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Recently published methods' of deducing practical values of 
the wxr~ous control chsraotcristics f'rom a laxxdedge of their 
theoretical values incronscs the i,lportanco of the theory of two- 
dimensional con rols in an inviscid compressible fluid. B 

The olassionl 
work of Glauert neglects comprossibilxty and acrofoil thickness, and 
while tho nlore recent work of Goldstein and Preston 3 includes thickness 
effects it ignores ca;lpressiblhQ. F+.rt-thonnore thxs lnttor method 
achiovos accuracy for tluck aerofcds at the cost of a complicated 
method of ojloulatlon. 

This pappcr presents a thoory of two-dimensional controls in 
comprcssiblo flow which is almost as simple to apply as Glauort's theory 
and 1s as accurata as tho nothod of Ref. 3. An example blvon by 
Goldstein and Preston is troatcd by the author's method to illustrate 
this point. 

I. Introduction 
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2, 
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D~f3nit~on of &mbols 

the pbysicnl plane of zero incidence, wzth an ;ir@;and plane 

= x+&y,1 = ?I7 

distances masurod normalto and along a strcsdine 
respectively 

velocity vector in polar co-orhates 

absolute angle of incidence, i.e., measured from the no-lif't 
position 

flap deflection, moasurod positiveQ for a dowwzd movement 
of the flap 

as suffixes to denote values at absolute incidences of a 
and flapr&fXectiohs~df %‘Q f ' 

as a se@&0 donoto values nt an ate distS.nOo fYct3 
the aozofoil 

= 4, 

ratio of' e@eclf&c heats @PO/ 
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PBP, looal and stagnatlon densities respectively 

(#A) plane of velocity equipotentials (6 = constant) and 
streamlines (-9 2: aonstant) for zero circulation (a = 0), 
where 

P 
ag = qds,dil, = -- qan 

PO 

*.. (1) 

M local Mach number 

p E (1 - I& 

In is defined by the equation 

m = (1 - N’) 
$ PO 

-- = p ? 
P P 

r is defined by the equation 

i 

9 
r = &(m+qJ 

q=u 
id tog:) = r(4) 

w is defined by the equation 

w = #+im&$ 

% the physical plane for an absolute inoidenoe of a, i.e., 

Iti 
z, = e z 

. . . (2) 

. . . (3) 

. . . (4) 

. . . (5) 

(b,Y) ellipticco-ordinates defined by 

w = -2a cash Z = -2a oosh (6 + iY); . . . (6) 

the aerofoil surface LY J, : 0, -2a 6 $4 & 2a, or 6 = 0, 
when 

$ = -2a 009 y . . . (7) 

0 aerofoil chord when rl = 0 

(I-E)c the contour of the flap when undefleoted neets the upper and 
lower surfaces of the aerofoil at x = (1 - E)c, thus EC 
is the "flap chord" 

(I-E')c distance of hinge from leading edge of the aerofoil 
(E f E') a'/ 
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incidence of the front part 
the v = 0 chord line 

no-lift angles for II f 0 
thus 

a = a' + a, ) 

and a = a' +a;, 

pressure coeffmient 

lift ooefflcient 

moment coefficient 

of the aerofoil measured from 

and fl f 0 respectively, 

n = 0 . . . (8) 

Q f 0 . . . (9) 

hinge moment ooeffloient, such that the hinge wment is 

& pw U2Eaca CH 

,’ acL ‘XL’ 
aO = (C&Lq,O 2 a, = a; 

0 

3 aa = --- 

ii 

, 

a'=q=O 
a77 

c&'=q=O 

whence to first order in R' and 7 

CL = a0 t ar a' + a2 rl 

i.e., to first order 

. ..(lO) 

C m = - h CL - no 11 . ..(I1 ) 

b o = (cH),t,q,o , b, = , b, = 
$+c' =rpo 

i.e., to first order 

CH = b, t bla' t b2 8 

3CH b = - --- 0 aq cL=q=o 

. ..(lZ) 

With/ 
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ir'ith the aid of (IO) equation (12) can be wntTen 

so that 

b = 
bia, - 'sib, 
----------- . 

This papor gives methods of calculating the quantities 
sot %, 0,) *I , h, b,, b,, b and b defzned above, in subsoluc two- 
ciinsnsional f few. Compressibility effects on these parameters arc 
calculated by a theory ~1ore accurate than linear perturbation theory, 
but not valid above the critloal Nach number. The theory is 
applicable to aerofoils of rloderate thickness (say up to 2.0,: thick) 
and for small values of 7 . 

in exact method for tho calculation of aor si and h for 
aorofoils of QJ thickness in incompressible flow is given in Appendix I. 
The axaot theory of the hinged flat plate in inccanpresslble flow but 
Mthout restrictions on the value of n is given in Appendix IV. 
A s.mms2-y of fonCt.ae is given in Sostion I+. 

