

Crown Copyright Reserved

ROXAL ATRCRAFH ESTABLISIDMETI, FAFUYBOROUGH

Some Notes on the Flapping Motion of Rotor Blades
by
3.B.B. Owen, M.Sc., B.SC., A.F.R.Ae.S.
\qquad

SUMMARY

By cons blering the stabilaty of the flappang motion of a hanged rotor bledes at any one fixed dalnuth, this report dernves smple expressions for the condation which just causes the flapping motion at a particular azimuth to lend to become unstablo. It shows that a decroase in pitch as blades flap ui has a considerable stabilising influence. Effects such as the offsel of the blade C. G. behind the flexural axis have the roverse effoct but the analysas of the mann text is not extonded beyond this because its primary purpose is to draw attention to the charactor of flapping motion. It is suggested that computational methods now avallable shoula be used for further studies of the flapping equations which are of the Mattieu-Hill type. Therse equations are doduced in a faurly gonoral form in appondices which are largcly sclfcontaned.

IIS'P OF CONTENTS

Pago
1 Introauction 3 3
root hinges
3 Motion vhen pitch varues as the flapping angle 5
4 Effect of torsional flexibiluty 5
5 Conclusion 7
List of symbols 8
References 9

LIST OF APPENDICES

Appendix
Derıvation of flapping motion equations I
Bffect of pitch change with flapping II
Effect of offset between inertia and flexural axis III
LIST OF ILUUSTRAPTONS
Fig.
Reference durections 1

1 Introduction

Some recent rotor blade instability troubles, associated with
blade twasting and flapping, suggested to the wrater the decirability of reviewing the work which has been done on blade flapping stability, Sissingh ${ }^{1}$ (1944), who refers to previous work by Adam ${ }^{2}$ (1934) and Hohenemser ${ }^{3}$ (1938), concludes that the motion is very heavily damped and in a numerical example he took found that forward speed had little offect on his results. Rotors, however, are frequentiy reported to become more and more "rough" as speed increases, and Lock (1928) shows that harinnio terms generally tend to increase as the tip speed ratio increases. It seemed therefore desirable to look at Sissingh's analysis in thas lisht. He by-passes the difficulties associated with the solution of the equation for the flapping motion of a rigid rotor blade, hinged at its root, in tho way Glauert ${ }^{5}$ (1926) ordginally dealt wath the altogyro problcm, viz: by expanding the blade flapping motion into a Fouricr series. Like Clauert he considers only terms up to the first harmonio terms in the expansion and givang them an exponential form derivis a sextic. In the two examples he chooses the roots of thas scxtic indicate that motion up to the first harmonic term is heavily damped and very little affected by forward spoed. Extending Sissingh's work to deal with higher order harmonic terms would involve even mon laborious calculations than those he has already done and it therefore soemed desirable to turn again to the differential equations of flapping motion and see if an alternative approach were possible. The derivation of these equations is therefore givon braefly in Appendix I. The analysis given there may be extended to study what would usually be classed as flutter problems but the mann object of the report is to acow attention to the-charactor of the flupping motion cquations. Detall consideration is given only to results whoch can be ootained by simple substitutions. Even a Fourier substitution is not made and considevation is restricted to the nature of the flupping motion at any one particular azamuth. Then only the roots of a quadratic equation have to be stridzed, This approach indicates that forward speed may have a considerable influence on the character of the flapping motion and shows that reducing the pitch of the blades as they flap up markedly increases flapping stabiluty. An extension of the analysis shows that the offset of the blade centre of mass behind the flexural centre has the reverse effoct. The invostigation is not extended in dotall further than thas becauso the notion of investigating flapping motion at a fixed azimuth is net a rigorous mothod of dealing wath this Matticu-Hill equation for the flapping motion. It is felt that the computational facilities now available maght be first brought to bear on the problem to indicate the significance of the simple treatment adopted here.

2 Flapging motion of rigad fixed pitch blades wath root hinges

When the hinged root of a rigıd fixed pitch blade is constrained to move along a straight line with steady velocıty, it is shown in Appendix I that the dynamical equation of flapping motion reduces to

$$
\ddot{\beta}+2 k\left(1+\frac{4}{3} \mu \sin \psi\right) \Omega \dot{\beta}+\left\{1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)\right\} \Omega^{2} \beta
$$

$=a$ function which is independent of β

when the blade is unform along its length. The general naturo of the equation will bo much the same if the blades are not uniform except thit the coefficients will have different values. In thus equation β as whe flapping angle,
$k=3 \rho$ ca $R / 16 m$, a positıve non-dimensional quantity having a value of about 0.7 for the $C .30$ autoryro,
$\Omega=d_{\psi} / d t$, the constant rotor angular velocity,
$R=$ the rotor radius, 1.e. blade length,
$\mu=$ the tip speed ratio and
$\psi=\Omega t$, defines the azimuth of the blade from down wind in the direction of rotation.

