

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Theory of Aerofoils with Hinged Flaps in Two-dimensional Compressible Flow

By

F/Lt. L. C. Woods, M.A., D.Phil., A.F.R.Ae.S., (R N.Z.A.F. Scientific Defence Corps,
seconded to the Aerodynamics Division of the N.P L.)

The Theory of Aerofoils with Hinged Flaps in Two-dimensional Compressible Filow
 - By -
 F/Lt. L. C. Woods, M.A., D.Phil., A.F.R.Ae.S., (R.N.Z.A.F. Scientific Defonce Corps, seconded to the derodynamics Division of the N.P.L.)

7th August, 1952

Summary

Recently publishod mothods of deducing practical valuos of the varcuous control charactoristics from a knowledge of their theoretical values increasos the inportance of the thoory of twodimensional controls in an inviscid compressible fluid. The classical work of Glauert neglects comprossibilnty and aorofoil thicknoss, and while tho more recent work of Goldstoin and Preston ${ }^{3}$ includes thickness effects it ignores canpressibility. Furthomore this latter mothod achioves accuracy for thack aerofozls at the cost of a complicated method of calculation.

This paper presents a thoory of two-dinensional controls in comprossiblo flow which is alnost as simple to apply as Glauort's theory and is as accurate as tho mothod of Ref. 3. in example givon by Goldstem and Preston is troated by the author's method to illustrate this point.

1. Introduction

Definition of Symbols

(x, y)	the physical plane of zero incidence, whth an Argand plane
z	$=x+2 y, z=\sqrt{-1}$
(n, s)	distances neasured normal to and along a strcamline respectively
(q, θ)	volocity vector in polar co-ordinates
a	absoluto angle of incidence, i.e., measured from the no-lift position
7	flap deflection, moasured positively for a downward movenent of the flap
a, η	as suffixes to denote values at absolute incidences of a and flap deflections of : η
∞	as a suffil to donotc valucs at an infinnte distance from the aorofoil
U	$=q_{\infty}$
ν	ratio of specific heats . p_{po} /

Published with pormission of the Director, National Fhysical Laboratory
$P_{1} P_{0}$ local and stagnation densities respectively
(ϕ, ψ) plane of velocily equipotentials ($\phi=$ constant) and streamlines ($\psi=$ constant) for zero circulation $(\alpha=0)$, where

$$
\begin{equation*}
d \phi=q d s, d \psi=\frac{\rho}{\rho_{0}} q d n \tag{1}
\end{equation*}
$$

M local Mach number
$\beta \equiv\left(1-M^{2}\right)^{\frac{1}{2}}$
m is defined by the equation

$$
\begin{equation*}
m=\left(1-M^{2}\right)^{\frac{1}{2}} \frac{\rho_{0}}{\rho}=\beta \frac{\rho_{0}}{\rho} \tag{2}
\end{equation*}
$$

\boldsymbol{r} is defined by the equation

$$
r=\int_{q=U}^{q} \frac{1}{2}\left(m+m_{\infty}\right) \frac{\rho}{\rho_{0}} d\left(\begin{array}{cc}
\log & - \tag{3}\\
q
\end{array}\right)=r\binom{q}{\bar{U}}
$$

w is defined by the equation

$$
\begin{equation*}
w=\phi+i m_{c c} \psi \tag{4}
\end{equation*}
$$

z_{α} the physical plane for an absolute incidence of a, i.e.,

$$
\begin{equation*}
z_{\alpha}=e^{7 \omega_{z}} z \tag{5}
\end{equation*}
$$

(δ, y) ellipticco-ordinates defined by

$$
\begin{equation*}
\mathrm{w}=-2 a \cosh \zeta=-2 a \cosh (\delta+i y) ; \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& \text { the aerofoil surface is } \psi=0,-2 a \leqslant \phi \leqslant 2 a, \text { or } \delta=0 \text {, } \\
& \text { when }
\end{aligned}
$$

$$
\begin{equation*}
\phi=-2 a \cos \gamma \tag{7}
\end{equation*}
$$

c aerofoil chord when $\eta=0$
$(1-E) c$ the contour of the flap when undeflected meets the upper and
lower surfaces of the aerofoil at $x=(1-E) c$, thus Ec
is the "flap chord"
(1-E') o distance of hinge from leading edge of the aerofoil
$\left(E \div E^{\prime}\right)$

$$
\alpha^{\prime} /
$$

$a^{\prime} \quad$ incidence of the front part of the aerofoil measured from the $\eta=0$ chord line
$-\alpha_{0},-a_{0}^{\prime} \quad \begin{gathered}\text { no-lift angles for } \\ \text { thus }\end{gathered} \quad=0$ and $\eta \neq 0$ respectively,

$$
\begin{equation*}
a=a^{\prime}+a_{0}, \eta=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\alpha^{\prime}+\alpha_{0}^{\prime}, \eta \neq 0 \tag{9}
\end{equation*}
$$

C_{p} pressure coefficient
$\mathrm{C}_{\mathrm{L}} \quad$ lift coefficient
$\mathrm{C}_{\mathrm{n}} \quad$ moment coefficient
C_{H} hinge moment coefficient, such that the hinge moment is

$$
\frac{1}{2} \rho_{\infty} U^{2} E^{2} c^{2} C_{H}
$$

$a_{0}, a_{1}, a_{a} \quad a_{0}=\left(C_{L}\right)_{\alpha^{\prime}=\eta=0}, a_{1}=\binom{\partial Q_{L}}{--\bar{\partial}}_{a^{\prime}=\eta=0}, a_{2}=\binom{\partial C_{L}}{-\partial_{\eta}}_{a^{\prime}=\eta=0}$, whence to first order in a^{\prime} and η

$$
\begin{equation*}
c_{L}=a_{0}+a_{1} a^{\prime}+a_{2} \eta \tag{10}
\end{equation*}
$$

$h, L_{0} \quad h=-\binom{\partial C_{m}}{-\overline{\partial C_{L}}}_{C_{L}=\eta=0}, m_{0}=-\left(\begin{array}{c}\partial C_{L} \\ -- \\ \partial \eta\end{array}\right)_{C_{L}=\eta=0}$,
i.e., to first order

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}}=-\mathrm{h} \mathrm{C}_{\mathrm{L}}-\mathrm{m}_{0} \eta \tag{11}
\end{equation*}
$$

$\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \quad \mathrm{~b}_{0}=\left(\mathrm{C}_{H}\right)_{a^{\prime}=\eta=0}, \mathrm{~b}_{1}=\left(\begin{array}{c}\partial \mathrm{C}_{H} \\ -- \\ \partial \alpha\end{array}\right)_{a^{\prime}=\eta=0}, \mathrm{~b}_{2}=\left(\begin{array}{c}\partial C_{H} \\ -\bar{q} \\ \partial \eta\end{array}\right)_{\mathcal{K}^{\prime}=\eta=0}$
i.e., to first order

$$
\begin{equation*}
c_{H}=b_{0}+b_{1} a^{\prime}+b_{2} \tag{12}
\end{equation*}
$$

$\mathrm{b} \quad \mathrm{b}=-\left(\frac{\partial \mathrm{C}_{\mathrm{H}}}{--}\right)_{C_{\mathrm{L}}=\eta=0}$.

With the aid of (10) equation (12) can be writren

$$
C_{H}=b_{0}-\frac{b_{1} a_{0}}{a_{1}}+\frac{b_{1}}{a_{1}} c_{L}-\left(\frac{b_{1} a_{2}-a_{1} b_{2}}{a_{1}}\right) \eta
$$

so that

$$
\begin{equation*}
b=\frac{b_{1} a_{a}-a_{1} b_{2}}{a_{1}} \tag{13}
\end{equation*}
$$

This papor gives methods of calculating the quantities $a_{0}, a_{1}, a_{2}, m_{0}, h, b_{0}, b_{1}, b_{2}$ and b defined above, in subsonic twodinensional flow. Compressibility effects on these parameters are calculated by a theory hore accurate than linear perturbation theory, but not valid above the critical Mach number. The theory is applicable to aerofoils of zoderate thickness (say up to 20\% thick) and for small values of η.

An exact method for the calculation of a_{0}, a_{1} and h for aorofoils of any thockness in incompressible flow is given in Appendix I. The exact theory of the hinged flat plate in incompressible flow but without restrictions on the value of η is given in Appendix IV. A sumary of fomulae is given in Soction 4.

The independent variables of the theory to be given in the next section are δ and y definod by equations (4) and (6), while the dependent variables are r (equation(3)) and θ. The quantity r can be readzly cvaluated as a function of g / U. It has been shown (see Ref. 5) that whon the approxination

$$
m=m_{\infty} \quad \cdots(14)
$$

is admissiblc, r and θ aro conjugate hamonic functions in the w plane. (The theory is outlined in appendix V for the reader's convenience.) Equation (14) and an equation similar to (3) were first used by von Kár.án to show that ϕ and ψ are approximately hamonic functions in the (x, θ) planc. Although the theory given below is not really valld when H_{∞} is greater than that critical volue corresponding to the first appearanco of sonce spood locally (c.f. equation (2)), it can be still appliod with sone confidence to colculate the subsonzc field when small supersonic patchos oxist. This point is important in the theory of controls as a high but localized velocity peak does occur at the flap hinge on the upper surface when η is positive.

The complex number defaned by

$$
\begin{equation*}
f=r+i \theta \tag{15}
\end{equation*}
$$

is approximately an analytic function of $w(r$ and θ being conjugate hamonic functions), but if tho flow is inccapressible, $r=\log (\mathrm{U} / \mathrm{q})$, $w=\phi+i \psi$, and so

$$
\begin{equation*}
f=\log \binom{U}{-e^{i \theta}}=\log \left(\frac{U d z}{\square-}\right) \tag{16}
\end{equation*}
$$

Whence it follows that f is exactiy an analytic function of W. Thus the theory of Section 2 (but not of Section 3) will be exact in incompressible flow.

