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1 Addendum to Introduct10n, p.4 

It should be mentioned that many of the thcorzes developed for 
turbulent skin frwtlon 111 compresslblc flow stem from the pioneer work 
of Frank1 and voXhe94. 

2 titensmn of mn.ge of vahhty of conclusion 6, p.31 

A&Qtional expdm.mtal cvldence'5d8 now makes It possible to extend 
the comparisons shown m F1gs.3 and 7. This 1s done u Flg.10, Much 
shows tha-c both Rubesln's mterpolatlon formula (equation 33) and also 
equation 32b (resultmy from the assumption of constancy of velomty 
pmfdej give va~~az~ons of sku fmctlon m reasonable agreement rVlth 
expervnent at least up to M = 4.5. All the experunental results viere 
obtained under zero heat transfer conhtions, but If conclusion 3 is 
valid this v~ould mean that the formulae mould also be adequate under 
heat transfer cond;ltions for values of T,/r 

1 
q2 to 5. Ecperlmental 

checks of the heat transfer case are obvuus y hghly desirable. 

Some of' the experunental results in Fzg,lO are for local skin 
fndion, whereas the curves are based on formulae for mean skin fndlon. 
The two are not strwtly comparable If the Xach number variation is 
dependent on the Re olds number of the test, as 1s inducted by theory. 
For example at 7.7 T, = 4 and Re = IO million, the assumpttlon of con- 
stancy of velocity profile xould give a value of local sian friction 
rat10 Cf/Cf approxunately 5 per cent below the corresponbng ratlo 
for mean s& fzlctlon as given in Fig.10. However a difference of 
this order w.s not considered slgn;nlflcant. 

Likewise, small varlatlons could also arue from alterations in the 
index chosen for the vrscoslty temperature relatlontip (v;hwh ~;as taken 
as 0.8 in Fig.10) 
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0.X’. No.lL2 

Technz~csl Note No. Aero 2162 

Ausst, I 952 

SUl&Y -___ 

Despxte a lack of expcru~ental ewlence, numerous formulae have 
been developed for the vanat~on of turbulent skrn fnctxn on a flat 
plate m compressLble flax, T;;-lth and %xthout heat transfer. 

Tie present note makes an extended comparxon of avslable formulae 
and exannnes the assumptions made WI theu dtvclopmont, chcciung aganst 
experimental endencc yihcrc. possxbli. 

It shovs that the shcanng stress aswnptun 

gives the values of twbulcnt skm frici,lon UI best agreoucnt with cxperi- 
mental results in the regxon 1.6 < I.1 < 2.8 under zero heat transfer conal- 
t1ons. However, the fonulao gxvcn m Rcfs.9 and IO (based on the assump- 
t1on of constancy of velocity prof1lcj gxvc equally good agrccmcnt -v;lth 
expenmcntnl results 132 ths range, hav.vi tho zent of slmpllclty and under 
lmat transfer cond.ltxnxs the forxuls of Rcf.10 zzves 3. reasonable approxl- 
matron to results obtruned fror: the hhovc shcxxng stress assumption. 

Therefore xt 1s suggcstcd that the latter fomulac should be 
sufflclently accurate in apphcat.tlon probably up to X = 4 until further 
cxpermental cvrdence may make refmcnent possible. 
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1 Introduction 

i By contrast with the laminar boundary layer, evaluatxon of the 
turbulent boundary layer XI compressible flow is hampered by a lack of 
knowledge of the mechanism of turbulence under such conditions. Even 

2 measurements of the mean flow conditions m compressible turbulent 
boundary layers are few 2.n number, particularly under heat transfer 
conditions. 

However a number of authors have developed formulae for the skin 
friction in the compressible turbulent boundary layer on a flat plate 
with zero pressure gradlent. There have been two starting points for 
these developments, The fust is to generalise the expression for shear- 
ing stress accepted in incompressible flow and to make plausible as?ump- 
tions concerning the boundary condi ions. 
Ferrar5.3, Li4, Van Dries@, 2 

Tw was done by Rubesin , ,2 
Clemmow , Wilson and by Smith and Harmp . 