It will be observed that the coefficionts of $\dot{\beta}$ and β in this equation vary with bladc azimuth ψ; but, if attontion is concentrated on one particular azimuth at a time thon the coefficients romain sensibly constant.

The smallest value of the damping coefficient

$$
2 k\left(1+\frac{4}{3} \mu \sin \psi\right)
$$

will occur when sin $\psi=-1$ and $\mu 1 s$ greatest. Provided

$$
\begin{equation*}
\mu<\frac{3}{4} \tag{2}
\end{equation*}
$$

this damping coefficient wil aiways be positive. Such a high value for μ is well outside the present working range of helicopters and outside the scope of the present analysis which neglocts stallang. It is evident then that for all practical purposes

$$
\begin{equation*}
2 k\left(1+\frac{4}{3} \mu \sin \psi\right) \tag{3}
\end{equation*}
$$

will always be positive.
(The smallest value of the "spring stiffness" coefficient $\left\{1+\frac{\delta}{3} k \mu \cos \psi\left(1+\frac{3}{2} \psi\right)\right\}$ Is about $\left(1-\frac{8}{3} k \mu\right)$, so that the least
effective stiffness occurs at higher rather than lower forward speeds.

Considering now the nature of flapping motion at any one azamuth position, $1 . e$. freezing ψ at any chosen value, the nature of the flapping motion will be determined by the nature of the operational roots of (1) which are
$\left[\begin{array}{l}-\sqrt{k^{2}\left(1+\frac{4}{3} \mu \sin \psi\right)^{2}-\left\{1+\frac{4}{3} \mu \sin \psi\right)}\left[1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)\right.\end{array}\right] \Omega, \ldots$
Since from (3) $k\left(1+\frac{4}{3} \mu \sin \psi\right)$ will be positave, the farst posituve root of (4) will occur when

$$
1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)
$$

Is just negative. The condition that at no azımuth position flappang motion should tend to be divergent is then that

$$
\begin{equation*}
1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)>0 \tag{5}
\end{equation*}
$$

which gives approximately

$$
\begin{equation*}
\mu<\frac{3}{8 k} \text { or } \mu<\frac{2 \mathrm{~m}}{\rho a \mathrm{R}} \tag{6}
\end{equation*}
$$

It does not follow, however, that if μ is greater than this value flapping motion as a whole will be unstable; it vill only first tend to be so in the region where the blade is approaching the straight ahead position and it may not be long enough in thas region for a disturbance to be catastrophic but a loss of smoothness m.ght be expected. The "critical" value of μ given by (6) for the C. 30 autogyro is about 0.53 , wall beyond its top speca.

3 Motion when pitch varzos as the flapping angle

Nowadays it is frequently the practice to decrease the blade patch as the blade flaps up; thus the patch of a rigid blade might be expressed by

$$
\begin{equation*}
\theta=\theta_{0}-s \beta \tag{7}
\end{equation*}
$$

where s is a positive constant. It is shown in Appendix II that the only change introduced in equation (1) is in the coefficient of β and the critical condition (5) now becomes

$$
\begin{equation*}
1+k\left[\frac{8}{3} \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)+4 s\left\{\left(\mu \sin \psi+\frac{2}{3}\right)^{2}+\frac{1}{18}\right\}\right]>0 \tag{3}
\end{equation*}
$$

Since the last term is always positive the effect of this pitch change is to increase the "critical" speed. A rough indication of the ancrease is obtalned by considering the motion in the rogion of $\psi=180^{\circ}$. Then the criterion (3) gives $1+k\left[-\frac{8}{3} \mu+2 s\right]>0 \quad$ or

$$
\begin{equation*}
\mu<\frac{3}{8 k}+\frac{3}{4} s \tag{9}
\end{equation*}
$$

If in the $C .30$ a patch decrease equal to one third the increase in the flapping ancle were introduced ($s=\frac{1}{3}$) the theoretical critical value of μ would ancrease from 0.53 to $(0.53+0.25)$.

This most marked effect of putch change suggests that if the blade pitch tended to increase only slightly wa th the flapping anglo the offect would be very serious. Wath torsionally flexable blades such effects might occur.

