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1 INTRODUCTION 

Reliable methods for the numerical calculation of two-dimensional, sub- 

critical, potential flows past general shapes (lifting and non-lifting) have 

been available for some years, notably the work of Sells'. Subsequent work 

dealt with pl ine supercritical flows, some of the more important work being 

done by Murman and Cole2 in small perturbation theory, and Steger and Lomax 
3 

and Bauer, Garabadian and Korn4 who considered the full equations of motion. 

The usual method of solution was by finite differences, using central differ- 

ences in subcritical regions and backward differences in the supercritical 

zones. 

Improvements in computer hardware have made it feasible to attempt the 

calculation of flows around three-dimensional bodies. The method normally used 

has been transonic small-perturbation theory and examples of the solution of 

the full equations of motion, applying the boundary conditions exactly, have 

been few, eg Duck', .Jameson6. 

This Report deals with a numerical scheme to calculate the steady, sub- 

critical flow around a swept elliptic cylinder between walls. The full equation 

of motion is expressed in terms of the velocity potential and is solved using 

the exact body surface boundary conditions. The speed of sound is obtained from 

Bernoulli's equation. 

The work is done in coordinates defined by the body shape, thus allowing 

the boundary conditions to be satisfied in a straightforward manner. The 

infinite flow field is mapped into a finite region by means of a transformation 

of one of the variables. For an accurate solution, further transformations of 

the other two variables are necessary to concentrate the grid points in regions 

of greatest change in potential. 

Section 2 gives details of the transformations used to reach the final 

coordinate system in which we express the equations of motion (section 3). 

Details of the computation are given in section 4 followed, in section 5, by the 

results. The concluding remarks appear in section 6. Details of the derivation 

of terms required in the continuity equation are given in Appendix A and 

Appendix B deals with the matrix inversion technique used. 
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2 THE COORDINATE SYSTEM 
. 

Our original Cartesian coordinate system, x1 , is defined with the stream 

flowing in the -x2 direction, x3 being vertically upward and the walls being 

given by x1 = fs (see Fig.1). This notation enables us to describe our trans- 

formations succinctly using tensor analysis, The conventional (x,y,z) system is 

equivalent to (-x2, x1 ,  x3> l 

. 
We transform to a non-orthogonal reference system, 5' , as described in 

7 section 5 of Mangler and Murray . The walls and planes parallel to them are 

represented by 51 = constant and the cylinder is represented by E2 = 0 . The 

system is chosen such that the base vectors 
a2 I 

and 53 
(see Appendix A) are 

perpendicular to each other and normal to the x -axis (i.e. y-axis). This 

transformation is equivalent to conformal mappings in the set of cross-sectional 

planes x1 = constant . We are concerned with an untapered cylinder, in which 

case ~1 will be parallel with the leading edge (s2 = 0, c3 = 0), which is 

swept by an angle A (see Fig.]). 

For an untapered cylinder the mapping has the general form 

x1 = c1 ; x2 + ix3 = - US1 + f(C) 3 

C’ 
1 1.e. y = 5 ; -x + iz = -us ' + f(C)] 

where F = c2 +iS3 , 

lJ = tan A . 

For a wing whose profile in the cross-sectional planes is the ellipse 

defined by 

(ux’ + x2j2 (x3) 2 
2 +F= 1 , 

C 

(2-l) 

(2-2) 

where c is the semi-chord and T is the thickness parameter in the cross- 

sectional plane, the mapping function is defined by 

(Z-3) 

f(C) = c cash 5 + c'c sinh 5 . (Z-4) 
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The limits of the coordinates are 

Since we are dealing with the non-lifting case we can make use of the 

symmetry about the plane x3 = 0 to reduce our considerations to x3 > 0 only. 

This reduces the range of c3 to 0 G E3 G x , where (c2 = 0, E3 = x> represents 

the trailing edge. 

The transformation defined in (2-l) trivially satisfies the integrability 

condition given in Ref 7. 

Let 

df 
dS 

= C+iD; df 
I I dy 

= A, 

so that 

A2 = C2 + D2 . 

From these equations we derive, in Appendix A, relationships which are 

required in the equations of motion. 

For an elliptic cylinder 

C = AC [(I + T>e E2 
- (1 - T>e -52 ] cos E3 

D = dc[(l + T>e E2 + (1 - T>e -t2 J sin c3 . 

(Z-6) 

(2-N 

For the application of finite difference methods to the equations of motion, 

further transformations are necessary. To shrink the infinite range of c2 to a 

finite working space, we define 

and to concentrate the grid points in areas of greatest change in velocity 

potential, we apply the transformations 



6 

1 3 

and OGa,f3 <- . 

The q3 -transformation is applicable only to the non-lifting case where we 

use the range 0 G c3 <x . 

In equation (2-10) c1 and B are parameters to adjust the transformation 

as required. The effect of increasing cc is to bunch grid points near the 

walls, and increasing $ similarly bunches points at the leading and trailing 

edges. This is illustrated in Fig.2. If the parameter is zero in either case, 

the transformation merely represents a scaling. The practical ranges of ct and 

S depend upon the particular configuration being investigated, for example, if 

the span is increased then c1 must also be increased to maintain the fineness 

of the mesh near the walls, which is where the greatest variations occur. 

In the equations of motion we will require the derivatives of transforma- . . 
tions (2-9) and (2-IO), denoted by Pi = dn'/dSi , and these are 

*3/2 2 2r312 
Pl = 

SAT-l 
; P2 = I-ll ; P3 = 

TrJiT?-i- 
(2-l I) 

where A = cr(11q2 + 1 , r = f3(T13)2 + 1 . (2-12) 

3 THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

If we denote the velocity vector by 1 and the velocity potential by 0 , 
. 

then the contravariant and covariant components of velocity will be Vi and V. 1 
respectively, where 

. . 
v1 -.$; = v 'i 

a@ = v.s = - . (3-l) - 
a9 

The relations between these quantities are set out in Appendix A and if 

the speed 1x1 is denoted by q , equation (A-17) gives 

q2 
. . . 

= vlvi = glJv.v. . 
= 3 

(3-z) 

Mangler and Murray2 derive the equation of continuity for a compressible 

inviscid fluid in steady irrotational motion with no external forces in the 

form: 
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. 
1 a_ (J#) - v1 L& (*2) = 0 , 
J ag’ 2a2 agl 

(3-3) 

where J is as defined in equation (A-l) and a is the local speed of sound 

obtained from Bernoulli's equation: 

a2 
r-l 

+ tq2 = constant . 