2. Basic Mathematioal Theory

The theory of this section is quite general and applies to aerofoils with or without deflected flaps.

If θ and θ_{α} are measured from the direction of flow at infinity, i.e., if $\theta_{\infty}=\theta_{a_{\infty}}=0$, it follows from equations (3) and (15) that

$$
\begin{equation*}
f_{\infty}=f_{a \infty}=0 \tag{17}
\end{equation*}
$$

Now f is an analytic function of w and therefore (see equation (6)) it is an analytic function of ζ. In fact, as shown in Ref. $4, *$.

$$
\begin{equation*}
f(\zeta)=-\frac{1}{\pi} \int_{y^{*}=-\pi}^{\pi} \log \sinh \frac{1}{2}\left(i \gamma^{\pi}-\zeta\right) d \theta\left(y^{\pi}\right), \tag{18}
\end{equation*}
$$

where $\theta\left(\gamma^{\mathrm{KI}}\right)$ is the value of θ on the aerofoil surface. Equation (18) is the no-lift solution. If- the aerofoil is placed at a small absolute angle of inoidence a, then on the Joukowski Hypothesis, as in Ref. 5 ;

$$
\begin{equation*}
f_{\alpha}(\zeta)=f(\zeta)-i \alpha-\log \frac{\sinh \frac{1}{2}(\zeta+2 i \alpha)}{\sinh \frac{1}{2} \zeta}, \tag{19}
\end{equation*}
$$

in which it is assumed that the trailing edge is at $\gamma=\pi$, and the stream direction is from $x=-\infty$ (see Fig. 1). The form of equation (19) shows that the effect of incidence on the front stagnation point is to displace it from $y=0$ to $y=-2 a$.

Important auxiliary equations carl be deduced by considering the form f_{α} takes near infinity. From equations (18) and (19) it follows that

$$
\begin{aligned}
& \mathbf{f}^{\prime}=+-\int_{\pi}^{1} \int_{y^{\beta}=-\pi}^{\pi}\left(\frac{1}{2} \zeta+\log 2\right) d \theta\left(y^{\pi}\right)-\infty \int_{2 \pi}^{i} \int_{y^{\pi}=-\pi}^{\pi} y^{\mathbf{x}} d \theta\left(y^{\pi}\right) \\
& +e^{+\zeta}\left\{2 i e^{+i \omega} \sin a+\frac{1}{\pi} \int_{\gamma^{K}=-\pi}^{\pi} e^{-i y^{K}} d \theta\left(y^{\#}\right)\right\} \\
& +e^{+a \zeta}\left\{i e^{+2 i \alpha} \sin 2 \alpha+\frac{1}{2 \pi} \int_{y^{\pi}=-\pi}^{\pi} e^{-2 i y^{\pi}} d \theta\left(y^{\pi}\right)\right\}+O\left(e^{+3}\right) .
\end{aligned}
$$

Comparing this with equation (17) we conclude that

$$
\begin{equation*}
\int_{\gamma^{n}=-\pi}^{\pi} d \theta\left(\gamma^{N}\right)=0, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{y^{n}=-\pi}^{\pi} y^{n} d \theta\left(y^{n}\right)=-\int_{-\pi}^{\pi} \theta\left(y^{n}\right) d y^{H}=0 . \tag{21}
\end{equation*}
$$

Equation (20) is the obvious requirement that $\theta\left(\gamma^{s}\right)=\theta\left(2 \pi+\gamma^{r}\right)$, while equation (21) fixes the orientation of the acrofoil for the nomift position. If $\underset{\sim}{\ominus}$ is measurcd from the aerofoil chord then $\theta=\underset{\sim}{\theta}+a_{0}$, and (21) yiclds

$$
\begin{equation*}
a_{0}=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underset{\sim}{\theta}\left(y^{3}\right) d y^{\pi} \tag{22}
\end{equation*}
$$

which fixes the value of the no-lift angle.
Fron equation (6), $w \rightarrow \infty$ implies that $\zeta \rightarrow-\infty$, and wo find

$$
e^{+c_{2}}=-\frac{a}{w}+o\left(\begin{array}{c}
a \\
w \\
w
\end{array}\right)^{3}
$$

and wo the expansion for f_{α} can bo written

$$
\begin{aligned}
& f_{\alpha}=-\frac{a}{W}\left\{2 i e^{+i \alpha} \sin a+\frac{1}{\pi} \int_{y^{H}=-\pi}^{\pi} e^{-i y^{\pi}} d \theta\left(y^{\pi}\right)\right\} \\
& +\left(\begin{array}{l}
a \\
- \\
i
\end{array}\right)^{2}\left\{1 e^{+2 i a} \sin 2 \alpha+\frac{1}{2 \pi} \int_{y^{N}=-\pi}^{\pi} e^{-2 i y^{N}} d \theta\left(y^{n}\right)\right\}+0\left(\begin{array}{l}
a \\
- \\
w
\end{array}\right)^{3} \cdot \ldots(23)
\end{aligned}
$$

From this equation we conclude that

$$
\begin{equation*}
\int_{y^{k}=-\pi}^{\pi} \cos y^{n} d \theta\left(y^{n i n}\right)=\int_{y^{x}=-\pi}^{\pi} \sin y^{x} d \theta\left(y^{k i}\right)=0, \tag{24}
\end{equation*}
$$

othervise when $a=0, f$ will have a term $0\left(\begin{array}{c}a \\ - \\ w\end{array}\right)$, and since from equation (3)

$$
\begin{equation*}
\frac{q}{U} \doteqdot e^{-r / \beta_{\infty}} \tag{25}
\end{equation*}
$$

q / U wall be of the form $1+\mathrm{A} /|\mathrm{w}|$ for large $|\mathrm{w}|$, and a liftproducing circulation will exist. (An alternatave proof for the case of incompressible flow appears in Appendux I.)

Finally it follows from equations (1) and (7) that on the aerofoil surface

$$
\begin{equation*}
\frac{s U}{2 a}=\int_{0}^{\gamma U \sin \gamma} \frac{q}{q} \frac{d y,}{} \frac{d}{} \tag{26}
\end{equation*}
$$

where the origin of s is taken at the front stagnation point.
This completes the account of the basic mathematical theory. The numerical application of this theory to the calculation of the compressible flow about aerofoils is gaven an Ref. 5.

3. The Aerofoil with a Hinged Flap at Small Angles of Deflection

The theory to be given below is only valid for small values of n, the flap deflection angle, Unfortunately a simple theory valid for large values of (say $>20^{\circ}$) is not possible, except in the case of a hinged flat plate (Appendix IV). In general if η is lafge the only recourse is to find the flow about the aerofoil and flap ab initio for each value of 7 . The author's polygon method ${ }^{5}$ described in the previous section, would be very suitable for such a calculation. However, as show below, a relatively simple theory applicable even to comparatively thick aerofoils can be doveloped when terms $O\left(\eta^{2}\right)$ can be neglected.

3.1 The Velocity Distribution

Subscripts a and η wall be used to denote values when the aerofoll is at an incidence absolute a with a flap deflection η, while the absence of subscripts denote the case $\alpha=\eta=0$. Conslder the aerofoll, for which $a=\eta=0$, show in Fig. 2(a). Wo shall suppose that the solution has been obtained for this case, and that therefore we have or can deduce g / U and s / c as functions of γ (defined by equation (7) and in Fig. 1). If the polygon method has been used to find the solution, q / U and s / c will be imediately available as functions of γ (see example (b) an Section 5); otherwise suppose q / U is given as a function of s, then the equation

$$
\frac{\phi}{-\overline{2 a}}=-\cos \gamma=\left(\begin{array}{c}
o U \tag{27}\\
-- \\
2 a
\end{array}\right) \int_{0}^{s / c} \frac{q}{} \frac{-d}{U}\left(\begin{array}{l}
s \\
- \\
0
\end{array}\right)-1,
$$

whach follows from (1) and (7), enables $s / c=s / c(y)$, and henoe $q / \mathrm{U}=\mathrm{q} / \mathrm{U}(y)$ to be calculated. The constant ($\mathrm{cU} / 2 a$) must satisfy

$$
1 \doteqdot\left(\begin{array}{c}
c U \\
- \\
2 a
\end{array}\right) \quad \begin{array}{cc}
p / c & q \\
i & - \\
0 & d\binom{s}{c}, ~
\end{array}
$$

where p is the perimeter dastance from the leading to the trailing edge.

In Fig. 2 the flap surface is shown starting at C, where
$y=\lambda_{0}$, and F, where $\gamma=-\lambda_{1}$. When $\eta=0$, each of C and F correspond to a value of $x / 0$ of $1-E$. The hinge will be taken to be at $x / c=1-E^{\prime}$, and of course for thin aerofoils $E \div E^{\prime}$.