4 Erfect of a torsional flcxibilaty

Twasting of a blade may be caused by the centre of lift, drag or mass not coinciding wath what 1 s of ten called the ilexuralsaxis, i.e., the load positions which produce no twist. Boavan-and Lock 5 (1936), using
harmonic analysis evaluated the effect of the mertia axis being aft of the flexural axis of the C. 30 blades and also the effect of the presence of a large pitching moment coofficient. The former results in a twist which is a function of β and therefore affects the nature of the blade flapping motion. Twast duc to the latter is not directly a function of β. Lif't and flexural centres in the $C .30$ coincided and such a choice, together with small values of pitching moment coefficient seems possible for other blades unless regions of high Mach numbers are encountered. Experience indicates, however, that offscts between the position of the inertia and flexural axis will occur unless meticulous care is exercised in manufacture and whilo other offsets are not mprobable it is proposed here to considor only the effect of an incrtia offset which is amenable to sample treatment.

Assuming, in the same way as Beavan and Lock ${ }^{5}$ (1936), that the twists produced are equal to those which would occur if the twisting moments were applied statically, it is shown in Appendix III that the effectave patch at a radius r is

$$
\begin{equation*}
\theta=\theta_{0}+\frac{m b c}{N J}\left\{\left(\ddot{\beta}+\Omega^{2} \beta\right) \frac{r^{3}}{6}+\beta \cdot g i \cos \psi \frac{r^{2}}{2}\right\} \tag{10}
\end{equation*}
$$

due to an offset of the centre of mass a distance bc behind the flexural axis, omatting all addıtional terms which are not functions of β. Usually the gravity contribution, which is the last term in (10) W2ll be small and then as shown in Appendix III the left hand side of equation (I) takes the form

$$
\left[\begin{array}{l}
\left.1-k\left\{\left(\mu \sin \psi+\frac{5}{6}\right)^{2}+\frac{5}{252}\right\}\right] \cdots+2 k\left(1+\frac{4}{3} \mu \sin \psi\right) \Omega \dot{\beta} \\
+\left[1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right) \rightarrow \kappa\left\{\left(\mu \sin \psi+\frac{5}{6}\right)^{2}+\frac{5}{252}\right\}\right] \Omega^{2} \beta
\end{array}\right.
$$

$$
\ldots . . .
$$

where $k=4 \Omega^{2} b c m R^{3} k / 15 N J=\rho a b c^{2} R^{4} \Omega^{2} / 20 N J$, and has a value of about 2.5 b , i.e., about 0.16 for the C .30 autogyro.

Comparing (7) and (10) It will be observed that, while b is positive, an undesirable negative value of an "effective s " has made its appearance and we should expect the roots of (11) at certain fixed azmmuths to be adversely affected. The coefficlent of $\hat{\beta}^{\circ}$ will usually be positive and while thas is so the criterion that there should be ro tendency to local flapping instabilaty is that
$1+\frac{8}{3} k \mu \cos \psi\left(1+\frac{3}{2} \mu \sin \psi\right)-\kappa\left\{\left(\mu \sin \psi+\frac{5}{6}\right)^{2}+\frac{5}{252}\right\}>0 \ldots$
In the region of $\psi=180^{\circ}$ thas becomes

$$
1-\frac{8}{3} k \mu-\frac{5}{7} k>0
$$

which gives

$$
\begin{equation*}
\mu<\frac{3}{8 k}-\frac{15}{56} \frac{k}{k} \tag{13}
\end{equation*}
$$

For the C. 30 the decrease in the critical value of μ is from 0.53 to $0.53-0.06$, in atself not a large effect. C. 30 blades had, however, a tubular steel spar which was very stiff in torsion and with other typos of construction and thinner blades $2 t$ is possiblo that blade torsional stiffness values wall not be so large and the effeot of the twist prom duced by the anertia axis being aft of the flexural axis will be of greater importance. Provided torsional flexibility is such that root pitch changes are transmitted throughout the blade it would appear possible from (9) to nullify the adverse effect of elastic twist by decreasing the blade pitch as it flaps up. The criterion for flapping to be stable at $\psi=180^{\circ}$ then becomes that

$$
\mu<\frac{3}{8 k}+\frac{3}{4} s-\frac{15}{56} \frac{k}{k}
$$

........ (14)