Here Y is the ratio of specific heats. 

The freestream velocity potential is given by 

c) 
ao3 = - UmxL , 

(3-4) 

(3-5) 

since the stream is in the negative xL-direction. 

We express equation (3-3) in terms of the perturbation velocity potential 

d, = cp-@ Q) = o+uax2 = 0 + U,[- PC* + Re(f)] , (3-6) 

and non-dimensionalise with respect ,to U and c . 03 
. 

Using equation (A-II), we define a set of coefficients, Q1 , by 

(Jgij) = L& [A2gij] , 

A2 aEJ 
(3-7) 

These arise when we expand the first term in equation (3-3): 

We find that Ql 3 0 . 

The second term in equation (3-3) is similarly expanded. If, for clarity, 
. 

we denote V1 bY 'i then, after lengthy algebra, equation (3-3) when expressed . 
in terms of the perturbation potential with respect to the ni system of 

coordinates, becomes 



where 

(3-8) 

0 ij 
s a2+ ; 

d-al? * j 
E+iF; (3-9) 

R =i CE + DF A4 ; S = DEA; cF ; T = DS - CR . (3-10) 

The boundary conditions to be applied are those of tangential flow at the . . 
boundaries. Since 2' is normal to the surface 5' = constant , the tangential 

. 
flow condition on that surface (V, . 2' = 0) implies, from equation (A-161, that . 
v= = 0 , 

The boundary conditions are: 

(i) 
2 

on the body surface n = 0, 

v2 r &FE = 0 
a? 

which becomes, using equations (2-51, (2-ll), (3-6), (3-9) and (A-12), 
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2 22 2 
%$I +* +pc (j2-- 
*2 1 1 A4 

irAy p343 = -j ; 

(note that on the body P2 = 1). 

(ii) on the walls nl = +1, 

by similar algebra, 

PC4 +‘“cp+ 
*2 22 

-l!&$ = 0 ; 
*2 33 

(iii) at the wall-body junction, 

since equations (3-11) and (3-.2) must be satisfied simultaneously, 

4, = c ; pl+l 

(3-11) 

(3-12) 

(3-13) 

(iv> 
2 at infinity, n + 1, 

4 +-0. (3-14) 

Equation (3-8) and boundary conditions (3-11) to (3-14) are expressed in 

finite difference form as outlined in section 4. As stated previously, the 

symmetry of the flow enables us to restrict computation to the upper half of the 

flow field to save on computer time and storage. Also, for profiles with fore- 

and-aft symmetry, such as the ellipse, we can exploit the antisymmetry in #I , 

i.e. 

4(A12,Q3) = - 4hL2,-n3) , (3-15) 

further to reduce the computation. 

4 DETAILS OF THE COM.PUTATION 

The differencing scheme applied to equation (3-8) was the usual central 

differences approach in which, for example, 

x = 'i+l,j,k2h 'i-l,j,k + o 

arll 1 
(4-l) 



10 

L = ‘i,j,k+l - *‘i,j,k + ‘i,j,k-1 + O(h$ 

(h3) * (hg) * 
(b-2) 

L = ‘i+l,j+l,k - @i+l,j-1,k - ‘i-l,j+l,k + ‘i-l,j-1,k + O(hf+hg) 

an’an* 4hlh2 
(4-3) 

. 

where h. is the step-length in n1 and 0. 
l,j ,k 

is the value of (p at the 

(i,j,k)ti grid point in nl, n*, n3 respectively. The port wall corresponds to 
. 
1= 1 , the body to j = 1 and the leading edge to k = 1 . 

The only exception is at the wall-body junction for the calculation of 

a20 
aq*an* 

(see Fig. 3). To apply formula (4-3) at point (1,l ,k) , we require 4, o k , , 

which is not obtainable from the boundary conditions. We therefore resort to 

the formula 

A- - 1 

a$an* = 2hlh2 

+ %,O,k - *%,l,k - ‘0,2,k - +2,&k] + ‘6: + hi) ’ 

.,.... (4-4) 

The second, fourth, sixth and seventh terms are calculated from the 

boundary conditions, that is, by applying, respectively, the finite-difference 

forms of equation (3-13b) at point (I,1 ,k), of equation (3-13a) at point (1,l ,k), 

of (3-12) at (1,2,k) and of (3-l 1) at (2,l,k). 

The error term in equation (4-4) is different from that of equation (4-3), 

though of the same order. 

Having differenced equation (3-8) as above, the equation is arranged as 

suggested by Sells’ to give a tridiagonal matrix which is solved by block 

relaxation. We can solve in two different ways: on lines n* = constant (rings) 

and on lines n3 = constant (spokes). The forms of the equations are: 

rings : 

spokes : 

d 9. k l,j,k-1 + Ck’i,j,k 
+ b k l,j,k+l = “k ’ (p. 

dj”i j-l,k + 'j$i,j,k + bj’i,j+l,k = aj ’ 
, 

l<k<L, 

l<jGM. 
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Application of the symmetry condition at the leading and trailing edges 

in the rings example means that d1 = bL = 0 . Application of the body surface 

condition and the condition at infinity (n* -+ 1) in the spokes case means that 

d, = bM = 0 . Thus in both cases the matrices are wholly tridiagonal and do 

not have the corner elements present in Sells' work. This makes the matrix 

inversion somewhat simpler; details are presented in Appendix B. 

In the cases of both rings and spokes the field is swept first in the 

cross-sectional plane and subsequently by moving the plane from the port wall 

through the field. 

5 RESULTS 

In Figs.4 to 7 we present results for a flow with freestream Mach number 

0.65 past an elliptic cylinder swept at an angle of 45'. The aspect ratio is 

2 and the thickness/chord ratio, 'I , is 0.1. This case exhibits the typical 

properties of the flows considered. 

Fig.4 shows the chordwise distribution of local Mach number at several 

sections. It is observed that at the port wall (y = -s) there is a high peak 

with large gradients in the neighbourhood of the trailing edge. This arises 

from the combined effects of the sweep, which accelerates the flow normal to the 

leading edge, the constraint of the wall and the rapidly increasing slope of the 

profile in this region. It is shown in greater detail in Fig.5. By the anti- 

SyIlnnetry, there is a similar peak near the leading edge of the starboard wall. 

