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SUMMARY 

The Report illustrates the use of some standard statistical techniques in 

wind-tunnel testing. The results of non-linear regression analysis are applied 

to the particular problem of comparing the data from experiments in two 

different tunnels on the same model. Residual variance is used as a measure of 

the repeatability of results and standard tests are applied to look for 

significant differences between the two tunnels. The accuracy of a measured 

aerodynamic coefficient is put in terms of confidence limits for a given 

probability level. A method is given for determining the minimum detectable 

effect of a model geometry change and also for finding the number of data 

points needed to measure a coefficient to a prescribed accuracy. 

* Replaces RAE Technical Report 75018 - ARC 36049 
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I INTRODUCTION 

During the planning of a recent wind-tunnel programme it was decided to 

group the runs into three separate series. The first two would be largely 

exploratory and would be carried out in different wind tunnels. It was arranged 

that some of the model configurations to be tested in these two series would be 

identical, so that a comparison of the results would enable a decision to be 

made as to which was the better tunnel to use for the third series of tests. 

It was realised at that stage that such a comparison would have to be made on a 

statistical basis, using such concepts as 'repeatability' and 'accuracy'. 

However, it was not clear how these ideas could be quantified when considering, 

for example, the model's pitching-moment behaviour with varying angle of 

incidence. 

The experiments used a complete model that had externally-blown flaps and 

under-wing engines. The planned series of tests involved the investigation of 

the effects and sensitivities of a large number of parameters concerned with the 

model geometry and engine performance. Errors in setting up these parameters 

could be expected to be similar for the two tunnels, but other test parameters 

such as degree of constancy of wind speed, balance response, interferences from 

the air-supply connector, etc. would be peculiar to each tunnel, not forgetting 

the performances of the (different) tunnel crews! All these factors would have 

an influence on the accuracy of the results and it was decided to choose two 

configurations for the statistical investigation. For want of a way of calculat- 

ing the required number of repetitions necessary to make meaningful comparisons, 

it was arbitrarily decided to repeat tests on each of these two configurations 

ten times in each tunnel. The twenty repeat runs were interspersed amongst the 

other runs, so that errors in setting up the configuration geometries would be 

roughly constant for each run, if it could be assumed that there was no 'learning- 

curve' behaviour. 

When the time came to look at the results from the first two series of 

tests in order to decide which was the better wind tunnel for this application, 

those associated with the experiment found that their knowledge of statistical 

techniques was insufficient to enable them to assess the results properly. 

Moreover, there appeared to be little experience of using such techniques in the 

field of aerodynamics and wind-tunnel testing. They are widely used in experi- 

mental biology and production engineering for example, but the author was able 

to find very little information that directly relates to the present problem. 



4 

However, it proved possible to evolve a technique which enabled the idea of 

repeatability to be quantified and produced meaningful numbers on which the 

choice of tunnel could be made. The analysis of the results of the repeat runs 

enabled firm values to be placed on the levels of precision of the measured 

forces and moments, instead of the usual estimates based on the supposed 

performances of the wind-tunnel balance and data-recording systems. Some of 

these values were considerably different from those normally assumed. 

The results of this work are of sufficient value to warrant their being 

brought to the attention of other wind-tunnel users. This is not a report about 

the merits and defects of the two wind tunnels, nor of the characteristics of 

the model used in the tests. It is about the use of certain statistical tech- 

niques which are considered standard and mandatory in other scientific areas, 

but which, up till now, appear to have been ignored in the field of experimen- 

tal aerodynamics. Section 2 outlines the theoretical techniques required for 

the comparison of the two sets of results. The third section applies them to 

the experimental data and shows how conclusions can be made about repeatability, 

relative accuracies, etc. These statistical techniques theoretically, at least, 

enable an experimenter to calculate the number of runs required to measure a 

certain quantity to a required accuracy. This idea is developed and illustrated 

in section 4. 

A brief glossary of the standard terminology used in the text for 

statistical quantities is included as an Appendix. 

2 THEORETICAL TECHNIOUES 

2.1 Initial ideas 

Any particular performance characteristic or property Q of a wind- 

tunnel model is dependent on a number of parameters whose values can be set at 

levels independent of each other. For the particular model used in these 

experiments, they included angle of incidence; flap, tab and aileron angles; 

leading-edge boundary-layer-control blowing momentum; fin position; tail-plane 

presence, position and angle; engine-nacelle position and thrust. As well as 

these geometrical and power variables, other parameters such as wind speed and 

tunnel turbulence, were under the control of the tunnel crews to a greater or 

lesser degree. Most experiments are designed to determine how Q varies 

whilst only one of the independent variables a , say, is changed at a time: 

the others, hopefully, are kept constant. In practice, of course, small 
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changes in the levels of the other parameters induce small changes in Q . The 

latter are lumped together with the errors incurred in the measurement of Q 

into a total error E , so that for a given value of the independent variable, 

the measured Q equals the true value plus E . In this Report it is assumed 

that any value of the independent variable is known exactly. This is an 

important qualification and should be borne in mind when considering the ultimate 

estimated accuracies (or errors). There exists a statistical theory, more 

complex than the one outlined in this Report, which does deal with the more 

realistic situation of errors in all the independent variables'. 

In the experiment under discussion, angle of incidence c1 was selected as 

the independent variable. It was measured by an accelerometer inside the model 

that transmitted a signal proportional to the sine of the angle. The properties 

Q were the customary six aerodynamic forces and moments. The experiment 

measured these quantities at approximately 4' intervals of cx so that for both 

of the 'statistical runs' a group of ten observations was obtained at each 

nominal angle of incidence. 

As it was impossible to set the model precisely at a specific angle of 

incidence, each group of results was scattered over a region in the (a,Q) plane. 

The centre of the region corresponded in some way to the mean value and the 

area to the variance. However, the concepts of measures of location (means) and 

of dispersion are normally applied to one-dimensional data, such as arise in 

sampling problems, for example. Thus an initial idea for analysing the data was 

to transform the observed values to values at the nominal angle of incidence, 

i.e. 

Q(a nom > = Q(a) - (a - anom) 2 
I CY, 

where aQ/aa was expected to be weakly dependent on c1 and could be obtained 

graphically. Thus for each nominal c1 there would be a sample of ten observa- 

tions. If it could be assumed that the errors in Q were random, then this 

set of ten results would be as good as any other set and could be used to 

estimate the mean value of Q at c1 nom l 

The standard deviation of the points 

from the mean value would be a measure of the repeatability of the experiment 

for that particular angle of incidence. It would, of course, be possible to 

see if this repeatability bore a functional dependence on angle of incidence. 



In a similar way, the behaviour of the mean values with a would be the 

sought dependence of Q on a . If very large samples were obtained, then it 

might reasonably be supposed that the behaviour of the means at the nominal 

angles of incidence would be a very good indication of the true dependence of 

Q on a . Unfortunately, with much smaller samples, the measured means are 

likely to be in error, which implies that so also would be the standard 

deviations;in fact they would always be optimistically low. The experimenter 

ameliorates this problem by fitting a curve through the observed values which 

is a compromise between one which fits the points and one which is 'smooth'. 

He uses his experience to strike the right balance, that is he gives the points 

varying weights according to his estimate of their reliability. 

This is the point of failure of the statistical approach suggested so far, 

for the mean and standard deviation at any anOm are derived in ignorance of 

the information provided by all the other points, particularly the immediately 

neighbouring ones. A second source of error is in the process of transforming 

the observed values of Q at anOm + 6a to values at anOm . It is clear that 

a better approach is to adopt curve-fitting techniques right from the start. 

The quality of the data will determine the goodness of fit of the resulting 

functional relationship, or the accuracy with which its characteristics, lift 

slope for example, can be determined. 