The independent var.Lables of the theory to be given in the 
next section are S and y defined by equations (4) and (6), while the 
dependent variables are r (cquationti)) and 0 . The quantity r 
can be readdy oval.uated as a function of q/U . It has been shown 
(see Ref. 5) that when the spprotiation 

m = m w . ..(14) 

is admissible, r and 0 are conJugato han3onic functions in the w 
plane. (The thcoq is outlined in appendix V for the reader's 
convenience.) Eqgation (14) and M equation sinilar to (3) were fu-st 
used by von l&& to show that $ and p are approdnately harmonic 
functions in the (r,f3) plane. Although the theory given below is not 
really vald when "'03 is greater than that critical value corresponding 
to the first appearance of sonzc spood locally (0.f. equation (2)), it 
can be stdl appl~ad with scxx confidence to wlculate the subsoruo 
field when ,~~a11 supersonic pztohcs exist. This point is jmportant in 
the theory of controls as n hi& but localized velocity peak does occur 
at the flap hinge on the upper surface when n is positive. 

The complex number defzned by 

f = rtie . ..(15) 

is approximately an anal,ytlc function of w (r and 0 being conjugate 
harmonic functions), but if the flow is inocmpressible, r = log(U/q), 
w = # + iv+, and so 

. ..(16) 
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whenoe it f'oll~s that f is exactly an anal tic function of W. 
3 

Thus 
the theory of Seotlon 2 (but not of Section 3 mill be exact in 
incompressible flow. 

2. Basic Mathematical Theoq 

The theory of this section is quite general and applies to 
aercfoils with or without deflected flaps. 

If 8 ana ea are measured from the direction of flow at 
infinity, i.e., if 0 = BaW = 
(15) that c-3 

0, it follows from equations (3) and 

f, = fax7 = 0. . ..(17) 

Now f is an analytic functicn of w and therefore (see equatiop (6)) 
it is an analytic functicn of t;. In fact, as shown in Ref. 4,*. 

1 x 
f(C) = - - 

i 
1% sinh &(i? - 5) de(P), 

9t y%-n 
. ..(lS) 

where e(F) is .tie value of 8 on the aerofoil surface. Xquation (18) 
is thdno-lift solution. 
angle of i.nciaence ,a, 

If.the aerofoil is plaoed at O. SmjLl absclzte 
then cm the Joukcwski Hypothesis, as in Ref. 5, 

smh 4(S + 2ia) 
f,(z) = f(c) - in - log ----;z-i;---- , . ..(I91 

in which it is assumed that the trailing edge is at y = 7c, and the 
stream direction is from x q -w(see Fig, 1). The form of equation (19) 
sh&s that the effect of incidence on the front stagnation point is to 
displace it frcm y = 0 to y = -2a. 

Important auxiliary equations can be deduced by aonsidering the 
form f, takes near infinity. From equaticms (18) and (19) it follows 
that 

+t: ' 1 71 
te 

{ 
2ie+" sin a t - I e -lYW aB(Y*) 

7.J % y =-x > 

+% 

1 

+a ia I -7T 
+e ie sin 2a + -- 

2% i 

3 iyw 
0 WY*) 

i 

tar: +O(e ). 
yw=-71 

*See also Appendix V. C~psring/ 
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Comparing this with equation (17) ve wnclwie that 

J 

71 
ae(y”) = 0, 

yn=-7L 
. ..(20) 

i 

K 
YX ae(y”) = - 

[: 
e(vY w = 0. . ..(21) 

y==-n 

Equation (20) is the obvious requirement that 6(Yx) = 0(2x + p), 
while equation (21) fixes the orientation of' the aerofoil for the no-lift 
position. If 2 is measured from the aerofoil chord then 
13 = 2 + a,, and. (21) yields 

1 7( 
a0 = - -- i 

e(F) M, 
2x '?I N 

. ..(22) 

which fixes the value of the no-lift angle. 

From equation (6), v?+~J impliev that g-, -w, ma wo find 

and so the expansion for fa can bc written 

a 
f a = - -. e -iF de(F) 

w 

1e+- sin 2a + -- e-i? de(p) . ..(U) 

From this equation we conclude that 

i 

7( 

i 

x 
cos y’- de(F) = sin J: de(F) = 0, 

yL-, F=-n 

a 
other&se when a = 0. f will IWR A term 0 - 

0 

ana since from 
w 

equation (3) 

*..(a.) 

q , - = 
u ’ 

c-dP, , . ..(v) 
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q/U will be of the form 1 + A//w] for large 1 WI , and a lift- 
producing circulation will exist. (An alternative proof for the case 
of incompressible flow appears in Appendix I.) 

Finally it follows from equations (1) and (7) that on the 
aerofoil surface 

SU 

J 

Y u sm. y 
-- = ------- dy ) 
2a 0 4 

. . .(26) 

where the origin of s is taken at the front stagnation point, 

This completes the account of the basic mathematical theory. 
The numerical application of this theory to the calculatlcn of the 
compressible flow about aerofoils is given r.n Ref. 5. 

