ROYAL AIRCRAFT ESTABLISFMENTX

Curves for Estimating the Wave Drag of some Bodies of Revolution, Based on Exact and Approximate Theories
by
I. E. Fraenkel
\qquad

SUMMARY

Curves are prescnted for estamating the wave drag, at zero incidence, of forebodies and afterbodies having straight and parabolic profiles. The afterbodies are assumed to lie behind an infinztely long cylindrical body. The curves are based on a limıted number of exact and second-order solutions which have been generalısed by appealang to the supersonlc-hyporsonic similaraty law and to slender body and quaslacylunder solutions.

IIST OF CONTYNTS

Page
1 Introduction 3
2 The basis of the generallsed curves 4
2.1 Conzcal forebodies 4
2.2 Parabolic forebodies 5
2.3 Conscal afterbodues 5
2.4. Parabolıc afterbodıes 5
3 Conclusions 5
References 6

LIST OF IILUSTRAIIONS

Flg.
Exact and approximate results for cones 1
lxact and approximato results for pointed parabolic (or ogıval) forebodıes 2
Second-order and approxamate results for concal afterbodies 3
Exact and approximate results for parabolic afterbodıes 4
Supersonic wave drag of conical forebodies 5
Supersonzo wave drag of parabolic forebodies 6
Supersonic wave drag of conical afterbodıes 7
Supersonic wave dras of parabolıc afterbodies 8

In Ref. I the quasl-cylinder and slender body theories ${ }^{2,3}$ were used to establish a reversibility theorem and to introduce the concept of the interference effect of a forebody on an afterbody. For a body conslsting of a forebody, a cylindmcal mıd-portion, and on afterbody, the drag was considered to be the sum of three components: ${ }^{*}$
(1) The forebody drag.
(ii) The principal afterbody drag, which is the drag that the afterbody could have if it were situated behind an anfinitely long parallel portion.
(211) The intcrfercnce drag due to the offect of the forebody on the afterbody.

The forebody drag and principal afterbody drag were equal for shapes which are the reverse of one another, and the interference drag proved to be merely the integral over the afterbody of the pressures which would exust on the parallel portion if it were extended anto the region of the afterbody.

These concepts and both the approxamate theories were then applıed to calculate the drag of bodies with pointed or truncated forebodies and afterbodies, of straight or parabolic profile. However the resulting curves are not wholly satisfactory from the viewpoint of the alroraft deslgner because they are lampted to bodies of small profile slope and to faurly low supersonic Mach numbers, and in regions where the approximations begin to differ the designer must decide which of the two theorios is nearer to the truth.

This note is an attempt to provide curves of forebody drag and principal. afterbody drag which can be used for bodies of moderate profile slope and for faurly high supersonic Mach numbers, and which eliminate the need for choosing one of the two approximations. (No nevi values of interference drag arc provided because no systematic exact solutions of this problem have bucomc available; however, this drag is often small and the approximato values of kef. I may prove adequate for most purposes). The nev curves are essentially based on a limited numbor of exact and second-order results whach have been generallsed by plotting them accordıng to the supersonic-hypersonıc samilarity law, 5 and by extending them on the basis of comparison wiath the quasc-cylunder and slender body theormes. The similarily law can be stated in a number of equivalent ways: the one consldered most convenient and used here is that, for bodies of simılar prof 1 le and different thickness ratios (R / l), the parameter $C_{D}(\ell / R)^{2}$ is a function only of $R \sqrt{M^{2}-1} / l$. The mathematical derivation of this law rests on an assumption of small profile slope for both the supersoncic and hypersonic cases, but checks of the law whth exact numerical results (ief. 6, ana the work below) andlcate that if the drag of bodies wath maximum slopes up to 0.4 is plotted according to the lavi the maximum deviation. from a mean curve is about 5%.

[^0]All the results given here tend to fall as $M \rightarrow I$; a possible criterion for their applicability as that the flow must be supersonic everywhere in the field ahead of the base. This can generally be investigated by using oblique or cone shock tables to see whether the nose shock is attached and the flow behind it supersonic.

No attemot is made here to allow for the effects of boundary layers, whach are known to have a conslderable effect on the pressure distmbution of afterbodies.