Most early testing of rotors is done at very low values of the tip speed ratio ' μ. In the particular case of a torsionally flexible but otherwise rigid blade the left hand side of the flapping equation of motion at zero forward specd reduces to:-

$$
\begin{equation*}
\left(1-\frac{5}{7} k\right) \ddot{\beta}+2 k \Omega \beta+\left\{1+2 k s-\frac{5}{7} k\right\} \Omega^{2} \beta \tag{15}
\end{equation*}
$$

and if instabiluty just appears then

$$
\left(1-\frac{5}{7} k\right)\left(1+2 k s-\frac{5}{7} k\right)=0
$$

In the case of the $C .30$ blades if the blade torsional staffness were reduced to a third its value and the distance between the flexural axis and inertia axis increased to 0.2 c , conditions which might perhaps bo obtained by a very clumsy redesign in say wood, then instability woula appear before the working r.p.m. were reached. Thas curious rosult has been obtained bocause the coefficient of $\dot{\beta}$ in (15), which had been obtained from (11), is now no longer positive as assumed in doriving (12) and (14).

5 Conclusions

The results obtained indicate that if it is pemnssible to consader the stability of flapping motions at a fixed azumuth, then, provided. $\left(1-\frac{5}{7} \kappa\right)$ is positive, flapping instabilaty will furst appear when the tip speed ratio μ has a value of about

$$
\frac{3}{8 k}+\frac{3}{4} s-\frac{15}{56} \frac{k}{k}
$$

for a uniform blade which is rigid in bending but flexıble an torsion. An appreczation of the significance of thas result an relation to flapping-cum-rotational stability might be obtained by making numerical calculations, possibly step by step, or using tables and computational aids now available, of blade motion at values of μ above and below this oritical value. Thas seems desirable before extending further the approach of those notes.
(Since, compiling these notes the writer has come across work by Horvay and Yuan (J.Ae.Sc., October, 1947) whach gives an analytical step-by-step treatment of the problem. He is also indebted to Mr. Shapiro for passing him a copy of work by Parkus, of the Vienna Technical Institute, which is awaiting publication, and which deduces a criterion for flapping stability using Floquet's theory (1883) and a power series substitution. In both treatments the elogant anolysis involved tends to obscure the physical picture.

In a discussion with Mr. I.T. Manhinnick, who has been considering rotor flutter problems, it tronspired that l_{z} terms, viz: aerodynamio forces associated with displacements such as $r \beta$ and z^{\prime}, considerably affected the results obtainer. In the past such terms have been omytted in studies of rotor aorodynamics and are omitted in the present note. It thus appears that this omission is justafiable in considering low frequency and divergent motions only.)

IIST OF SYMBOLS

```
    a = slope of the luf't curve
b = fraction of chord C.G. ls aft of the flexural axas
c = blaae chord
f = any disturbing velocity through disc
g = acceleration due to gravity
i = disc ancidence
k = 3 poak/16m, a non dimensionul constant
m = blade muss per unzt length (slugs/ft. mun)
r = distance from the blade root to an clement of the blade
        measured along the flapping line (FIg.I)
s = a constant = the ratio of pitch change/flapping angle change
t = time
v = induced velocity measure positive downwards
2' = deflection of a blade element perpendicular to the "Flapping
        lune" (Fig.1)
I = moment of incrtia about blade root (slugs. ft. . )
M = mass moment about the blado root (slugs ft.)
NJ = torsional stiffness of the blade por unzt run
R = tip radius
V = constant forward velocity of aurcraft
X,Y,Z = reforence axes, see Fig.l.
\beta=flapping angle, tho angle between "flapping line" and XY
        disc plano
\dot{\beta},\ddot{\beta}=\mp@code{ats successive derivatives wath respect to time}\\mp@code{m}
0 = blade prtch from no luft at root
```

$\theta_{0}+\theta_{r}=" \quad " \quad$ at distance r from root
$\kappa \quad=\frac{8 \Omega^{2} \mathrm{kmbaR}^{3}}{N J}=\frac{\rho a \mathrm{ac}^{2} R^{4} \Omega^{2}}{20 N J}=$ a torsional flexibility
constant
$\mu \quad=V \cos 1 / \Omega R=\operatorname{tip} \operatorname{specd} \operatorname{ratio}$
$\rho \quad=$ air donsity ${ }^{\circ}$
$\phi \quad=$ angle of incidence of a blado section from no lift.
$\psi \quad=\Omega t=$ azimuth moasured from down wind in diroction of
rotation
$\Omega \quad=$ angular volocity of rotor, assumod constant.