The distribution in the centre section is almost indistinguishable from that for 

the infinite swept wing with the walls absent. 

Fig.6 shows the local Mach number distributions in sections parallel to 

the leading edge. We see that the behaviour in the centre of the span is very 

smooth and that the peak extends only a small distance from the wall, 

Fig.7 shows a plan of Mach number contours on the wing surface and 

emphasizes the local nature of the peak. Fig.8 shows a magnified view of the 

trailing edge region of Fig.-/. 

The Mach contours meet the wall normally and there are occasions when 

lines of constant chord cross and then recross them. This explains the occurrence 

of the depressions in curves 6 and 7 of Fig.6 and the slight lip in curve 4. 

The phenomenon is best observed in Fig.8 near the junction of the wall and the 

0.81 contour. This is close to the chordwise station for curve 4. 
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By considering the starboard wall, it can be seen that at the centre of 

a swept-forward wing there will be a pressure peak near the leading edge, even 

for a profile section. 

Fig.9a to 9d for the same wing are included to show the variation of 

the pressure distribution as the freestream Mach number increases through 0.1, 

0.45 and 0.6 to 0.65. There is relatively little change in the pressure at the 

centre span but close to the wall the peak becomes much more exaggerated. The 

position and magnitude of minimum pressure is marked in each case with a cross, 

and the adjacent numeral shows the peak Mach number. 

Other calculations have shown that curves of local Mach number for lower 

values of M, have the same form as in Figs.4 and 6 but exhibit lower 'plateaux' 

and have relatively smaller peaks. An increase in the span appears fractionally 

to decrease the height of the peak while a reduction in the angle of sweep 

decreases the peakiness and shifts the peak forward marginally. 

In a typical run , the computation is started on a coarse grid (11 x 6 x 11 

in n 12 3 
, n 9 n respectively) and a mesh-halving routine is implemented twice 

to reach a final grid of 41 x 24 x 41. The program stops when the change in 

potential from one iteration to the next is less (at all grid points) than some 

prescribed value. For a change in potential of less than 10 -5 per iteration 

(corresponding to a change in Mach number of 3 x 10 
-5 per iteration), we require 

100 iterations on the finest grid, following 250 and 200 respectively on the 

coarse grids. Total computation time on a CDC 7600 computer is approximately 

270 seconds. For a change in potential of less than 2 x 10 -6 ~-~ 
per iteration 

(corresponding to a Mach number change of 3 x IO -6 per iteration), we require 

350 iterations on the finest grid and the computation time increases to 700 

seconds. The relaxation parameters used - w in equation (B-4) - are 1.83 for 

the first mesh size and 1.84 for the subsequent grids. 

The convergence appears to be rather sensitive to the choice of transform- 

ation parameters, c1 and B . For the case studied in detail, results obtained 

for different values of a and 8 lying between 5 and 15 were consistent, apart 

from at the apex of the peak where there was a range of disagreement of lto2%, 

because of the impossibility of placing sufficient points in this region for a 

practical size of grid. If the parameters lay outside this range, then the grid 

points were either spread too thinly near the walls and the leading and trailing 

edges to deal numerically with the 'peaking', or they were so bunched in these 
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areas that the remainder of the field was underpopulated. In these situations, 

the solutions were not wholly reliable, or worse, there was a tendency for the 

solutions to diverge for the small grid sizes, causing the computation even- 

tually to break down. In this context, decreasing the relaxation parameter may 

help if the divergence is not too rapid, at the cost of increased computation 

time. 

It should be noted that the working range of the parameters given above 

is not absolute and will be different for different wing geometries - the 

important point is to maintain the density of points near the peak. If the span 

is doubled, for example, one would have to increase c1 , probably to within the 

range 12 to 25. 

Tables 2 to 5 contain values for the perturbation velocity potential at a 

selection of grid points as an aid to future investigators. The total velocity 

potential can be calculated using equation (3-5) in conjunction with equations 

(2-l), (2-4), (2-9) and (2-10). Values of the constants are A = 45', T = 0.1, 

M 00 = 0.65, ~1 = 11, 8 = 8, the grid sizes in cl, E2, c3 being 41 x 25 x 61. 

The data are shown for four sectional planes, at alternative points along alter- 

nate spokes (reading horizontally). Note that the tabulated values are 10 x I+ 

for convenience. 

Calculations have been made for the geometries and Mach numbers listed 

in Table 1. Further details of these results can be obtained from the author at 

the Department of Mathematics, Polytechnic of North London, Holloway, London, 

N7 8DB. 

Table 1 

SUMMARY OF RESULTS OBTAINED 

Aspect ratio Thickness, T 
I 

Sweep, A0 Mach No., MoO I 

0.65 
0.6 
0.5 
0.45 
0.1 
0.6 
0.6 
0.6 
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6 CONCLUDING REMARKS 

Results have been obtained for subcritical flow past swept elliptic 

cylinders between walls. The full equation of motion was expressed in terms of 

non-orthogonal coordinates defined by the body shape and the boundary conditions 

were thus satisfied exactly. The equation was solved using finite differences. 

The method is at present being extended to deal with different profiles, 

such as the Karman-Trefftz, and to cover the case of a semi-infinite swept wing. 

It is hoped to deal also with supercritical flows. 
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Appendix A 

SOME RELATIONS FROM TENSOR CALCULUS 

If we have a transformation from a Cartesian coordinate system, x1 , to a 

general system of coordinates, SJ , of the form 

i . 
X = xi($ E2 E3) , , ; 1 = 1,2,3 

the Jacobian of the transformation, denoted J , is given by . 
a2 

J= - I I a& 
, (A-1) 

where J # 0 except, perhaps, at isolated singular points. 

At each point we construct a system of base vectors, a+ , i = 1, 
. 

which are tangential to the curves of intersection of the surfaces 5 1' 

i+l . 
and 5 = constant . We also construct a set of vectors, 2' , norma 

surfaces 5 i = constant . Employing the summation convention of tensor 

we relate the vectors by 

2, 3, 
1 = constant 

1 to the 

analysis, 

. 