2 The basis of the generalised curves

2.1 Conical forebodies

Fig. 1 shows a comparison on the bascs of the simlarity law of exact 7 and approxamate ${ }^{1}$ values of the drag of a number of cones. * The regions where the curves for $\theta=12.5^{\circ}$ and 20° depart appreciably from the others correspond to subsonic flow along the cone surface. The curve for $\theta=12.5^{\circ}$ in Fig. I, faired anto the slonder body curvo for small $R \sqrt{M^{2}-1} / L$, was chosen as the unique curve for all cones as a basis for extending the cone results to open-nose bodies.

The first step of this extension was to choose one of the approximate theormes as the preferable one for each value of $R_{1} \sqrt{M^{2}-1} / l$, where ℓ is the length of a truncated body so that R_{1} / ℓ is a measure of slope only in conjunction with the area ratio S_{0} / S_{1}. For $R_{1} \sqrt{M^{2}-1} / \ell=0.05$, $0.10,0.15,0.20,0.30$ the slender body theory was taken, for $R_{1} \sqrt{M^{2}-1 / \ell}=$ $0.6,0.8,1.0$ the quasi-cylinder theory was taken, and for $\mathrm{R}_{1} \sqrt{\sqrt{M_{1}^{2}-1} / \ell}=0.4$ a mean of the two was taken. The exact results for cones were then introduced by the following rather arbitrary assumption: that for constant $\mathrm{R}_{1} \sqrt{\mathrm{In}^{2}-1 / l}$ the percentage difference between 'exact' values and those given by the chosen approxamate theory decreases linearly with the area ratio S_{0} / S_{1} as this varies from 0 to 1. Thus if Y is the 'exact' value of $O_{D}\left(\ell / R_{I}\right)^{2}, y$ is its approximate value, and x is S_{O} / S_{I}, then Y is defined by

$$
\left.\frac{Y}{y}=1+\left[\frac{Y}{Y}\right)_{x=0}-1\right][1-x], \quad \frac{R_{1} \sqrt{M_{2}-1}}{\ell}=\text { constant } .
$$

The results of this procedure are shown in $\mathrm{F}_{1} g .5$.
*. There is of course no Justification for applying the quasi-cylinder theory to pointed bodies but thas was done here because at the higher Mach numbers the quasi~cylunder theory gives a less erroneous inducation of the variation of drag with Mach number than does the slender body theory. This tendency, which seems to persist for all the bodies considered here, may be partly explained as follows: the quasi-cylunder theory uses the complete solution of the linearnsed equation, $K_{0}\left(\sqrt{M^{2}-1} \mathrm{pr}\right)$ in the notation of Refs. 1, 2 or 3, although it only satisfics the boundary condition at a mean radius; on the other hand the slender body theory only uses the first two terms of $K_{0}\left(\sqrt{M^{2}-1} \mathrm{pr}\right)$ expanded in ascending powers of its argument.

2.2 Parabolıc forebodıes

The procedure for obtamning the drag of pointed and open-nose parabolic forebodies was zdentical with that outlincd for conical bodies. The difference in local radius and slope between a curcular arc and a parabolic profile with the same overall dimensions is $0\left[\left(\mathrm{~K}_{1}-\mathrm{K}_{0}\right)^{3} / \ell^{3}\right]$ and this dıfference was consldered to be neglıgible to the order of accuracy of the present work. (Stractly only the parabola gives geometrıcally 'similar' bodies when the thickness ratio is varied). The assumed unique curve for pointed parabolic forebodios (Fig. 2) is based upon the careful characteristics calculations of Rossow for circular arc ogives. The results for open-nose parabolıc forebodues, obtained as above, are given in Fig. 6.

2.3 Conzcal afterbodies

The resulis for the princlpal dras of conical afterbodies are based on a numbeif, of calculations madc with Van Dyke's second-order theory 8 : for these the author is andebted to H. K. Zuenkiewicz of the English Electric Co., Ltd. The drag coefficaents here have been multaplied by a factor $C_{p_{1}}$ (exact)/ $C_{p_{1}}$ (second-order), where $C_{p_{1}}$ is the pressure coefficient immedately behind the anitial comer; this factor was always between 1.06 and 1.00 and appeared to improve correlation on the basls of the sumılarity law. Fig. 3 shows this correlation and the curves assumed unlque for each area ratio; the fınal results are cross-plotted in Fig. 7 .