3. The Aerofoil with a Hinged Flap at Small Angles of Deflection 

The theory to be given below is only valid for small values of 
fl , the flap deflection angle, 
large values of P 
a hinged flat plate t 

Unfortunately a simple theory valid for 
> 20') is not possible, except in the case of 

rpcendix IV). In general if R is large the 
only recourse is to find the flow about the aerofoil and flap ab initio 
for each value of 4. The author's polygon method5 described in the 
previous section, would be very suitable for such a calculation. 
However, as shown below, a relatively simple theory applicable ewn to 
comparatively thick aerofoils can be developed when terms o(11a) can be 
neglected. t 

3.1 The Velocity Distribution 

Subscripts a and n wll be used to denote values when the 
aerofoil is at an incidence absolute a with a flap deflection n, 
while the absence of subscripts denote the case a = tl = 0. 
Consider the zerofoil, for which a = n = 0, shown in Fig. 2(a). 
1/c shall suppose that the solution has been obtained for this case, and 
that therefore we have or can deduce q/J and s/o as functions of Y 
(defmed by equation (7) and in Fig. 1). 
used to find the solution, q/J 

If the polygon method has been 
and s/c nil1 be immediately available 

as functions of y (see cxnmple (b) in Section 5); otherwise suppose 
q/U is given as a function of s, then the equation 

$ 
-- = 
2a 

- oos y = (;!I!) ('C "(a> - ,, 

whxh follows from (1) and (7), enables s/c = s/c(y), and hcnoe 
q/U = q/U(y) to be calculated. The constant (cU/2a) must satisfy 

. ..(27) 

where p is the perimeter distanoc from the leading tothe trailing 
edge. 

14 
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In Fig. In Fig. 2 the flap surface is shown starting at C, where 2 the flap surface is shown starting at C, where 
Y = A,, Y = A,, and F, where y : -1, , and F, where y : -1, , Men n = 0, each of C and F Men n = 0, each of C and F 
correspond to a value of x/o of 1 - E. correspond to a value of x/o of 1 - E. 
be at do = 1 - E’, be at do = 1 - E’, 

The hinge will be taken to The hinge will be taken to 
and of course for thin aerofoils E and of course for thin aerofoils E f E’. f E’. 

The most iuportant increments (BP, say) to 0 due to the 
deflection of the flap are shcwn in Fig, 3. They are due to (i) the 
front stagnation point shifts to sane point B, uhere Y = h say, 
and consequently the flow direction between A and B is reversed, 
l,e., 0 is decreased by % in 0 < y 6 h, (zi) the deflection of the 
flap reduoes 8 by II in -x 6 y ( -h,,h, 6 y 6 7t., and (iii) e 
is increased by a; - a0 in -?I < y <x duetoachangeintheno- 
lift angle from a0 to a;. Unfortunately these are not the only 
increments to 8, for the modification to the velocity distribution 
which they produce (equation (39) below) slightly distorts the relaticn 
between s and Y (equation (26)) and consequently causes a slight 
change (AS) in e(y). w’e can thus write 9 for II f 0 as 

eq = e. + ep + ne , 

where B. is the value of S when 77 = 0. For a thin aerofoil the 
distortion in the (s,y) relation vnll result in quite small values of 
A0 away from the nose of the aerofoil as AS : As/R, where As is 
the change in s. The largest values of AS will be near the nose, 
but these will have a ornnparatively small effeot on the velocity 
distribution over the fla 

P’ 
and therefore on CH. Thus only a small 

error will be introduced except in the velocity distribution near the 
nose) by writing 

erl = e. + ep . . ..(28) 

Now So satisfies equations (ZO), (21) and (2/t), and since Btl must also 
satisfy these equations, this must also be true of BP: The increnent 

is 
%ble:- 

a step function with jumps in value as set out In the following 

iiiii’iii3iiri~~~~~~~~~~~~~~~~~~~~ 

Jump in ep 

and consequently the StieltJes integrals in equations (21) and (24) 
degenerate to 

2417 - a:, + cLo) - i7(Ai + ho) + %A = 0 

tl(cos A, - 00s Ai ) + x(1 - co9 A) = 0 

n(sin ho + sin 1,) - x sin h q 0. 

. ..(29) 

. ..(30) 

. ..(31) 

Equation/ 



-9- 

Equation (20) is obviously satisfied by Bp. Equations (30) and (31) 
yield 

and 

A, -A = A 2 

n 
sin 61 q - ain h, 

* 

. ..(32) 

. ..(33) 

. ..(34) 

These equatmns imply that we oannot fix the positions of C end F 
(Fig. 2) independently, It is convement to regard 0 and 1, as the 
dependent variables. Equation (29) fixes the value of (a,:, - CL,), the 
chenge. in no-lift angle due to the flap deflection. 
and ignoring terms O($) we find 

Using equation (33) 

whenoe 
km sin A, 

---------- 3 ,0-w + m----e . 
* ?r 

. ..(35) 

. ..(36) 

In Appendix III it is shown that these equations are exact for 
moqresslble flaw about a flat hinged plate, 

Substitution of equation (28) in equation (18) yields 

fo,,(C) = f(G) - i(n - a; + cLo) + ” log 
sinh &Z - i&) sinh &g 
-----------____ + log -------- -_----. 

