known from the previous 

iteration - indeed, it vanishes altogether at certain mid-wing stations where 

K2 = 0 . Thus we write 

aAiP’) a3 
+ K*f(;i) t I =F 

- 
(3-9) 

1 + ( 

at the mth such cycle, and to start the cycle we put AZ, (0) = 0 The solution 

of this equation (see Ref.7, for example) with AZ, (m)(1) = Azy);O) =0 is: 
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(3-10) 

The program already incorporates a subroutine to evaluate the Cauchy 

(principal-value) integral (3-8), and the Cauchy integral (3-10) can be evaluated 

using the same subroutine; thus the method is more convenient than, for example, 

an extension of Carleman's method as in Ref.-/. 

However, before actually coding the evaluation of (3-10) we should consider 

that the initial guess =tB ' and the corrections AZ, , should represent a 

wedge-shaped trailing-edge (5 = 1) for structural reasons; whereas, if F is 

assumed regular at 5 = 1 , then aAzt/alt is O[(l - 5)-j] and Azt takes a 

rounded or elliptical shape there, as well as at the leading-edge 5 = 0 . On 

the other hand, when Azt is regular, o and F will show a logarithmic 

singularity as S-t]. We therefore estimate the strength of the singularity 

and subtract a suitable function from F to leave an integrand which we hope 

will lead to a sensible trailing-edge shape. 

A representative function A0 which represents a closed section, with a 

suitably small square-root singularity at the leading-edge and wedge-shaped at 

the trailing-edge, is 

aztO -=A = 
ax 0 

4(3 - 506 

which corresponds to a section shape 

ZtO/E = (1 - c>c3’* . 

Inserting (3-11) in (3-8), we have 

a0 = -$+ (3 - 5<)(+ Gin 1 1 z- *)] . 

We now subtract a suitable multiple 6 of a0 from F . To help 

determine this multiple, we have the values of F at discrete chordwise 

stations E2, E,, . . . . EL-,, 5, where 0 = 5, < 5, < coo < 5, < 1 l We make 

(3-11) 

the hypothesis 
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F = 6ao(S) + a* (5) 

where al(E) varies slowly compared with ao(<> near 5 = 1 . Putting 

5 = SL-*' 5, in turn and subtracting, we find 

6 : 
F (5,) - F$,-,) 

= 
OO W -  ao(E;L-l) l 

We then evaluate A* from the equation, similar to (3-10) 

1 
A* z - 

,[ FCC’) - 
0 

and then 

-E- = A* * &A0 . 

This can now be substituted into F given by (3-9), with m increased by one, 

to start the next iteration cycle. We have tested this cycle on a variety of 

wings and shapes, and convergence always seems rapid, up to 10 iterations being 

needed depending on the value of the interpolation function K2 l 

Although the integral (3-10) and the function (3-11) always represent 
closed contours mathematically, when AZ Cm> 

aAz(m) 
I 

t is evaluated by numerical integra- 

tion of t 82 this may not be exactly true because of numerical truncation 
errors. At each cycle, then, we check the closure condition and rotate the 

Cm> contour Azt through a small correction angle about the leading-edge in the 
(E,Azt) plane to make AZ?) = 0 at c = 1 . 

After calculating Azt we must check that the resulting contour does not 
cross itself, i.e. the new =t is positive everywhere. Actually, we demand 

rather more. To avoid the possibility of unrealistically small zt , we check 

that z t will not be reduced by more than half its former value anywhere; if 
this condition is not met, i.e. AZ, < - jz t ' then Azt is everywhere multi- 

plied by a suitable factor to give just the 50 per cent reduction in zt at 
some point which is the largest reduction we are prepared to allow. 
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On the other hand, if the first estimate =tB fails this test, since there 
is no previous distribution to compare it with, we have to improvise. First, we 
examine =tB near the leading edge; if it is negative somewhere in that region, 
then probably the input data for R and C 

Pu 
do not correspond to a reasonable 

wing; the program exits. If =tB is positive there, but becomes negative near 
the wing trailing-edge, we charitably assume that the input data do correspond 
to a reasonable wing and the initial guess for =tB is in error. At each span- 
wise station we then find the maximum z tB ' at 5= ? say, and also note the 

derivative aztB/ac at e . For i < 5 < 1 we construct a function G(S) 
which is arcwise continuous with z tB at E=e , becomes rapidly linear as we 
recede from that point, and vanishes at the trailing-edge 5 = 1 ; A suitable 
function is 

G = ae -k (6-i) +bS+c 

where we arbitrarily choose k so that 

k(1 - ;, = 2 

so that the exponential term dies out near 5 = 1 . a, b and c can now be 
chosen to meet the three conditions (Appendix C). 

We apply this procedure at all spanwise stations, even if a negative 
ztB has been detected at only one station, because aztB/ay (which is needed 
for the boundary conditions) has to be computed from the values generated, and 
if we only adjusted the values at one such station, the difference between the 
adjusted section and the neighbouring unadjusted sections downstream of 5 = i 
might cause considerable fluctuations in this spanwise derivative. BY applying 
the procedure uniformly at all spanwise stations, we hope to avoid this possible 

source of trouble. 