2.4 Parabolıc afterbodies

The results for parabolic afterbodies were based on a serzes of characteristics calculations, performed at the request of the K.A.E. by the Computing Section of tho Mathomatical Division, NPL, under the supervision of Dr. L. Fox. These results arc shown in Fig. 4; the curves assumed unique for each arca ratio are those for the body ma basic thickness ratio of $0.11_{4} 1_{4}$, extended to higher Mach numbers by extrapolating them parallel to the quasi-cylinder solution. The final results are crossmplotted in Fig 8.

3 Conclusions

The results for afterbodies and pointed forebodies are clearly on firmer ground as solutions of the inviscid flow problem than those for open-nose forebodies because of the assumption mede in the latter case about the variation oi drag visth area ratio. In fact whereas the results for afterbodies and pointcd forebodies are presented here vith some confidence, those for open-nose forcbodies are only intended as a tentative guide to enablo dosigners to make rapid estimates of drag which wall not be altogether unreasoneble.

On the other hend the effect of boundery layer upon the pressure distribution and wave dreg is in genercil appreciable only for afterbodies: this effect is usually favourable.

It has beon soon that the sumlarity law 'collapses' exact results ramarkably well; it should bo noted, however, that when a curve represanting some typical thickness ratio is assumed to be unique, it clways overostimetes slightly the drag of thicker bodies end undcrestimetes slightly the drag of more slender ones. Allowance for this effoct, if desired, con be made by refermng to Figs. 1 to 4 .

NOTATION

C_{D} wave drag coefficient based on maximum cross-sectional area
\& length of a truncated forebody or afterbody
I. length of a pointed forebody or afterbody
in free stream Nach number
R radius
S cross-section area
() o station of minimum cross-sectional area
() station of maximum crossmectional area

REFFERENCES

Author
L.E. Fraenkel The theoretical wave drag of some bodies of revolution. ARC R\&M 2842, (RAE Report Áero 2420, 1951), ARC No. 14, 334 .

The approximate external and intermal flow past a quasi-cylindrical tube moving at supersonic speeds. Quart. Jour. Mech. and Appl. Maths., Vol. I Part 2, June, 1948.

Supersonic flow past slender bodies of revolution the slope of whose meridian section is discontinuous. Guart. Jour. Mech. and Appl. Maths. Vol. I Part I, March, 1948.

Similarity laws of hypersonic flows, Jour. Maths. and Phys., Vol. 25 No. 3, October, 1946.

On hypersonic similitude. Quart. Appl. Maths., Vol. 5, No. I, April, 1947.

REFEREICES (Contd)

7 Z. Kopal Tables of supersonic flow around cones.

No. Author
6 V.J. Rossow

8 M.D. Van Dyke

Applicabiluty of the hypersonic similarity rule to pressurc distributions whioh inolude the effects of rotation for bodies of revolution at zero angle of attack. NACA Tech. Note 2399, 1951. M.I.T. Tech. Report No.1, Cambrıdge, Mass., 1947.
M.D. Van Dyke A study of scoond-order supersonac flow theory. NACA Tech. Note 2200, 1951. ARC 13,981

FIG. I EXACT AND APPROXIMATE RESULTS FOR CONES

FIG. 3 SECOND-ORDER AND APPROXIMATE RESULTS FOR CONICAL AFTERBODIES

FIG. 4 EXACT AND APPROXIMATE RESULTS FOR PARABOLIC AFTERBODIES.

FIG. 6 SUPERSONIC WAVE DRAG OF PARABOLIC FOREBODIES.

CONICAL AFTERBODIES.

FIG. 8

Crown Copyright Reserved

Published by her maissty's stationery office

To be purchased from
York House, Kingsway, london, w c 2. 423 Oxford Street, london, w. 1
P.O. Box 569, London, sel

13a Castle Street, edinburgh, 2 | 1 St. Andrew's Crescent, cardiff
39 King Street, manchestre, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Street, belfast
or from any Bookseller

1953
Price 3s. Od. net
printed in great britain

[^0]: * It is assumed both in Ref. I and here that the flow $1 s$ undisturbed ahead of an open-nose body, $1 . e$. that there is no 'spillage'.