7. sinh *(g + IA,) sinh $(c - ix) 

If the aerofoil is now placed at an absolute incidence of a the front 
stagnation point will be displaced from y = h to y = X - 2a, and 
hence (c.f. equation (19)) we will have 

fa,n(g) = f(g) - i(n - a: + a0 + a) + _” 10~ 3i_r:h2!Lih? 
7x sinh gg + ih,) 

sinh k 
+ log -------------------- . 

sinh z$(Ci + 2ia - ih) 

On the aerofoil surface, 6 q 0, and equation (37) becomes, with the 
aid of (32) and (34) 

. ..(37) 

ra,JY) = r(Y) + y log 
sin $(y - Ah - AJ sin ?iY ---- ;-----; -----_- + 
sinH(y -sh+hm) 

lag ---------------, . ..(38) x sin &(Y + 2a - 1) 
where/ 
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where h and A, are related by equation (33). The velocity 
distribution now follows from equation (3). At low blach numbers the 
approximation (25) is valid, when equation (38) yields 

%&1 r q ,sin $(Y - $k + &) 
RhP,, 

s3.n +(Y + 2a - A) l/PLo 
= _ ___---__--_------- , u U 1 

1 

I 

----------------- 
sm &Y :\ . s-.(39) 

sin+(y -&A - hm)J 

In the calculation of the various derivatives appearing in 
equations (IO), (11) and (12) it will be convenient at first to regard 
a and n as independent variables. Subsequently a will be replaced 
by (equations (9) end (35)) 

so that a' and n become the independent variables. 

3.2 Calculation of CL, .ao, al, a 2 

The lift coefficient, CL, is defined by the contour integral 
taken round the aerofoil surface 
.I' 

1 CL = - - 
P Cp cos 0 ds , 

0 

where the pressure coefficient Cp is a funotion of y, n and a. 
Thus, since 

If u is the ratio of the specific heats, Cp is given by 

from wluoh it fallows that 

iiC P '9 P 
------ 2 - 2 - -- . 
a(O) 0 u P , ‘3 

. ..(40) 

. ..(41) 

. ..(42) 

It/ 



It 1s easily deduced from equations (J), (33) and (38) that 

and hence from equation (42) 

'ac, (1 2 ‘4 = 
_-- = s-e 
aa 

x - 

II 

cot SY, 

a=TJ=O P u c3 

1s a function of q/U. Th~.s funotlon ia given in Table 2 of Ref. 5 for 
Zi = 0.5, 0.7 and 0.79. Differentmtmg equation (41) mth respect 
tt? a and n, and making use of equationo (43) and (44), we fmd 

..c(45) 

x 

i 
1 sin iJ( Y - Am) sm h, 
_ log -_--_r_------ + -v-v-- 1 

sin$(Y+&) x 
cot $y dy . , 

It 1 

. ..(46) 

If the polygon method of calculating q/U has been used, (4a/Uo), 

?Y) and 8(y) ~511 be hox~m, x(y) can be readily deduced from tables 
U 
such as those given in Ref. 5, and so the integral m (45) can be 
evaluated numericnl'ly without iliffioulty. A onlclrlntim of this type 
appears in Rrf. 5. 
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A simple approximation csn be found by witmg 

9 
x = -case = 1 

U 

in the integrals of equations (45) and (46). ile find 

and 
'ac,‘ 
--- 

i i 

= 0. 
atl a=q=o 

Equation (49) is in any CEID~ obvious since CI, depends only on a. 
FrCllU 

and equations (l+O), (4.8) and (49) It follom that 

CL z ;~$){ao+at +(, -tf+:y!!y;. 

A comparison of this equation with equation (IO) yields 

ana 

2% 4a\ 
i a0 = -- -- 

9.; p i 

a, 

. ..(47) 

. ..(43) 

. ..(49) 

. ..(50) 

. ..(51) 

hm sin km 
a2/a, = 1 - -- + ------. 

?c ?c 
. ..(52) 

It is well-known that for thick aerofoils in incompressible flow 
equations (50) and (51) are exact (see Appendix I), dY~.le in Appendix IV 
it is shown that equation (52) is exact for the flat plate in 
incompressible flow. An approxunation for the parameter (&/UC), 
which occurs throughout the theory, is given in Appendix II. 

3.3/ 



Y 
&Tnoring the very small 0 - tan 0 H term, and using equation (47). 

The results are 

a 
?I 4a 

- --- -- a 
( j 2!& UC 

.- 
*..(55) 
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3.3 Calculation of Cm, h and mo 

The equation corresponding to (41) for the moment coefficient 
about the Leading edge is 

where tic is measured from the leading edge. Differentiating 
7 and making use of equations 

this 
(43) aad 

x 
sin $(Y - Am) sin h, 
-------------+ ------ cot 
sin&(Y+ Am) x 

sin y dy, 

which can be evaluated directly when q/U has been calculated by the 
polygon method. 