2.2 Curvilinear regression 

To a stqtistician, the variation of the mean value of Q for given 

values of a , when referred to all the observations, is called the regression 

of Q on a . This regression will only correspond to the true behaviour of 

Q with a if the sample is infinite. The customary method of estimating the 

regression is by the familiar method of least squares. A useful reference for 

the subject of least-squares analysis in the context of statistical methods is 

given in the book edited by Davies'. The results of using such methods are 

often looked upon with considerable suspicion. Davies takes pains to emphasise 

at all stages the care that has to be adopted in their application, if non- 

sensical statistics are to be avoided. 

The nature of the expected (a,Q) behaviour is sometimes known beforehand; 

for example lift usually varies linearly with a over restricted ranges of a . 

In other situations the behaviour is not known in advance; such is often the 

case for the variation of pitching moment with a . In these latter situations, 
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one would try various kinds of curves, transformations of the data, etc. in 

order to get a fit which looks 'reasonable'. In this Report, the (a,Q) curves 

will be restricted to those which can be represented as simple polynomials in 

a . As the experiments produced large numbers of data points (up to 200 in 

some cases), it is quite practicable to try and fit curves of relatively high 

degree. However, the least-squares normal equations tend to be ill-conditioned 

and difficulties often arise in fitting curves of degree six or more. For this 

reason, and for others concerned with simplifications to the statistical 

analysis, orthogonal polynomials are used. The theory outlined here largely 

follows that given by Forsythe2. 

The starting point is a set of n observations Qi based on n values 

of the independent variable cli . It is supposed that the Qi can be written 

Qi = Y(cr;> + E. 1 

and that the approximating function y is linearly dependent on the k 

functions o, 02, o3 . . . ak , so that y(a) can be written 

2 k 
Y = co +cp+cg +...cct . 2 k (1) 

It will be assumed that k + 1 is always less than n , so that it is 

generally impossible to make equation (1) fit all the observed points simul- 

taneously. Equation (1) is said to be in 'standard' form and gives y the 

predicted value of Q for any c1 . 

Suppose there exists a set of polynomials $i(a) which are linear 
2 3 . 

combinations of ~1, c1 , c1 , etc. up to and including cl1 . Then it is possible 

to rearrange equation (1) to read 

Y = bo$o + blO, + .*. bk4k (2) 

the so-called 'orthogonal' form, where the coefficients b. and the multipliers 1 
in the 4. are all functions of the coefficients c. . 1 1 In general, the 
observed value Q. at c1 1 i will not equal the predicted value yi , but the 

desired objective is to make the error si small for all i = 1, . . . n and to 

have zero mean. A measure of the goodness of fit is the amount of spread or 

scatter of the data points about the fitted curve. It is assumed in this 
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analysis that the observations Q. 
1 

are distributed normally about the mean 

curve y with standard deviation o . The true value of u can only be deter- 

mined by examining an infinite number of observations. In a real experiment, an 

estimate s of cs is made, based on n observations, where s approaches u 

as n+=. 

The variance about regression is the square of cr and is equivalent to the 

mean of the squares of the errors. The total observed variation of Q with a 

is in part due to its functional relationship y(a) and in part due to random 

error. It is to be expected that, as the order k of the fitted curve (2) is 

increased, then s will decrease. This will continue until either (2) 

represents the true regression of Q on a and s then becomes practically 

constant, or when k becomes equal to n - 1 and the fitted curve joins all 

the (a,Q) points. This latter situation is not very meaningful and statisti- 

cal theory takes it into account through the concept of degrees of freedom. 

Fitting a curve of degree k requires k + 1 degrees of freedom (or items of 

information), leaving only n - (k + 1) on which to assess the variance, i.e. 

s2 = total sum of squares about regression 
n-k-l . 

Clearly, when the fitted curve joins all the data points, s2 = O/O so that no 

sensible statement can be made about the variance. s thus cannot be equated to 

rms error, which is defined using simply n in the denominator. 

The method of least squares ensures that for a given value of k , the 

total sum of squares of the errors is a minimum 

n 

c 
(y(ai> - Qi)2 = minimum = S 

i-l 

and the problem is to choose the bi and $I. so that this 1 
achieved. The curve (2) will then be called the regression 

Equation (3) can be expanded in terms of the bi : 

S 3 - bo+o(ai> - bl$l(ai) - . . . - bka(ai)12 

(3) 

condition is 

of Q on a . 

i=l 
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and if S has a minimum for some set of the coefficients bi , then 

i?L= 
ab. 0 

J 

for all j = 0, 1 . . . k . Thus there result k + 1 equations 

n n n 

0 = 
c 

Qi~j (c(i) - 
c 

bo~o(cli> ~j ('i) - 
c 

b~~l("i)~j(~i) - . l = 
i=l i=l i=l 

n 

-c 
bk~k("i) Qj ('i) 

i=l 

for the unknown coefficients b. . 
J 

These are the normal equations of the 

least-squares method. It is convenient to introduce the notation: 

($,A,) = 
c 

up (cLi) ~q (ai) 

i=l 

so that the k + 1 normal equations can be put into matrix form 

Y = CB (4) 

where Y is the column vector {(Q,$~>,(Q,$>, . . . (Q,$)/ y C the symmetric 
square matrix 

and B the column vector (bo, bl . . . bkl . Forsythe2 shows that provided n 

exceeds k the determinant of C is not zero, so that C 
-1 exists and a 

unique vector B can be found by inverting C . 
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2.3 Use of orthogonal polynomials 

The nature of the formation of C is to make it ill-conditioned and 

difficult to invert. This is especially so if k is larger than about six and 

if the data are clustered as in the current problem with groups of ten points 

all at the same nominal angle of incidence. However, if the 0. can be chosen 
J 

so as to make the off-diagonal terms in C all identically zero, then the 

inversion becomes trivial. This can be achieved by making the 4; mutually 

orthogonal over the point set ~1. , i.e. 1 

I 0 

($,A,) = 
M 

P 

The inverse of C is now simply 

-l 
MO 

0 0 . . . 0 

0 Ml -’ 0 . . . 

0 0 
I 

1 

and the solution vector B has terms 

n 

c 
Qi ~j (ai) 

. i=l 
b. = . 

J n 

c 
(gj ((xi))2 

i=l 

J 

if p#q 
(5) 

if p=q. 

(6) 

A very important point to note about this relation is that it is independent 

of k , the degree of the curve fit. It was seen in the previous section that 

trial curve fits would have to be made, increasing the degree k of the poly- 

nomial, until the estimate s of the residual standard deviation tended to a 

roughly constant value. Normally, this would involve a new regression for each 

k resulting in a different set of coefficients bi . However, using orthogonal 

polynomials going from order j - 1 to j does not change the values b. to 

b. 
3-l 

already calculated, so that only one regression need be done for, say, 

j = 9 which is likely to include the least value of k for the best fit. 
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The sum of squares about regression given by equation (3) can be written 

k k 

S = (Q,Q> - 2 c bj(Q,~j) + c b~j 
j=O j=O 

or 
k 

S = ( Q , Q )  -  b~j l 

c 

j=O 

(7) 

The first term on the right-hand side is the total sum of squares and the 

second term is the sum of squares due to regression. This latter is in a 

particularly simple form due to the use of orthogonal polynomials. The estimate 

of the residual variance is 
k 

‘Q,Q) - b~j 
c 

s2 = j=O 

n-k-l . (3) 

It is customary to analyse the total variance into its component parts and 

present the results in an analysis of variance table, in order to assess the 

significance of each of the terms in the regression. This is particularly 

simple when using orthogonal polynomials so that the table takes the form 

Source I Sum of squares 

Degree 0 term 

Degree 1 term 

. . . 