The second 1s to assume that the log-law velocity distribution found in 
inoompressible flow will apply also in compressible flow If density and 
vlscosit 

TO 
are evaluated at wall temperature. This was done by Cope9 and 

Monaghan . 

As a result, numerous formulae are available, some more complex 
than others, and comparison is made diffxult by differences m notation 
and In methods of presentation. A comparison of some of the formulae is 
made by Rubesin, Maydew and Varga in Ref.3. The object of the present 
note 1s to extend thus comparison and also to examine more fully the 
back-ground to the assumptions made in the varxous investigations. 

To that end, section 2 gives a survey of the position in incompres- 
sible flow and sections 3 and 4 exarmne the generalisations which are 
made in going to compressible flow. Section 5 then gives a graphical 
comparison of the various formulae available under zero heat transfer 
conditions and section 6 considers the case when heat is being transferred. 
It will be seen that of the two "starting points" mentioned above, the 
first is not so far 1.n advance of the second as it might appear, mainly 
because of the restrictive nature of the boundary conditions assumed. 

An attempt has been made to keep the mathcmatlcs to a muumum and 
experimental evidence is drawn upon where available. 

2 Velocities and skin friction. Incompressible flow 

In the mathematxal treatment of turbulent incompressible flow 
(see Ch.V of Ref.1) it is usually assumed that the motion can be separated 
into 

(4 a mean flop whose components are u, v, w* 

and (b) a superposed turbulent flow whose components are u', v', w', 
the mean values of which are zero. 

* u, Y and w are the velocity components parallel to the x, y and e 
axes respectively. TFe notation here is changed from that of Ref.1, 
where II, V and W refer to the mean flow and u, v and w refer to the 
fluctuating flow. 
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Thus at any time the velocities at a point in the fluid are u + u', 
v + Y' w + w' and by substztutlon of these quantities rn the equations 
of n&on and of continuity, and by takmg mean values, it is found that 
the resulting equations for the mean flow can be expressed m "laminar" I 
form if stress components such as 

are added to the stresses associated with viscosity. These virtual 
stresses are known as Reynolds stresses. (The bar over the top of a 
fluctuating quantity denotes a mean value north respect to time at a fixed 
point. Thus by definition 

but, in general, correlatlons such as 

will not be zero). 

After making the usual boun 
7 

layer approximations it can then 
be shown that the shearing stress (T in a two dimensxonal incompressxble 
turbulent boundary layer 1s given by 

(1) 

where p is density 

and u is viscosity. 

Except in limited regions very close to the wall, the Reynolds 
stress will outweigh the viscous stress, in which case equation (1) becomes 

(t z =-puv (Ia) 

The quantity pu'v' can be interpreted as representing the rate of 
transport by turbulence of x-momentum across unit area of a plane normal 
to the y-axis. For its determmnatlon, Prandtl put forward the hypothesis 
that 

if the mean velocity u is a function of y only. Equation (2) serves 
to define a "mxcture length" 4 and is based on the assumption that 

-- 
u’2c 92 

and that u' and v' are closely correlated. 
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Over a. small region of the boundary layer close to the wall we may 
assume that 

T = const 

= 7 
0 

where z. 1s the local shearing stress at the wall. 

In the same region there are two hypothesis avadable for predicting 
4 . The first 1s that of Prandtl, who took 

4 = k,y (33) 

and the second is that of Von Karman, who took 

where k, and k2 are constants. 

Velocity distributions near the wall can then be deterrmned ns 
follows. 

2.1 Velocity distributxons 

2.11 Assummg the Prandtl miring length 8 = k,y 

Taking T = lco, combination of equations (la), (2) and (3a) gives 
a first order differential equation whxch integrates to give the velocity 
distribution 

v = j+ In rl + const (4) 

where cp=: 

q= T 

v 1s kinematic viscosity = L! 
I-- P 

and %= + 
4 > 

1s the so called "frxtion velocity". 

Because of the assumptions trade In its aerivatlon x+-e should only 
expect this dxtributlon to be valid close to the wall, but in fact it is 
found that experimentally observed velocity distributions in pipes are 
well fitted In their entirety (Ref.?, Ch.VIII, pp.336) by taking k, = 0.4 
and the constant to be 5.5, i.e. 

