

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS
Method for the Determination of the Pressure Distribution over a Finite Thin Wing at a

Steady Low Speed

By

G. J. Hancock
(University of Manchester)

Mothod for tho Dotomination of the Prossure Distribution ovor a Finite Thin iind at a Steady Low Speod.
 - By -
 G. J. Hancock
 (University of Manchoster)

Conmunicated by Prof. M. J. Lighthill

2nd Sopterbor, 1952

SUMTHRY

For any given pressure distribution across a finite thin wine at low spoed the ving surfaco can bo obtained by direct doublo intocration. Thoreforo tho prossure distribution across a given wine surface may be obtained by the super position of a nuaber of solutions in which tho wing surfaco is know for a prescribod prossuro distribution.

The method has boon applicc. for the detumination of tho pressuro distribution across a thin uncarbored delta wing.

1. Introduction

In the notion of a thin finito wing at a steady low spood two fundanental problons aro presentod, namely,
(i) to dotomino tho load distribution of a givon wine
(ii) to deternino the shape of the contral surface of tho wing for a prescribod pressuro distribution.

The design problom (ii) was considered in the author's provious papor ${ }^{1}$. Horo tho rulationship which was ostablished betwoon the downash volocity (dofining the winf's contral surfaco) and the prossure discontinuitios over tho wing surfaco and tho trailing vortex sheot involvod only a dircict double intogration. This avoids the difficulty of the fomal potontial approach which loads to a result containing an awkward liniting procoss.

By oxtondin the idoas prosontod above an approach nay bo made to obtain tho solution of problon (i). The nethod of dosicn is to assurio a load distribution p across the vinf surfaco, obtaining the downwash volocity r by integration. This ostablishos the shape of tho wing's contral surface. It is suctestod that the solution of problon (i) may bo obtainod by substitutine a series of prossuros $p_{1}, p_{3} \ldots p_{n}$ and ceilculatine the corresponding values of $w_{1}, w_{2}, \ldots w_{n}$. Therofore if the contral surface of tho vinc dofinos a downash volocity is such that

$$
\bar{W}=K_{1} w_{1}+K_{2} w_{2}+\cdots+K_{n} W_{n}
$$

whore K_{1}, K_{2}, ... K_{n} are constants, the appropriate pressure solution is

$$
p=K_{1} p_{1}+K_{2} p_{3}+\cdots+K_{n} p_{n} .
$$

This nothod is similar to the solution prosented by Garner ${ }^{2}$ who usod the formal velocity potential approach. Since the methoc. suggosted here avoids the difficulty in the region of the integral singularity in Garner's solution, the numerical hork is roduced.

The paper ends with a qualitative investication of the particular problen solvod by Garner, namely, tho dotemination of the load distribution over a thin uncarbered 45° sropt-back ring at a srall angle of incidonce. Comparisons are made betwoen the rosults obtained from the tho nothods.

2. Genoral Thoory

Sinco we aro to consider only the part of the prossure distribution correspondin to the calber, twist and incidence of a thin finite acrofoil, nancly the part wich is antisymetrical about the plane of tho wing, we are only intorestod in the shape of tho contral wint surfaco. Henco the probleal roduces to an invostigation of the steady flow past the central wind surfaco, dotomining the pressure discontinuitics across this surfaco shect.

Taking Cartesian co-ordinates of referonce, with tho origin fixed on tho contre lino of the wing surface so that the plano of the wing is iclontical to tho plano $z=0$, and assuning that tho stoady velocity V of the stroan at infinity is in the direction of x incroasing, the central wing surface is donoted by

$$
z=f(x, y) .
$$

The projection of the wing surface on tho plane of the ving $(z=0)$ is denotod by $S W$, willst the projection of the trailing vortox shoot on this planc is donoted by S_{T}.

All discontinuities in pressure and vclocity are assumed to occur across tho surface S_{V} and S_{T}. Tho boundary conditions of adjacent flow over tho wint surface $\mathbf{z}=f(x, y)$ is satisfied on S_{i}, also the condition of sroooth flow over the trailing edge of the aerofoil is satisfiod on the trailing edge of $S_{i n}$.