Degree k term 

k 

Residual (Q,Q> - 
c 

b~j 
j=O 

Total I (Q,Q) 

DF 

n-k-l 

n-l 

Mean square 
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where DF stands for degrees of freedom. The values in the fourth column are 

obtained from those in the second through division by the appropriate numbers of 

degrees of freedom. For the analysis of the contributions due to each term in a 

curvilinear regression, this is redundant, as to each term is associated just 

one degree of freedom or constraint (so that, for example, a cubit fit provides a 

total of four constraints on the regression). However, the table takes the same 

standard form in more complicated analyses, in which each source of variation 

usually provides more than one degree of freedom. If the total variance is 

analysed in this way, then it is easy to see the individual contribution of each 
term in the curve fit. 

It is appropriate here to state how the orthogonal polynomials are chosen. 

The basis for their generation is a recurrence relation that gives 4. * 
J+l In 

terms of 9. 
J 

and 0. : 
3-l 

4. 
J+l 

= (a-E 
j+l)$j - Dj+l$j-l ' 

To start the sequence it is necessary to define 

Dl = 0 

so that the second polynomial becomes 

(in fact E 1 works out to be the mean CL ). Forsythe' shows how to choose the 

coefficients E. and D. 
J J 

so that the orthogonality relations (5) are fulfilled: 

E. = (cc4 
J j-1 D9j-])'Mj-l 

D. 
J = Mj-]'"j-2 

n 

where (~14 
j-1 D4j-]) = c 

"ic~j-1 (c'i) I2 ' 
i=l 
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That this choice does ensure orthogonality can be verified by induction. 

It is clear from the forms given above for the first two polynomials that 

($)'4Q) is zero. Now suppose that El, . . . . Ei and Dl, . . . . D i have been 

chosen so that $0, . . . . 'i are all mutually orthogonal. It has to be demon- 

strated that ($i+,,$i) also vanishes. The recurrence relation gives 

a$. = 
3-l 5 + E*b J J-1 

+ D.9. 
J J-2 

so that for j < i 

(a9 j-l,Oj) = Mj l 

It also follows from the recurrence relation that 

For j = i , the last term on the right-hand side is zero and the choice of 

E i+l given above ensures that the first two terms cancel. For j = i - 1 , the 

second term is zero and the last becomes equal to M. so that it cancels with 
J 

the first. For j<i-1, the last two terms both vanish. a$. 
J 

is a poly- 

nomial of degree less than i , so that it can be expressed in terms of 

$0, . . . . 9. 1-l l 

Hence the first term also is zero and orthogonality is proved. 

2.4 Confidence limits 

Although the analysis of variance table enables the amount of the total 

variance accounted for by each term in the regression to be easily seen, it is 

necessary to be more precise as to whether a term is important or not. Each of 
the coefficients is, of course, subject to error and the customary measure of 
this uncertainty is the standard error. If Q were independent of c1 , then 

the accuracy of the mean of n observations, that is the deviation of the 

observed mean from the true mean of all possible observations, would be o/G, 
called the standard error of the mean. Clearly this decreases if the number of 

observations is increased, as is to be expected. The extension to polynomial 
regression is more complicated and involves the inverse of matrix C (see 
equation (4)). The inverse is known as the variance-covariance matrix. Its 
diagonal terms give the variances or standard errors of the coefficients b. 

3 
and the off-diagonal terms the covariances or correlations between them. When 
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using orthogonal polynomials these covariances are conveniently zero and the 
standard error of b. 

J 
is simply 

SE(bj) = z . 
6 

(9) 

J 

The modulus M. 
J 

is directly related to the number of observations so that (9) 

is analogous to the standard error of the mean. 

If a variable is distributed normally about its mean value with standard 

deviation u , then it is well known that the probability of any one value lying 

within a distance of u either side of the mean is 0.68 and within 2a it is 

0.95. That is, taking any group of 100 observations, on average 95 of them will 

lie within ?2a of the mean. This mean value is itself subject to error and the 

means of any two equal-sized samples from a population could not be expected to 

be the same. However, it is 95% probable that the true mean lies within a 

distance of two standard errors either side of the sample mean. These are the 

confidence limits for the true mean. It is an interesting fact that, even if 

the variable is not distributed normally, its sample mean rapidly tends to a 

normal distribution about the true mean as the sample size increases, with 

variance a2/n . 

If the standard deviation is not known, but there exists for it an 

estimate s , which is itself subject to error, then the limits for any particu- 

lar confidence level will generally be wider, depending on the number of degrees 

of freedom of s . The factor to apply is the quantity ta , obtained from 

standard statistical tables3 , which is also a function of a , the level of 

probability being applied. Equation (9) expresses the variance of the regression 

coefficient b. in terms of u . An estimate of the standard error is 
J 

obtained by substituting s for u and the (1 - 2a) limits (for the 95% level, 

a = 0.025) within which the true value of b. 
J 

can confidently be expected to 

lie are 

For example, if s is based on only 5 degrees of freedom, t has the value a 

2.57 at the 95% confidence level, so that at this level the true b. can be 
J 

expected to lie within 2.57 standard errors of the calculated value. In fact, 

the probability of it lying within two standard errors has dropped to almost 
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90%. ta does, of course, tend to 2 as the number of degrees of freedom 

increases, at the 95% level. 

The accuracy of the estimated regression (2) or the variance of any 

prediction made from it, is clearly dependent on the variances of the individual 

terms and also on the value of the independent variable c1 . It is to be 

expected that the regression will be most accurate at the mean of the observed 

a values and least accurate at the extreme ends. A standard statistical rule 

is that the variance of a quantity is the sum of the variances of its constituent 

terms. Hence, if y is a prediction from equation (2) at a value c1 of the 

independent variable, its variance is given by 

k 

v(y) = c C~j (")~2v(bj) 
j=O 

V(bj) is the same as the square of the estimate of the standard error of b. , 
J 

given by equation (9) with s substituted for o so that 

k 

v(y) = s2 
c 

“f’ [~j (a>] 2 l 

j=O 

(11) 

The independence of the coefficients b. has already been mentioned. If a 
J 

single term was being used in the regression, b. only, then this would 

correspond to the arithmetic mean of the observations and its variance would be 

the square of the standard error of the mean. In other words, 9, = 1 and 

MO = II& . These values are unchanged even if more than one term is used in 

equation (2), hence the variance of a prediction can be written. 

k 

v(y) = 
c 

Mu' C~j (')I2 . 
j-l 1 

Confidence limits on the prediction y at the (1 - 2a) confidence level are 

given by 

(12) 

In some practical situations, such as arose in the wind-tunnel tests to be 

discussed in the next section, it turns out that the first term in equation (12) 
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is dominant, so that for practical purposes, the width of the confidence 

interval for the regression curve is 2taslJn . If s can be assessed (by a 

few trial runs of the experiment, say), then it is possible to calculate the 

number of data points n in order to achieve a curve fit of the required 

accuracy (see section 4). 

Equation (12) expresses the variance of the best-fit mean curve. The 

scatter or spread of the data about this line can be equated to the variance 

of any individual observation. This is given by the sum of the variance of 

the regression and the mean variance about regression (i.e. s >. Thus the 

variance of individual results is 

k 

c 
Mjl [~j <~>I2 

j=l I 
(13) 

and confidence limits are 

The ta factor is based on (n - k - 1) degrees of freedom and if it is 

evaluated at a = 0.025 or 0.95 probability level say, then the limits can be 

interpreted by saying that for any 100 observations, on average only five will 

fall outside these limits. Equation (13) is much less dependent on the value 

a of the independent variable than is (12) and is fundamental to the experiment: 

it cannot be reduced significantly by increasing the number of observations. 