Indeed, each time a fresh zt is computed for this problem, we have to 
compute and store the new chordwise derivative 

1 
az,/ag as well as azt/ay , and 

we also need the tables of arclengths along chordwise and spanwise curves on 
the new thickness surface z=z t ' and the Lighthill S-shift factors rendering 
the solution uniformly valid near the new rounded leading-edge. 

Further, the device of computing only the (small) perturbation velocities 
As, Agfi from Act, AeR , which saves time because the Ledger-Sells routine is 
adaptive (useful for the first and second problems), breaks down here because 
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the already-computed velocities are known only on some previously-generated 
thickness surface, not at the current values of =t ' (An attempt to calculate 
values on the new thickness surface using Taylor series turned out, not surpris- 
ingly, very inaccurate near the leading-edge.) So for this problem it is 
necessary to work with the complete source and doublet distributions all the 
time when calculating it and W 

EL l 

When the program so far described was run, inspection of the results 
showed that despite the inclusion of AZ t in the Maclaurin series theory, the 
successive estimates for Azt would be improved if AZ t was determined only 
after one Maclaurin series calculation, and not after the Taylor series. 
Similarly to the second problem, there seems to be a coupling between R t' A=t 
and the shortfall in Q, , such that if AZ t is calculated every time, even 
though the corresponding linear-theory source distribution is always taken 
into account, R t does not converge quickly to zero. By determining Azt 
only half as often, the residual R t is given more time to settle down; and by 
determining it after the Maclaurin series calculations, we postpone it as long 

as possible after the final Ledger-Sells calculation, so that for a given number 
of these, R t is likely to be smallest and the last output table of thickness 
distribution is likely to be nearest to that giving the desired upper-surface 
pressure distribution. 

3.4 Fourth problem: hybrid 

In this problem, the upper-surface pressure distribution is again specified 
everywhere, but different second conditions are imposed inboard and outboard of a 
spanwise section fairly near the root, rl = n* say. For n > n* the wing 
thickness distribution is specified. In the course of iterations on this part 
of the problem, a doublet distribution a(c,n) is calculated (for n 2 n*) and 
repeatedly adjusted as in the second problem; it is then necessary to extra- 

polate R in some way to the inboard region 0 < n < n* , and one way to do 

this is simply to require that the computed inboard doublet distribution be 
independent of spanwise position: 

ats,rl) = a(c.,n*) (0 < rl < n*> l 

In linear theory this would be equivalent to maintaining the chordwise load 
distribution right into the root, and in our problem only small departures from 

this condition should result. Finally, to satisfy the upper-surface pressure 
condition for 0 G n <n* we adjust the thickness distribution in that region 
as in the third problem. 



23 

The program has been arranged to treat n = n* as the third collocation 
station ourboard from, but not including, the root, so that there are two 
collocation stations inboard of n = n* on which the thickness distribution is 
to be adjusted. In calculating the thickness perturbations, we consider that it 
is essential to ensure that the thickness distribution for rl d rl* always fairs 
smoothly into the given distribution for rl 2 n* , and the most practical way to 
do this seems, to fit (by least squares) quadratic curves with the required 
(zero) first derivative spanwise to the calculated thickness perturbations at 
each value of 5 . 

The same curve fit is used to extrapolate the new thickness distribution 
to the root n = 0 , which is again not a collocation station but is still an 
output station. This curve fitting means that near the root the upper-surface 

pressure condition is now satisfied in a mean sense only, at each collocation 
station value of 5 . 

4 RESULTS 

4.1 First problem 
8 Results were available for the cambered and twisted RAE Wing 'B' at 

Mach number 0.8, from the author's direct program]. Wing 'B' has planform 
aspect ratio 6, taper ratio l/3, straight leading and trailing-edges on each 
half-wing, and mid-chord sweep angle 30° (Fig.2); the chordwise thickness 
distribution is that of the 9 per cent thick RAE 101 section. As a test case 
for the first problem, the final output planar doublet strength from these 
results was input as data; its behaviour at three spanwise stations, near the 
root, in mid-semispan and near the tip, is shown in Fig.2a. The program was run 
for four iterations. 

As the planar doublet strength, and hence the velocity field gR , is 
fixed, we may expect the overall spanwise loading properties (which depend only 

on the doublet distribution in linear theory), the residual error RR and hence 
the camber and twist distributions, to settle down fairly quickly to their final 
values; this expectation is borne out by Figs.2b and 2c in which the difference 
between the spanwise twist and loading distributions calculated at the first and 
fourth iterations can hardly be seen on the graph. The corresponding camber 
distributions at three stations are shown in Fig.3, and except near the root, 
the difference between results for the first and fourth iterations is also very 
small. Also shown in Figs.2b and 3 are the actual values for Wing 'B', which do 
exhibit noticeable differences with the converged results. At the outboard 
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stations in mid-semispan and near the tip, these differences can be attributed 
to numerical error in the trapezoidal integration method used to evaluate the 
camber and twist integrals (3-3), (3-4), when data is available only at seven 
interior Weber points; for this small number of chordwise points, which has been 
taken for demonstration purposes only, the error in the twist distribution is 
only of the order 5 per cent, and would be reduced (and more detailed input and 
output secured) if more chordwise points were taken. The large difference in 
camber near the root (in Fig.3) is almost certainly due to the absence from the 
design program of the line singularities introduced at the root in the direct 