The most important increments (θ_{p}, say) to θ due to the deflection of the flap are shown in Fig. 3. They are due to (i) the front stagnation point shifts to some point B, where $y=\lambda$ say, and consequently the flow durection between A and B is reversed, i.e., θ is decreased by π in $0 \leqslant \gamma \leqslant \lambda,(1 i)$ the deflection of the flap reduces θ by η in $-\pi \leqslant y \leqslant-\lambda_{1}, \lambda_{0} \leqslant y \leqslant \pi$, and (iii) θ is increased by $a_{0}^{\prime}-a_{0}$ in $-\pi \leqslant y \leqslant \pi$ due to a change in the nolift angle from a_{0} to a_{0}^{\prime}. Unfortunately these are not the only inorements to θ, for the modification to the velocity distribution which they produce (equation (39) bolow) slightly distorts the relation between s and y (equation (26)) and consequentiy causes a slight change $(\Delta \theta)$ in $\theta(y)$. We can thus write θ for $\eta \neq 0$ as

$$
\theta_{\eta}=\theta_{0}+\theta_{\mathrm{p}}+\Delta \theta
$$

where θ_{0} is the value of θ when $\eta=0$. For a thin aerofoil the distortion in the (s, y) relation mall result in quate small values of $\Delta \theta$ away from the nose of the aerofoil as $\Delta \theta=\Delta s / R$, where Δs is the change in s. The largest values of $\Delta \theta$ will be near the nose, but these will have a comparatively small effeot on the velocity distribution over the flap, and therefore on C_{H}. Thus only a small error will be introduced (except in the veloczty distribution near the nose) by writing

$$
\begin{equation*}
\theta_{\eta}=\theta_{0}+\theta_{p} \tag{28}
\end{equation*}
$$

Now θ_{0} satisfies equations (20), (21) and (24), and since θ_{η} must also satisfy the se equations, this must also be true of θ_{p}. The increment θ_{p} is a step function with jumps in value as set out in the following table:-

and consequently the Stieltjes integrals in equations (21) and (24) degenerate to

$$
\begin{align*}
2 \pi\left(n-a_{0}^{\prime}+a_{0}\right)-\eta\left(\lambda_{1}+\lambda_{0}\right)+\pi \lambda & =0 \tag{29}\\
\eta\left(\cos \lambda_{0}-\cos \lambda_{1}\right)+\pi(1-\cos \lambda) & =0 \tag{30}\\
\eta\left(\sin \lambda_{0}+\sin \lambda_{1}\right)-\pi \sin \lambda & =0 \tag{31}
\end{align*}
$$

Equation (20) is obviously satisfied by θ_{p}. Equations (30) and (31) yield

$$
\begin{equation*}
\lambda_{0}-\lambda_{1}=\lambda \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \frac{1}{2} \lambda=\frac{\pi}{\pi} \sin \lambda_{m} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{m}=\frac{1}{2}\left(\lambda_{0}+\lambda_{1}\right) . \tag{34}
\end{equation*}
$$

These equations imply that we oannot fix the positions of C and F (Fig. 2) independentiy. It is convenient to regard η and λ_{m} as the dependent variables. Equation (29) fixes the value of ($\alpha_{0}^{\prime}-\alpha_{0}$), the change in no-lift angle due to the flap deflection. Using equation (33) and ignoring terms $O\left(\eta^{2}\right)$ we find

$$
\begin{align*}
a_{0}^{\prime}-a_{0} & =\pi\left(1-\frac{\lambda_{\square}}{\pi}+\cdots \frac{\sin \lambda_{m}}{\pi}\right), \tag{35}\\
\text { whenoe } \quad\binom{\partial\left(\alpha_{0}^{\prime}-a_{0}\right)}{-\cdots}_{\eta=0} & =1-\frac{\lambda_{m}}{\pi}+\frac{\sin \lambda_{m}}{\pi} . \tag{36}
\end{align*}
$$

In Appendix III it is shown that these equations are exact for incompressible flow about a flat hinged plate.

Substitution of equation (28) in equation (18) yields
$f_{0, \eta}(\zeta)=f(\zeta)-i\left(\eta-a_{0}^{\prime}+a_{0}\right)+\frac{\eta}{\pi} \log \frac{\sinh \frac{1}{2}\left(\zeta-i \lambda_{0}\right)}{\sinh \frac{1}{2}\left(\zeta+i \lambda_{1}\right)}+\log \frac{\sinh \frac{1}{2} \zeta}{\sinh \frac{1}{2}(\zeta-i \lambda)}$.

If the aerofoil is now placed at an absolute incidence of a the front stagnation point will be displaced from $y=\lambda$ to $y=\lambda-2 a$, and hence (c.f. equation (19)) we will have

$$
\begin{align*}
f_{a_{g} \eta}(\zeta)= & f^{\prime}(\zeta)-i\left(\eta-a_{0}^{\prime}+a_{0}+a\right)
\end{align*}+\frac{\eta \sinh \frac{1}{2}\left(\zeta-i \lambda_{0}\right)}{\pi} \sinh \frac{1}{2}\left(\zeta+i \lambda_{1}\right) .
$$

On the aerofoil surface, $\delta=0$, and equation (37) becomes, with the aid of (32) and (34)

$$
\begin{equation*}
r_{\alpha, \eta}(y)=r(y)+\frac{\eta}{\pi} \log \frac{\sin \frac{1}{2}\left(y-\frac{1}{2} \lambda-\lambda_{m}\right)}{\sin \frac{1}{2}\left(y-\frac{1}{2} \lambda+\lambda_{m}\right)}+\log \frac{\sin \frac{1}{2} y}{\sin \frac{1}{2}(y+2 \alpha-\lambda)} \tag{38}
\end{equation*}
$$

where λ and λ_{m} are related by equation (33). The velocity distribution now follows from equation (3). At low Mach nurabers the approximation (25) is valid, when equation (38) yields

$$
\begin{equation*}
\left.\left.\frac{q_{x_{2} \eta}(y)}{U}=\frac{q\left\{\sin \frac{1}{2}\left(y-\frac{1}{2} \lambda+\lambda_{m}\right)\right.}{U-\sin \frac{1}{2}\left(y-\frac{1}{2} \lambda-\lambda_{m}\right)}\right\}^{\eta / \pi \beta_{x}}\left\{\sin \frac{1}{2}(y+2 \alpha-\lambda)\right\}^{\sin \frac{1}{2} y}\right\}^{1 / \beta_{\infty}} . \tag{39}
\end{equation*}
$$

In the calculation of the various derivatives appearing in equations (10), (11) and (12) it will be convenient at first to regard a and n as independent variables. Subsequently a will be replaced by (equations (9) and (35))

$$
\begin{equation*}
a^{\prime}=a^{\prime}+a_{0}+\eta\left(1-\frac{\lambda_{m}}{\pi}+\frac{\sin \lambda_{m}}{\pi}\right), \tag{40}
\end{equation*}
$$

so that a^{\prime} and η become the independent variables.

$$
\text { 3.2 Calculation of } c_{L}, a_{0}, a_{1}, a_{2}
$$

The lift coefficient, C_{L}, is defined by the contour integral taken round the aerofoil surface

$$
c_{L}=-\frac{1}{c} \oint c_{p} \cos \theta d s,
$$

where the pressure coefficient C_{p} is a funotion of γ, η and a. Thus, since

$$
\begin{align*}
& \frac{1}{-\cos \theta \mathrm{ds}=} \frac{00 \cos \theta}{-\cdots q} \mathrm{~d} \mathrm{\phi}=\binom{2 a}{\frac{-}{U c}}\left(\begin{array}{c}
U \cos \theta \\
\cdots \\
\cdots
\end{array}\right) \sin y d y, \\
& C_{I}=-\left(\begin{array}{c}
2 a \\
- \\
U C
\end{array}\right) \int_{-\pi}^{\pi} C_{p} \sin y\binom{U \cos \theta}{\hdashline-\cdots} d y . \tag{41}
\end{align*}
$$

If v is the ratio of the specific heats, C_{p} is given by

$$
c_{p}=-\frac{2}{v M_{\infty}^{2}}\left\{\left[\begin{array}{c}
v-1 \\
2
\end{array} w_{\infty}^{2}\left\{\binom{q_{\alpha}, \underline{2}}{-U}^{3}-1\right\}\right]^{v / v-1}-1\right\},
$$

from which it follows that

$$
\begin{equation*}
\frac{\partial C_{p}}{\partial(q / U)}=-2\left(\frac{q}{U}\right) \frac{p}{p_{c J}} . \tag{42}
\end{equation*}
$$

It is easily doduced from equations (3), (33) and (38) that

and

and hence from equation (42)

$$
\binom{\partial C_{p}}{-\overline{\partial_{a}}}_{\alpha=\eta=0}=-\frac{2}{\beta_{c \rho}}\left(\begin{array}{c}
q \tag{43}\\
- \\
U
\end{array}\right)^{2} \cot \frac{1}{2} \gamma
$$

and

$$
\binom{\partial C_{p}}{--\frac{2}{\partial \eta}}_{a=\eta=0}=\frac{--\chi}{\beta_{\infty}}\left(\frac{q}{U}\right)^{2}\left\{\begin{array}{ccc}
1 & \sin \frac{1}{2}\left(y-\lambda_{m}\right) & \sin \lambda_{m} \\
-\log & -\cdots \frac{1}{2}\left(\gamma+\lambda_{m}\right) & \pi
\end{array}\right], \ldots(44)
$$

where

$$
\chi=\frac{2 m_{\infty}}{m+m_{c j}},
$$

Is a function of $9 / U$. Thas function is given in Table 2 of Ref. 5 for $\mathrm{Mi}=0.5,0.7$ and 0.79 . Differentiating equation (41) wath respect to a and η, and making use of equations (43) and (44), we fand
$\binom{\partial C_{L}}{-\overline{\partial \alpha}}_{a=\eta=0}=\bar{\beta}_{c o}^{2}\binom{4 a}{-\overline{U c}} \int_{-\pi}^{\pi} \chi\binom{q}{-\cos \theta} \cos ^{2} \frac{1}{2} \gamma d y$,
and
$\left(\frac{\partial C_{L}}{--\overline{\partial \eta}}\right)_{a=\eta=0}=-\frac{1}{\beta_{-0}}\left(\begin{array}{c}4 a \\ -- \\ U c\end{array}\right) \int_{-\pi}^{\pi} x\left(\frac{q}{\frac{q}{U}} \cos \theta\right) \sin y$

$$
\times\left\{\begin{array}{l}
1 \tag{46}\\
-\log \frac{\sin \frac{1}{2}\left(y-\lambda_{m}\right)}{\pi} \sin \frac{\sin \lambda_{m}\left(y+\lambda_{m}\right)}{\pi}+\frac{\pi}{\pi} \cot \frac{1}{2} y
\end{array}\right\} d y
$$

If the polygon method of calculating q / U has been used, ($4 a / \mathrm{Uc}$), $\frac{q}{-}(y)$ and $\theta(y)$ will be knom, $\chi(y)$ can be readily deduced from tables U such as those given in Ref. 5, and so the integral in (45) can be evaluated numerically withont diffioulty. A onlonlation of this type appears in Ref. 5.