Js.. ai = qk- 2j”s ' (A-2) 

+lif i,j, k are an even permutation of 1, 2, 3 
where E.. = 

1Jk 
-1 if i, j, k are an odd permutation of 1, 2, 3 

0 otherwise 

We define a tensor, t , by 

. . . . . 
dx= = -$- dcJ 5 t;dcJ . 

acJ 
(A-3) 

It can be shown that if s; are the Cartesian unit base vectors, then 

A 
% = j-i ’ (A-4) 

We define the symmetric covariant metric tensor, g.. , and the contravariant 

metric tensor, g ij 
iJ 

, by 

g.. = *.21j ; g ij=' ' fil . gJ . (A-5) 
=J 
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Since 

Appendix A 

{ 

lif r=s 
% -s .c =6 = 

rs Oif r+s ' 

equations (A-4) and (A-5) give 

g ij = A5 ljrs l 

This property can be used to show 

. 

=i = gij~' I 

where gk 
i 

is defined similarly to 6rs . 
. 

The system of equations (A-9) can be solved for gin , 

2 in E.. J g = 
1Jk 

enrs 
gjrgks ' 

(~-6) 

(A-7) 

w3) 

(A-9) 

(A-10) 

with E nrs defined as E.. 
lJk 

previously. 

Hence, given the form of the transformation as in (2-l) and (2-4), we can . 
use equation (A-3) to calculate tf and use (A-6) then to calculate g.. . 

. . 1J 

Equation (A-10) used in conjunction with equation (A-l) now gives gl' . 

For transformations of the general form of equation (2-l) we obtain, using 

equations (2-5) and (2-6), 

J = A2 , (A-11) 

and 

r 

1 

[ 1 g ii = PC A2 
PD -- 

_ A2 

lJC 
;;;i 

-- 1; 

A2 + p2C2 u2CD -- 
A4 A4 l 

u2CD -- A2 + u2D2 

A4 A4 

(A-12) 
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For the particular case of the elliptic section we substitute for C and 

D from equations (2-7) and (2-8). 

Any vector 1 can be written in the forms 

i v = v.a = da 
1- -j ) 

where v 

v . 

are respectively the covariant and contravariant components of 

From equations (A-5), (A-7) and (A-9) 

k 
. 

Zi ' 5 = PijZJ . zk = gk i (A-14) 

Thus using equations (A-5), (A-13) and (A-14), 

. 
v. = v.a. = 

1 --I. gijd ' 

Similarly, 

. . . . 
v1 = v . a' - - = glJvj . 

Using equations (A-13), (A-14) and (A-16) we find 

i.e. 

Iv12 = ViVi = gijvivj . 

(A-15) 

(~-16) 

(A-17) 
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Appendix B 

MATRIX INVERSION 

We solve explicitly the rings example. The matrix / 

form Tu = a where 

T = 

0 
d3<$>bL , 

=L-l - 

uation is of the 

and u (n+l> 
k = +. 

l,j ,k 
for fixed i, j , the superscript referring to the value at 

the (n + 1)th iteration. 

The matrix T is now factorised into upper and lower triangular matrices 

so that 

T = RU . 

Here, 

R = 

If R 

sL 

is non-singular and 

rl 

u = 
1 

x3 

a 
\ 

' XL-1 

1 

z = Uu = R-la , 

our problem is equivalent to solving successively 
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Rz = a, 

uu = z . 

Thus we obtain the following sets of equations from (B-l) and (B-2) 

5 = 5 

b, = rlx, 

al = 'lZ1 

Ck = 'kxk-1 + 'k 

I 

2GkGL. 
bk = rkxk 

"k = Skzk-l + rkzk 

In this scheme xk and zk are calculated without the need to store 

rks Sk ' We now use equation (B-3) to obtain 

“L = ZL , 

"k = 'k-x$-$+1 ' L- l>k>l. 

The matrix u is calculated in reverse order. 

If we require over- or under-relaxation, we then put 

19 

(B-2) 

(B-3) 

(B-4) 

where w is the relaxation parameter and the superscript (n c 1) refers to the 

updated value of 4. 
l,j,k ' 

The procedure for solution along spokes is identical. 
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Table 2 

VALUES OF PERTURBATION POTENTIAL x 10 IN PLANE x1 = -s (WALL) 
Body m 

* 

0 
0.0041 

0.182J 
-- 

-o.i;gz 
-0.629, 
-0.b296 
4."30'4 
-0.2jlb 
-O.ijbj 
-O.i5bj 
-3.u45: 
-".0>6; 
4.57‘<0 
-O.L'jj3 
-3.7m 
-0.7:10 
-0.71::i 
-0.tij77 
-3. hi,0 
-3.25'3 
-0.CSY2 

0.2lOO 
0.384 
0.5257 
O.b2Sj 
0.7033 
0.7559 
0.7912 
0.81>% 
0276 
O.Sjgf; 
LLajga 
0.8411 
0.8422 

0.26/7 ".4055 0.5390 C.C931 0.8755 I.0986 1.3863 1.7918 2.4849 C.Cd70 

-".0&3 
-0.btitib 
-0.6&j 
-0.6904 
-0.6926 
-0.ig14 
-".7C28 
-0.7127 
-0.7274 
-0.7117- 
-0.772j 
-0.7967 
-3.8!7~? 
-c.V/d 
-3.6789 
-0.4,&c 
-0.2451 

0.0171 
".2'1Y5 
O.C!l 
O.j70& 
0.6822 
O.&l3 
0.8199 
0.8621 
O.%?O? 
O.YO&J 
".~~?88 
0.92 -13 
0.9263 
0.9269 

_I-. 

-0.2581 
-0.2581 
-0.2581 
-0.2582 
-0.2583 
-0.2585 
-0.2589 
-0.2596 
-0.2609 
-0.2629 
-0.~563 
-0.2717 
-0.2784 
-0.2820 
-0.269" 
-".22"8 
-0.1304 
-0.0143 

0.0999 
0.1929 
0.2596 
0.3038 
0.3316 
0.3486 

z'6z 
":3683 
0.3703 
0.3715 
0.3717 
0.3718 

-0.5060 -0.43t -G.3813 -0.3194 
-0.5060 -0.4437 -0.ja1: -0.3194 
-0.5062 -0.4438 -0.3Eli -0.3194 
-0.5065 -0.4440 -0.3810 -0.3195 
-0.5"72 -0.444L -0.jtil9 -0.3197 
-0.5083 -0.4453 -0.3824 -0.3201 
-0.5104 -0.4467 -3. jSjL -0.3207 
-0.5138 -0.*497 -C.jS5? -0.3218 
-0.2195 -0.4532 -0.ja73 -0.323d 
+.52d7 -0.4590 -0.3326 -0.327" 
-".5M -5.4705 -".4""3 -0.3323 
-0.5bOl -0.484i -0.Lll3 -0.3403 
-0.5759 -".4r92 -0.4237 -0.3501 
-C.5738 -0.5011 -0.4278 -0.3546 
-0.j2~1 -0.466~ -0. '102Y -0.3369 
-0.413'1 -0.3729 -0.3269 -0.2760 
-0.23d3 -0.2200 -0.1964 -0.1661 
-0.3x0 -0.0386 -0.0352 -0.0269 