If the disturbance volocities ($u, v, w)$ due to tho presenco of the wing in the air strean, aro srall comparod with V, thon tho linoarizod oquations of motion roduco to

It is notod that sinco prossure discontinuitios occur across $S_{F i}$ only, then u is discontinuous only, wilst v is discontinuous across S_{V} and S_{T}. Outsido of $S_{T}+S_{T}$ on the plane $z=0$, $u=v=0$ whilst w romains finito tending to zero at infinity.

The condition of adjacont flow ovor the wine surface is

$$
\begin{equation*}
\frac{\left(v_{S}\right.}{V}=\frac{\partial f(x, y)}{\partial x} \tag{2}
\end{equation*}
$$

assuming that tho ratos of chance of the surface $z=f(x, y)$ in both the x and y directions are srall.

It has boon shorm ${ }^{1}$ that the integral fomula, rolating tho downash volocity w to the volocity discontinuitios, is
$2 \pi r(X, Y, 0)=P \iint_{S_{y, i}+S_{T}} \frac{u(x, y,+0)(x-X)+v(x, y,+0)(y-Y)}{\left[(x-X)^{2}+(y-Y)^{2}\right]^{3 / 2}} \quad \ldots(3)$
where P denotos the usual principal valuo to bo taken.

3. Investigation of the Flow Past a Thin Uncarberod 45° Dolta Wing

This wint possessos a flat central winc surfaco ot a srall angle of incidence a to the main stroan, thereforo tho contral vilng surface is

$$
z=\alpha x
$$

The plane form S_{Y} of the flat surface on the plane $z=0$ is defined by
(i) the oquation of tho leading edge $x=-6+|y|$
(ii) the oquation of the trailing odgc $x=1$
(iii) Somi-span, $s=6$,
and tho treiling surface S_{p} is tho serii-infinito strip ($-1 \leqslant x$, $6 \leqslant|y|, z=0$), as shown in Fig. 1.

This wing has boen choson so that any rosults which are obtainod may be compared with Garner's solution of the sance problen.

It has explaincl in the introduction that a serios of pressure discontinuities $p_{1}, p_{a}, \ldots p_{n}$ aro to be assunod. The first question that arises concerns a suitablo function for tho first terms in a series expansion of the pressure distribution, correspondin- to the leading tom of tho Birnbaum series in the two-dinonsional theory. Obviously the first tom, multipliod by an appropriato spanwiso function cannot bo takon as it stands sinco this would involvo a discontinuity in the pressurc derivatives givin; rise to an infinito downash along this line. It was shown by Ursell 3 that this irplies a steep ridre on the contro lino which violatos tho assuriptions of the linearized thoory. Sinco this is concorned with a flat surfaco tho linos of constant prossure should bo continuous, with continuous derivativos, across tho contre lino, dopending on the egonotry of tho wing surfaco and not on a local rounding off offect.

The first oxprossion for the pressuro distribution is takon to bo the first tom of tho Birnbaun expansion nultipliod by a simplo function which onsuros that tho prossuro dorivativos are continuous. Assuraing

$$
p_{1}=-\rho v^{2} a-\frac{x+6-\frac{1}{2}|y|}{x+6}\left[\begin{array}{c}
(1-x)\left(1-\frac{y^{2}}{36}\right) \\
(x+6-|y|)
\end{array}\right]^{\frac{1}{2}}
$$

then

$$
\begin{aligned}
\frac{u_{1}}{a V} & =\frac{x+6-\frac{1}{2}|y|}{x+6}\left[\frac{(1-x)\left(1-\frac{y^{2}}{36}\right)}{(x+6-|y|)}\right]^{\frac{1}{2}} \\
& =0
\end{aligned} \quad \text { on } S_{W} \quad \text { on } S_{T}
$$