It is these limits which will be used to quantify the 'repeatability' of the 

experiment. For a large number of observations, the repeatability is practically 

directly proportional to the standard deviation of the experiment. 

2.5 Significance 

If the confidence limits for the true value of a regression coefficient 

(expression (10)) include the value zero, then it is said that the b. is not 
J 

statistically significant. This is using the word 'significant' in a specialised 

sense: physically, it may be quite a significant result that the coefficient is 

perhaps zero. The fact that the value of a parameter is statistically insignifi- 

cant is not proof that the parameter is zero, merely that it could be. Changing 
the confidence level of the limits on the regression coefficient would alter the 
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possibility that the coefficient is not significant. Hence the concept of 

statistical significance is coupled to levels of probability. 

A fundamental idea in this area of statistics is the null hypothesis. The 

hypothesis is made that the experiment has indicated no true difference between 

two quantities or levels of a parameter. A test of significance is then applied 

to calculate the probability of the observed difference being due merely to 

chance. If this probability is small, then the null hypothesis is not true. 

More precisely, if the probability that the observed difference could have 

occurred through chance (i.e. the null hypothesis is true) is P and P < a , 

where a is a given probability level, then it is said that the result is 

significant at the level a . For the application to regression coefficients, 

the null hypothesis is made that b. does not differ from zero. Chance could 
J 

make it either positive or negative, so the test to be applied is called double- 

sided. A single-sided test would be used, for example, if it was required to 

know if an experiment in wind-tunnel A produced a result with a standard 

deviation which was worse than that for a similar experiment in tunnel B . 

(A double-sided test could be applied to see if there was a significant difference 

between the standard deviations.) For a double-sided test, the probability that 

the observed difference is due to chance is two-fold, so that the test level to 

be applied is 2a. 

It is customary in statistical work to assess significance at certain 

standard levels of a : 0.1, 0.05, 0.01, 0.001. If the result could occur by 

chance at a probability greater than 0.1, then it is 'not significant' and there 

is no good reason for rejecting the null hypothesis. If 0.1 >P > 0.05, then 

the result is 'probably significant'. For 0.05 >P > 0.01 , it is called 

'significant' and if P is less than 0.01, the result is 'highly significant'. 

These are the jargon phrases corresponding to the various levels of a commonly 

in use,but clearly they should be used with caution as the context of a result is 

obviously of importance in establishing its significance. 

The amount by which the regression coefficient differs from zero, if it is 

due purely to chance, clearly depends on the number of observations involved in 

its derivation. The appropriate test of significance is Student's t-test and in 

this situation involves computing a value t from the ratio of b. to its 
J 

standard error 

t = bjT/s . (14) 
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This value is then referred to tables of the t-distribution for the standard 

a levels. The tables are entered at (n - k - I) degrees of freedom and inter- 

polated for P . 

An alternative way of assessing the significance of a regression 

coefficient is to see by how much the total sum of squares (see section 2.3) is 

reduced through inclusion of this coefficient. If the mean sum of squares due 

to the jth term in the regression is of the same order as the residual mean 

square, then there is not much point in including it. This idea can be treated 

more precisely through application of Snedecor's F-test. This is generally to 

be applied when comparing two variances and the null hypothesis to be tested is 

that there is no true difference between the variances (or mean sums of squares 

in this case). The statistic used is the ratio of the variances and this is 

chosen always to be not less than one. The F-distribution is tabulated3 for the 

standard probability levels and is entered at the point given by the degrees of 

freedom in the numerator and denominator. Reference to the analysis of variance 

table in section 2.3 shows that the value of F will be 

F = bpj/s2 (15) 

or its reciprocal, with one and (n - k - 1) degrees of freedom. In this example, 

F is the square of t given by equation (14). This simplification arises 

through the use of orthogonal polynomials, but is not generally true for poly- 

nomial regression. 

In the tables, F is given for a single-sided test (does the variance due 

to the jth term in the regression exceed the residual variance?) and the a 

levels have to be doubled if the test is double-sided. The F-test is the 

appropriate one to use when assessing the significance of differing standard 

deviations for a repeat experiment in two wind tunnels. 

3 RESULTS 

3.1 Experimental background 

In this section, the techniques outlined in the previous one will be 

demonstrated. The wind-tunnel data were obtained in the form of six-component 

overall forces and moments from the same model tested in two facilities, 

tunnels A and B. A data point for the statistical analysis consists of an 

uncorrected coefficient and its corresponding angle of incidence. For the 
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purpose of obtaining data for the comparison of the two tunnels, two typical 

model arrangements were chosen: the high-lift and low-lift configurations. The 
former corresponds to the landing case with flaps set at 40' and engine thrust 

on. In the latter configuration there was no engine thrust and the flaps were 

at the take-off setting of 20'. 

The two configurations were each repeated nine times during the courses of 

the two experiments. These both took about ten days of testing and the statisti- 

cal runs accounted for approximately a third of the total number of runs. They 

were spread evenly through the courses of the experiments, during which a number 

of geometry changes occurred: fin position; tail-plane presence, angle and 

position on fin; flap, aileron and tab deflection angles. Engine pod spanwise 

position and blowing momentum coefficient were also varied. With engine thrust 

on, there was also boundary-layer control by part-span leading-edge blowing (at 

a fixed momentum coefficient). For the majority of the tests (including the 

statistical runs), the model was configured symmetrically relative to the lateral 

plane so that any non-zero measurement of side force, yawing or rolling moment 

represented an error of some kind. For a few runs, asyrmnetric thrust was 

deliberately generated by partial blockage of an internal air-supply duct in one 

of the engine pods. However, the difficulty of achieving perfectly symmetric 

thrust was probably the prime cause of non-zero lateral forces and moments. 

Angle of incidence was selected as the independent variable. It was 

altered by an electro-hydraulic mechanism inside the model and measured by an 

accelerometer with an output in millivolts, which was calibrated against a clino- 

meter. During the course of the runs in tunnel A, the incidence mechanism became 

defective so that it became increasingly difficult to set and maintain the model 

at a prescribed angle of incidence. Eventually, the system broke down completely 

and had to be repaired. Tunnel speed was controlled manually in both wind 

tunnels. Forces and moments were measured on identical virtual-centre balances 

with counter readings transferred directly to a teleprinter. One important 

difference between the two tunnels, however, was the provision for the blowing- 

air supply. The design of the six-component air connector was such as to make 

the possibility of constraints on one of the components unavoidable. For tunnel 

A interferences could be expected to occur with the measurement of pitching 

moment, and in tunnel B with the measurement of rolling moment. At the end of 

one of the low-lift statistical runs in tunnel A, the post-run pitching-moment 
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balance zero was very different from the pre-run zero. The run was therefore 

repeated without any model changes or other interferences, simply the weighbeams 
rebalanced to obtain a new set of pre-run zeros and the airflow started again. 

This had to be done four times before satisfactory pitching-moment behaviour 

was achieved. These five consecutive runs thus provide a check on the errors 

due to model changes, etc, in the low-lift configuration. The last (successful) 

run was included in the set of ten repeat runs. 

3.2 Curve fitting 

It was shown in section 2.4 that the repeatability of an experiment is 

strongly dependent on the standard deviation of the regression. An estimate for 

0 can be obtained by the method of least squares. This is not a straight- 

forward process, however,for a number of reasons. 