‘p = 2.5 In q + 5.5 

= 5.75 log10 rl + 5.5 

as plotted in Fig.1 

(5) 
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The same experimental results also support the idea that very close 
to the wall there is a "laminar sub-layer" 
ate. In this region (from equation (I)) 

where viscous stresses predomin- 
I 

and hence the velocity profile is given by 

(6) 

as plotted in Fig.1. 

Between the laminar sub-layer (equation (6)) and the turbulent core 
(equation (5)), there is a transition re@on where the viscous and 
Reynolds stresses are of comparable magrutude. It happens that equation (4) 
gives a reasonable fit to the experimental results in this region if we 
choose k, = 0.2 and the constant to be -3.05, i.e. 

cp= 5lnq-3.05 (5a) 

This curve 1s shown in Fig.1. It meets the turbulent core (equation (5)) 
at n = 30 and has a smooth join with the lannnar sub-layer (equation (6)) 
at iy = 5. 

Between them, equations (5), (5a) ad (6) specify the velocity dis- 
tribution across the whole of the turbulent boundary layer. This analysis 
including the transition region is due to Von Karman. Earlier analyses 
made by Taylor and by Prandtl postulated that there was a sharp boundary 
between the laminar sub-layer (equation (6)) and the turbulent core 
(equation (5)). Reference to Flg.1 shows that this would occur at 

and this value is usually denoted by "s". This is of interest since it 
forms a boundary condition much used by authors when deriving formulae 
for the turbulent boundary layer in compressible flow. It can easily be 
shown in this case that combining equation (4) with the boundary condition 

cp=?l= 8 (7) 

at the edge of the laminar sub-layer gives 

as the equation for the velocity distribution 1~1 the turbulent core. 

. 
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i 
2.12 Assuming the Vcn Karman mixing length 4 = k au /!A 

2 dY ay2 

In this case, comblnatun of equations (I), (2) and (3b) gives 
second order differential equation which, by successive integrations 

m -= 
(81 

C, eqk2T 

and 

rp= &In k2 Cq + j;?- In (TI + C2) 
2 2 

a 
gives 

(8) 

(9) 

Thus in distinction to the result obtained frcm the Prandtl mixing 
length, there are now twc constants (in addition to k2) avaIlable for 
determining the velocity distribution. 

Follcwing the Taylor-Prandtl analysis, one constant is determined 
by the boundary condition 

q= n= s (7) 

At the junction with the larmnar sub-layer, and the second constant can 
be determined by assigning a slope to the proflle at the same point, i.e. 

when I+= -q= s 

Equation (9) then becouzes 

ks 

q=enk2f e 
+ L1n(?l+1-5) 

k2 k2f 

The form of the result usually quoted (equation (5)) requires 

1 8 zz- 
k2f 

and k2 = k, 

(Thus if k, = 0.4 and s =- II.6 we have f = 0.216). 

(Ya) 

The subscripts‘ to -k will therefore be dropped in the subsequent 
work. 

" -5 '-~~~~~y 2 = .~ .--';~; 
Equaticli~;(-Sa)~also~~~~rrmts another solution which iS of interest in 

that it agree2 &sly &ll~tith:experlmental results in the transition 
region as well as in the turbulent ccre. This is obtained by taking 

f =I 
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(i.e. continuity of slope at the junction tith the laminar sub-layer) 
and by choosing s so'that the resulting profile agrees with equation (5) 

8 

v = 5.5 + 2.5 ln?l 

when 71 is large. With k = 0.4 this means that 

S = 7.0 

and equation (9a) becomes 

'p = 5.5 + 2.5 In (‘i - 5.3) 

(5) 

(9b) 

1 

The resulting curve is shown in Flg.1. 

The form of equation (B) is referred to in Ref.2 as the basis of 
the "Buffer Layer Analysis" and it should be noted. that it cannot be 
obtained from the Prandtl rmxing length. (Section 2.11). 

2.2 Skin friction 

This is obtained by substltutzng the above velocity profiles in the 
momentum equation 

(10) 

where "f is the local skin friction ooefficlent 

and 9 is the free stream velocity 

(This is the form of the momentum equation which is applicable when there 
are no pressure gradients in the stream direction). 