0.1559 0.2375 0.1225 0.1101 
O.,Bl5b 0.2842 0.2532 0.2225 
0.437d 0.3941 0.5493 0.3041 
0.5247 0.4704 0.4148 0.3588 
0.5834 0.5207 0.4572 0.3937 
0.6216 0.5527 0.4837 0.4153 
0.6456 0.5726 0.4999 0.4283 
0.6604 o.j846 0.5096 0.860 
0.6692 ".591U 0.5152 0.4405 
0.6742 0.5956 0.5184 0.443" 
0.6765 0.5977 3.jzo 1 0.4443 
0.6780 0.5986 0.5208 0.4449 
0.6785 0.5988 0.5210 0.4450 

-0.1970 -0.1386 
-0.1979 -0.1386 

3.1979 -0.1386 
3.1979 -0.1386 

-0.1980 -0.1386 
-0.1981 -0.1386 
-0.1983 -0.1387 
-0.1937 -0.1389 
-0.1994 -".?39? 
-0.2005 -0.1396 
-0.2024 -0.1403 
-0.2054 -0.1412 
-0.2092 -0.1420 
-0.2105 -0.1404 
-0.1998 -0.1296 
-0.1617 -0.0991 
-0.0898 -0.0444 

0.0026 0.0244 
0.0930 ii.0909 
0.1661 0.1441 
0.2181 0.1814 
0.2522 cl.2057 
0.2754 0.2206 
0.2863 0.2296 
0.2940 0.2349 
0.2985 0.2380 
0.3011 0.2398 
0.3326 0.2408 
0.3033 0.2413 
0.3037 C.2416 
0.3037 0.2416 

0 

-G.%dC 
-C.:btiO 
-C.>Oti2 
-0.5687 
-o.j*bw 
G.5714 
-0.57'iJ 
-0.5792 
-0. j87 1 
-0.3995 
4." I"7 
-0.bi7j 
-0.t5j; 
-0.t4jr 
-o.>xj, 
-0.1+4',8 
4.d. 87 
-0.0&j 

c.1795 
0.3497 
O.~lO 
0.517L 
0.6411j 
".6&6 
0.7187 
0.7369 
3.7478 
0.75iil 
C.757'1 
“.7,d’, 

".7i3> 
-- 

-0.0778 
-0.0778 
-0.0778 
-0 "778 
-0:077a 
-3.0778 
-0.0778 
-0.0775 
-0.0777 
-0.0776 
-0.0773 
-0.0767 
-0.0749 
-0.0701 
-0.0584 
-0.0350 

o.oCo2 
0.0398 
0.0744 
0.0993 
0.1153 
0.1249 
0. IjO> 
0.1338 
0.1356 
o.l367 
0.1374 
0.1377 
0.1379 
0.1380 
0.1380 

e.e 

CA 

t.e 

-0.7496 
-0.7498 
-0.7jC8 
-0.7529 
-".75u7 
-".7628 
-C.'7~21 
-0.7850 
-O.dCjY 
-0.827" 
-0.8527 
-0.6742 
-".87a? 
-0.8350 
-0.713" 
-0.5023 
-".22riO 

0.0547 
c.sJo9 
0.4946 
0.639y 
0.7476 
0.8278 
0.8852 
0.9336 
0.9672 
0.9906 
1. "037 
1. oog5 
I.0179 
I.0125 

C.Oli9 
0.0223 
0.0315 
0.0431 
O.Oj83 
0.0773 
0.1026 
0.1362 
0.1807 
0.2389 
0.3129 
0.4017 
0.5 
0.5983 
0.6871 
0.7611 
O.Sl9j 
0.8638 
0.8974 
0.9227 
0.9420 

::;g 
0.9777 
0.9851 
0.9910 
0.9959 
1.0 - 

Table 3 

1 
Body m 

0 

0 -0.8116 
0.0041 -0.8117 
0.009" -0.8120 
0.0149 -0.8128 
0.0223 -0.8142 
0.0315 -0.8167 
0.0431 -o.d2o9 
0.058" -0.8275 
0.0773 -0.8377 
0.1026 -0.8517 
0.1362 -0.8683 
0.1807 -0.0815 
".2%y -0.376b 
0.3129 -028" 
0.4317 -0.703j 
0.5 -0.4897 
0.5983 -0.2113 
0.6871 0.0749 
0.7611 0.32ti 
0.8193 0.522" 
0.8638 0.6702 
0.8974 0.7783 
0.9227 0.8524 
0.9420 0.8959 
0.9569 0.9106 
0.9685 0.9258 
0.9777 0.9502 
0.9851 0.9325 
0.9'po 0.9333 
0.9959 0.9337 
1.0 0.9353 

T 

0.4055 0.539" 
__- 

0.6931 0.8755 1.3863 1.7918 2.4849 

-0.5229 -0A550 -0.%3X -0.321+1 
-0.5230 -0.4550 -0.3888 -0.3241 
-0.5231 -0.4551 -0.3689 -0.3242 
-0.5254 -0.4553 -0.3891 -0.3243 
-0.5140 -0.4558 -0.3894 -O-32&5 
-0.52j2 -".+566 -0.3899 -0.3248 
-0.5270 -0.4579 -0.3909 -0.3255 
-0.5302 -0.4603 -o.:y25 -0.3266 
-".535'1 -0.4642 -0.3953 -0.3285 
-0.5436 -0.4705 -0.5999 -0.3316 
-0.5554 -0.4801 -0.4072 -0.3368 
-".5702 -0.4929 -0.4175 -0.3445 
-0.5820 -0.5048 -C.J+2Sj -0.3534 
-0.5753 -0.5031 -0.4298 -0.3564 
-0.5239 -0.4646 -0.4018 -0.3364 
-0. ,062 -0.3672 -0.3226 -0.2729 
-0.2278 -0.2119 -0.1894 -0.16Oa 
-0.c232 -0.0279 -0.0268 -0.0206 