Fig.1 shows a plot against angle of incidence of all the drag-coefficient 

data obtained in tunnel A for the high-lift configuration. It is clear that as 

the experiment progressed further into the stalled region, the scatter of the 

points increased. Most technical interest centres on the r&gime where the 

majority of the flow over the wing is attached. Consequently, it would be 

unfair to judge the repeatability of an experiment on the magnitude of a 

standard deviation that has been enlarged by the inclusion of data points from 

fully-separated flow. The regression line shown on the figure is drawn between 

the incidence limits of -4.5' and 21' and is based on all points included within 

these bounds. Where to draw these limits can only be decided by visual inspec- 

tion of the complete set of results (for this particular coefficient). 

For a small number of data points it is possible for the experimenter to 

assess their relative reliability by giving each point a 'weight' on a scale 

running from 0 to 1. However, this is a practical impossibility when the 
number of points becomes at all large (there are 191 points on Fig.1) and so 

this refinement has been omitted in the theory of section 2. The best that can 
be done in this direction is to use a binary weighting scheme: each point is 

either excluded or included in the least-squares analysis. Three of the points 

on Fig.1 are obviously incorrect, most probably because of malfunctions in the 

balance read-out equipment. During the course of each run the results were 

converted to uncorrected coefficient form and hand-plotted to check for bad 

points. Many angles of incidence were therefore repeated. If these latter 

points are included and the ones they replace excluded, then a reduced set of data 



21 

points is obtained with a smaller scatter. This set of 130 points is shown on 

Fig.2. (In fact further points have been removed near the stall at odd angles 

of incidence to give groups of ten points at every 2' between -4' and 22O.) 

Another factor which is important in curve fitting is the choice of degree 

of the regression line (the value of k in equations (1) or (2)). As was 

shown in section 2.3, this is easy using orthogonal polynomials, as only one 

regression needs to be done, for a degree of fit which is likely to exceed the 

optimum. A degree 9 regression was performed on the data of Fig.2 (between the 

incidence limits of -4.5' and 21') with the results as shown in the table. 

Table 1 

Regression of CD on c1 ; tunnel A, high-lift configuration, selected points 

Degree 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Coefficients of regression line 

Standard Orthogonal 
form form 

-0.335 0.121 

0.191 0.545 x 10 
-1 

-0.132 x IO-’ 0.570 x 10 
-3 

-0.312 x 10 
-1 

-0.240 x 10 
-4 

0.716 ’ 10 -2 -0.154 x 10 -5 

0.483 x 10 -3 
-0.240 x 10 -6 

-0.315 x 10 -3 -0.136 x IO -7 

0.412 x 10 
-4 

-0.292 x 10 
-8 

-0.254 x 10 
-5 

-0.254 x 10 -9 

0.769 x 10 
-7 0.405 x 10 -1 1 

Standard 
error 

0.686 x 10 -3 

0.918 x 1O-4 

0.136 x 1O-4 
0.205 x 10 -5 

0.322 x IO+ 
0.524 x 10 -7 

0.876 x lO-8 
0.152 x 10 -8 

0.270 x 10 -9 

0.438 x 10 -10 

95% confidence limits 

Upper ~~-~ I Lower 

0.122 0.119 

0.547 x 10 -1 0.543 x IO -1 

0.597 x 10 
-3 

0.543 x IO 
-3 

-0.199 x 10 
-4 

-0.281 x 10 
-4 

-0.899 x 10 
-6 -0.218 x 10 

-5 

-0.136 x 10 
-6 

-0.344 x 10 
-6 

0.386 x IO 
-8 -0.310 x IO -7 

0.976 x 10 
-10 

-0.594 x 10 
-8 

0.283 x 10 -9 -0.792 x 10 -9 

0.912 x 10 
-10 

-0.831 x IO 
-10 

t 

176 

593 

42 

12 

4.8 

4.6 

I .55 

I .93 

0.94 

0.09 

The second column shows the values of the coefficients c. in the 
J 

standard-form regression, equation (1). This set would take different values if 

a regression of different degree had been calculated. The third column gives 

the best estimates of the coefficients b. 
J 

in the orthogonal-form regression, 

equation (2). This set is invariant with respect to the degree of the regression. 

The fact that the coefficients become extremely small as the degree of fit 

increases is not to say that they are insignificant. This is a result of using 

unscaled values of the independent variable. At a = 20' , the term 20' would 

arise in an expansion of the orthogonal polynomials, so that 4 b 99 could be a 

relatively sizable quantity. The significance of the coefficients is assessed 
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by the ratio of their magnitudes to their standard errors (see equation (14)). 

The values in the fourth column are derived from relation (9), where the estimate 

S of the standard deviation is the square root of the mean residual variance 

after fitting the degree 9 regression. In other words, the standard errors and 

the values of the t-factor (last column as calcualted from (14)) are dependent 

on the degree of fit. 

Table 2 

Analysis of variance for the regression 
of Table 1 

Degree Sum of squares 
Degrees 

of 
freedom 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 .8719 

21 .3798 

0.1068 

0.835 x 10 -2 

0.139 x 10 -2 

0.127 x 10 -2 

0.146 x 10 -3 

0.225 x 10 -3 

0.539 x 10 -4 

0.520 x 10 -6 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Residual 0.723 x 10 -2 119 

Total 23.3772 128 

Mean square 

1.8719 

21.3798 

0.1068 

0.835 x 10 -2 

0.139 x 10 -2 

0.127 x 

0.146 x 

0.255 x 

0.539 x 

0.520 x 10 -6 

0.608 x 10 -4 

An analysis of the variance for the degree 9 regression on the data of 

Fig.2 is shown in Table 2. 129 data points are included in the calculation so 

that the number of degrees of freedom of the residual variance is 119. The 
1 estimate of the standard deviation is thus (0.00723/119) , i.e. s = 0.00780. 

If a degree 5 regression had been fitted, then the residual sum of squares 

would have equalled the value shown in the table plus the sums of squares 

accounted for by the sixth, seventh, eighth and ninth terms, and would be based 

on 123 degrees of freedom. s 1 would have been (0.00766/123) , i.e. 0.00789 

which is hardly different from the result using the degree 9 regression, so that 

the inclusion of these terms is unnecessary. 



23 

The significance of the terms is assessed from their corresponding 

t-values. Table 3 gives the probability points of the single-sided 

t-distribution for 120 degrees of freedom (extracted from Ref.3). Insignificant 

terms can be dropped from the regression by comparing their t-values from 

Table 3 

Probability points of the t-distribution 
(single-sided), 120 degrees of freedom 

I a I t 

0.1 1.29 
0.05 1.66 
0.025 1.98 
0.010 2.36 
0.005 2.62 

Table 1 with those in Table 3 and, as has been demonstrated above, this does not 

materially alter s or the t-values themselves. For example, if terms are to 

be ignored if they do not differ significantly from zero at the 95% confidence 

level, then the critical value of t is 1.98 (this is a double-sided test). 

Hence terms of degree higher than five are unnecessary, and this agrees with 

the observation that the upper and lower limits to the probable values of b. 
J 

change sign for these coefficients. 

The degree-5 curve (equation (2)) has been drawn through the data points 

on Fig.2. It is of interest that, to the same level of significance, a 

degree-3 regression suffices for the full set of data, Fig.1. This is because 

the larger standard deviation (s = 0.0278) puts less constraint on the curve 

at higher angles of incidence. 