program; although these line singularities have their major effect on the root 
section, they do have some effect on the calculated planar doublet strength 
(through cross-coupling with the boundary conditions) at the first outboard 
station. These factors lead also to a considerable difference between values 

from direct and design programs in the upper-surface pressure C near the 
Pu 

root, as shown in Fig.4; however, for the two outboard stations, notwithstanding 

the slight differences in camber there, the differences between converged values 
and values from the direct program could hardly be distinguished on this scale, 
and have been omitted for clarity. Fig.4 shows principally that C takes 

Pu 
longer (but not unacceptably longer) to settle down than the camber and twist 
near the root, and slightly longer at the outboard stations; this is because 
the source distribution has to be adjusted repeatedly to reduce the boundary 
condition error R t ' and we know from experience with the direct program that 
this error is likely to be largest near the root, and has a rather uneven 
convergence ratio. 

Results from the program for this first design problem (to which we shall 
refer as Option 1) have also been used as test cases for the other problems, a 
procedure which seems likely to produce consistent results as the basic calcu- 
lation methods, and the principal source of error in these demonstrative cases 
(in numerical evaluation of the camber and twist integrals), are the same. 
Also, any comparisons with results from the direct program would be bedevilled 
by the effects of the line singularities , just as we have already seen for this 

first problem; by instead taking results from the design program as test data 

and convergence targets, it is much easier to assess the behaviour of the other 

design programs near the root. 



25 

4.2 Second problem 

In the last section we obtained results for RAE Wing 'B' at Mach number 
0.8 from the design program Option 1. To gain some experience of the program for 
the second problem, we input the final upper-surface pressures C 

Pu 
as a target 

distribution, along with the original thickness distribution, and again ran the 

program for four iterations. 

The target distributions, and the results from the first and fourth 
iterations, are shown in Figs.5-7. The targets are the same as the final 
distributions shown in Figs.2-4, and are now represented by full lines. A 
first glance at Figs.Sb and c for the twist and spanwise loading characteristics 
suggests that convergence is good at the outboard stations, mid-semispan and 
near-tip, but that the results are not fully converged near the root; Fig.5a 
shows that the doublet strength near the root is also converging rather slowly. 
The camber distributions (Fig.6) tell a similar story: outboard, very good 

convergence to the target from a rather poor first-iteration result; near the 
root, still some way to go though the general shape of the curve, including the 
hump near the root trailing-edge, is well predicted. Fig.7 shows the corres- 
ponding behaviour of C 

Pu ' 
and it is rather surprising that the remaining 

change required in C near the root, in particular near the apex, corresponds 
to so large a remaini:: change in camber and twist according to Figs.5b and 6. 
This may be due, amongst other things, to the proximity of the root-line 
singularity in upwash corresponding to the kinked doublet distribution, so that 

a small change in doublet strength may produce a large change in upwash, and 
hence in camber and twist. 

It is perhaps worth commenting on the first guess for the doublet strength 
as shown in Fig.5a. This first guess is calculated using the older version of 

Lock's method5 in which the velocity components due to thickness are first 
estimated using the RAE Standard Method'; but it is difficult to see how to 

improve it substantially, as the accompanying first guess at the source distribu- 
tion is such that the first estimate for C is not too far out near the root, 

Pu 
and indeed seems excellent towards the trailing-edge for this case. These 

results, with the attendant errors in the first estimates of camber and twist 
shown in Figs.5b and 6, suggest that, in the design problem, second-order 

effects are very important near the root, and that even though the pressure 
coefficient C 

Pu 
from a first-order scheme may be near to the required value, 

it is necessary to check that the boundary conditions on the wing surface are 
well satisfied by the velocity fields assumed or implied by such a first-order 
scheme. 
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4.3 Third nroblem 

It may happen that a wing can be designed to support a uniform spanwise 

distribution of upper-surface pressure and of loading near the root, with bene- 

ficial aerodynamic consequences, by increasing the section thickness/chord 

ratio near the root. If this design also avoids an unrealistic increase in root 

twist, and happens to be structurally sensible and convenient, so much the 

better. 

To provide a test case with a known solution, a wing somewhat similar to 

RAE Wing 'B' and designated Wing 'g', was designed first, using Option 1. The 

thickness distribution was specified as the RAE 101 section, the thickness/chord 

ratio T being 9 per cent at and outboard of the collocation station 

T-I" = 0.1563 , rising parabolically to 13.5 per cent at the root (see also 

Fig.8a): 

T = 0.09[ + o.,(, &$J] (n < 0.1563) . 

The behaviour of the specified doublet distribution at three stations, including 

the inboard region T-I < 0.1563 , is shown in Fig.8b. (This choice of doublet 

distribution was a historical accident based on earlier work on the fourth 

problem.) 