(Thus 9 = : = vs) 

then equation (IO) can be written 

1 

? _ = v2 .$ v2 
I 6 

z (1 - 2) 
Y ip 3 

0 

(104 
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and it can easily be shown that use of either the Prandtl or the Karman 
mixing length gxves 

1 ekv(s-;) 
= f 

(8a) 

Substituting equation (8a) in equation (lOa) and integrating 
neglecting the very small influence of the laminar sub-layer where 
3 = 1) we obtain the final result, valid if v is large, 
w 

1 - 1 --- ln kzfeks 

+ '/-& 
+ -!- In Re, cf (11) 

=f 2 Jik 

UIX 
where Re, = - v ' 

Numerical values are as follows, for k = 0.4, 

(a) from the Taylor-Prandtl analysis whxh assumes a sharp 
junction between the laminar sub-layer and turbulent core, 
giving s = 11.6 and f = 0.216, 

-& = 1.04 + 4.07 log,;Rex cf 
c5 f 

(114 

and (b) from the buffer layer analysis, giving s = 7.8, and f=l, 

-$ = 1.05 + 4.07 loglo Re, cf 
CT f 

(11b) 

and this equation is close to that which would be obtained by modifying 
the Taylor-Prandtl analysis to include Karman's transition region. 

However, Kempf's experimental results for a flat plate support the 
formula 

1 - = 1.7 + 4.15 log10 
CfF 

Rex Cf 

(usually quoted as the Karman-Kempf formula, see Ref.1, Ch.VIII, pp.364). 
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Thus B slight forcing of constants is necessary if equation (II), derived 
from pipe-flow velocity distributions, is to be applied to give the skin 
friction on a flat plate. 

Turning now to mean skin friction coeffxxents (CF) defined by 

s 

e 
To ax 

cp = 0 

2.8 

where 
f 

$PUl 

z. dx is the total friction over 8 length 8 of the plate, then 
0 

for boundary layers which sre turbulent from the leading edge, experimental 
results are fitted by Schoenherr's formula 

= 4.13 loglo Re C$ (12) 

where Y4 Re = y 

Comparison with equation (11) shows that only the constant k appears 
in this formula. (The value 4.13 corresponds to k = 0.392). . 

Equation (12) is not In a convenxent form for making quick estimates 
of skin friction for a given Reynolds number, so in its place the Prandtl- 
Schlichting interpolation formula (with constants given by Wieghardt). 

-2.6 
Cl3 = 0.46 bg,o Re) (13) 

is found useful. A further formula In M)re general use is 

C, = 0.074 Re-1'5 (14) 

given by Blasius. 

A comparison of these three formulae (equatz.ons (12) to (14)) is 
made in Pig.2 over the range 

The Schoenherr (equation (12)) and PrandtlSchlichting (equation (13)) 
formulae are in close agreement over the whole of the range whereas the 
Blasius formula (equation (14)) g a rees 
Re = 107. 

with them only in the region of 
This demxxdrates a limitation of the Blasius power-law 

representation. 
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3 General remarks on the shearing stress relation in compressible 
turbulent boundary layers 

The picture of the incompressible turbulent boundary layer presen- 
ted in section 2 was artificial in that apparent stresses wre introduced 
in order to retain a standard form for the equations of the mean flow and 
a numhsr of assumptions were then made which enabled a simple solution 
to be obtained. The justification for this procedure rests entirely on 
the fact that it produced certain results in good agreement with zperi- 
merit, which implies that any extension of it must also be backed by 
experiment. 

This applies In particular to the turbulent boundary layer in 
compressible flow. The standard analytical approach has been to cxtcnd 
the incompressible flow picture to include: density fluctuations, etc., but 
when this is done there is still considerable difficulty In formulating 
an "equivalent laminar motion" for the moan flow, particularly if the 
continuity equation is to retain its standard form. 

Van Driest5 , Clemmow' and Young7 (in chronological order) are among 
those who have extended the turbulent boundary layer equations to include 
compressible flow and there arc slight variations in the dcrrvation of 
their final expressions for the shearing stress in the boundary layer 
on a flat plate. However it is fortunate that the simplest extension of 
the incompressible flow picture gives the skin friction formulae mhlch 
are in the best agreement with the limited experimental data at prestint 
available (up to hl = 3, set below), so that the difficulties in deriva- 
tion have not yet become of major practical importance. 