RFFPERENCES

Ref. No.	Author	Title, etc.
1	Shssingh, G.	Investigation of stability of flapping motion of lifting proveliers. Technische Berichte Vol. 11 No.10, 1914. R.A.E. Library Trunslation No. 191 (1947) ARC 10, 825.
2	Adam	On the stabilaty of the motzon of an outogrro blade. Revista de Aeronautica (Aerotechnıa) (1934) No. 30 page 478.
3	Hohenemser	On the dynamac stability of helicopters with hanged blades. Ing. Archıv. Vol. 9 (1938) page 419.
4	C.N.H Lock	Further developments of autogyro theory R. \& M. 1127 (1928).
5	H. Glauert	A general theory of the autogyro. R. \& M. 111 (1926).
6	J.A Beavan, \& C.N.H. Lock	The effect of blade twast on the characteristics of the C. 30 autogyro. R. \& M. 1727 (1936).

Attached. -
Appendices I, II and III Fig.I.

AYPENDIX I

Derivation of Fiapoing Motion Equations

T. 1 To avoid continual cross reference to cariler work the flapping equations used in the text are derived in this appendix from clementary considerations. Fig.l shows the rolative dixections of the aircraft velocity, blade chord, etc. and from it the following direction cosines with respect to the orthogonal axes shown, can be derived:-
(1) Lengthwise tangent to blade drawn outwards $\cos (\beta+d z 1 / d r) \cos \psi, \quad \cos \left(\beta+d z^{\prime} / d r\right) \sin \psi, \quad \sin \left(\beta+d z^{\prime} / \partial r\right)$
(2) Chordwise, leadng edge to trailing edge

$$
\sin \psi, \quad-\cos \psi, \quad 0
$$

(3) Normal (upwards)

$$
-\sin \left(\beta+d z^{\prime} / \partial r\right) \cos \psi,-\sin \left(\beta+d z^{\prime} / \partial r\right) \sin \psi, \quad \cos \left(\beta+d z^{\prime} / \partial r\right)
$$

(4) Centrifugal force

$$
\cos \psi, \quad \sin \psi, \quad 0
$$

(5) Forward speed, V, reversed

```
cosi, 0, sin i
```

(6) Gravity
$\operatorname{san} i, \quad 0, \quad-\cos 2$

In the above β is the flapping angle at azamuth ψ and $d z^{1 / d r}$ the small slope of the blade at radıus r relative to the "flapping line", see Fig. I. The aircraft is taken to be flyang straight and level at a constant velocity V and the rotor dasc which contains the axes OXY is anclined at an meldence i.
I. 2 The component of the constant forward veloczty V along the blade chord, viz: $V \cos I \sin \psi$, and the angular rotation give a not chordwase velocity of

$$
(\Omega x+V \cos 1 \sin \psi)
$$

The component of the velocity V normal to the blade chord is

$$
-V \cos 1 \cos \psi \sin \left(\beta+d z^{\prime} / d r\right)+V \sin i \cos \left(\beta+d z^{\prime} / \partial r\right)
$$

upwards and this is modificd by the presence of flapping angular velocity $\dot{\beta}$, normal velocity \dot{z}^{\prime} and induced velocity v, the latter taken positive downwards. The net wind velocity, relative to the blade at radius r, up through the disc is, therefore, when $(\beta+d z 1 / \partial r)$ is small
$(V \sin i-v)-(\beta+d z ' / \partial r) V \cos i \cos \psi-r \dot{\beta}-\dot{z}+f \quad \ldots \ldots . . I(2)$,
where f stands for any arbitrary disturbance.

If the geometric pitch of the blade section from no lift is $\theta_{0}+\theta_{r}$, where θ_{0} is constant and θ_{r} varies with r, then the angle of incidence from $I(1)$ and $I(2)$ is $g i v e n$ by
$\phi=\theta_{0}+\theta_{r}+\frac{(V \sin \mathcal{L}-v)-(\beta+d z 1 / \partial r) V \cos i \cos \psi-r \dot{\beta}-\dot{z}+f}{\Omega r+V \cos 2 \sin \psi}$

The element of lift on a length $d r$ of the blade at r is then usually considered to be

$$
\frac{1}{2}(\Omega r+V \cos I \sin \psi)^{2} \cos \phi d r
$$

the presence of a velocity out along the blade being ignored, The moment of the lif't load about the root is then

$$
\int_{0}^{R} \frac{1}{2} \rho(\Omega r+V \cos 2 \sin \psi)^{2} \operatorname{co\phi } r d r
$$