A simple approximation can be found by writing

$$
\begin{equation*}
x=\frac{q}{U} \cos \theta=1 \tag{47}
\end{equation*}
$$

in the integrals of equations (45) and (46). i/e find

$$
\begin{align*}
\left(\begin{array}{c}
\partial C_{L} \\
-- \\
\partial a
\end{array}\right)_{\alpha=\eta=0} & =--\left(\frac{2 \pi}{\beta_{\infty}}\binom{4 a}{U_{C}},\right. \tag{48}\\
\text { and } \quad\left(\begin{array}{c}
\partial C_{L} \\
-- \\
\partial \eta
\end{array}\right)_{\alpha=\eta=0} & =0 . \tag{49}
\end{align*}
$$

Equation (49) is in any oase obvious since C_{L} depends only on a. Fram

$$
\left.C_{L}=a\left(\frac{\partial C_{L}}{\partial a}\right)_{\alpha=\eta=0}+\eta\left(\frac{\partial C_{L}}{--}\right)^{\partial \eta}\right)_{a=\eta=0}
$$

and equations (40), (48) and (49) It follows that

A comparison of this equation with equation (10) yields

$$
\begin{align*}
& a_{0}=-\frac{2 \pi}{\beta_{-a}}\binom{4 a}{\overline{U c}} a_{0} \tag{50}\\
& a_{1}=--\left(\begin{array}{c}
4 a \\
\beta_{x} \\
U 0
\end{array}\right) \tag{51}
\end{align*}
$$

and

$$
\begin{equation*}
a_{a} / a_{1}=1-\frac{\lambda_{m}}{\pi}+\frac{\sin \lambda_{m}}{\pi} . \tag{52}
\end{equation*}
$$

It is well-known that for thick aerofoils in inoompressuble flow equations (50) and (51) are exact (see Appendix I), while in Appendix IV it is shown that equation (52) is exact for the flat plate in incompressible flow. An approxamation for the parameter ($4 \mathrm{a} / \mathrm{Jc}$), which oocurs throughout the theory, is given in Appendix II.

3.3 Calculation of $\mathrm{C}_{\mathrm{m}}, \mathrm{h}$ and m_{o}

The equation corresponding to (41) for the moment coefficient about the leading edge is

$$
C_{m}=\left(\begin{array}{c}
2 a \\
-- \\
U c
\end{array}\right) \int_{-\pi}^{\pi} C_{p}\left(\begin{array}{l}
x \\
-\quad y \\
c \\
c
\end{array}\right)(\tan \theta)\left(\begin{array}{l}
u \\
-\cos \theta \\
q
\end{array}\right) \sin \gamma d \gamma,
$$

where x / c is measured from the leading edge. Differentiating this equation with respect to α and η and making use of equations (43) and (44) we find

$$
\binom{\partial C_{m}}{-\partial \alpha}_{\alpha=\eta=0}=-\frac{2}{\beta_{\infty}}\left(\begin{array}{c}
4 a \\
- \\
U c
\end{array}\right) \int_{-\pi}^{\pi} \chi\left(\begin{array}{ll}
x & y \\
\bar{c}+\frac{c}{c} \tan \theta
\end{array}\right)\binom{q}{\frac{\mathrm{U}}{\mathrm{U}} \cos \theta} \cos ^{2} \frac{1}{2} \gamma d y,
$$

and

$$
\begin{aligned}
& \times\left\{\begin{array}{lc}
1 & \sin \frac{1}{2}\left(\gamma-\lambda_{m}\right) \\
-\log -\cdots \frac{\sin }{} \lambda_{m} \\
\pi & \sin \frac{1}{2}\left(y+\lambda_{m}\right) \\
\pi & \pi-\cdots \frac{1}{2} y
\end{array}\right\} \sin \gamma d y,
\end{aligned}
$$

which can be evaluated directly when q / U has been calculated by the polygon method.

Approximations to these equations can be found by writing $U \mathrm{Ux}=2 \mathrm{a}+\phi$, which leads to

$$
\frac{x}{\bar{c}}=\frac{1}{2}\left(\begin{array}{c}
4 a \\
- \\
U_{c}
\end{array}\right)(1-\cos y)
$$

lgnoring the very smail " $\frac{y}{c} \tan \theta$ " term, and using equation (47). The results are

$$
\begin{align*}
& \left(\begin{array}{c}
\partial C_{m} \\
-\cdots \\
\partial a
\end{array}\right)_{\alpha=\eta=0}=-\frac{\pi}{2 \beta_{c o}}\left(\frac{4 \mathrm{a}}{-\cdots}\right)^{2}, \tag{53}
\end{align*}
$$

but $C_{I}=a_{1} a$, and so it follows fron equations (48), (53) and the definitions of h and $n o$ that ${ }^{+}$

$$
\begin{align*}
& h=\begin{array}{c}
1 \\
-\left(\begin{array}{c}
4 a \\
4 \\
U c
\end{array}\right) \\
m_{O}=-\frac{1}{2 \beta_{C J}}\binom{4 a}{\overline{U C}}^{2} \sin \lambda_{m}\left(1-\cos \lambda_{D}\right)
\end{array} .
\end{align*}
$$

3.4 Calculation of c_{H}, b_{0}, b_{1} and b_{a}

By coiparison with the equation for C_{2} given in Section 3.3
it is clear that the coefficient of the hinge moment, C_{H}, is given by ${ }^{++}$
$C_{H}=\left(\begin{array}{c}2 a \\ - \\ U c\end{array}\right) \frac{1}{E^{2}}\left(\int_{-\pi}^{-\lambda_{1}}+\int_{\lambda_{0}}^{\pi}\right) C_{p}\left\{\begin{array}{l}x \\ -\quad-1+E^{\prime}+\frac{y}{c} \tan \theta \\ c\end{array}\left(\begin{array}{l}U \\ -\cos \theta \\ q\end{array}\right) \sin y d y\right.$,
the hinge being at $x / c=1-E^{\prime}$, where $y=\lambda_{1}$, say, From equations (32) and (34), $\eta \rightarrow 0$ inplies $\lambda_{1} \rightarrow \lambda_{D} \rightarrow \lambda_{I}$. Thus

which has to be calculated numerically just as in the exact treatment of equation (45)

Differentiating/

[^0]Differentiating equation (55) we find, with the aid of equations (43) and $(4,4)$, that

$$
\begin{aligned}
& \left(\frac{\partial \sigma_{\mathrm{H}}}{\partial a}\right)_{\alpha=\eta=0}=-\frac{2}{\beta_{\infty} \mathrm{E}^{2}}\left(\frac{4 \alpha}{U c}\right)\left(\int_{-\pi}^{-\lambda_{\mathrm{m}}}+\int_{\lambda_{\mathrm{I}}}^{\pi}\right) \chi\left\{\begin{array}{l}
\mathrm{x} \\
\left.--1-\mathbb{E}^{1}+\frac{\mathrm{y}}{\mathrm{c}} \tan \theta\right\}
\end{array}\right. \\
& \times\left(\frac{q}{U} \cos \theta\right) \cos ^{2} \frac{1}{2} y d y \\
& \text { and }{ }^{H}
\end{aligned}
$$

Equations (57) can be evaluated numerically, but for thin acrofoils travclling at speeds such that in is vell below the critical ivach number the following approximations vill be sufficiently accurate. Ve wrate

$$
\lambda\left\{\begin{array}{l}
x \\
\frac{x}{c}-1-E^{t}+\frac{y}{c} \tan \theta
\end{array}\right\}\binom{q}{\frac{q}{U} \cos \theta}=\frac{1}{2}\left(\frac{1+a}{U c}\right)\left(\cos \lambda_{m}^{\prime}-\cos \gamma\right)
$$

which results in

$$
\begin{aligned}
\left(\begin{array}{c}
\partial C_{H} \\
\left.-\frac{\partial a}{\partial a}\right)_{a=\eta=0}=
\end{array}\right. & -\frac{1}{\beta_{c} J^{2}}\left(\frac{4 a}{U_{i}}\right)^{2} \\
& \times\left\{\sin \lambda_{m}\left(1+\frac{1}{2} \cos \lambda_{m}-\cos \lambda_{m}^{\prime}\right)+\left(\pi-\lambda_{m}\right)\left(\cos \lambda_{m}^{\prime}-\frac{1}{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{\partial C_{11}}{\partial \eta}\right)_{a=\eta=0}= & -\frac{1}{2 \pi \beta}\left(\frac{4 a}{-}\right)^{2} \operatorname{Ein} \lambda_{m} \\
& \times\left\{\left(\pi-\lambda_{m}\right)\left(1-\cos \lambda_{m}\right)-\sin \lambda_{m}\left(1+\cos \lambda_{m}-2 \cos \lambda_{m}\right)\right\}
\end{aligned}
$$

Norr/

[^1]Now

$$
\mathrm{C}_{\mathrm{H}}=\left(\mathrm{C}_{\mathrm{H}}\right)_{\alpha=\eta=0}+a\left(\frac{\partial \mathrm{C}_{H}}{\partial \alpha}\right)_{\alpha=\eta=0}+\eta\left(\frac{\partial \mathrm{C}_{H}}{\partial \eta}\right)_{\alpha=\eta=0},
$$

and using equation (40) we have
$C_{H}=\left\{\left(C_{H}\right)_{\alpha=\pi=0}+a_{0}\left(\begin{array}{c}\partial C_{H} \\ --\infty \\ \partial \alpha\end{array}\right)_{\alpha=\eta=0}\right\}+a^{\prime}\binom{\partial C_{H}}{-\overline{\partial \alpha}}_{\alpha=\eta=0}$

$$
+\eta\left\{\left(1-\frac{\lambda_{2 a}}{\pi}+\frac{\sin \lambda_{i I}}{\pi}\right)\binom{\partial \mathrm{C}_{\mathrm{H}}}{-\cdots a}_{a=\pi=0}+\left(\frac{\partial \mathrm{C}_{\mathrm{H}}}{--}\right)_{\alpha=\eta=0}\right\}
$$