In incompressible flow we had 

T = 7-i -pu v (14 

which arose from generalising the term puv in the equations of motion 
to include fluctuating as well as mean velocities. 

In compressible flor, density fluctuations must be included, and 
we run into difficulties when attempting to generalise terms such as puv. 
Thus if we generalise the whole quantity we have 

p uv + (p uv) ' = (p+ p’)(u + U’)(V + v’) 

and by expanding the right hand side of this equation and taking moans, 
we obtain 

(p= pu'v'cul'tv' cvp'u' 
-- 

+ p’u’v’ 

On the other hand, since we arc considering a rate of transport of 
x-momentum (pu) by a velocity (v) in the y-direction, it might sew more 
natural to generalise the quantity (pu).v, which can be shown to give 

(pu)’ = pu’v’+up’v’+p’u’v’ 

i.e. there is one term lens than in the expansion of @uTT). 

Hwar, if we are considering conditions within a boundary layer 
then Y p'u' and p'u'v' are almost certain to be small by comparison 
with the remaining terms, and the expressions beco,ne identical. There is 
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still difficulty ln equating either expression rnth the shearing stress, 
but If we make this assonptlon then 

-- 
7 = - pu’v’ - u p’v’ 

when viscous stresses are neglected. 

(15) ' 

I 
As in sectaon 2 we shall assume that z = -cc and that 

We now m&e the additional assumption that 

(which is one of the samplest assumptions that can be made concerning 
the behaviour of p' ). 

Substituting in equation (15) we obtain 

(17) 

. 

which is in the form used by Li and Nagamats& and (for a = 1) by 
Clemmow6. 

Fig.3, taken from Li and Nagamatsu's article4 shows the effect of 
the factor "a" on the variation of skin fnotion with Mach number under 
zero heat transfer conditvons. These variations were derived from 
equation (17) and the momentum equation by a method samilar to that des- 
cribed in section 4 belov, and were based on the Prandtl rmxlng length 

4 = ky (3a) 

Also shown in Fig.3 as a re resentatlve set of values from the 
avaalable experimental evidence 2 3 IO,11 3 9 which indicate that for M < 3 
(and probably up to M d experimental conditions are best represented 
by taking a = 0, i.e. p'v' 
case equation (15) becomes 

negligible by comparison with r, in which 

7 = - pu'v' (Ia) 

as in incompressible flow. 

Li and Nagamatsu suggest that the factor a may vary with Mach number, 
being zero at low speeds but ten&ng to unity at extremely high speeds. 
At this stage mention must be made of Ferrari's work3, which 1s based on 
equation (15) but uses less straightforward expressions for ii7 and 
F, the latter containing a suggested arbitrary variation with Mach 
number. (An appreciation of Ferrari is given by Clemnow6 who shows that 
his results are in qualitative agreement with those from equation (17)). 

. 

However, the wx-th of such a variation cannot be decided until suitable 
experimental evidence becomes available at high Mach numbers and to check 
this and other points, Li and Nagamatsu say that an "intensive experimental 
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progranxne" will be conducted ~.n the higher supersonrc range, using the 
U.S. Army Ordnance - GALCIT Hypersonic Wind Tunnel. 

Meanwhile, the following sectlons of this note contain a more 
detailed examination of the effects of various assumptions concerning 
mixing length, boundary conditions, etc., when applied in conjunction 
with equations (la) or (15), but It should beremembered that a thorough 
examination of the derivation of these equations vrill become necessary if 
they are to be applied at Mach numbers greater than about 4. 

4 Temperatures. velocltles and skin friction. Compressible flow 

If, as in incompressible flow, we take 

'c='c = 
0 

const. 

and assume 

while 

as was indicated m section 3, then equation (15) gives 

(2) 

Two estimates of the mixing length (8) are available from incompres- 
sible flow, namely 

Prandtl, 

and Karman, 

(3a) 

(3b) 

but, in dlstlnction to the Incompressible flow case, the density (p) will 
now be variable. However, since the static pressure (p) 1s constant 
across the boundary layer, the equation of state 

P = pgRT 

gives 

pT = const. 

so that the density distribution can be obtained from the temperature 
distribution, which till now be considered. 