Approximations to these equations can be found by writing 
Ux = 2e + 0, whwh leads to 

x 

- 0 

LQ 
= 2 -- (1 -cosy), 

c UC 

but/ 
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but C, = a,~, and so it follows from equations (@), (53) and the 
definitions of h and no that* 

1 &a= 
“0 = --- -- 0 

sin A,(1 - 00s hn) . 
a,, UC - I ’ 1 

.-.w 

3.4 Calculation of CH, bo, b, end b, me.- . 

By coLlpnrison with the equation for &, @.ven in Section 3.3 
it is clear that the ooefficient of the hinge nonent, CH, is given by* 

the hinge being at x/c = 1 - E', Tihere Y = hi>, say. From 
equations (32) ad. (34),n -> 0 iizplies \ -> ho -> h,. Thus 

which has to be oalculated n~erioally just as in the exact treatcent of 
eqwtion (45) 

Differentiating/ 

+In inocmpressible flow this equation for h gives results aocurate to 
within 0.010 provided the maximum thickness is less than 0.10 and oocurs 
in the range 0.40 < x 6 0.6~~ A more aocurate equation for h in 
incompressible flow is given in Appendix III, 

++Note that the "non-dimensianalizinng" distnnce for CH is Eo, not E'c. 
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Differentiating cquatmn (55) we find, with the aid ol" 
equotlons (43) and (&), that 

:, 

sin X, 1 sin s y ( - hu) 
x ------ cot +y I - log ""-""""""""" 1 dy . 

7c 7[ sin G(y + ha) f 

. ..(57) 

Equations (57) cm be evaluated numerically, but for thin aerofoils 
travelling at speeds such that i,l 
the follomng approximations v~ll@%e 

IS ~~11 belo;r the critlcal iviach number 
sufi'lciently accurate. lie wlte 

i 

“ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ ” ” ” ” ” ” ”  

xThls c:qression neylcctz 3. very snljll. term duo to the dependence of the 
linnts of the inte.rg?al:: in oqmtion (55) on ??. 
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NOW 

cH = @&,=o + a 

and using equation (40) we have 

Cmparing tlvs equation mt)l (12), and mine the values of the derivatives 
found above, we conclude that 

while fron x = a,a and the definition of b we have 

1 ba 
b = ------ -_ 

0 2q$ UC 

. ..(59) 

4. Sumary of_Forrwlae 

The fonxlae given in Section 3 for the control characteristics 
the accurate integral formlae, such as 
the approxwations, such as equations (58). 

The integral fk-mlae are relatively sixplo to apply, particularly if 
q/U is calculated by the polygon lethcd, but they do involve a few 
hours oanputation. The author considers that they are sufficiently 
accurate for most purposes for aerofoils of thxkness ratio less than 2% 
travelling at speeds such that Xh;, < I$rit/ The approximations, which 

dl/ 
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will be sumarized below, still, in the author’s opinion, give reliable 
results for aerofolls of thickness ratm less than, say I@-, TJhlhen 
if:; ( (11,rit. - 0.2) * As far as thxlmess effects are concerned it 
appears from the example in the next section that these approximations 
are more accurate than the method given in Ref. 3 called “Approxi..xaticm III, 
Simple Theory”, which i.molvcs nuncrical mtcgration as in the author’s 
more accurate mthod. 

The rato of chance of the no-lift anSlc is given by 

where, from equation (27) j,, satisfies 

in which s is the distance frm the front stasl-tlon point to the 
com.:enoernent of the flap. The ratio (4;3$Jc) is given approximately 
by (equation (YO), Appendix II) 

‘b 
i ) 

1 
= , + ---- I c Y” -Ye 

-- -------- dx ) 
’ UC \ 2%3 j. x(c - x) 

(the suffices u and 4 referrmg to the uppm and larer surfaces 
respectively) or alternatively, froL2 equation (27) 

In equations (60) and (62) S/G cab be rcpluccd by x/o for thin 
aarofolls . 

The nunbers ao, a1 and a, arc given by 

. ..(36) 

. ..(60) 

. ..(61) 

. ..(62) 

. ..(50) 

. ..(51) 

. ..(52) 

where/ 



- 18 - 

where ao is given approxmately by (equation (yl), kppendzx II) 

The derlvatlves h and mo (equations (54)) are given by 

1 4a= . 
and mo = --- sin - 00s , 

2P>> 
0 -- x,(1 

UC 
km) 

. ..(63) 

. . .(64) 

. . .(65) 

while bo, b, b, and b, are given by equations (58) and (59) of the 
previous sectlon. Usually It 1s sufficient to write G = I,, when 
the equations for b, and b become 

1 4a2 
b, = - ---- -- 

(> E '@u,j UC 
[sin %(I - % cos A,) - (7x - A,)($ - cos &,)I, . ..(66) 

and. b = --;-13k] sm A,& - z - -;-+, - cos A,). . ..(67) 

The derlvatave b, then follows from equation (13). 

The equations given above for the control derlvatlves differ 
frm those given by Glauert2 cnly by 

(i) the oompressibility term, l/p,, 
4a 

(ii) the 'thickness' tern, -- , and 
i > UC 

(iii) the mcanmg to be assumed to' 1,. (hm is the angular 
;;;3yx&te of the hinge in the ($,$) plane in the author's 

, whereas In Glauert's theory h, 1s the angular 
co-ordmct,3of the knge in the &J plane.) 

In Ref. 11 Perring extended Glauert's flat plate theory to 
plates with wltiply-hmged flaps. Tht analysis of this paper is 
easily extended to aerofolls with such flaps. If Perring's results 
are modified as described In (i), (il) and (Iii) above there v&l 
result the author's approxiwte equations for this type of flap. 