Comparing thas equation whth (12), and using the values of the derivatives found above, we conclude that

$$
\begin{align*}
& b_{0}=\left(C_{H}\right)_{\alpha=\eta=\eta}-\frac{a_{O}}{\beta_{S} E^{2}}\left(\frac{4 \mathrm{a}}{U c}\right)^{2} \\
& \left\{\sin \lambda_{m}\left(1+\frac{1}{2} \cos \lambda_{m}-\cos \lambda_{m}^{\prime}\right)+\left(\pi-\lambda_{m}\right)\left(\cos \lambda_{m}^{\prime}-\frac{1}{2}\right)\right\} \\
& b_{1}=-\frac{1}{\beta_{S} E^{2}}\left(\frac{4 a}{U c}\right)^{2}\left\{\sin \lambda_{m}\left(1+\frac{1}{2} \cos \lambda_{m}-\cos \lambda_{m}^{\prime}\right)+\left(\pi-\lambda_{m}\right)\left(\cos \lambda_{\mathrm{D}}^{\prime}-\frac{1}{2}\right)\right\} \\
& \left.b_{2}=-\frac{1}{\pi \beta_{D} E^{2}}\left(\begin{array}{l}
L_{L} a \\
-- \\
U C
\end{array}\right)^{2}\left\{\left(\pi-\lambda_{I I}\right) \sin \lambda_{I I}+\frac{1}{2} \sin ^{2} \lambda_{m}-\left(\frac{1}{2}-\cos \lambda_{m}^{\prime}\right)\left(\pi-\lambda_{m}\right)^{a}\right\},\right\} \tag{58}
\end{align*}
$$

while from $C_{I}=a_{1} a$ and the definition of b we have
$b=-\frac{1}{2 \pi \beta_{N} E^{2}}\left(\begin{array}{c}4 a \\ -- \\ U c\end{array}\right)^{2} \sin \lambda_{m}\left\{\left(\pi-\lambda_{m}\right)\left(1-\cos \lambda_{L}\right)-\sin \lambda_{m}\left(1+\cos \lambda_{\mathrm{L}}-2 \cos \lambda_{m}^{\prime}\right)\right\}$.

4. Summary of Formulae

The formulae given in Section 3 for the control characteristios are of two types:- (a) the accurate integral formulae, suoh as equations (57), and (b) the approxinations, such as equations (58). The integral formulae are relatively sirplc to apply, particularly if g / U is calculated by the polygon nethod, but they do involve a few hours computation. The author considers that thoy are sufficiently accurate for most purposes for aerofoils of thickness ratio less than 20%

will be summarized below, will, in the author's opinion, give reliable results for aerofolls of thickness ratio less than, say 10^{c}, when ins: $<$ ($\mathrm{II}_{\text {crit. }}-0.2$). hs far as thackness effects are concerned it appears fron the example in the next section that these approximations are more accurate than the method given in Ref. 3 called "Approxination III, Simple Theory", which involves numerical intigration as in the author's more accurate mothod.

The rato of change of the no-lift angle is given by

$$
\begin{equation*}
\left(\frac{\partial\left(\alpha_{0}^{\prime}-\alpha_{0}\right)}{\partial \eta}\right)_{\eta=0}=1-\frac{\lambda_{\mathrm{r}}}{\pi}+\frac{\sin \lambda_{\mathrm{r}}}{\pi}, \tag{36}
\end{equation*}
$$

where, from equation (27) $\lambda_{1 / 1}$ satisfics

$$
\cos \lambda_{\mathrm{r} 2}=1-2\left(\begin{array}{c}
\mathrm{cU} \tag{60}\\
-- \\
4 \mathrm{a}
\end{array}\right) \int_{0}^{-\stackrel{\mathrm{s}}{\mathrm{~s}} / \mathrm{c}} \frac{\mathrm{q}}{} \quad \overline{\mathrm{U}} \mathrm{~d}\left(\begin{array}{c}
\mathrm{s} \\
- \\
\mathrm{o}
\end{array}\right),
$$

in which \bar{s} is the distance from the front staunution point to the comenoment of the flap. The ratio ($4 \mathrm{~N} / \mathrm{Jo}$) is given approxinately by (equation (90), Appendix II)

$$
\left(\begin{array}{c}
4 a \tag{61}\\
- \\
U c
\end{array}\right)=1+\frac{1}{2 \pi \beta_{r},} \int_{0}^{c} \frac{y_{u}-y_{\ell}}{x(c-x)} d x
$$

(the suffices u and ℓ referring to the upper and lover surfaces respectively) or alternatively, from equation (27)

In equations (60) and (62) s/c can be roplacod by $x / 0$ for thin aerofozls.

The numbers a_{0}, a_{1} and a_{a} aro given by

$$
\begin{align*}
& a_{0}=\begin{array}{c}
2 \pi \\
\overline{\beta_{i,}}
\end{array}\binom{4 a}{\bar{u}} a_{0}, \tag{50}\\
& a_{1}=\begin{array}{l}
2 \pi \\
\beta_{c j} \\
\binom{4 a}{U c}, ~
\end{array} \tag{51}\\
& \text { and } \quad a_{2}=a_{1}\left(1-\frac{\lambda_{\pi}}{\pi}+\frac{\sin \lambda_{1 i}}{\pi}\right) \text {, } \tag{52}
\end{align*}
$$

where/
where a_{0} is given approxamately by (equation (91), hppendax II)

$$
a_{0}=\left(\begin{array}{c}
\mathrm{Uc} \tag{63}\\
-- \\
4 a
\end{array}\right)^{3 / 2} \frac{1}{\pi} \int_{0}^{c} \frac{\left(y_{u}+y_{i}\right)}{x^{2}(c-x)^{3 / 2}} d x
$$

The deravatives h and m_{0} (equations (54)) are given by

$$
\begin{align*}
h & =\frac{1}{4}\binom{4 a}{\overline{U c}} \tag{64}\\
\text { and } \quad m_{0} & =-\frac{1}{2 \beta_{\infty}}\left(\begin{array}{l}
4 a \\
-- \\
U c
\end{array}\right)^{2} \sin \lambda_{m}\left(1-\cos \lambda_{m}\right), \tag{65}
\end{align*}
$$

while b_{0}, b, b_{1} and b_{2} are given by equations (58) and (59) of the previous section. Usually it is sufficient to write $\lambda_{m}^{\prime}=\lambda_{m}$, when the equations for b_{1} and b become

$$
b_{1}=-\frac{1}{E^{3} \beta_{\omega}}\left(\begin{array}{c}
4 a \\
-2 \\
U c
\end{array}\right)^{2}\left\{\sin \lambda_{m}\left(1-\frac{1}{2} \cos \lambda_{m}\right)-\left(\pi-\lambda_{m}\right)\left(\frac{1}{2}-\cos \lambda_{m}\right)\right\}, \ldots(66)
$$

and $b=-\frac{1}{2 E^{2} \beta_{j 0}}\left(\begin{array}{l}4 a \\ - \\ U c\end{array}\right)^{2} \sin \lambda_{m}\left(\begin{array}{cc}\lambda_{m} & \sin \lambda_{I n} \\ 1-\frac{\pi}{\pi} & \pi\end{array}\right)\left(1-\cos \lambda_{m}\right)$.

The derivative b_{2} then follows from equation (13).
The equations given above for the control deravatives differ from those given by Glauert ${ }^{2}$ only by
(i) the compressibility term, $1 / \beta_{\infty}$,
(ii) the 'thyckness' term, $\left(\begin{array}{c}4 a \\ - \\ U c\end{array}\right)$, and
(iii) the moaning to be assigned to $0^{\circ} \lambda_{\mathrm{m}}$. (λ_{m} is the angular comordinate of the hinge in the $(\hat{1},-1)$) plane in the author's theory, whereas in Glauert's theory λ_{m} is the angular co-ordinc.te of the hinge in the (x, y) plane.)

In Ref. 11 Perring extended Glauert's flat plate theory to plates with multiply-hinged flaps. The analysis of this paper is easily extended to aerofoils with such flaps. If Perring's results are modified as described in (i), (ii) and (iii) above there will result the author's approxinate equations for this type of flap.

5. Examples

(a) An Example given in Ref. 3

Goldstein and Preston gave as an example of their method, the calculation of b, b_{1} and b_{2} for a symmetrical "roof-top" aerofoil for which the velocity distribution is defined to be

$$
\frac{q}{U}= \begin{cases}1.1337+0.1213 x & 0 \leqslant x \leqslant 0.6 \\ 1.2064-0.9706(x-0.6) & 0.6 \leqslant x \leqslant 1.0\end{cases}
$$

The flap commences at $x / c=0.8$, and the flow is incompressible. If it is assumed that $\mathrm{x} / \mathrm{c} \doteqdot \mathrm{s} / \mathrm{c}$ in equations (60) and (62), then from the given velocity distribution (normally this would have to be calculated as a first step), it $2 s$ easily found that

$$
\lambda_{\mathrm{m}}=132^{\circ} 1^{\prime}, \quad \text { and } \quad \frac{4 a}{\mathrm{Uc}}=1.1070
$$

(In Glauert's theory $\lambda_{M}=180^{\circ}-\cos ^{-1}(0.6)=126^{\circ} 52^{\prime}$, and $\left.\frac{4 a}{-a}=1.\right)$
Thus fro equations (63), (36), (50), (51), (52), (64), (65),
(66), (67) and (13) we find respectively
$a_{0}=0,\binom{\partial a_{0}^{0}}{\partial \eta}_{\eta=0}=0.503, a_{n}=0, a_{1}=6.956, a_{2} / a_{1}=0.503$,
$h=0.277, m_{0}=0.760, b_{1}=-0.376, b=0.572$, and $b_{2}=-0.763$.
The values of b_{1}, b_{2} and b given in Ref. 3 are compared with those given above in the following table.