4.1 Temperature distribution across the turbulent boundary la.yer In 
compressible flow 

An expression for the temperature distribution which has some 
theoretical and experimental backing 1s 

- = 1 + Bz - A2 z2 T 
TW 
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and Tw is the wall (surface) temperature. 

Some known values of A and B are as follows. 

4.11 Assuming Reynolds analogy, CT = 1 and $$ = 0 

Reynolds analogy assumes that in turbulent flow momentum and heat 
will be transferred III the same way. If in addition there IS no pressure 

gradient in the stream direction and of the Prandtl number c 

unity, (the latter assumption is necessary because of the presence of a 
laminar sub-layer and transition region). Then 

TH1 
B=T-I 

* 

and 
TH1/T, - ' > 

A2 = 
TWIT, I 

>I 

(19a) 

where THl is the free stream total temperature and is related to the 
free stream static temperature (T,) by 

yl= , +Y-I 
- Ml 

2 
*I 2 

where Ml is the free stream Mach number 

and y = $ (= 1.4 for air). 
Y 

Under zero heat transfer conditions, we have 

THl = Tvv 

and thus obtain the familiar formula for A, 

A2 = :I; 5 if Y =I.4 
Ml 

4.12 From experimentalmeasurenents,o = 0.72 and 5% = 0 

Experimental measurements8 of the temperature dlstrlbution in a 
compressible turbulent boundary layer on a flat plate, using air as the 
working fluid ( u = O.72), suggest the values 
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(19b) 

where T 1s the wall temperature for zero heat transfer and is related 
to T, %; 

T 
2 = 1 + 0.9 yM,2 
Tl 

(Thus THI 
A and B). 

of section 4.11 is replaced. by Two in the formulae for 

Equation (21) only applies If' au- is the workmg fluid, but It 1s 
in good agreement with Squire's suggested formula 

TWO -= 
Tl 

, + ,'/3 '; M,2 

= 7 = 0.896 YM,' if o = 0.72 

(21a) 

Thus for fluids other a1 . it is suggested that equation (21~3) 
should be used for obtaimng 

tvwo,T; 
in equation (Igb). 

4.2 Velocity distribution 

Using equation (18) and the fact that 

p T = const. 

equation (lb) (as given at the beginning of section 4) can now be written 

(22) 
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In the subsequent work we shall follow the procedure of sectzon 2 
and put 

where 

Ul 
I 

2 
v z-z - 

u, \ cfw 

"fw = j. 
To 

2 PWU, 
2 

z =v (thus 9 = VZ) 

Thus the symbols will have the 
the temperature dependent quantities 
ture (T,). 

sane meaning as in section 2 provided 
(p, I-r ) are evaluated at wall tempera- 

As in section 2, we shall now obtain velocity distributions, 

(a) assuming the Prandtl mixing length, 8 = ky,(in equation (22)) 

and (b) assuming the Karman mixing length, 8 = k 5% 
equation (22)) 

and shall consider the effect of the boundary conditions imposed. 

4.21 Velocity distribution assuming -3 = ke 

Substituting 4 = ky in equation (22), and making the various 
substitutions listed above,we obtain a first order differential equation 
between9 and.11 , which, when integrated in conjunction with the boundary 
condition 

cp =q = 8 (7a) 

at the junction of the laminar sub-layer, gives the velocity distribution 

where 

rl = s exp 
1 

F (sin-' w - sin -' wg) 
3 

AZ - & 

(24) 
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and ws is the value of w for 'p = s (i.e. for e = $). 

Equatzons (23) and (24) reduce to the incompressible form (corres- 
ponding to equation (l+a)), 

= s expfk ( 9 - s)j 

when B + 0 followed by A-f 0'. 

4.22 Velocity distribution asswung & = k $13 

In this case, substitution in equation (22) gives a second order 
differential equatron, which, when mtegrstea in conjunctron vfith the 
boundary conditions 

2 = f 

when 'p=q= s 

gives 

where w is given by equation (24) 

al-la A= F. 