$$
-5-
$$

$$
\begin{aligned}
& \frac{v_{1}}{\frac{-y}{\partial V}}=\frac{\frac{-y}{36}}{\left(1-\frac{y^{2}}{36}\right)^{\frac{T}{2}}}\left\{-14\left(\tan ^{-1} \sqrt{\left.\frac{1-x}{x+6-|y|}-\frac{\pi}{2}\right)}\right.\right. \\
& +2 \sqrt{7|y|}\left(\tan ^{-1} \sqrt{\frac{|y|}{7} \cdot \frac{1-x}{x+6-|y|}}-\frac{\pi}{2}\right) \\
& +2[(1-x)(x+6-|y|)]\} \\
& +\frac{|y|\left(1-\frac{y^{2}}{36}\right)^{\frac{1}{2}}}{4 y}\left\{2 \sqrt{\frac{7}{|y|}} \tan ^{-1} \sqrt{\frac{|y|}{7} \cdot \frac{1-x}{x+6-|y|}}\right. \\
& \left.-2 \sqrt{\frac{1-x}{x+6-|y|}}\right\} \text { on } S_{V} \\
& =\frac{\frac{-y}{36}}{\left(1-\frac{y^{2}}{36}\right)^{\frac{7}{2}}} \cdot \pi(7-\sqrt{7|y|}) .
\end{aligned}
$$

The downash velocity has beon computed $\mathrm{fron}^{\text {(}}$ (3) and is tabulated bolow for discrete points on the wind

$$
\text { Tabio of } \frac{w_{1}}{a V}
$$

It is soen that this wing is in fact considerably canibered, and therefore, the next terms in the serious expansion for the prossure तistribution, corrosponding to $y^{2} p_{1}, x p_{1}, x y^{2} p_{1}$ are taken to counteract the twist in tho spanwise direction and the comber in the chordwiso diraction.

Taking

$$
\begin{aligned}
& p_{2}=\frac{y^{2}}{36} p_{1} \\
& p_{3}=\frac{x+6}{7} p_{1} \\
& p_{1}=\frac{y^{2}}{36} \cdot \frac{x+6}{7} \cdot p_{1} \cdot
\end{aligned}
$$

The corresponding domwash distributions are indicatod as follovis:

Superimposing these four solutions in such a vay that the domwash condition is satisfied at the six discretc points with a minimum orror, thon tho solution is

$$
0.2 p_{1}-0.5 p_{2}+0.7 p_{3}+2.3 p_{4}
$$

When the corresponding downvash distribution is

The valuc of the lift coofficiont of this distribution is

$$
\frac{\partial 0_{I}}{\partial \alpha}=2.70
$$

This should be compared to Garner's solution

$$
\frac{\partial C_{I}}{\partial \alpha}=3.04
$$

The groph of tho circulation distribution (which is soon to bo approxinatoly elliptic) is show in Fig.2, and the prossuro distributions at various soctions aro shown in Fici.3.

In order to obtain a bettor result than the one deducod above nore tons in the expansion for the pressuro distribution than four exprossions p_{1}, p_{2}, p_{3}, and p_{4} must be takon so that tho downwash conditions aro satisfied more accuratoly. Howovar, the invostigation shows that this nothod is quito practicable, since tho accuracy dopends only on a doullo intogration.

It is suggosted that, in the application of this method to any othor swopt-back ving of small aspoct ratio, the first tom for tho pressure distribution should incorporate the characteristics of the solution obtainad above. That is, it should satisfy the conditions,
(i) approxinatoly on clliptic circulation distribution
(ii) zero local lift on the trailing edre
(iii) infinite local lift on tho loading odgo
(iv) continuous prossuro derivatives across the centro line.
Only (i) is not satisfied by p_{1} above, whilst p_{3} satisfies
(i), (iii) and (iv). The choico of a first tern satisfying all these
four conditions should reduco the numerical work oven furthor.

References

No.	Author(s)
1	G. J. Hancock
2	H. C. Garner
3	F. Urscil

Titlo ctc.

Tho dosign of thin finite wings in incorpressiblo flow. A, R.C., 15,485. September, 1952.

Theoretical calculations of tho distribution of aorodynasic loading on a delta wing. R. \& M. 2819. March, 1949.

Notes on the linear theory of incompressiblo flow around symetrical swopt back wings at zoro lift. Aoro. Quart. Vol.1. (1949).

Plam and elevation of the Delta Wing

Circulation Distribution

CROWN COPYRIGHT RESERVED
printed and published by her majesty's stationery office
To be purchased from
York House, Kingsway, London, w.c. 2423 Oxford Street, London, w 1
P.O Box 569, london, sel

13a Castle Street, edinburgh, 21 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1953
Price 2s 6d net
PRINTED IA GREAT BRITAIN