The results from this run, representing the target distributions, are 

again shown as the continuous lines in the remaining figures. The program was 

run for five iterations. Fig.8c shows the convergence of the twist distributions, 

and we see that the target is nearly attained everywhere, and that the first 

shot was not far wide of the mark either. (In this case, the effect of root 

thickening on the design root twist is marginal: a degree or so less than the 

values shown for Wing 'B' in Fig.2b, for the same lift coefficient CLL .> 

Fig.9 shows the convergence of the thickness distribution. Considering 

first the two outboard stations, we see that the results for the third and fifth 

iterations are virtually identical, and that the corresponding pressure distri- 

butions (Fig.10) and camber distributions (Fig.11) are very nearly on target, 

being indistinguishable except near the leading edge. However, the converged 

thickness distributions are not quite on target. This must be due to numerical 

error in integrating aAz,/E , like the corresponding numerical error demon- 

strated for the camber in Fig.3. The relative error seems smaller than that in 

the camber; a likely mitigating cause is that part of the error in zt is 
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picked up when the velocity components are evaluated on the incorrect surface. 

This error would likewise decrease as the number of collocation points chordwise 

is increased. 

Near the root, the thickness distribution converges very slowly, as the 

gap between third and fifth iterations in Fig.9 shows. The difference between 

the results for the fifth iteration and the target distribution is larger than 

either the remaining convergence leeway we might expect or the numerical error 

in integration we could anticipate from the results outboard, but can easily be 

imagined as the sum of these two contributions. 

The pressure distribution in this region (Fig.10) also exhibits slow 
convergence in the first half-chord, but the final shortfall of the target is 

little different from that outboard. It may be an inherent difficulty for the 

third problem that the pressure distribution is less sensitive to the thickness 

distribution near the root than outboard. It is not easy to decide how to cope 

with this difficulty. An over-relaxation factor of about 2 could be introduced 

near the root (it is not needed outboard), to speed up the convergence, though 

we would prefer to build up more experience before citing this as the universal 

panacea. It would also help if the basic estimate ztB could be improved near 

the root; inspection of the detailed computer output shows that the improvement 

obtained with Lock's formula is not remarkable, so that the improvement would 

need to be fairly drastic; we also note that the basic estimate definitely 

overpredicts the thickness at the mid-semispan station, whereas the thickness 

is underpredicted at the root. (There was no zero in the first estimate for 

=tB ' 
and so this estimate did not have to be modified as described in 

section 3.3 and Appendix C.) There is also the possibility of setting up an 

inner iteration cycle for the successive increments AZ t ' 
as was done for the 

doublet strength in the second problem, but it is very likely that in this 

problem the dominant disturbance, not taken into account by the formula (3-7), 

is the change in the velocity fields of the two singularity distributions when 

computed on different thickness surfaces, rather than just the change in Vt 
and wt due to perturbation sources. These changes could be estimated, using 

Taylor series, if the program were rearranged to store the field derivatives 

aiipz , etc. near the root, which are currently overwritten to save core store. 

The remaining error in the camber distribution near the root (Fig.11) is 

obviously associated with the errors in the other field quantities, but is at 

least an order of magnitude smaller than the remaining error in the thickness 
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distribution. We might expect this since the camber and twist distributions 
depend largely on the input doublet strength. On the other hand, the outboard 
results for the first iteration, which do differ somewhat from the target 
distributions, show that the agreement in the twist distribution at the same 
stage (Fig.8c) is probably fortuitous and that second-order effects are important 
for this problem, outboard as well as near the root. 

4.4 Fourth problem 

For this final problem, the same test case was chosen as that for the 
third problem: the wing we have denoted as RAE Wing 'B'. The section separating 
regions where different conditions are applied was the section where the inboard 
rise in thickness/chord ratio begins, n = n* = 0.1563 . For this problem, the 
basic estimate for inboard thickness has not been programmed as in the third 
problem; instead, the first guess was simply taken to be the same as the fixed 
outboard distribution, the 9 per cent thick RAE 101 section. The program was 
again run for five iterations. 

The target distributions are again shown as full lines in Figs.12-14. We 
see that in mid-semispan and near the tip, all quantities converge well, as they 
did for the second problem, to which this hybrid problem is essentially equival- 
ent.outboard. We also observe the same poor nature of the first guess, which 
corresponds essentially to established first-order techniques, despite the fact 
that at mid-semispan the chordwise pressure distribution is not too far wrong. 

Near the root, as usual, convergence is slow and the thickness distribu- 
tion (Fig.12a) has not converged to graphical accuracy. But we are somewhat 
nearer the target than we were in the third problem, and indeed the major part 
of the remaining error could be just the numerical integration error in AZ t 
(Fig.9). Convergence of the root twist (Fig.l2b) and camber (Fig.13) is not 
quite as good as in the third problem, but much better than in the second prob- 
lem. Here too, improvement on first-order results is noted. The graphs of 
section lift and centre of pressure duly exhibit the expected spanwise invariance 
near the root (Fig.12~). The upper-surface pressure distribution has converged 
to about the same level of accuracy as in the second and third problems (Fig.14); 
the results near the root have been plotted for the second iteration rather than 
the first (for which only the ad hoc first shot for the thickness distribution 
was available) to show again the level of error when only one thickness pertur- 
bation is calculated. 
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Wing 'cl is a special case, tailored for this problem so that the root 
thickness distribution is precisely of the quadratic spanwise form which the 

inboard least squares fit demands so that no difficulty arises with this 
smoothing artifice. Moreover, the interaction between the unknown doublet 
strength and the unknown thickness inboard happens to be favourable, so that 
overall improvement in convergence is found compared with both the second and 
third problems. Nevertheless, the results for this hybrid and somewhat 
pathological problem at least seem promising. 