It should be emphasised, however, that the t-value ought not to be used 

as the sole factor in assessing the number of terms to be included in the curve 

fit. The statistical theory of section 2 assumes that the errors in the obser- 

vations are distributed normally about the true values. If the errors do not 

belong to a normal distribution, are not random but are systematic, then the 

theory is not strictly applicable. Furthermore, it works best if the data 

points are distributed evenly over the range of the independent variable. Fig.3 

shows some lift-coefficient data for the five consecutive runs in the low-lift 

configuration. The t-values for the regression are listed in Table 4 (for the 

range of angle of incidence of -4.5' to 15'). 
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Table 4 

Significance of the coefficients in the 
regression of C, on cx ; tunnel A 

consecutive runs, selected points 

Degree I t 

0 2810 
1 888 
2 61 
3 0.10 
4 16 
5 4 
6 11 
7 2.28 
8 8 
9 0.97 

A satisfactory degree-6 regression curve has been drawn on Fig.3. How- 

ever, it appears from the tabulated t-values that terms up to degree 8 should 

be included. Unfortunately, if this is done, then, as shown on Fig.4, an 

undesirable waviness results at the ends of the curve. This is due to excessive 

'clumping' of the data, so that the effective number of degrees of freedom is 
reduced and the situation becomes very close to the exact fitting of a degree-n 

curve to n + 1 data points. 

A further instance of the need to beware of making curve-fit judgements 

solely on the basis of the t-value is illustrated on Fig.5. This shows 

yawing-moment coefficients obtained in tunnel A. Since the model was configured 

symmetrically about the lateral plane, all these results represent errors. 
The polynomial regression of Cn on o! produces t-values greater than two for 

the first five coefficients. However, it is unlikely that there is any 

physical basis for a quartic relationship, so a constant fit (i.e. mean value) 

has been drawn on Fig.5, as the zero-degree term had by far the largest t-value. 

The repeat experiment in tunnel B produced the data shown on Fig.6. In this 

instance, a linear dependence seemed the most sensible form of curve fit. 

3.3 Comparisons 

The accuracy of the experiment in determining a relationship between 

angle of incidence and an aerodynamic coefficient is indicated by the amount of 

variance of the curve fit. This is given by expression (12) in which the mean 
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residual variance s 
2 results from the inclusion of all significant terms in 

the regression. The first term in (12) is equivalent to the square of the 

estimated standard error of the mean of the measured coefficients. The other 

terms are dependent on angle of incidence and their total value is a minimum at 

the mean angle. The variance of the curve fit can be visualised by plotting 

confidence limits for the regression. These are shown at the 95% level on all 

the figures by the inner pair of dashed lines. If another, similar experiment 

was carried out, with the same number of data points, then it is 95% probable 

that the regression line would lie between the two confidence limits derived 

for the first experiment. 

On Fig.5, these lines are parallel to the (constant) regression; on the 

next figure, however, the extra degree of freedom of the regression line (the 

uncertainty about its slope) makes its end values less reliable than those 

nearer the mean angle of incidence, so that the confidence limits are curved. 

The two figures are drawn to the same scale so that the differing amounts 

of scatter are obvious. The outer pair of dashed lines represent 95% confidence 

limits for an individual result, given by expression (13). They indicate the 

accuracy of a prediction and it is to be expected that, on average,95 out of 100 

data points will be contained by these limits. Fig.2, for example, shows 130 

points, so that six or seven might be expected to lie outside the lines and 

indeed this is the case. 

Comparison of the vertical separations of the confidence limits on Figs.5 

and 6 gives a direct indication of the relative accuracies of the two tunnels 

in determining Cn . Clearly, tunnel B is inferior to A in this respect. The 

scatter is inherent in the experiment and cannot be altered unless the cause 

is identifiable and can be corrected. However, a prime reason for curve fitting 

is to make use of the information provided by all the data points, and the more 

of these there are, the more accurate will be the regression. This idea is 

developed further in section 4. 

The comparisons of the measurements of side force and rolling moment in 

the two tunnels are similar to Figs.5 and 6. The longitudinal coefficients are 

compared on Figs.7 to 12. The coefficients are uncorrected values so that'the 

differences in mean levels can be attributed to different blockage factors, 

incidence constraints, etc. for the two tunnels. The question now arises of 
whether or not there is a significant difference between the capabilities of the 

two tunnels to measure a certain quantity. This could be done visually, for 
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example the vertical separations of the confidence limits on individual results 

for Figs.7 and 8 look about the same. Turning to the next pair of figures, is 

the apparent smaller scatter for tunnel B statistically significant? More 

precisely, is the difference between the two estimated standard deviations 

larger than can reasonably be explained by errors in the experiment? Clearly 

the number of observations used to obtain the estimates is important, and the 

question is best quantified by applying the F-test (see section 2.5). Table 5 

Table 5 

Comparison of estimated experimental 
standard deviation for the low-lift 

confieuration 

I Estimated u 

Tunnel A 

cL 0.01337 

cD 0.00453 

'rn 0.01211 

(5 0.00078 

5 0.00375 

'n 0.00038 

Tunnel B 

0.01422 1.13 0.5 

0.00193 5 <O.OOl 

0.00829 2.13 <o .OOl 

0.00390 25 <o ,001 

0.00759 4 <o .OOl 

0.00113 9 <o .OOl 

F P 

compares the estimated standard deviations for all six components for the low- 

lift configuration and shows in the fourth column the square of the ratio of the 

two estimates (with the larger as numerator). The null hypothesis to be applied 

is that any apparent difference in estimated u (F larger than one) is merely 

due to random errors of measurement. Tables of F are entered at the 

appropriate point to determine the value of P , the probability that the 

difference is due to chance. This is a double-sided test and the probability 

points appropriate to 120 degrees of freedom in both denominator and numerator3 

have been plotted on Fig.13 (P is on a logarithmic scale). Column 5 of Table 5 

shows the relevant values of P , extracted from this figure. Regarding the 
value of P = 0.5 for lift coefficient, this is clearly not significant and 
there is no reason to reject the null hypothesis. For all the other coefficients, 

the differences are very highly significant. Tunnel A is clearly superior to B 

for the lateral coefficients, inferior for the measurement of drag and pitching 

moment and just as good for lift. 
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The same statistical test can be applied in other contexts. Figs.3 and 7 

show the effect on the measurement of lift in tunnel A of model changes. For 

the consecutive runs, the model remained untouched between runs, the wind was 

merely turned on and off and the balance rezeroed. Table 6 compares the 

standard deviations and shows the probability P that the differences are not 

Table 6 

Comparison of standard deviations for separate and 
consecutive runs in tunnel A 

cL 

cD 

'rn 

CR 

% 

'n 

Estimated o 

Separate runs Consecutive runs 

0.01337 0.00759 3 

0.00453 0.00122 14 

0.01211 0.01236 1.04 

0.00078 0.00045 3 

0.00375 0.00154 6 

0.00038 0.00026 2.1 

F P 

<O.OOl 

<O.OOl 

>0.2 

<O.OOl 

<O.OOl 

co.01 

systematic, but due to chance. (The values of P were not extracted from 

Fig.13 since the estimates of u for the consecutive runs are based on 49, not 

120 degrees of freedom.) There is a highly significant improvement in all 

coefficients except for pitching moment. 