5./ 



Goldstem and Preston gave as an exxple of their method, the 
calculation of b, b, and b, for a symctrlcal "roof-top" aerofoil 
for which the velociCy dlstrlbutlon 1s defmcd to be 

z I 1.1337 + - 0.1213 x = jJ.2064 0.9706(x - 0.6) 0.6 0 4 L x x c 4 0.6 1.0, 

Tho flap commences at tic = 0.8, and the flow 1s inco,ppressible. If 
it is asmr,ed that X/c + s/c m equations (60) and (62), then from 
the Exven velocity dxtribution (noridly this would have to be 
calculated as a first step), it 1s easily found that 

4.a 
h n = 132'1', rind -- = 1.1070. 

UC 

Thus froi- equations (63), (36), (50), (51), (52), (641, (65), 
(66), (67) and (13) m fmd respectlvcly 

aa; 

a0 z 0, --- 

0 
= 0.503, ap = 0, a, = 6.¶56, a,/*, = O.5O3, 

an n=O 

h = 0.277, no = 0.760, b, = -0.376, b = 0.572, ad b, = -0.763. 

The values of bi, b, ala b given in Ref. 3 are compared with those 
given above m the following tdblc. 

_________--________________r___________r- 

I>Iethod 
_______________-____--------------------- 

Ref. 3 smple theory) 
complex theory) 

Theory of this paper 
___-_____c_____---__--------------------- 

The zp~~?@$t?? the&y op‘thl's-p&r appears from this em&e 
to be very satisf&Cory; partli"c~l'$ly. as'thxs aerofoil 1s 15,$thick. 

(b) Aerofoi1~RA.X 104 at M, = 0.7 ----7 
The&xip~essible abqut'tho symmetrical aerofoil, RAE 104 

was calculated. iii Rkf. 5 by the polygon method. The follclwing 
figures taken fron Table 6 of that report apply to K, = 0.7. 

Table/ 



---m-w- b 

0 
-- = 1.1200 

____--_ UC 

1% shall calculate the control characteristics for a flap 
commencing at x/c = 0.75. By xnterpolation in the above figures ve 
find that at x/c = 0.75, y = h, = 125040'. Also l/p- = 1.4003, 
and hence from the equations given In Section 4 we find th& 

= 0.561, a0 = 0, ai = 9.854, as/al = 0.561, 

I)=0 

h = 0.280, m. = 1.129, bl = -0.624, b = 0.783, b = -1.133. 2 
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An Exact Method of Calculating a, and h in Incompressible Flow 

The cri UY in the s plane ~111 be taken at the'centre of' the 
aercfci1 prcfile'8, -. . rvhich is defined by the equation 

Llm (LJe-W) = 0. . ..(68) 
w->c3 

It is shown in Ref. 4, 319 that 

. ..(69) 

the oonjugats equation to which is 

us = w - -- 

"i 
coth &(t; - iv')d?, 

where d?), Y(P) are the aerdcilc~dinatcs. By addition of these 
results, and taking Lim c which is equivalent to Lim (equation (6)), 

4 ->c; W->C3 
we find that the origin must be taken in the s plane so that 

If the axis x = 0 is taken to satisfy equation (21), then the 
s plane is completely fixed in position. 

If (X,Y) is the force acting on the aerofoil, and AI is 
the nose-u moment about the origin (defined by (TO)), then the theorem 
of Blasius f3 is that 

I! - iY = +ip I4 + iN = &7 I 
awa a 2, --- 

0 J, de 
% , 

a 

i.e., from equations (5) and (16) 

. ..(70) 

. ..(71) 

where/ 
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where C 1s an; closed contour about the aerofoll. The only 
contributions to these integrals arise from the coefficients of I/W 1n 
the expanszons of the lntegrands. Consider f:rst the force (w) * 
From equntlons (23) and (71) we find 

x- iY = - napIJ I+i sin a - --- 

and since this must vanishwhen a = 
of equations (24). 

0, we have an alternative proof 
Thus 

x : 0,Y = fiAxpUsina, 

and the lift ooefficient is given by 

c,= y 
b 

------- ; 2Jr -- 
i) 

sin a . 
$ pc u2 lUO 

This equation is a well-known text book result, but the correspondme, 
result for Cm given below is possibly new. 

From equation (71) 

If + i.N = , p7tie-a1a x 
. c 

1 
cocf. of - in uae-lfa+f . 

iJ 

Equations (16), (23) and (24) yield 

and hence mith the a~3 of equation (68), we have 

a" 7t 
1 a 

uz L: w - --- 
i 

-aiyw ae( y") + 0 - 

0 
. 

27lw y%n e w 

From equations (23) and (24) it follows'that 

Lpi tia aa 
m-e 0 sin a - --, 
w 17 

an 20, + 8e+‘la sina a + -- 

. ..(72) 

. ..(73) 

. ..(74) 



- 24 - 

ii 
Now c; = ------- , where C & is the moment coefficient about the 

origin definY~~Iquation (70), and so from (73), (74) and (75) it 
follows that 

a 
II 4a 

CA : - -- sin 2a 
0 4 UC 

cot 20" ?I 
009 2y ae(y*) - -**-s-w 

i 
sin 27 ae(y?) . . ..(76) 

27. y%-7x 

The conjugate equation to this vas given by LIghthill for application to 
the problem of aerofoil design. 