5 CONCLUSION 

In this Report we have studied four wing design problems, for two of which 
the solutions have already been considered in principle by Weber4. The imple- 
mentation of the first problem (given thickness zt and doublet strength, or 

first-order loading, a) was straightforward and the program for it (Option 1) 

converged rapidly. 

The second problem (given zt and the upper-surface pressure distribution 

CPU) and the third problem (given R and CPU) have been satisfactorily resolved 
in the outboard wing regions, mid-semispan (more or less sheared-wing station) 
and, perhaps surprisingly, near the tip; but they have'proved far less tractable 
near the root of a swept wing. For the second problem, the camber and twist are 

very sensitive to the doublet strength at the root, as we might expect from 
first-order theory, and there is considerable cross-coupling between R, C 

Pu 
and the residual error R 

t 
in the symmetric boundary condition. Convergence 

has been secured for a swept wing at high Mach number, but not for another in 
incompressible flow, for which it seems likely that the sidewash and upwash 
velocity components, which are not reduced in scale by the Prandtl-Glauert 
factor relative to the streamwash, make it almost impossible to find a suitable 
approximate doublet distribution to satisfy the upper-surface pressure condition 
near the root trailing edge in the first one or two iterations, so that an 
optimization technique, yet to be devised, is required. For the third problem, 
C 

Pu 
does not seem to be very sensitive to zt at the root, again Rt has to 

be allowed to settle down before zt is adjusted, and convergence is slow. 
Also, since the velocity fields due to the complete source and doublet distribu- 
tions have to be computed on each new thickness surface, the program runs for 
rather longer than Options 1 or 2. But the program (Option 3) has not actually 
failed to converge for any case for which a solution is known. 
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The fourth problem is a hybrid of the second and third problems in which 

R is to be determined outboard, and the thickness distribution inboard of a 

certain section near the root. In our opinion this hybrid stands an excellent 

chance of giving the wing designer the solution to his commonest problem out- 

board, while avoiding the severe practical difficulties encountered near the 

root in Option 2 and instead determining the required increase of thickness 

there, to maintain good flow quality and to give additional structural strength. 

The results for one particular case show better convergence than those from 

either Options 2 or 3, and while the dangers of arguing from one case are 

realized, this option (Option 4) seems promising and worth bringing to the 

attention of designers. 

It may be asked why we have used the programs to obtain results for wings 

at the high subcritical Mach number 0.8, since it is known that the first-order 

Prandtl-Glauert rule can only be expected to give good results for low sub- 

critical Mach numbers for which the flow nowhere approaches sonic speed. One 

answer is that a design application can be envisaged at high subcritical Mach 

numbers, if a shockfree flow is sought and if a shockfree solution of good 

quality sufficiently close to the design condition is available from another 

method, or from experiments, which might even be for a wing-body or wing-nacelle 

combination. In this case, we would assume that changes in wing-body interaction 

effects due to small perturbations on the given wing are negligible over the 

major part of the wing. Let us denote the upper-surface pressure distribution 

from this given solution by C 
PUS 

and that required by C 
pu,D l 

Using our 

direct program], we can compute the Prandtl-Glauert solution C 
PU,P 

for the 

given isolated wing, and it will exhibit an error C 
PU,P 

- c 
pu,E 

which would 

also include the interaction effects in a wing-body combination. Since C 
pu,D 

does not differ much from C _ _ we could expect that the wing we seek does 
PU,E ' 

not differ much from the datum wing, and 

solution E 
Pu 

for the wing sought would 

Prandtl-Glauert solution C 
PU,P 

for the 

c-c * 
Pu pu,D ' 

that the error in the Prandtl-Glauert 

not differ much from the error in the 

datum wing: 

C 
PU,P 

-C 
PUS 

hence 

c *c +c -C 
Pu pu,D PU,P pu,E l 
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If, then, we design our wing to have the upper-surface pressure distribution 

E 
Pu ' 

it seems likely that the true result will be close to the target distri- 

bution C 
pu,D l 

Which option is used would depend on whether the thickness or 

the loading distribution is to be retained; we remark that if the thickness 

distribution is to be retained outboard, Option 4 might be better than Option 2 

(since the centre line distributions in the direct program are not reproduced or 

used in the design programs), but would be less important if the wing thickness 

can be increased at the root. 