It is ironic that the reason for performing the consecutive runs in the 

first place was the poor results for pitching moment. What has happened is that 

firstly the method of assuming linear drift of the balance zero throughout the 

run was successful in correcting for bad post-run zeros. Secondly, the consecu- 

tive runs were completed after the breakdown of the incidence-changing equipment 

in tunnel A and its subsequent repair. This effect could be checked statisti- 

cally by applying the F-test to the data from the four pre-breakdown runs and the 

six post-breakdown runs. For tunnel B, the consecutive runs produced a decrease 

in s for lift coefficient from 0.01422 to 0.01334, which is not significant 
(P = 0.7) and for drag, a decrease from 0.00193 to 0.00152, which is just 

significant (P = 0.05). 
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3.4 Accuracies 

In statistical terms the accuracy of an experiment in determining, say, 

the dependence of lift on angle of incidence, is equivalent to the variance of 

the regression of CL on CL . This is given by expression (12) and it is clear 

from the various examples shown on the figures that when the variance is 

visualized by means of confidence limits, it is usually a weak function of 

incidence. In other words, for the assessment of accuracy consideration of the 

mean residual variance and the number of data points is sufficient. Thus the 
accuracy of a curve fit can be expressed at a certain confidence level by 

*tas/G (16) 

where t a is the appropriate Student's t-factor, s the estimated standard 
deviation appropriate to a regression of sufficient degree to include all 

significant terms and n the number of data points used. For the comparisons 
given in Table 5 between the two wind tunnels with the model in the low-lift 

configuration, n is the order of 100, so that at the 95% confidence level the 

appropriate value of t is 1.98. a Table 7 gives the estimated accuracies of 
these results; the values should all be preceded by the + symbol. 

Table 7 

Comparison of estimated accuracies 
at the 95% level for the 

low-lift configuration 

Estimated accuracies 

cL 

cD 

'rn 

CR 

% 

'n 

Tunnel A Tunnel B 

0.00266 0.00283 

0.00090 0.00038 

0.00241 0.00165 

0.00016 0.00078 

0.00071 0.00144 

0.00008 0.00023 

This table shows, for example, that after ten repeat runs, drag in the low- 
lift configuration could be measured to within nine 'counts' in tunnel A and 
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four 'counts' in tunnel B. However, after five consecutive runs in tunnel A, 

drag could be measured to an accuracy of ~2.003 x 0.00122/a or three 

'counts' at the 95% confidence level. These consecutive runs were performed 

after the breakdown and repair of the incidence mechanism, so that the compari- 

son may indicate an improvement due to the repair, as well as the benefit of 

minimising model-configuration changes. It is of interest to compare the 

results quoted in Table 7 with those obtained for the high-lift configuration. 

On Pig.2, the estimated standard deviation of the curve-fit through 129 points 

is 0.00789, which gives an accuracy at the 95% level of +I4 drag 'counts'. It 

is possible that at the higher lifts, the defects in the incidence mechanism 

gave rise to proportionately larger errors in drag. However, the prime cause 

was propably errors in setting up and maintaining engine thrust in both pods 

at the values required for constant blowing-momentum coefficient. 

Usually an aerodynamic coefficient is a function of more than one indepen- 

dent variable, but tests are conducted varying only one of these at a time. 

The effect of a second variable is found by subtraction of one set of results 

in which this variable takes one value, from another set in which it takes a 

second value. It is most appropriate that the actual subtractions are performed 

on least-squares curve fits and it has to be assumed that the errors in the two 

sets of results are completely independent of each other (i.e. uncorrelated). 

It is a general principle in statistics that the variance of a combination is 

the sum of the variances of its component parts. Thus if s1 and s2 are the 

estimated standard deviations of the two curve fits based on n 1 
and n2 data 

points respectively, the standard error of the difference between the two curves 

(17) 

This expression is approximate since the first term only of the variance given 

by (12) has been used: the dependence on angle of incidence has been ignored. 

In practice it is likely that comparable numbers of data points will be 

used in each configuration and that the variances of both sets of results will 

be similar. Thus the standard error of the difference between the two sets is 

S4YQiL Table 5 gives some values of s found after ten runs of the model in 

both wind tunnels. If these values can be taken to be typical of similar runs 

with small changes in model geometry, then they can be used to obtain confidence 
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limits on the effects of these changes on the aerodynamic coefficients. At 

the 95% level, the results will be approximately fi times the values shown on 

Table 7 since ta is hardly changed going from 100 to 200 degrees of freedom. 

In tunnel A, for example, 95% confidence limits on an increment in rolling 

moment are 20.00023. Hence at this level of confidence it is not possible to 

measure increments in rolling moment which fall within these limits, i.e. less 

than 0.00046. In tunnel B, on the other hand, the minimum increment in rolling 

moment that can reliably be detected at the 95% level is 0.00221. 

4 NUMBER OF POINTS FOR A GIVEN ACCURACY 

In many practical situations a wind-tunnel programme is designed to test 

as many parameters or configurations as possible, within the allowable time. 

This is often dictated by pressure of other tests or by the available funds. 

Accuracy of results is estimated on the basis of supposedly known performances 
of the wind-tunnel and its data read-out equipment. 

However, it is conceivable that a programme could set out to measure 

certain quantities to a predetermined accuracy. For example, it may be point- 

less to do the experiment if drag cannot be measured to within plus or minus so 

many 'counts'. Such results could only be guaranteed after an infinite number 

of observations had been made, when there would then be complete certainty 

about o , their standard deviation. This is impossible of course and the 

desired accuracy has to be set against a confidence level. If an estimate s 

of the standard deviation is known in advance, then the variance of the curve 

fit or standard errors of the regression coefficients can be made as small as 

is desired, by increasing the number of data points. If this proves to be too 

expensive, or time consuming, a lower confidence level has to be adopted. 

For tests on a well-tried model, in a wind tunnel with known characteris- 

tics and using a regular tunnel crew, the standard deviation for a particular 

coefficient may well be known in advance. On the other hand, this is unlikely 

to be the case for a research model and thevalues of s have to be determined 
during the course of the experiment. The question that has to be asked in this 
situation, therefore, is how many data points are required in order to obtain a 

good estimate of u for any particular configuration and coefficient? 

It might be expected that as more and more observations are made, their 

variance for a given angle of incidence will settle down to a constant value, 

which will give a good estimate of u . That is, the width of the outer pair 
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of confidence limits on the figures will remain much the same although the 

density of points increases. In the experiments in tunnels A and B, an 

arbitrary number of ten repeat runs were carried out for the two configurations 

and five for the consecutive runs. For the consecutive runs in tunnel A, a 

regression analysis has been carried out for each coefficient, using results from 

the first run only, the first plus second, first plus second plus third, etc. 

Fig.14 shows the effect of the number of runs included in the regression of lift 

coefficient on angle of incidence, as well as the degree of regression. If a 

degree 6 regression is considered sufficient (cf. Fig.3), then in this case only 

two runs are required to establish a value of 0.0077 for s . 

The next figure shows some results for the regression of CL on c1 for 

the ten runs in the high-lift configuration. It is apparent that the inclusion 

of points from run 4 increased the residual variance for all degrees of 

regression. It would appear that this was a 'bad' run and its scatter was 

atypical in some way. The effect of including points from the seventh run is 

similar and it takes another two or three runs for the standard deviation to 

settle down again. The very poor results for yawing moment in the low-lift 

configuration as measured in tunnel B (see Fig.6)are reflected in Fig.16. Even 

after ten runs, no consistent estimate of o has been achieved. 

Figs.14 to 16 make it clear that the residual variance is very sensitive 

to experimental error. It is customary to spot gross errors during the course 

of the experiment by plotting the results as the run progresses, and repeating 

incidences as required. If on-line computing facilities are available, it 

would be possible to calculate and display s as each data point is acquired. 
Bad points could then be easily detected and deleted. Once s is reliably 

known, it is a simple matter to employ expression (16) to calculate the number 

of data points required to achieve the desired accuracy of curve fit. 

5 CONCLUSIONS 

This Report has described the use of some standard statistical techniques 

in the comparison of results obtained from a wind-tunnel model tested in two 

tunnels. The basis of the comparisons was least-squares curve fits using orthogo- 

nal polynomials. Excluded from the regressions were obviously 'bad' points and 

those for angles of incidence above the angle where the scatter was noticeably 

worse due to the connnencement of the stall. The degree of regression was 
primarily selected by including all the coefficients of the polynomial curve 

which were statistically significant. However, if the data points were too 
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strongly grouped or clumped together, then occasionally unwarranted oscilla- 

tions appeared in the regression curve. This is a situation which often 

arises when fitting a degree k curve through k - 1 data points. For this 

reason, if it is intended to apply the techniques of this Report to other tunnel 

tests, it is best to distribute the data points uniformly over the range of 

incidence of interest, rather than to try and duplicate readings at nominal 

angles. 