When a, the slope of the lift curve, is constant, the blade chord c and the induced velocity v are also independent of r, this integral becomes

$$
\begin{aligned}
& \frac{1}{2} \rho(\Omega R)^{2} \operatorname{caR}^{2}\left\{\frac{1}{4} \theta\left\{1+\frac{8}{3} \mu \sin \psi+2 \mu^{2} \sin ^{2} \psi\right\}\right. \\
& +\frac{1}{3} \frac{V \sin 1-v}{\Omega R}\left\{1+\frac{3}{2} \mu \sin \psi\right\} \\
& -\frac{1}{3} \beta \mu \cos \psi\left\{1+\frac{3}{2} \mu \sin \psi\right\} \\
& -\frac{1}{4} \frac{\dot{B}}{\Omega}\left\{1+\frac{4}{3} \mu \sin \psi\right\} \\
& +\int_{0}^{R} \theta_{r}\left\{\left(\frac{x}{R}\right)^{j}+2 \mu\left(\frac{r}{R}\right)^{2} \sin \psi+\mu^{2} \sin ^{2} \psi\left(\frac{r}{R}\right)\right\} d\left(\frac{r}{R}\right) \\
& \left.+\int_{0}^{R}\left\{\frac{f}{\Omega R}-\frac{d z^{\prime}}{d r} \mu \cos \psi-\frac{\dot{z}}{\Omega R}\right\}\left(\frac{r}{R}+\mu \sin \psi\right) \frac{r}{R}\right] d\left(\frac{r}{R}\right)
\end{aligned}
$$

In this equation the β term is present due to the forward velocity of the alroraft having a component normal to the blade. The $\dot{\beta}$ term is due to blade flapping. The integration neglects the effects of stalling and tip losses.
I. 3 The inertia load on the blade due to
(i) flapping as a rigid body (i.e., inertia loads-due to the motion of the "flapping line", Fig.1) is mr $\ddot{\beta} d r$
(ii) bending away from the ragid body flapping position (i.e., the "flapping line") ism̈' $d r$
(iii) gravity is mgdr
(iv) centrifugal force is $m \Omega^{2}\left(r \cos \beta-z^{\prime} \sin \beta\right) d r$.
(Inertia loads due to angular acceleration in pıtch $\ddot{\theta}$ are omitted here; so also are the small $z^{\prime} \beta$ and z^{2} terms).

The moment of these forces about the blade root is then
$\int_{0}^{R}\left[m\left(r \ddot{\beta}+\ddot{z}^{\prime}\right) r\right.$
$+m g\{\cos i \cos \beta+\sin i \cos \psi \sin \beta\} r$
$-m g\{\cos i \sin \beta-\sin i \cos \psi \cos \beta\} z^{\prime}$
$\left.+m \Omega^{2}\left(r \cdot \cos \beta=z^{\prime} \sin \beta\right)\left(r \sin \beta+z^{\prime} \cos \beta\right)\right] d r$.

When β is small this reduces to

$$
\begin{align*}
& \int_{0}^{R}\left[\Omega^{2}\left\{\left(r^{2}-z^{\prime}\right) \beta+r z^{\prime}\right\}+r^{2} \ddot{\beta}+r z^{\prime}\right. \\
&+g\{r(\cos i+\beta \sin i \cos \psi) \\
&\left.\left.+z^{\prime}(\sin i \cos \psi-\beta \cos i)\right\}\right] m d r \\
&=\left(\ddot{\beta}+\Omega^{2} \beta\right) I+(\beta \sin i \cos \psi+\cos i) \quad \varepsilon_{-} M \\
&-\beta g \cos i \int_{0}^{R} m z^{\prime} d r \tag{5}
\end{align*}
$$

where $I=$ the moment of inertia of the blade about the flapping hinge
$=\mathrm{mR}^{3} / 3$ for a uniform blade
$\mathrm{M}=$ the blade mass moment about the flapping hange
$=m R^{2} / 2$ for a uniform blade