It is also worth mentioning briefly a possible use in landing and take-off 

design studies. The programs cannot be used to design wings with separate slats 

or other high-lift devices, but they might be used to obtain a suitable camber 

line for the RAE variable aerofoil mechanism (RAEVAM), which can under some 

circumstances compete with separate high-lift devices. 



33 

Appendix A 

. 

LOCK'S FORMULA FOR TRE FIRST ESTIMATE OF WING LOAD DISTRIBUTION 

Lock5 has proposed a formula for the total velocity Q on a wing in 

compressible flow, suitable for use in the design problem: 

2 

DQ2 = cos a f u set A* m 

+$[vtBcosakvkB~ +$sec*zjJ’ 

+ (1 - Kg@ - 1) sin2Ax cos2a (A-1) 

where the upper signs are taken on the upper surface; 

a is the local section incidence, and is therefore equal to our aT ; 

A is the local sweep angle on physical wing; 
is sweep angle of maximum thickness line on physical wing; 

K2 is a spanwise interpolation function, taken as in section 5.2 of Ref.]; 

B, = ( 1 - Mz cos2Ax 
1 

1 
; 

B that "C " n 6: + Mz cos Ax c 1 - jK2j sin2nx)11Cpi"p ; it is suggested5 
pi 

should be obtained by writing Bn = 1 in (A-l), giving Q = "Qi" , and 
taking "C 

Pi" = ! 
_ "Q/l2 

1 ; 

D = 1 + sec2A* 
azwZ 2 

x ST ( iI Sn' 

UtB(X,Y,o), vt,+X,Y,o) are estimates from linear theory for the velocity 

components due to wing thickness, for example, see Ref.]; 
tigB(x,y,O), vQB(x,y,O) represent the thin-wing components due to doublets in 

linear theory, and are to be determined; 
s(3) represents the second-order interaction effect between wing thickness 

and incidence. 
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It is convenient to mention two details here. First, Lock's formula is a 

semi-empirical extension of the Goethert rule to take into account higher-order 

compressibility corrections through the factor B 
n' Since our method is based 

on the affine transformation which yields the Goethert rule, there is no point 

in including these higher-order terms O(Mz) in Bn , and so we simply take 

Bn = 13, . This reduces (A-l) to equation (3-5) of the main text. 

Secondly, we have slightly modified the classical derivation of s(3) to 

derive an expression which seems more consistent with the problem at hand than 

the one given in Ref.6, even though it is only one of the several second-order 

effects present, and only holds for two-dimensional swept wings. Consider such 

a wing, with uniform sweep angle A, = A, and incidence a . The analogous wing 

will have the uniform sweep angle x where 

tanA = Btan;i . 

We have, for the thin-wing velocity components, 

%B = - %B tan A 

and hence, with 
%B = ii,,/B ) we have the corresponding relation for the 

analogous wing in affine space: 

%B = -ii RB tanA . 

The first-order boundary condition wRB = - a is satisfied by the doublet 

distribution LB with 

lk = 
%B = 4 B . 

The second-order boundary condition gives: 

AWR = %B azt a=t 
2 ait + ??.B ay 

aWRB 
--ta ’ 

(A-2) 

Using the sheared-wing relation a/ay = - tan i alait , and the zero divergence 

of %B in our affine space, we obtain 
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a=t aii 
RB 

LB a2 -+ZtT 

E is the analogous wing chord. Transforming the square bracket to physical 

variables, and noting that 

cos A cos A sin ii 7=-• 
B B , sinh = - 

n 'n 
(A-3) 

we get 

AWE = a(yj & [y - ,&I . 

We satisfy this boundary condition by a doublet strength AR giving the further 
stresmwash 

B 1 = 
%B - - cos ii fi2 

s(3*) 

n 

(3*) = i where S 7c 
I 

dS’ 
- 7 25’(1 -  5’) 5 -  5’ l 

This integral differs from the standard definition of 
S(3) by the presence of 

B2 n in the integrand. 

Using (A-3) again, we have finally 

% = %B * AU& = + + P*) , 
n 1 

and similarly for VI1 ; and these are the formulae customarily modified to 

give (A-l). 
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To obtain a first estimate for uRB , Lock' now replaces cos u T by 1, 
while aT is still an unknown quantity, and z w by =t in the expression for 
D ; and the dependence of 

%B On %B 
is taken to be similar to that exhibited 

for the sheared wing by (A-2): 

VgB N - uRB tan Av (A-4) 

Finally, Q is put equal to the design value q . Then (A-l) becomes a 
quadratic in the variable X = uRB 

[ 
1 + S (3) set Ai/Bn : 1 

AX2+2BX+c = 0 

where A = sec2A 
V 

B = l+u tB - VtB tan Av 

C = (1 + UtBj2 + VEB + 1) sin2A - Dg2 . 
X 

Since B is of the order (1 + small quantities), the required solution is 

x = [(B2 - AC) 1 - BJIA . 

Hence follow the estimates for uRB and the affine doublet strength: 

fig = 4iQB = 4f3UkB . 