An alternative form of this equation oan be found thus. Frcrm 
equations (6) and (G9) 

a.% 
U -- = 1 - ---------- y(y*)cosecha 6(t: - iy")dp 

dw 

iaU s ?T a 

r- 1 + ---- 7r wa i 
eiF y(y*)ayx + 0 - ) 

w -37 0 

WI.5 -iaU ?I a 
i.e.,log --- = f = -__- 0 i 7twa = 

Y(YX) eip a? + 0 - . 
an 0 W 

Comparing this equation mth (23) (with CL = 0) we conclude that 

sin y" a? . ..(77)‘ 

x 
and 

I 

UC 
sin 27 ae(y*) = -8 -- 

yc-?I 01 

x TV, 008 v* a?. . ..(78) 
b -no 

Thus equation (76) can be written in the form 

x 4a= 
CA = 

f 
- 

0 

-- sin 2a 
4 UC 
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If the polygon method of findIng the velocity dzztribution about the 

aerofoil has been use6 then the functions 

(L&k) ~9.11 be immediately 
calculated &.reotly. 

Suppose the centre 

c 0 

available, and Cm and CL can be 

of the profile lies at a distance x then 

, approximately 

i.e., from (79), 

h = ;-~?J{l -f?T) i:f(y", sin yxdyx}. . ..(EO) 

If we write ux + 2a + $ = Za(l - cos Y), . ..(81) 

. ..(82) 

where A 1s the area of the aerofoil, but tins iqwtlon rcq~lrcs knowing 

The numbers end. x are discussed m Appendices II 

and III respectively. 

The Value of 

This important ratio ocours throughout the theory. In the 

P 
olygon method5 It is calculated as an essential step from 
c.f. equation (26)) 

. ..(a) 

where/ 
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where p is the distance between the stagnation points measured along 
the upper surface. Integration of equation (18) by purts results in 

a(y") cot &Y" - Y) d?, 

on the aerofo~l surface, and the approxtination (25) then yields 

U 1 7c 
- ' f e rhj L ; 1 + ---- 

i 
e( y") cot $(y" - y) ayx * . ..(85) 

9 2w3, -5 

For aerofoils of moderate thickness p + o, and hence from (84) and (85) 

fi)= 1 + ;:;I /IfI sin y" logItan$y*IdyW. . ..(86) 

If :ie make use of tht: approxlrration (81) then 

NY? sin y" dy ! 

and ao integrating (86) by parts ne have 

It can be shown from equaticn (69) that this equation is exact in 
lncompresslble flow. 

From (87) It follows that the effect of oompressibillty on 

1s given by 

. ..(87) 

. ..(88) 

4a 
where -- ( ) i: the value m incompressible flow. Thus, for example, 

UC i 
ai (equation (51)) 1s related to (8i)1 by 
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b 
A useful approximation for -- follows from (81) and (87). 

UC 
If Y, and yc denote values of y 

0 
at opbositc points on the upper and 

lower surface respectively, then we find 

0 4a -- 4 , + ---- 1 ax , 
UC 2xP 

:' 0 c x(0-4 ---- Yu-Yd 

CY.! 

. ..(90) 

Approxim~tionn to rnanv of the equations given in this paper 
can be found by using equation (81) . For e,xample consider equation (22) 
for aO. Making use of equations (24) I which are olearly independent 
of the origin of 2, we can write 

1 7t 

ao = - -- 
1 

e(y) [I - cos Y*I a?, 
277. - -R 

Glich after some cnlculatlon reduces to the upproxinute form 

UC 3 /a 1 0 
a0 = 

(\ i 

Y, + Y& 
;! ,’ -r ------- 67; dx 6 o 

;iqo - x) 

When (Uc/4a) is taken equal to unity this equation is in ng1nenent 
with the usual formula of thm norofoil theory”. 

AITENDIX 111 

An Approxiration for h 

If the oentre of the profile is at a rti-tnnoe x fro13 ttw 
leadme edec, then taking the origin of the (x,y) plnuo nG the 
Lading cc@, VIC find fro3 cquat$,on -(70)1~that 

'-: 

1 xx 
x = .--I 

i 
x(~) ay'. 1 

211 -?l. 

. ..(91) 
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h integration by parts results in 

1 ?I 
x = c--- 

I 

dx as a# 
Y -- -- -- dy 

27x -x dn d# dy 

a 
1 cm-- I 

nu I 

7TU 
- y sin y dy , 

-ii a 

a?+ dX ds 1 
-- = 2a sm y, -- + 1 cna -- 5 - I 
ay a3 a$ 9 

If the value of U/q f'roc tne incompressible fern of 
equation (85) is now substituted m this equation for x , then with the 
aid of (24), It 1s found that 

2a 2n x 
x = 0 - -- + -- 

i 
e(y) sm y log cos $Y dy. 