3.1695 0.1482 0.1306 0.1157 
0.3281 c.292d 0.2589 0.2262 
0.4459 0.3937 0.3518 0.3054 
O.j& 0.4703 0.4140 0.3579 
C.!l?'Y> 0.5165 O.b537 0.3912 
C.~J124 0.5454 0.4783 0.4116 
o.t3ry 0.5631 0.+32 0.4239 
C.iLj2 0.5737 ".5"2i 0.4311 
3.6525 U.ji"Y C.5073 0.4353 
0.6560 0.5dj4 0.5102 0.4377 
0.6337 zj'j2 0.51'7 C.4389 
0.6597 C.jSUO ".5lr* 0.4395 
O.WY 3.5862 0.5125 0.4396 

0.087" 0.7823 

-0.1993 -0.1392 -0.0780 
-0.1993 -0.1392 -0.0780 
-0.1995 -0.1392 -0.0780 
-0.1994 -0.1392 -0.0780 
-0.1994 -0.1392 -0.0780 
-0.1996 -0.1393 -0.0780 
-0.1998 -0.1394 -0.0780 
-0.2002 -0.1395 -0.0780 
-0.2008 -0.1398 -0.0779 
-0.2020 -0.1402 -0.0778 
-0.2039 -0.1409 -0.0775 
-0.2068 -0.1418 -0.0768 
-0.2104 -0.1425 -0.0750 
-0.2113 -0.1407 -0.0702 
-0.1997 -0.1295 -0.0583 
-0.1604 -0.0984 -0.0348 
-0.0875 -0.0433 o.cxJo~ 

0.0052 0.0257 0.0402 
"."952 0.c919 0.0746 
0.1674 0.1447 0.0994 
0.2165 5.1816 0.1152 
0.2519 0.2055 0.1247 
0.2727 0.2202 0.1302 
0.2852 0.2290 0.1335 
0.2927 0.2343 0.1353 
0.2971 0.2373 0.1364 
0.2996 0.2391 C.lj70 
0.3"10 0.2401 0.1374 
0.3018 0.2406 0.1376 
0.3021 0.2m 0.1376 
0.3022 0.2408 0.1377 

-0.7467 
-0.7L67 
-0.7467 
-0.7467 
-0.7J+0Y 
-0.7176 
-0.749j 
-0.7536 
-0.7614 
-0.1738 
-0.7905 
-0 8067 
-":8096 
-"./7L7 
-3.577" 
-0.4821 
-0.2297 

0.0357 
0.2710 
0.4591 
0.6013 
0.7045 
0.7744 
0.8172 
0.8417 
0.855d 
O&k 
O.BCYO 
0.8716 
0.872s 
0.8731 

-c.utaa -".59>5 
-5.6686 -0.5936 
-0.b688 -0.5937 
-0.6692 -0.5442 
-0.x99 -0.5950 
-0.6711 -0.5964 
-0.6737 -0.59sa 
-0.0779 -0.3028 
-o.ajo -0.6C92 
-0.i9Ll -0.0190 
-0.7114 -0.0320 
-CL/261 -O.tLo? 
-0.735; -0.6594 
-0.7127 -0.0s , 
-lJ.->d:, -0.57yc 
-c. ib'+fJ -0.1330 
-0.237: -c.2:66 
0. CC',5 -?.Cil, 
c.2?131 0.1951 
o.iiozt LX59 
0.54'Lb 0.1340 
3.64qZ O.>t;.36 
0.7CL5 0.0423 
0.7'iEY 0.6794 
0.7715 3.702; 
0. ?YLL 6.7102 
3.7'153 d.li2-f5 
O.X'~C4 0.7231 
o.boj; 3.7316 
L.8043 0.7~27 
0.804L 0.7330 

-0.2609 
-0.2bOy 
-0.2609 
-0.2610 
-0.2611 
-0.2614 
-0.2616 
-0.2625 
-0.2637 
-0.2657 
-0.2691 
-0.2743 
-0.2806 
1;. ;"6;; 

-0.2187 
-0.1267 
-0.0100 

0.1036 
0.1951 
0.2602 
0.3031 
0.3500 
0.3464 
c-3562 
0.3620 
0.3653 
0.3672 
0.368; 
0.3L86 
0.3687 
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Table 4 

VALUES OF PERTURBATION POTENTIAL x 10 IN PLANE x1 = -0.9160 s 

0.2877 0.4055 

-t- 

-0.7068 -0.6123 
-0.7067 -0.6123 
-0.7065 -0.6122 
-0.7060 -0.6121 

I 
-0.0789 
-0.0789 
-0.0789 
-0.0789 
-0.0789 
-0.0739 
-0.078Y 
-0.0788 
-0.0788 
-0.0786 
-0.0783 
-0.0775 
-0.0755 
-0.0703 
-0.0579 
-0.0336 

0.0022 
0.0417 
0.0756 
0.0996 
0.1147 
0.1238 
0.1291 
o.i321 
0.1339 
0.1349 
0.?355 
0.1358 
0.1360 
0.1361 
0.1361 

-0.8602 
-0.8601 
-0.8597 
-0.8588 
-0.8572 
-0.8551 
-0.8524 
-0.8496 
-0.8471 
-0.8453 
-0.8434 
-0.8375 
-0.8166 

I:*g",: . 
-0.4279 
-0.1603 

0.1179 
0.36i2 
0.5438 
0.6567 
0.7154 
0.7466 
0.7651 
0.7770 
0.7849 

0.1823 

-0.7902 
-0.7971 

0.6931 0.8755 

-0.4287 -0.34aa 
-0.4288 -0.3488 
-0.4288 -0.3489 
-0.4289 -0.3490 
-0.4292 -O.YtYl 
-0.4296 -0.3495 
-0.4303 -0.3500 
-0.4314 -0.3510 
-0.4334 -0.3527 
-0.4364 -0.3553 
-0.4407 -0.3594 
-0.4457 -0.3646 
-0.4478 -0.3687 
-0.4370 -0.3634 
-0.3942 -0.5322 
-0.3005 -0.2568 
-0.1561 -0.1355 

0.0110 0.0075 
0.1636 0.1391 
0.2796 0.2399 
0.3582 0.3090 
O.ro84 0.3534 
0.4396 0.3809 
O.L586 