The idea of 'repeatability' of a result has been identified with the 

degree of scatter or variance of an individual data point for a given angle of 

incidence. This scatter can be expressed in terms of limits within which a 

repeat point can confidently be expected to lie, for a prescribed probability 

level. For the model and tunnels used in these tests, this variance is 

practically independent of angle of incidence and is equal to the residual 

variance of the curve fit. It is thus fundamental to the nature and characteris- 

tics of the experiment and, if all the data points are equally reliable and 

sufficient of them have been obtained (30 say), it cannot be improved by further 

tests. 

The overall reliability of the regression for a particular aerodynamic 

coefficient can be visualized graphically by drawing the upper and lower 

confidence limits (at, say, the 95% probability level) on either side of the 

regression curve. If the results from the two tunnels are plotted using 

similar scales, they can be compared at once. If there is a difference between 

the two estimates for the residual variance, then this could be a fundamental, 

statistically significant difference, or it could arise naturally through the 

limited numbers of data points used. This question can be answered by applica- 

tion of the ratio test which gives the probability that the observed difference 

is merely due to chance. 

Clearly, the reliability of the regression, or the precision with which 

it can be used to predict a coefficient for a given angle of incidence, is 

dependent on the number of data points used, as well as the residual variance. 

If the latter remains roughly constant, then the more data points employed, the 

more precise is the curve fit. Confidence limits at a prescribed probability 

level can be deduced for the true value of a coefficient at a given incidence. 

The widths of these limits are generally very weakly dependent on c1 but almost 

directly proportional to the standard deviation of the curve fit and inversely 

proportional to the square root of the number of data points. Thus the 



33 

customary way of reporting that a result is such and such, plus or minus an error 

has been refined by relating this error to a confidence level. For example, 

cL = 2.0 + 0.015 at the 95% level (at the 98% level, the error might be kO.022). 

These errors can be deduced from the actual experimental results, rather than 

estimating them from supposedly known accuracies of the tunnel balance, speed 

control, etc. 

Very often the effect of a change to the geometry of the model is required 

to be found from the difference between two sets of results. The minimum effect 

that can confidently be detected at any specified angle of incidence will be 

equal to the width of the confidence limits on the difference curve at that 

angle. Thus the minimum detectable effect can be made smaller if the degree of 

confidence required in it is relaxed. If the basic results have similar 

standard deviations and are based on roughly equal numbers of data points, then 

this minimum detectable effect will be approximately fi of the confidence 

width of a basic curve. 

An analysis of the effect of number of runs on the residual variance of 

best-fit curves has shown that they are very sensitive to the quality of the 

data. If these are all of similar worth, then in one example two or three runs 

of 13 points each were sufficient to establish a reliable value for s ; further 

runs had no significant effect. In other examples, however, the inclusion of 

bad points from one or two runs considerably worsened the overall scatter and 

a consistent value for the experimental standard deviation was not obtained even 

after ten runs. It is suggested that the standard deviations of curve fits for 

each coefficient should, if possible, be computed after the acquisition of each 

data point during a tunnel run. It will then be possible to detect and reject 

atypical points. Once a reliable estimate of s has been obtained, it is then 

possible to calculate the number of data points necessary to measure a 

coefficient to a given accuracy at a prescribed confidence level. 
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Appendix 

GLOSSARY OF STATISTICAL TERMS USED 

Some of these terms are illustrated diagrammatically on Fig.17. 

Confidence limits - Limits defining the confidence interval within which, for a 

stated probability, the true value lies. 

Degree of freedom - A statistic has degrees of freedom equal to the number of 

observations involved, less the number of constraints employed in its derivation. 

For example, calculating the mean of n points 'uses up' one degree of freedom, 

so that the mean, estimated variance, etc. have n - 1 degrees of freedom. The 

coefficients of a straight-line fit would have n - 2 degrees of freedom. 

Mean - In this Report, the arithmetic mean or average is implied. If the data 

points are from a sample of a populution distributed normally, their average 

value is the best possible estimate of the population mean. 

Normal distribution (or Gaussian distribution) - A particular kind of frequency 

distribution that has convenient statistical properties. Fortunately, it 

commonly arises naturally or in experimental work. If c1 is distributed 

normally with mean G and standard deviation u , and is transformed to a new 

variable p by 1-1 = (a - ;)/a , then the probability density of p can be 

visualised as the normal curve in standard form, illustrated on Fig.17. l.~ has 

unit standard deviation and zero mean; the area under the curve is unity. On 

the figure, the area to the left of the line at u' represents the probability 

of lo being less than n' . The two hatched areas each cover 2.5% of the 

total area and have bounds (the 

probability of n being within 

(1 - 2a) or 95%. 

Null hypothesis - A belief that 

that the apparent difference is 

confidence limits) at v = +I.96 . The 

1.96 standard deviations from the mean is thus 

two quantities are, in fact, really equal and 

due to errors of observation. The hypothesis 

is put to test and is rejected if the probability of it being true is 

sufficiently small. 

Population or universe - The complete set of all possible observations of the 

kind being made. 

Regression - The relationship between the mean value of an observed quantity Q 

and the independent variable cx is called the regression of Q on c1 . If a 

one-one correspondence exists between Q and c1 , then the regression is 
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equivalent to the functional relationship Q(a) . Usually the regression must 

be estimated from a sample of observations. The estimated regression y(a) 

would tend closer to the true regression Q(a) as the size of the sample was 

increased. 

Residual variance - The complete summation of the squares of the observed 

values ('total sum of squares') is in part due to the nature of the regression 

Q(o) ('sum of squares due to regression'). The remainder is called the 'sum 

of squares about regression' and, when divided by the appropriate number of 

degrees of freedom, gives an estimate of the residual variance. 

Sample - A subset, or finite set if the distribution is continuous, of a 

population. 

Significance - A quantity is statistically significant if its confidence 

interval does not contain zero. 

Standard deviation - A measure of the average scatter or deviation of a sample 

of observations from their mean value. 

Standard error - The standard deviation of a mean or averaged quantity. What- 

ever the nature of the distribution from which a sample of n observations is 

taken, if its population standard deviation is u , the standard error of the 

mean is 0lJn . 

Test of significance - Such tests are used to investigate the reasonableness of 

a hypothesis and to see, for example, if there is a significant difference 

between two quantities at a given level of probability. 

Variance - The square of the standard deviation; a measure of the variability 

of the observations. 
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probability level used in t-test 

coefficients of regression curve in orthogonal form 

column vector of bi in normal equations 

coefficients of regression curve in normal form 

square matrix of the sums ($I ,(I 
P q 

> in normal equations 

drag coefficient 

rolling-moment coefficient 

lift coefficient 

pitching-moment coefficient 

yawinglnoment coefficient 

side-force coefficient 

coefficients in the recurrence relation for 0. 1 

ratio of two variances 

degree of regression 

modulus of 4. 
J 

over the point set ~1. 1 

number of data points 

probability 

observed quantity, dependent variable 

estimate of o 

sum of squares of errors 

standard error 

statistic used to test the significance of a quantity 

variance 

value of Q predicted by the regression curve 

column vector in normal equations 

independent variable, angle of incidence 

error 

orthogonal polynomial of proper degree i in c1 

population standard deviation 
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