Since a small change in vRB has a second-order effect on the value of 
(A-l) compared with that of a small change in 

*RB ' we can discard the assump- 
tion (A-4) and replace vRB in (A-l) by the value calculated from the first 
estimate %B and the more accurate formula': 

From RB we can also compute the first estimate aTB for the twist and write 
cos a = cos c( TB in (A-l). This leads to a revised estimate %B given by 
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UiB = 
X’ 

1 + S(3) set At/B 
n 

where x' = - (1 + u tB > cos a TB 

+ Dij2 - 
[ 

{ 
vtB cos aTB + vRB 

( 
1 + Sc3) 

2 
set At/B, N 

- (1 - K;)(D - 1) sin2Ax cos2aTB 1 
1 

. 

Lock's formula can also be used to modify an initial crude guess for the 

thickness distribution z 
t in the third problem, when the doublet strength is 

known. From the doublet strength, we can find u 
RB 

and v 
RB l 

We now assume 
that u 

tB in the second term dominates equation (A-I), just as we assumed that 

%B in the same term dominated the equation when the doublet strength was 

unknown; we find v tB' D and s(3) from the initial guess for the zt 
distribution, and then a revised estimate 

%B is given by 

uiB = Do2 - (vtB 
'OS "TB + %B 

1 + s(3) 2 
set AZ/f3 n )> 

- (1 - k;)(I) - 1) sin2Ax cos2aTB 3 
4 

- uRB 1 + S(3) set c/n) - cos 
'OS "TB ' 
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Appendix B 

MODIFICATION OF PERTURBATION QUANTITIES WITH MACLAURIN SERIES 

The main iteration cycle involves the execution of the lengthy Ledger-Sells 

subroutine to obtain the velocity fields Agt, Azg (or it, ga) accurately. We 

might obtain a considerable saving in computing time if we could in effect 

perform one iteration cycle by using suitable estimates for these velocity 

fields instead; we would then hope that any errors due to the estimates would 

be small enough to be absorbed in the main iteration cycle the next time the 

velocity fields are accurately calculated. 

For convenience, we drop the bracketed iteration superscripts from all 

quantities except the residual errors R(= f. Rt + RI1) . Let us suppose that in 

the nth iteration cycle we have computed fj=ij +rj 
- -t 4 and the camber and twist 

distributions as, aT , and have determined perturbation source (and possibly 

doublet) distributions Aq, AR and perturbation camber and twist distributions 

Azs, AaT to cancel the residual field 

,(n) = , + ii 1 aZw 
( ) 

azw --+vv-a -W 
B f3a2 ay T 

on the wing surface z=z . 
W 

The next residual field on the perturbed surface z = zw + Azw will be 

(suppressing the x,y-dependence) 

.(n,l) = 

[ 

1 + '('w + Azw) 
B 

Aii(zw + Azw) 
+ 

B 1 

r + 
1 v(zw + Azw) + Av(zw + Azw)] (2 + 2) 

- (aT (zw + A ” , )  + Aw(Zw + Azw) 1 l 
In this expression, g, zw and aT are first-order small quantities while 

Ai& Azw and AaT are (at least) second-order small quantities, being derived 

from such expressions as ,h> which is itself second-order. We therefore 

expand ,tn9 '1 in powers of AZ 
W 

and retain only quantities up to and including 

third-order, ignoring for instance terms O(ilzwAzw), O(AGAzw) . With all 

quantities again evaluated at z = zw , this leads to 
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,(n, 1) = I+) - Aw + + f.gz _ llclT it 
if aA=w AU azw a*zw 

a=W +--++-a-++- +Av-- 
62 aa B2 a2 aY ay 

AZ aw 
WE l 

We now further expand ii in powers of zw (Maclaurin series), so that from 

this point on all quantities are evaluated at z=o, and continue to retain 

terms up to third order. We can ignore further contributions from the second 

line which is already third-order. Thus only Aw contributes further to the 

expansion: 

*w(zw) = Aw(0) + zw s 

We have already taken our perturbation source, camber and twist distributions 

according to equations (3-l), (3-2) to make 

,h) - *w(O) + --- AoT = 0 . 

We also have 

aw aii +I? 
-Ti=ait: ay 

and a similar relation for Aw . Hence we can eliminate w, Aw and obtain 

+ & (zw* ii + iIiAzw> + 5 (zwAv + vAzw> . 

Proceeding on the lines of section 2, we write for upper and lower wing surfaces 

2 = +z +z 
W t S 

; Azw = IL AZ, + Azs 

and 

3 = 5 +-j 
t R 

with similar expressions for v, Aii, Av . (For the first and second design 

problems, Azt = 0 
R(n, 1) 

; and for the first and third problems, AiiR = Avll = 0 .) 

now splits into _ + ,(nJ) + ,W) 
t II with 
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,(n,O 
t 

R(n, 1) 
R 

= + ( 
Appendix B 

a=t +Aii - - 
aazs aAz, 

11 ax + Ut -iz- 
+ii 

Raw 
I 

1 

I[ Ai a=t - + 
t alii 

Ai a=s aAzt aclzs 

Raii + 5 as +il 
a-z- 

3 

+ zsAiiR + UtAzt + iigAzs 
> 

a 
+ ay + zsAvR + vtAzt + vRAzs 

> 

a 
+ z + zsAiit + titAzs + fQAzt 

> 

a 
+ ay ztAvll + zsAvt + vtAzs + vllAzt 

1 . 