2'4:;; 0.4700 . 
0.4768 0.4135 
0.4807 0.4169 
0.4829 0.4188 
0.4840 0.4197 
0.4845 0.4202 
0.4a47 0.4203 

-0.9151 
-0.9151 
-0.9152 
-0.9153 
-0.9155 
-0.9160 
-0.9167 
-0.9178 
-0.9191 
-0.9200 
-0.9185 

I;$$; 
-0:8089 
-0.6639 
-0.4318 
-0.1384 

0.1615 
0.421; 
0.6160 
0.7354 

x2; 
018333 
0.8400 
0.8436 
0.8456 
0.8466 
0.8472 
0.8474 
0.8474 

-0.5168 
-0.5168 
-0.5168 
-0.5169 
-0.5170 
-0.5173 
-0.5178 
-0.5186 
-0.5199 
-0.5221 
-0.5252 
-0.5282 
-0.5266 
-0.5084 
-0.4524 
-0.3386 
-0.1706 

0.0198 
0.1924 
0.3228 

:%G . 
0.4987 
~5196 
0.5323 
0.5399 
0.5443 
0.5468 
0.5481 

..~ 
-0.2752 -0.206j -0.1422 
-0.2755 

I 
-0.2067 

I 
-0.1423 

-0.2753 -0.2068 -0.1425 
-0.SY7 
-0.7889 
-0.7874 

.__ 
-0.2754 -0.2068 -0.142i 
-0.2757 -0.2069 -0.1424 
-0.2760 -0.2071 -0.1424 
-0.2767 -0.2075 -0.1426 
-0.2i78 -0.2082 -0.1428 
-0.2797 -0.2'332 I -0.143? 

0.0315 
0.0431 
0.0580 
0.0773 
0.1026 
0.1362 
0.1807 
0.2384 
0.3129 
0.4017 

00~~983 
0.6871 
0.76il 
0.8193 
0.8638 
0.8974 
0.9227 
0.9420 
0.9569 
0.9685 

~. 
-0.7851 
-0.7820 
-0.7782 
-0.7744 
-0.7711 
-0.7685 
-0.7641 
-0.7488 
-0.7028 

1::;::: 
-0.1740 

O.&Z6 
0.3092 
0.4793 
0.5862 
0.6461 
0.6807 
0.7023 
0.7163 
0.7253 
0.7310 
0.7343 
0.7362 
0.7370 
0.7372 

-0.28>‘7 
-0.2869 
-0.2yOg 
-0.2889 
-0.2668 
-0.2078 

-0.21;o 
-0.2335 
-0.2161 

-0. 1438 
-0.1446 
-0.1449 
-0.1421 
-0.1289 
-0.0951 
-0.0577 

0.0317 
0.0967 
0.1474 

-0.2147 
-0.1988 
-0.1539 
-0.0766 

0.0171 
O.lC46 
0.1729 

-0.1091 
0.0093 
0.11q1 
0.2"040 
0.262i 0.2202 
0.3003 
0.5276 

I 0.2506 'I 
0.1824 
0.2048 

0.2694 0.2185 
0.%7 
0.3460 I 

0.2807 

0.3509 I 
0.2874 I ::::$ 
0.2913 1 0.2343 

0.9777 0.7901 O.Sjji 
0.3553 
0.3562 
0.3565 
0.5566 

I 0.cY35 _ 
0.2948 0.2369 
0.2955 0.2373 
0.2957 

i-- 0.2360 

0.2375 
0.2958 0.2376 

_... 
0.9851 
0.9910 
0.9959 
1.0 

o.is53 
0.7950 
0.7959 
0.7961 

0.6753 0.6125 0.5487 
0.6755 0.6125 0.5489 

- I I 

Table 5 

mums 0F PERTURBATION POTENTIAL x 10 IN PLANE X' = 0 (CENTER SECTION) 
BOdY 02 

-- 
1.3863 

0 
0.0041 
o.cwo 
0.0149 
0.0223 
0.0315 
0,043l 
0.0580 
0.0773 
0.1026 
0.1362 
0.1807 
0.2389 
0.3129 
0.4017 
0.5 

::ZZ",: 
0.7611 
0.8193 
0.8638 
0.8974 
0.9227 
0.9420 
0.9569 
0.9685 
0.9777 
0.9851 
0.9910 
0.9959 
1.0 

0.1823 0.2877 0.4055 0.5390 0.6931 0.8755 1. 986 2.4849 

-0.3140 -0.2219 -0.1050 
-3.3139 -0.2219 -0.1050 
-0.ma -0.2218 -0.1050 
-0.3134 -0.2217 -0.1049 
-0.3128 -0.2213 -0.1049 
-0.3715 -0.2208 -0.1047 
-0.3094 -0.2197 -0.1045 
-0.3C58 -0.2180 -O.lOW 
-0.2994 -0.2149 -0.103: 
-0.2893 -0.2094 -0.1018 
-0.425 -0.2OOj -0.0992 
-0.2461 -0.1851 -0.0943 
-0.2064 -0.1598 -0.0847 
-0.1510 -0.1205 -0.0671 
-0.0803 -0.0656 -0.038: 
-0.0000 -0.0000 -0.0000 

o.oao3 0.0656 0.0381 
O.lS10 0.1205 0.0671 
0.2061, 0.1598 0.0847 
0.2461 0.1851 0.0943 
0.2125 0.2005 0.0992 
0.2893 0.2096 0.1018 
0.2996 0.214y O.iO35 
0.3058 0.2180 0.1040 
0.3094 0.2197 0.1045 
0.3115 0.2208 0.1047 
0.3128 0.2213 0.1049 
0.3134 0.2217 0.1049 
0.3138 0.2218 0.1050 
0.3140 0.2219 0.1050 
0.3140 0.22l9 0.1050 