The approximate: theory of 'this paper appears from this example to be very satisfactory, particularly as this aerofoil is 15, thick.
(b) Aerofoil RAT 104 at if $3=0.7$

The compressible about the symmetrical aerofoil, R LE 104 was calculated in Ref. 5 by the polygon method. The following figures taken from Table 6 of that report apply to $\mathrm{M}_{5}=0.7$.

γ°	0	3			9		15	21	27	35	45	55^{-7}	65
x / c	0	0.00			. 0067		. 0177	0.0337	0.054	0.087	0.140	0.204	0.275
$9 / \mathrm{U}$	0	0.47			883		. 051	1.110	1.139	1.156	1.176	1.178	1.180
y°		75					105	115	125	135	145	155	165
x / c		352	0.4		0.5		0.597	0.676	0.755	0.827	0.889	0.941	0.977
q / U		181	1.1		1.1		1.167	1.110	1.053	1.005	0.967	0.927	0.878

y°	175	180
$x / 0$	0.997	1.000
$\mathrm{~g} / \mathrm{U}$	0.790	0

$$
\binom{4 a}{-\overline{U c}}=1.1200
$$

We shall calculate the control characteristics for a flap commencing at $x / c=0.75$. By interpolation in the above figures we find that at $x / c=0.75, \gamma=\lambda_{\mathrm{m}}=125^{\circ} 40^{\prime}$. Also $1 / \beta_{2}=1.4003$, and hence from the equations given in Section 4 we find that
$a_{0}=0,\binom{\partial a_{0}^{\prime}}{\partial \eta}_{\eta=0}=0.561, a_{0}=0, a_{1}=9.854, a_{a} / a_{1}=0.561$,
$h=0.280, \mathrm{~m}_{0}=1.129, \mathrm{~b}_{1}=-0.624, \mathrm{~b}=0.783, \mathrm{~b}_{\mathrm{a}}=-1.133$.

References

No. Author(s)
Title, Eto.

2 H. Glauert Theoretical relationships for an aerofoil with

1 I. W. Bryant, A. S. Halliday and A. S. Batson
3. S. Goldstein and J. H. Preston

Two-dinensional control characteristics. (23rd March, 1950). R. \& M. 2730. hinged flap. (April, 1927). R, \& h. 1095.

Approximate two-dimensional aerofoil theory.
Part VI. Aerofoils with hinged flaps.
(August, 1945). C.F.73.

Reierences (Contd.)

No.	Author(s)	Titl θ, etc.
4	L. C. Woods	The two-dimensional subsonic flow of an inviscid fluid about an aerofoil of arbutrary shape. R. \& in. 2811. Noveniber, 1950.
5	L. C. Froods	The application of the polygon method to the calculation of the eanpressible subsonic flow round two-dinensional profiles. C. P. No. 115. June, 1952.
6	Th. von Kármán	Compressibility effects in aerodynamics. Jour. Aoro. Sci., Vol.8, No.9, July, 1941.
7	Liepmann and Puckett	Introduction to the aorodynamics of a compressible fluia. John Filey and Sons. 1947.
8	L. 2ir M l Ine-Thomson	Thoorotical hydrodynamics. inamillan \& Co., 1949.
9	IV. J. Lighthzll	i now mothod of two-dumensional aerodynamic design. R. \& in. 2112. Aprıl, 1945.
10	H. Glauert	Lorofoll and airscrew theory. Combridge, 1926.
11	W. G. A. Perring	The theoretical relationship for an aerofoil whth a multiply hinged flap system. R. \& M. 1171. Aprıl, 1928.

APPENDIX I/

APPENDIX I

An Exact Method of Calculating a_{1} and h in Incompressible Flow

The origin in the z plane wall be taken at the 'oentre of the aerofoil profile ${ }^{8}$, which is defined by the equation

$$
\begin{equation*}
\operatorname{Lim}_{\omega \rightarrow \infty 0}(U z-W)=0 . \tag{68}
\end{equation*}
$$

It is shown in Ref. 4, §19 that

$$
\begin{equation*}
\mathrm{U}_{z}=\mathrm{w}-\frac{2 \mathrm{U}}{2 \pi} \int_{-\pi}^{\pi} y\left(\gamma^{\pi}\right) \operatorname{coth} \frac{1}{2}\left(\zeta-i \gamma^{\pi}\right) d \gamma^{\pi}, \tag{69}
\end{equation*}
$$

the conjugate equation to which is

$$
U z=w-\frac{U}{2 \pi} \int_{-\pi}^{\pi}\left\{x\left(y^{\pi}\right)-\frac{\phi}{U}\right\} \operatorname{coth} \frac{1}{2}\left(\zeta \sim i \gamma^{\pi}\right) d \gamma^{\pi},
$$

where $x\left(y^{*}\right), y\left(y^{*}\right)$ are the aer stoil comadinates. By addition of these results, and taking $\operatorname{Lim}_{\rightarrow \rightarrow c s}$ which is equivalent to $\underset{\omega \rightarrow c y}{\operatorname{Lim}}$ (equation (6)), we find that the origin must be taken in the z plane so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} x\left(y^{3}\right) d y^{\pi}=\int_{-\pi}^{\pi} y\left(y^{3 \pi}\right) d y^{3}=0 \tag{70}
\end{equation*}
$$

If the axis $x=0$ is taken to satisfy equation (21), then the z plane is completely fixed in position.

If (X, Y) is the force acting on the acrofoil, and M is the nose-up moment about the origin (defined by (70)), then the theorem of Blasius ${ }^{8}$ is that
$X-i Y=\frac{1}{2} i \rho \int_{c}\left(\frac{d w_{a}}{d z_{a}}\right)^{2} d z_{\alpha}, \quad M+i N=\frac{1}{2} \rho \int_{c} z_{\alpha}\left(\frac{d w_{a}}{-m} z_{a}^{2} d z_{\alpha}\right.$,
i.e., from equations (5) and (16)
$X-i Y=\frac{1}{2} i \rho e^{-2 \alpha_{U}} \int_{c} e^{-2 f_{\alpha}+f} d w, M+i N=\frac{1}{2} \rho e^{-2 i a_{y}} \int_{c} z e^{-2 f_{\alpha}+f^{f}} d w$,
where C Is an: closed contour about the acrofoll. The only
contributions to these integrals arise from tho coeffacients of $1 / \mathrm{w}$ in the expansions of the integrands. Consider first the force (X,Y). From equations (23) and (71) we find

$$
X-i Y=-\pi a p J\left\{4 i \sin a-\cdots \int_{y^{H}=-\pi}^{\pi} e^{-i y^{\#}} d A\left(\gamma^{*}\right)\right\},
$$

and since this must vanish when $a=0$, we have an alternative proof of equations (24). Thus

$$
X=0, Y=4 a \pi \rho U \sin \alpha,
$$

and the lift ooefficient is given by

$$
C_{L}=\frac{Y}{\frac{1}{2} \rho c U^{2}}=2 \pi\left(\begin{array}{c}
4 a \tag{72}\\
- \\
U c
\end{array}\right) \sin \alpha .
$$

This equation is a well-known text book result, but the cosresponding result for C_{m} given below is possibly new.

From equation (71)

$$
M+i N=+\rho \pi i e^{-2 i \alpha} \times\left(\begin{array}{llll}
\operatorname{cocf} \cdot \text { of } & \frac{1}{W} & \text { in } \left.U z e^{-2 f_{\alpha}+f^{\prime}}\right) \tag{73}
\end{array}\right) .
$$

Equations (16), (23) and (24) yield

$$
f^{\prime}=\log \left(\begin{array}{c}
U d z \\
-- \\
d W
\end{array}\right)=\frac{a^{2}}{2 \pi W^{2}} \int_{\gamma^{4}=-\pi}^{\pi} e^{a \operatorname{ai} \gamma^{*}} d \theta\left(\gamma^{\pi}\right)+O\left(\begin{array}{c}
a \\
- \\
W
\end{array}\right)^{3}
$$

and hence with the aid of equation (68), we have

$$
U_{z}=w-\frac{a^{2}}{2 \pi w} \int_{y^{K}=-\pi}^{\pi} e^{-2 i y^{3}} d \theta\left(y^{W 6}\right)+0\left(\begin{array}{l}
a \tag{74}\\
- \\
w
\end{array}\right)^{2} .
$$

From equations (23) and (24) it follows that

$$
e^{-a f_{\alpha}^{\prime}+f}=1+-\frac{4 a i}{w} 0^{+i \alpha} \sin a-\frac{a^{2}}{w^{2}}
$$

$$
\begin{equation*}
\times\left\{2 i e^{+a i a} \sin 2 a+8 e^{+a i \alpha} \sin ^{2} a+\frac{1}{2 \pi} \int_{y^{H}=-\pi}^{\pi} e^{-2 i y^{\#}} d \theta\left(y^{H}\right)\right\}+0\binom{a}{\bar{w}}^{\beta} . \tag{75}
\end{equation*}
$$

Now $C_{\text {m }}^{\prime}=\frac{\text { II }}{\frac{1}{2} \rho \mathrm{c}^{2} \mathrm{U}^{2}}$, where $\mathrm{C}_{\mathrm{m}}^{\prime}$ is the moment coefficient about the origin defined by equation (70), and so from (73), (74) and (75) it follows that
$C_{m}^{\prime}=\frac{\pi}{4}\binom{4 a}{\overline{U c}}^{2} \sin 2 a$

The conjugate equation to this was given by Laghthill ${ }^{9}$ for application to the problem of aerofoll design.