By choosing the "flapping Ine" appropriately it is possible to make the inertza term $\int_{0}^{R} m z^{\prime} d r$ vanish and so this term may be aropped'.
I. 4 Equating the laft root moment given by $I(4)$ to the inertia moment gaven by $I(5)$, collecting terms and daviding through by I gives the flapping equation of motion:-
$\ddot{\beta}+2 k\left(1+\frac{4}{3} \mu \sin \psi\right) \ddot{\beta}+\left[1+\left\{\frac{g M \sin 2}{I \Omega^{2}}+\frac{8}{3} k \mu\left(1+\frac{3}{2} \mu \sin \psi\right)\right\} \cos \psi\right] \Omega^{2} \beta \quad$.
$=-g \cos i N / I$.
$+8 \Omega^{2} k\left[\frac{1}{4} \theta\left(1+\frac{8}{3} \mu \sin \psi+2 \mu^{2} \sin ^{2} \psi\right)+\frac{1}{3}\left(\frac{V \sin 1-v}{\Omega R}\right)\left(1+\frac{3}{2} \mu \sin \psi\right)\right.$
$+\int_{0}^{R} \theta_{r}\left\{\left(\frac{r}{R}\right)^{3}+2 \mu\left(\frac{r}{R}\right)^{2} \sin \psi+\mu^{2} \sin ^{2} \psi\left(\frac{r}{R}\right)\right\} d\left(\frac{r}{R}\right)$
$\left.+\int_{0}^{\mathrm{R}}\left\{\frac{f}{\Omega r}-\frac{\mathrm{d} z^{\prime}}{d r} \mu \cos \psi-\frac{\dot{z}^{\prime}}{\Omega R}\left(\frac{r}{R}+\mu \sin \psi\right) \frac{r}{R}\right\} d\left(\frac{r}{R}\right)\right]$
, This differs from equation (1) of the main text by the retention of the small β term $g M$ sin I / Ω^{2} which is neglected there. In it

$$
\mathrm{k}=\frac{1}{2} \rho(\Omega R)^{2} \operatorname{caR}^{2} / 8 I \Omega^{2}=\rho \operatorname{caR}^{4} / 16 I=3 \rho a c R / 16 \mathrm{~m}
$$

$=0.71$ for the $C .30$ autogyro when $a=5.72$ ner radıan.

AFPENDIX II

Effect of Pitch Change wath Flapping

It is frequently a common practice nowadays to recuce the pitch of blades as they flap up so that the pitch may be written as

$$
\begin{equation*}
\theta=\theta_{0}-s \beta \tag{I}
\end{equation*}
$$

where s is a positave. Futting in $I(6) \theta_{r}=-s i{ }^{*}$ an additional term in β may now be transferred to the r.h.s. This, term is

$$
\begin{align*}
& 8 \Omega^{2} \mathrm{k} \int_{0}^{\mathrm{R}} s \beta\left\{\left(\frac{r}{R}\right)^{3}+2 \mu\left(\frac{r}{R}\right)^{2} \sin \psi+\mu^{2} \sin ^{2} \psi\left(\frac{r}{R}\right)\right\} a\left(\frac{r}{R}\right) \\
& =8 n^{2} \mathrm{ks} \beta\left\{\frac{1}{4}+\frac{2}{3} \mu \sin \psi+\frac{1}{2} \mu^{2} \sin ^{2} \psi\right\} \\
& =4 \mathrm{ks}\left\{\left(\mu \sin \psi+\frac{2}{3}\right)^{2}+\frac{1}{18}\right\} \Omega^{2} \beta \quad \ldots . \tag{2}
\end{align*}
$$

* Or identafyang θ_{0} wath $-s \beta$

APPENDIX III

Effect of Offset Between Inertia and Flexural Axes

III.I The anertia loading in the darection nomal to the blade chord is composed of
(i) the component of the centrifugal force which gives

$$
-m \Omega^{2}\left(r \cos \beta-z^{\prime} \sin \beta\right) \cdot \sin \left(\beta+d z^{\prime} / d r\right) d r
$$

(ii) flapping and bending inertia loads, $-m\left(r \ddot{\beta}+\ddot{z}^{\prime}\right) d r$.
(zii) the component of gravity, viz.

$$
m g\{\sin i \sin (\beta+d z 1 / d r) \cos \psi+\cos i \cos (\beta+d z 1 / d r)\} d r
$$

When i and $\left(\beta+d z^{\prime} / \partial r\right)$ are small the upward inertia loading is

$$
-m\left[\Omega^{2}\left(r-z^{\prime} \beta\right)\left(\beta+d z^{\prime} / d r\right)+r \ddot{\beta}+\ddot{z}^{\prime}+g\{1(\beta+d z \prime / d r) \cos \psi+I\}\right] d r
$$

or collecting rugad body and "clastic" torms

$$
\begin{aligned}
\sim & {\left[\left\{\ddot{\beta}+\left(\Omega^{2} r+g ı \cos \psi\right) \beta+g\right\}\right.} \\
& \left.+\left\{\ddot{z}^{\prime}-\Omega^{2} \beta z^{\prime}\left(\beta+d z^{\prime} / \partial r\right)+\Omega^{2} r d z^{\prime} / \partial r+g i \cos \psi d z^{\prime} / d r\right\}\right] d r
\end{aligned}
$$