-0.5651 -0.5024 -0.4408 
-0.5650 -0.5023 -0.4408 
-0.5646 -0.5020 -0.4405 
-0.5636 -0.5012 -0.4399 
-0.5619 -0.1998 -0.4387 
-0.5588 -0.4972 -O.4366 
-0.5535 -0.4927 -0.4329 
-0.5448 -0.4853 -0.4267 
-0.5311 -0.4733 -0.4165 
-0.5099 -0.4542 -0.4000 
-0.4779 -0.4249 -0.3741 
-0.4311 -0.3815 -0.3351 
-0.3637 -0.3195 -0.2792 
-0.2693 -0.2344 -0.2034 
-0.1452 -0.1254 -0.1081 
-0.0000 -0.0000 -0.0000 
0.1452 0.?254 O.lC81 
0.2693 0.2344 0.2034 
0.3637 0.3195 0.2792 
0.4311 0.3815 0.3351 
0.4779 0.42"9 0.27kl 
0.5099 0.4542 o..toou 
0.5311 0.4733 0.4165 
0.544e 0.4aj3 0.42~7 
0.5535 0.4927 0.4329 
0.5588 0.4972 0.4366 
o.j41y 0.4998 0.4387 
0.5637 0.5012 0.k599 
0.5646 0.5020 0.4405 
0.5650 0.502j 0.4408 
0.5651 0.5024 0.44oy 

-0.6909 
-0.6907 
-0.6901 
-0.6888 
-0.6863 
-0.6820 
-0.6752 
-0.6645 
-0.6487 
-0.6254 

Ioo.:;;; 
-0:4643 
-0.34Y9 
-0.1912 
-0.0000 

0.1912 
0.3499 
0.4643 
0.54O9 
0.5915 
0.6254 
0.6487 
0.6645 
0.6752 
0.6821 
0.6863 
0.6888 
O.b902 
0.6908 
0.6909 

-0.6282 
-0.6281 
-0.6276 
-0.6265 
-0.6244 
-0.6207 
-0.6145 
-0.604;1 
-0.5896 
-0.566~ 

:",:E 
-0.4119 
-0.3079 
-0.1673 
-0.0000 

0.1673 
0.5079 
0.4119 
0.4a41 
0.5333 
0.5669 

Z'w" 
0.6145 
0.6207 
0.6244 
0.6265 
0.6276 
0.6281 
0.6282 

-0.3799 
-0.3799 
-0.~756 
-0.3792 
-0.3782 
-0.3765 

1:::;;: 
-0.3603 
-0.5466 
-0.3248 
-0.2912 
-0.2424 
-0.1761 
-3.0933 
-0.0000 

0.0933 
0.1761 
0.2424 
0.2312 
O-3241! 
0.3466 
0.3603 
0.3686 
0.3736 
0.3765 
0.3782 
0.3752 
0.3797 
O.379?, 
0.3800 

-0.8582 
-0.8582 
-0.85aO 

::::g 
-018555 
-0.8530 
-0.8484 
-0.8399 
-0.8240 
-0.7941 
-0.7398 
-0.6450 
-0.4915 
-0.2702 
-O.OlEQ 
0.2702 
0.4915 
0.6450 
0.7398 
0.7941 
0.8240 
0.8399 
0.8484 
0.8530 
0.8555 
0.8569 
0.8577 
0.8580 
0.8582 
0.8582 

-0.809 1 

-0.8089 
-0.8082 
-0.8067 
-0.8040 
-0.7997 
-0.7933 
-0.7842 
-0.7712 
-0.7516 
-0.7204 
-0.6684 
-0.5813 
-0.4424 
-0.2431 
-0.0000 
0.2431 
0.4424 
0.5813 
0.6684 
0.7204 
0.7516 
0.7712 
0.7842 
0.7933 
0.7997 
0.8040 
0.8067 
0.8083 
0.8090 
o.aO92 

-0.7519 
-0.7517 
-0.7510 
-0.7495 
-0.7466 
-0.7420 
-0.734% 
-0.7241 
-0.7087 
-0.6864 
-0.6534 
-0.6021 
-0.5209 
-0.3949 
-0.2166 
-0.0000 

0.2166 
0.3949 
0.5209 
0.6021 
0.6534 
0.6864 
0.7087 
0.7241 
0.7348 
0.7420 
0.7467 
0.7495 
0.7510 
0.7517 
0.7519 
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SYMBOLS 

a 

Zi 

i a 

a. 1 

A 

bi,Ci,di 
C 

Ci 
C,D 

E,F 

f 

g. - 1J 

g 
ij 

hi 
J 

LAN 

MC0 
M 

max 

'i 

9 

Qi 

r. 
1 

R 

S 

S. 

S1 
. 

t; 

T 

U 

local speed of sound 
column matrix in Appendix B 

base vector 

normal vector 

element of matrix a 

df I I z 
elements of matrix T 

semi-chord of ellipse 

Cartesian unit base vector 

real, ' ' df lmaglnary parts of x 

d2f real, imaginary parts of - 
dc2 . , 

mapping functions from x1 to &Y1 

covariant metric tensor of order 2 

contravariant metric tensor of order 2 

mesh-length in n i 
0 . 

Jacobian of the transformation from x1 to c1 

mesh sizes in r) , n2, nl, respectively 3 

freestream Mach number 

maximum Mach number a 
h* =- 
d$ 

fluid speed 

see equation (3-7) 

element of matrix R 

{ 
see equation (3-10) 
lower triangular matrix in Appendix B 

semi-span 

element of matrix R 

see equation (3-10) 
. 

a2 =- 
at+ 

{ 

see equation (3-10) 
tridiagonal matrix in Appendix B 

column matrix in Appendix B 
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SYMBOLS (concluded) 

U 

T3 
V 

v 

'i . 
V1 . 
x1 

x,y,= 

'i 
z 

r 

6 6i ij' j 

A 

E.. SE 
ijk 

1Jk 

5 . 
rll 

A 

T 

4 

4;~ 4ij 

4. l,j ,k 
Q 

upper diagonal matrix in Appendix B 

freestream velocity 

arbitrary vector 

velocity vector 

covariant component of V 

contravariant component of l 

Cartesian coordinates 

Cartesian coordinates equivalent to (-x 2 13 ,x ,x ) . 
= v1 

column matrix in Appendix B 

parameter of the transformation from c1 to l-l1 

parameter of the transformation from E3 to n3 

ratio of specific heats 

see equation (2-12) 

Kronecker delta symbols = 0 if i #j 
~1 if i=j 

see equation (2-12) 

see equation (A-2) 

= 
general coordinate used for the solution 

angle of sweep of the centre chord 

= tan A 

general coordinate (intermediate) 

thickness/chord ratio 

perturbation velocity potential 

+, a:4 . 
an a$anJ 

value of 4 at grid point (i,j,k) 

total velocity potential 

freestream velocity potential 

relaxation parameter 
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Fig 9a Shows isobars on the wing for increasing freestream Mach number 
(values shown are -Cp) 
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