An alternative form of this equation oan be found thus. From equations (6) and (69)

$$
\begin{aligned}
\frac{d z}{d w} & =1 \cdot-\frac{U i}{8 a \pi \sinh \zeta} \int_{-\pi}^{\pi} y\left(y^{*}\right) \operatorname{cosech}^{2} \frac{1}{2}\left(\zeta-i y^{\pi}\right) d y^{\pi} \\
& =1+\frac{i a U}{\pi v^{2}} \int_{-\pi}^{\pi} e^{i y^{\pi}} y\left(y^{\pi}\right) d y^{\pi}+0\left(\begin{array}{c}
a \\
- \\
w
\end{array}\right)^{3},
\end{aligned}
$$

i.e., $\log \binom{U d z}{--w}=f=\frac{-i a U}{\pi w^{2}} \int_{-\pi}^{\pi} y\left(y^{H}\right) e^{i y^{3}} d y^{\pi}+0\left(\frac{a}{w}\right)^{3}$.

Comparing this equation with (23) (with $\alpha=0$) we conclude that

$$
\begin{align*}
& \int_{y^{\pi}=-\pi}^{\pi} \cos 2 y^{\pi} d \theta\left(y^{\pi}\right)=8\left(\begin{array}{l}
\text { U0 } \\
-- \\
4 a
\end{array}\right) \int_{-\pi}^{\pi} c_{0}^{y}-\left(y^{\mu}\right) \sin y^{*} d y^{\mu} \tag{77}\\
& \text { and } \quad \int_{y^{*}=-\pi}^{\pi} \sin 2 y^{\pi} d \theta\left(y^{\pi}\right)=-8\left(\begin{array}{l}
U c \\
-- \\
4 a
\end{array}\right) \int_{-\pi}^{\pi}{ }_{-}^{j}\left(y^{\mu}\right) \cos y^{\pi} \mathrm{d} y^{\mu} \text {. } \tag{78}
\end{align*}
$$

Thus equation (76) can be written in the form

$$
\begin{aligned}
& \left.C_{m}^{\prime}=\frac{\pi}{-\left(\frac{4 a}{U c}\right.}\right)^{2} \sin 2 \alpha
\end{aligned}
$$

If the polygon method of finding the velocity distribution about the aerofoil has been used then the functions $\begin{aligned} & x \\ & -\left(y^{F i}\right), \\ & c\end{aligned} \frac{y}{c}\left(y^{F}\right), \theta\left(y^{3}\right)$ and ($4 \mathrm{a} / \mathrm{Uc}$) will be immediately available, and C_{m} and C_{L} can be calculated directly.

Suppose the centre of the profile lies at a distance \bar{x} then

$$
\left.h=\bar{x}-\left(\frac{\partial C_{m}^{\prime}}{-\overline{-}}\right)_{I}\right)_{a=0} \text {, approximately }
$$

ie., from (79),

$$
h=\bar{x}-\frac{1}{4}\binom{4 a}{U c}\left\{1-\frac{4}{\pi}\binom{U c}{-a} \int_{-\pi}^{\pi y} \begin{array}{c}
\pi \tag{80}\\
-\left(y^{*}\right) \sin y^{\#} d y^{\pi}
\end{array}\right\} .
$$

If we write

$$
\begin{equation*}
U x \doteq 2 a+\phi=2 a(1-\cos \gamma), \tag{81}
\end{equation*}
$$

$$
h \doteq \bar{x}-\frac{1}{4}\binom{4 a}{-\overline{U c}}\left\{1-\frac{8 A}{\pi c^{2}}\left(\begin{array}{c}
U c \tag{82}\\
- \\
4 a
\end{array}\right)^{2}\right\},
$$

where A is the area of the aerofoil, but this equation requires knowing $\bar{x}-\left(\begin{array}{c}40 \\ - \\ U_{c}\end{array}\right)$. The numbers $\left(\begin{array}{c}40 \\ -- \\ U_{c}\end{array}\right)$ and \bar{x} are discussed in Appendices II and III respectively.

APPENDIX II

This important ratio occurs throughout the theory. In the polygon method 5 it is calculated as an essential step from (c.f. equation (26))

$$
\bar{p}\left(\begin{array}{c}
c U \tag{84}\\
- \\
4 a
\end{array}\right)=\frac{1}{2} \int_{0}^{\pi} \begin{gathered}
\pi \sin y \\
q
\end{gathered}
$$

where p is the distance between the stagnation points measured along the upper surface. Integration of equation (18) by parts results in

$$
r(y)=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \theta\left(y^{\pi}\right) \cot \frac{1}{2}\left(y^{3}-\gamma\right) d y^{3 \pi}
$$

on the aerofoil surface, and the approximation (25) then yields

$$
\begin{equation*}
\frac{U}{q} \doteq e^{r / \beta \cdot 3} \doteq 1+-\frac{1}{2 \pi \beta_{\alpha}} \int_{-\pi}^{\pi} \theta\left(y^{\pi}\right) \cot \frac{1}{2}\left(y^{\pi}-y\right) d y^{\pi} \tag{85}
\end{equation*}
$$

For aerofoils of moderate thickness $p \doteq c$, and hence from (84) and (85)

$$
\left(\begin{array}{c}
\mathrm{c} U \tag{86}\\
-\infty \\
4 a
\end{array}\right)=1+\underset{2 \pi \beta_{n}}{1} \int_{-\pi}^{\pi} \theta\left(\gamma^{\pi}\right) \sin y^{\pi} \log \left|\tan \frac{1}{2} y^{F}\right| d y^{3 \pi}
$$

If we make use of the approximation (81) then

$$
\int \theta\left(y^{\bar{\pi}}\right) \sin y^{F i} d y^{F i} \div\left(\begin{array}{c}
U \\
- \\
2 a
\end{array}\right) \int \begin{aligned}
& d y \\
& --d x \\
& d x
\end{aligned}=\left(\begin{array}{c}
U 0 \\
- \\
4 a
\end{array}\right) \begin{gathered}
2 y \\
- \\
c
\end{gathered}
$$

and so integrating (86) by parts we have

$$
\left(\begin{array}{c}
4 a \tag{87}\\
- \\
U c
\end{array}\right) \doteqdot 1+\frac{1}{\pi \beta}, \int_{-\pi}^{\pi}\left(\begin{array}{c}
y \\
- \\
0
\end{array}\right) \frac{d y^{\bar{y}}}{\sin y^{5!}} .
$$

It can be shown from equation (69) that this equation is exact in incompressible flow.

From (87) it follows that the effect of compressibility on $\binom{4 a}{-\overline{U c}}$ is given by

$$
\left(\begin{array}{c}
4 a \tag{88}\\
\cdots \\
U c
\end{array}\right)=1+\frac{1}{B_{c}}\left\{\left(\begin{array}{c}
4 a \\
-- \\
U c
\end{array}\right)_{2}-1\right\}
$$

where $\left(\begin{array}{c}4 a \\ -- \\ U_{0}\end{array}\right)_{i}$ is the value in incompressible flow. Thus, for example, a_{1} (equation (51)) $2 s$ related to $\left(a_{1}\right)_{2}$ by

$$
\begin{equation*}
a_{1}=\frac{2 \pi}{\beta_{i}}\left\{1+\frac{1}{\beta_{i}}\left(\frac{\left(a_{1}\right)_{i}}{-2 \pi}-1\right)\right\} . \tag{89}
\end{equation*}
$$

A useful approximation for $\left(\begin{array}{c}4 a \\ - \\ U c\end{array}\right)$ follows from (81) and (87). If y_{u} and y_{C} denote values of y at opposite points on the upper and lower surface respectively, then we find

$$
\left(\begin{array}{c}
4 . a \tag{90}\\
- \\
U 0
\end{array}\right) \doteq 1+\frac{1}{2 \pi \beta_{\infty}} \int_{0}^{0} \frac{y_{u}-y_{i}}{x(0-x)} d x
$$

Approximations to many of the equations gaven in this paper can be found by using equation (81). For example consider equation (22) for α_{0}. Making use of equations (24), which are olearly independent of the origin of θ, we can write

$$
a_{0}=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underset{\sim}{\theta}\left(\gamma^{\bar{\pi}}\right)\left\{1-\cos y^{\xi}\right\} d y^{\pi}
$$

which after some calculation reduces to the approximate form

$$
a_{0}=\left(\begin{array}{c}
U c \tag{91}\\
-- \\
40
\end{array}\right)^{3 / 2} \frac{1}{\pi} \int_{0}^{0} \frac{y_{u}+y_{l}}{x^{\frac{T}{2}}(c-x)^{-3 / 2}} d x
$$

When (Jc/4a) is taken equal to unity this equation is in agrement wath the usual formule of than acrofoil theory ${ }^{10}$.

APPENDIX III

An Approximation for h

If the centre of the profile is at a diatance \bar{x} fion the leading edge, then taking the origin of the (x, y) plane at the luading edge, we find from equation (70) that

$$
\bar{x}=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} x(y) d y
$$

in integration by parts results in

$$
\begin{aligned}
& \bar{x}=c-\frac{1}{2 \pi} \int_{-\pi}^{\pi} y \underset{d x d s d \phi}{d \phi} d y \\
& \dot{\bar{\gamma}} d y \\
& \frac{a}{\pi U} \int_{-\pi}^{\pi}-y \sin y d y,
\end{aligned}
$$

since $\quad \begin{aligned} & \mathrm{d} \phi \\ & \overline{d y}\end{aligned}=2 a \sin y, \frac{d x}{d s} \dot{\bar{d} y} \quad 1 \quad$ and $\quad \begin{aligned} & d s \\ & \overline{d \phi}\end{aligned}=\frac{1}{q}$.