III. 2 Omittang "elastıc" terms the nose up torque due to this load, if it is a distance bc aft of the positıon it should occupy to produce no torque on any one chosen section, is

$$
d \tau=\operatorname{mbc}\left[r \ddot{\beta}+\left(\Omega^{2} r+g i \cos \psi\right) \beta+g\right] d r
$$

The twist $d \theta$ in a short length $d r$ of the blade due to a torque τ. at the section is given by

$$
\frac{d \theta}{d r}=\frac{\tau}{N J}
$$

where NJ is the torsional-stiffness. Whenathis is constant. then

$$
\frac{d^{2} \theta}{d r^{2}}=\frac{d}{d r}\left(\frac{\tau}{N J}\right)=\frac{1}{N J} \frac{d \tau}{d r}=\frac{m b c}{I V J}\left[r \ddot{\beta}+\left(\Omega^{2} r+g 1 \cos \psi\right) \beta+g\right]
$$

Integrating twace and omitting all terms not containing. β

$$
\theta=\frac{m b c}{N J}\left(\ddot{\beta}+\Omega^{2} \beta\right) \frac{r^{3}}{6}+g i \cos \psi \frac{r^{2}}{2} \beta .
$$

Substituting this expression for θ_{r} in the θ_{r} integral of I (4) gives'

$$
\begin{aligned}
& \frac{m b o R^{3}}{N J}\left[\frac{1}{6}(\ddot{\beta}\right.\left.+\Omega^{2} \beta\right)\left(\frac{1}{7}+\frac{1}{3} \mu \sin \psi+\frac{1}{5} \mu^{2} \sin ^{2} \psi\right) \\
&\left.+\frac{g i \cos \psi \cdot 3}{2 R}\left(\frac{1}{6}+\frac{2}{5} \mu \sin \psi+\frac{1}{4} \mu^{2} \sin ^{2} \psi\right)\right] \\
&=\frac{m b c R^{3}}{N T}\left[\frac{1}{30}\left(\ddot{\beta}+\Omega^{2} \beta\right)\left\{\left(\mu \sin \psi+\frac{5}{6}\right)^{2}+\frac{5}{252}\right\}\right. \\
&\left.+\frac{1}{8} \cdot \frac{\operatorname{gin}^{2} \cos \psi}{R} \beta\left\{\left(\mu \sin \psi+\frac{4}{5}\right)^{2}+\frac{2}{75}\right\}\right]
\end{aligned}
$$

As a first approximation it will generally be permissible to neglect the gravity term in β which will be small ocompared with the Ω^{2} term so that the θ_{r} term in I (6) now gives

$$
\frac{8 \Omega^{2} \mathrm{kmbaR}^{3}}{\mathrm{NJ}}\left[\frac{1}{30}\left(\ddot{\beta}+\Omega^{2} \beta\right)\left\{\left(\mu \sin \psi+\frac{5}{6}\right)^{2}+\frac{5}{252}\right\}\right]
$$

Putting $x=\frac{8 \Omega^{2} \mathrm{kmbcR}^{3}}{30 \mathrm{NJ}}=\frac{0 \mathrm{abc}^{2} \mathrm{R}^{4} \Omega^{2}}{20 \mathrm{NJ}}=2.5 .6=0.16$ for the 0.30 , and transferring the $\ddot{\beta}$ and β terms to the r.h.s. of $I(6)$ we obtain the result quoted in (11).
(It will be observed that aerodynamioal torsional torms in $\dot{\theta}$ are omitted in the above).

C.P. No 1
(11421)
A.R.C Technical Report

LONDON PUBLISHED BY HIS MAJESTY'S S'TATIONERY OFFICE
To be purchased directly from H.M. STATIONERY OFFICE at the following addresses
York House, Kingsway, London, W.C.2, 13a Castle Street, Edınburgh, 2;
39 Kıng Street, Manchester 2, 2 Edmund Street, Birmingham, 3, I St. Andrew's Crescent, Cardiff, Tower Lane, Bristol, 1,

80 Chichester Street, Belfast
OR THROUGH ANY BOOKSELLER
1950
Price 1s. 9d. net