U a -x 

Vrltmg 0 < dy/dx, and integatlne by parts we have 

40. y/O = , - 3 ;. + ;; 
L) I 

q y(y) tan 4 Y W . 
/ -7. 

Finally frm aquatlons (ao), (87) rind (92) it follms that 

. ..(92) 

In evaluating the integral It 1s usually sufficient to write< 

co3 y = f, 24 - -- . 

i i c , 

.;hen h the mwmpresszble flan value of h, has been found fron (Y3), 
It foll?&s fron (OX. equation (89)) 

h = -+-- . ..(94) 
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APPENDIX IV 

The Exact Theory of the HinEed Flat Plate in Inconpressible Flow 

Fit. 4(a) shows the flat plate at the no-lift pooition, while 
Fig. 4(b) shows the relation (e,y), which should not be conf'used with 
the relation sham in Fig. j(b) \-lhere the neanme of y is slightly 

, different. 

rl 
Equations (24) lead to sin $A = - sin A,? 

?F 

and A = A -A,, 1 

'while equation (21) leads to the value 

for the no-lift angle. Frm equations (16) and (IS) we find that the 
velocity distribution is given by 

q sin sy 
- : -__-----m--- 
U sin $(y + h) 

and hence fron equation (26) the (s,Y) relation is given by 

Y 
cos &y sin ;(y + h) dY. 

Subdcitutlon of the (e,y) relntlon m equation (76) leads to 

x 4a= c:, = I -, -- 
L UC H 

\ 
sm 2a - cos(2a - A) sin A - - sm 2&j 

I-\ . c 
v 

1 

li 

, 
n 

and so 

as it is easily shown fro12 equntipn (86) that oU/4a = I + O($) . 
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Basic Xathematicsi Themly 

The theory,is based cn the equatlons7 

ae 1 as ae 
+ (1 

1 ag 
-- - $) - -- = 0, -- - - -- = 0, 
an 9 as as 9 an 

which with the aad of cquataons (I), (2) and the transformatxn 

dr = (1 - X2)$ d 

can be written an the form 

ae ar ae 1 ar 
-- - mm- = 0, -- + - -- = 0. 
at w ati m a* 

Frcm (2) it is readily found that an subsonac flow 

. ..(95) 

so that for thin aerofoils at high subsonx Mach numbers or 

approxlmatlon 

m = mm, . ..(96) 

as plausible. !t'his approxlmatlon enables (95) to be written as the 
Cauchy-F&amaM equations 

ae ar ae ar 
--w-w - -- = 0, -- + --w-e = 0. 
abbd a+ w a Cm+.*) 

Slncc, m arty application we shall make, these four derivataves exist 
and arc continuous an the open dcanasn outsrde the asrofofl contour, 
WC can wntc 

r +j.C: fu. (++ +$I, 

or lf wa = + + s 9, 

f cc = fa (y&l, . ..(97) 

where tho su3LG.x CL &notes the approplinte incxdence (maasured from 
tho no-hft angle). 

A particular case of (97) is the no-lift solution 

f = f(w) . . ..(98) 

/+J OW 
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Now for snail anglea if incidence (only such angles are important 
m the paper), we m&o the assunption that wa 1s an analytic 
kotion of w, i.e., that (97) can be wrltten 

fcL = f,(w). . ..(99) 

for incompressible flow (99) is exactly true, sin~o both w and wa 
are analytic functions of .z . It 1s Important to notice that the 
approximation involved in (99) is merely one of the location of the 
solution f, , end it is simi1e.r z.n ohsxaoter to the approtiatlon 
cozmnonly made XI enginooring a plications 
method (of. reference 7, p-183 P 

of the I&n&-Tsien 
. The approximation reoelves some 

expcrimontal. verification in reference 5. Further verification of 
its plausibility is to be found in the approximate equations of 
section 4, where It yields the same compressibility factor, I/&, 
a-s that prcdioted by the linear perturbation theory. 

It can be verified that the mcdif!ied definition of 1‘ 
given by equation (3) is consistent with the approximation (96). 
It is sn empirical modification made, because 8s shovm in 
reference 5, it leads to improved agreement with experiment. 

With the aid of equation (6) it is found that the value 
of f gz~ven by equation (18) satisfies equation (97) and the 
appropriate boundary oon&tions. When the aerofoil is placed 
at an angle 3f incidence a , on the aarofoil surface Ba is 
given by 

y&l 4) q 

e(P) - a, -x6y46x 

+?T , - Yo6 P 6 0, 

. ..(lOO) 

where the % term IS due to the reversal in flow direction caused 
by the displaoamont of the front stagnatIon point fran y6 = 0 to 
y" = - yo - (By the Joulcarski Qypothesls the position of the rear 
stagnation point is unchanged.) me vslue of y is fixed by the 
oonbtion th.%t tho flow at infinity must be undis?urbed. It is 
not d2fficult to verify that f given by (19) satisfies 
equation (p9), the boundary oo&tions (100) and leaves the fla7 
at infinity undisturbed. Full details of the proof of these 
results from equntlon (99), is to be found in reference 4. 
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