If the value of U / q from the incoupressible form of equation (85) is now substituted in this equation for \bar{x}, then with the aid of (24), it is found that

$$
\bar{x}=c-\frac{2 a}{U}+\frac{2 a}{\pi U} \int_{-\pi}^{\pi} \theta(y) \sin y \log \cos \frac{1}{2} y d y .
$$

Writing $\theta \doteqdot \mathrm{dy} / \mathrm{dx}$, and integrating by parts we have

$$
\begin{equation*}
\bar{x} / c=1-\frac{1}{2}\left(\frac{4 a}{U c}\right)+\frac{1}{2 \pi} \int_{-\pi}^{\pi} y(y) \tan \frac{1}{2} y d y . \tag{92}
\end{equation*}
$$

Finally from equations (80), (87) and (92) it follows that

$$
h_{1}=\frac{1}{4}+\frac{1}{2 \pi} \int_{0}^{\pi}\left(\begin{array}{cc}
y_{u} & y_{l} \tag{93}\\
-\cdots & -- \\
c
\end{array}\right)\left(2 \sin y-\frac{1+2 \cos y}{-2 \sin \gamma}\right) d y
$$

In evaluatine the integral it is usually sufficient to write,

$$
\cos y=\binom{2 x}{1-\frac{c}{c}}
$$

When h_{1}, the ancompressable flow value of h, has been found from (93), it follows from (c.f. Equation (89))

$$
\begin{equation*}
h=\frac{1}{4}+\frac{1}{\beta_{\infty}}\left(h_{1} r-\frac{1}{4}\right) \tag{94}
\end{equation*}
$$

APFENDIX IV

The Exact Theory of the Hinged Flat Plate in Incompressible Flow

Fig. 4(a) shows the flat plate at the no-lift position, while Fig. 4(b) shows the relation (θ, γ), which should not be conf'used with the relation shown in Fig. 3(b) where the meaning of γ is slightly different.

$$
\text { Equations (24) lead to } \begin{array}{rlrl}
\sin \frac{1}{2} \lambda & =\frac{\eta}{\pi} \sin \lambda_{1 n} \\
\text { and } & \lambda & =\lambda_{1}-\lambda_{0} \\
\text { where } & \lambda_{11} & =\frac{1}{2}\left(\lambda_{1}+\lambda_{0}\right),
\end{array}
$$

'while equation (21) leads to the value

$$
\alpha_{0}=\eta\left(1-\frac{\lambda_{\mathrm{n}}}{\pi}+\frac{\sin \lambda_{\mathrm{n}}}{\pi}\right)
$$

for the no-lift angle. From equations (16) and (18) we find that the velocity distribution is given by

$$
\frac{q}{\bar{U}}=\sin \frac{1}{2} y \quad\left[\begin{array}{c}
\sin \frac{1}{2}\left(y+\lambda_{1}\right) \\
\cdots \sin \frac{1}{2}(y+\lambda) \\
\sin \frac{1}{2}\left(y-\lambda_{0}\right)
\end{array}\right]^{\eta / \pi},
$$

and hence from equation (26) the (s, γ) relation is given by

$$
\begin{aligned}
& \overline{s U}=\int_{0}^{y} \cos \frac{1}{2} y \sin \frac{1}{2}(y+\lambda)\left[\begin{array}{c}
\sin \frac{1}{2}\left(y-\lambda_{0}\right) \\
\hdashline \sin \frac{1}{2}\left(y+\lambda_{1}\right)
\end{array}\right]^{\eta / \pi} d y . \\
& \text { Substitution of the (} \theta, y \text {) relation in equation (76) leads to } \\
& C_{D}^{1}=\frac{\pi}{4}\binom{4 a}{U c}^{2}\left\{\sin 2 \alpha-\cos (2 a-\lambda)\left(\sin \lambda-\frac{\eta}{\pi} \sin 2 \lambda_{m}\right)\right\},
\end{aligned}
$$

and so

$$
\begin{aligned}
& \binom{\partial C_{n}^{\prime}}{--\dot{\partial \alpha}}_{\eta=a=0}=\frac{\pi}{2} \\
& \binom{\partial C^{\prime}}{-\frac{I}{\eta}}_{\eta=a=0}=-\frac{1}{2} \sin \lambda_{\mathrm{m}}\left(1-\cos \lambda_{\mathrm{L}}\right)
\end{aligned}
$$

as it is easily shown fron equation (86) that $\mathrm{cU} / 4 \mathrm{a}=1+0\left(\eta^{2}\right)$.

APPENDIX V

Basic Mathematicai Theory

The theory is based on the equations 7

$$
\frac{\partial \theta}{\partial n}+\left(1-H^{2}\right) \frac{1}{\partial q} \frac{\partial q}{q s}=0, \quad \frac{\partial \theta}{\partial s}-\frac{1}{q}-\bar{q}=0,
$$

which with the ald of equations (1), (2) and the transformation

$$
d r=\left(1-M^{2}\right)^{\frac{1}{2}} \alpha\left(\log -\frac{U}{q}\right),
$$

can be written in the form

$$
\begin{equation*}
\frac{\partial \theta}{\underline{\partial \psi}-\frac{\partial r}{m}=0, \frac{\partial \theta}{\partial \phi}=\frac{1}{\partial \phi}+\frac{\partial r}{m} \overline{\partial \psi}=0 .} \tag{95}
\end{equation*}
$$

From (2) it is readily found that in subsonce flow

$$
m=m_{\infty}\left\{1+\frac{v+1}{2 p^{2}} i_{i}^{4}\left(\frac{q}{u}-1\right)+0\left[\left(\frac{q}{u}-1\right) \underline{u}\right)\right],
$$

so that for thin aerofoils $\left(\begin{array}{l}q \\ -\sim 1 \\ U\end{array}\right)$ at high subsonzc Mach numbers or thick aerofoils at lower subsonic Mach numbers, von Kármán's approximation

$$
\begin{equation*}
m=m_{\infty} \tag{96}
\end{equation*}
$$

Is plausible. This approxamation enables (95) to be written as the Cauchy-Ryemann equations

$$
\frac{\partial \theta}{\overline{\partial\left(m_{\infty} \psi\right)}}-\frac{\partial_{r}}{\partial_{\rho}^{\prime}}=0, \frac{\partial \theta}{\partial \phi}+\frac{\partial_{r}}{\partial\left(m_{\infty} \psi\right)}=0 .
$$

Since, in any application we shall make, these four derivatives exist and are continuous in the open doman outside the aerofoil contour, wo can write

$$
r+i \theta \equiv f_{u}\left(\phi+1 m_{c} \psi\right),
$$

or If $w_{a}=\dot{\varphi}+2 m_{\infty} \psi$,

$$
\begin{equation*}
f_{a}=f_{a}\left(w_{\omega}\right) \tag{97}
\end{equation*}
$$

Where tho suffix a denotes the appropiriate incidence (measured from tho no-lıft angle).

A particular case of (97) is tho nomift solution

$$
\begin{equation*}
f=f(\mathrm{~W}) \tag{98}
\end{equation*}
$$

Now for small angles if incidence (only such angles are important In the papor), we mako the assumption that w_{a} is an analytic function of w, i.c., that (97) can be written

$$
\begin{equation*}
f_{a}=f_{a}(w) . \tag{99}
\end{equation*}
$$

for incompressible flow (99) is exactly true, since both w and W_{α} are analytic functions of z. It $1 s$ important to notice that the approximation involved in (99) is merely one of the location of the solution f_{d}, and it is similar in character to the approximation conmonly made in enginooring applications of the Kármán-Tsien method (cf. reference 7, p.183). The approximation recenves some experimental verification in reference 5. Further verification of its plausibility is to be found in the approximate equations of section 4 , where it yields the same compressibility factor, $1 / \beta_{\infty}$, as that predicted by the linear perturbation theory.

It can be verified that the modified definition of r given by equation (3) is consistent with the approximation (96). It is an empirical modification made, because as shown in reference 5, it leads to improved agreement with experiment.

With the aid of equation (6) it is found that the value of f gaven by equation (18) satisfies equation (97) and the appropriate boundary condztions. When the aerofoil is placed at an angle of incidence α, on the aerofoil surface θ_{α} is given by

$$
\theta_{\alpha}(*)=\begin{array}{ll}
\theta\left(y^{*}\right)-a, & -\pi \leqslant y^{*} \leqslant \pi \tag{100}\\
+\pi & -y_{0} \leqslant y^{*} \leqslant 0,
\end{array}
$$

where the π term is due to the reversal in flow direction caused by the displacemont of the front stagnation point from $y^{*}=0$ to $\gamma^{*}=-\gamma_{0}$. (By the Joukowski Hypothesis the position of the rear stagnation point is unchanged.) The value of γ_{0} is fixed by the condition that the flow at infinity must be undisturbed. It is not dufficult to verify that f_{a} given by (19) satisfies equation (99), the boundary conditions (100) and leaves the flow at infinity undisturbed. Full details of the proof of these results from equation (99), is to be found in reference 4.

Fig 1
Fig 2

(a) Z_{α} plane

(b) ω plane (zero circulation)

Fig 3

(a) z plane, $\eta \neq 0$

(b) $\left(\theta_{p}, \gamma\right)$

Fig. 4

(a) z plane

(b) (θ, γ)

C P. No. 138
$(15,107)$
ARC. Technical Report

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLLSHED BY HER MAJESTY's STATIONERY OFFICE
To be purchased from
York House, Kingsway, LONDON, w.c. 2423 Oxford Street 4 LONDON, w. 1
P.O. BOX 569, LONDON, S E 1

13a Castle Street, edinburgh, 21 St. Andrew's Crescent, cardiff
39 King Street, manchister, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belpast or from any Bookseller

1953
Price 8s 6d net
FANTED IN OREAT ERITABM

[^0]: ${ }^{+}$In incompressible flow this equation for h gives results accurate to within 0.010 provided the maximum thickness is less than 0.10 and ocours in the range $0.40 \leqslant x \leqslant 0.6 c$. A more accurate equation for h in inoompressible flow is given in Appendix III.
 ${ }^{++}$Note that the "non-dimensionalizing" distance for C_{H} is Ec, not E'c.

[^1]: This expreasion neglcots a very small term due to the dependence of tho limats of the integrals in oquation (155) on η.