When AZ = 0 , 
W 

these expressions reduce to those given in Ref.1. As in that 
document, we must ensure that they are uniformly valid near the wing leading 
edge 5 = 0 . We require at worst 

Rt = O($) ; 
RR = O(1) . 

These expressions are satisfactory except for the second and fourth terms in 
the square brackets in R W) 

R  l 

We introduce a Riegels type factor and replace 
this square bracket (R* cR, say) by 

R a=S 

CR = Aii, ax + Ut aa 

with 

A  

RR 
azt 

aAzt 
= Af$ aa + UR a% . 

This completes the derivation of residual errors by Maclaurin series. 

To estimate these residuals, given Aq and perhaps AR , we need quick 
estimates for four velocity components on the chordal plane 2= 0 . We use the 
approximations for AU,, Avt (derived from the Standard Method6) and AiiR, Av R 
as set out in equations (S-12) to (S-17) of Ref.]. We also need ii t ' etc. which 
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are just the accumulated Act , etc. on the plane z = 0 . However, 
simply accumulating them, after each main iteration we reset _ ut bY 
series based on the accurate value at z=z ; t 

41 

instead of 
a Taylor 

ct (0) 
an, 

+ “t(zt> - ZtF 

and similarly for Vt' UR' 
V R  l 

This avoids the possibility of large errors 
piling up in the accumulated estimates for iit , etc. 



42 

Appendix C 

AN IMPROVISED FIRST ESTIMATE FOR WING THICKNESS NEAR THE TRAILING EDGE 

When solving the third design problem, if the first estimate for the wing 
thickness takes negative values near the trailing edge on any section, we 
improvise a distribution to replace the first estimate in that region 
temporarily, until the main iteration scheme gets under way. In such a plane 
section n = constant , let us denote the first chordwise collocation point 
downstream of the estimated maximum thickness position by E , and denote the 
estimated thickness by 2 and its derivative by c at c=t. Then we would 
like to have a curve G(c) which passes through (g,a) and has the same deriva- 
tive G'(i) =;, becomes rapidly linear further downstream and vanishes at 
the trailing edge 5 = 1 . A function which becomes 
and contains three unknowns, a, b, c with which to 
conditions is 

G = ae-k(E;-i) + bc + c 

where we arbitrarily choose k so that 

X G k(l - i) = 2 

so that the exponential term dies out near 5=1. h is an adjustable program 

constant. The other three conditions, in order, now give: 

-ka+b = G 
-x ae +b+c = 0. 

The solution of these equations is written: 

a = G(l - 2) + ii 
1 - emA - X 

b = ka+c 

A  

C = z-a -bt . 

rapidly linear for 5't 
satisfy the other three 

We observe, as a check, that a vanishes and G becomes precisely linear if 

; = - g/(1 - i> 

which is the slope of the straight line joining the two end points (i,;) and 

(1 ,O). 
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SYMBOLS 

C 

C 
P 

e!t 
R 

M co 
4 

Q 

Rt 

RR 
S 

u 

ii 

us v, w 

U 

U 

u, v, w 

X¶ Y, = 

xL 

zt 
2 

S 

z 
W 

oT 
cc 

6 

c 

4 

“V 

local chord 

pressure coefficient 

doublet function R sin + 

planar doublet strength (loading) 

free stream Mach number 

planar source strength 

local speed 

residual error in symmetric boundary condition 

residual error in antisymmetric boundary condition 

semispan (taken as 1) 

general perturbation velocity vector 

general perturbation velocity in affine space 

components of u 

free stream velocity vector 

complete velocity vector: u +zLl+u -co 4 
components of U 

local Cartesian coordinates for section 

leading-edge ordinate 

wing thickness ordinate 

wing camber ordinate 

wing section ordinate: zs f zt 

local section twist 

wing incidence (taken as 0) 

Prandtl-Glauert factor: 43 

Y/S 

Y ; but a/at denotes differentiation along lines of constant 5 

n = n* is section dividing root and outboard regions in fourth 
(hybrid) problem 

local sweep in affine space (i.e. on analogous wing) 

section percentage-chord: x = t(Y) + C(Y>C 

angular chordwise coordinate: 5 = A(1 - cos 4) 
under-relaxation factor applied to estimate of output by vortex 
lattice technique 



SYMBOLS (concluded) 

Suffices 

B basic estimate 
R due to doublets 
t due to sources 
U value on upper surface 

Oversymbols 

design quantities (e.g. CPU, 6,) 
quantities in affine space (e.g. 2 = x/B, ii = uf3) 
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root, and is determmed near the root when the doublet distribution is constrained to 
exhibit spanwise mvariance m that region. Convergence for the furst problem is excellent. 
For all problems, good convergence is obtamed outboard. For the single case reported 
of the second problem. convergence was secured near the root but cannot yet be guaran- 
teed Near the root, slow convergence was obtained for the third problem, rather better 
convergence for the fourth problem This hybrid option IS tentatively recommended 
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