1 

(3) 

(7a) 

(25) 

I 
h(sin-' -1 1 

~-sin w ) '+ mmt. (26) 
s J 

Thus, unlike the incompressible flow case, different velooity 
result from use of the Prandtl or the Karmsn hypotheses for riL3g-g;:: 
(It can be verified that equation (26) also reduces to equation (La) if 
B + 0 followed by A + 0). 

4.23 Effect of boundary conditions 

In either case there is the choice of boundary condituxs s and f. 

* The sam? result does not follow from A -* 0 followed by B + 0, because 
when A = 0 the fundamental equation is of different degree and has a 
different solution. 
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If we assume (as is usually done) that these will have the numerical values 
found in incompressible flow from the Taylor-Prandtl analysis, i.e. 

f = 0.216 

and S = 11.6, 

then vre are in effect specifying that in compressible flow the velocity 
profile must pass through the point 

cp = q = 11.6 

and also that it must have the same slope at this point as the curve 

v = 5.5 + 2.5 Inn 

= 5.5 + 5.75 1oglOn 3 

found for incompressible flow in section 2.11, (bearing in mind that in 
compressible flow,density and viscosity in e and n are to be evaluated 
at wall temperature). 

Now Cope' (for zero heat transfer) and the present author lo (heat 
transfer cases included) assumed that the velocity profile in the compres- 
sible turbulent boundary layer would always be given by equation (5) if 
density and viscosity were evaluated at wall temperature. 

So it is of interest to compare the profiles obtained 

(a) from equation (23) or (26) with the boundary conditions 

f = 0.216, s = 11.6 

and (b) from equation (5), with density and viscosity evaluated at 
wall temperature. 

This is done in Fig.l, for some representative oases (with and with- 
out heat transfer and choosing equation (26) for the comparison) which 
show the extent of the approximation afforded by equation (5). Actually 
this approximation my be better than it seems at first sight, since the 
"more accurate" solutions can only be expected to apply in the inner 
portion of the boundary layer because of the assumptions made in their 
derivation, and (as in the incompressible flow case) any agreement with 
experiment near the outer edge would be fortuitous. 

Thus it appears that despite the more fundamental approach, the 
velocity distributions given by equation (26) (or (23)) will be of little 
more value than that given by equation (5) until the variations (if any) 
of the boundary conditions in compressible flow have been determined by 
experimental measurement. Unfortunately, limitations in tunnel size have 
meant that the majority of measurements to date have been of thin layers 
of the order of 0.25 in. thickness and less, so that the inner regions 
of the boundary layer remain unexplored. 

However, two sets of experimental profiles8 are plotted in Fig.5 
for comparison with the corresponding profiles given by equation (26) 
with the boundary conditions f = 0.216 and s = 11.6 (full lines). Under 
eero heat transfer conditions there is perhaps tolerable agreement but 
when heat is being transferred (Fig.%) the boundary conditions are 

. 

obviously inadequate. 
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A possibility for improvement might be to assume that in applying 
the boundary conditions 

f = 0.216 

S = 11.6 

density and. viscosity (in 'p and rl ) should be evaluated at the temperature 
at the edge of the leminar sub-layer instead of at wall temperature. 
Then for 'p and rl in terms of wall temperature, the boundary condxtions 
wouldbe 

$ = 0.216 

where Ts is the temperature at the edge of the laminar sub-layer'. 

Profiles calculated from equation(26) with these revised boundary 
conditions are shown by broken lines in Fig.5 and exhibit trends In the 
same direction as the experimental results. However, it would not be 
profitable to extend this investigation before further experimental 
results become available. Meanwhile the analysis will continue with the 
usual assumption that the boundary conditions are evaluated at wall 
temperature and It will be shown that the modifications suggested above 
would have very little effect on the flnal skin friction results, at 
least within the range of speeds and temperatures of interest at present. 

4.3 Skin friction 

This is obtained through the momentum equation 

which with the substitutions already defined (at head of seation 4.2) 
becomes 

1 
U1 za z(l -2) 
-=v - 2 dz 
% dX l+Bz-A2z2 aq 

by comparison with equation (IOa) in incompressible flow. 

(27) 

* In deriving these expressions it is assumed that the temperature dis- 
tribution is given by equations (18), (19b) and (21). 
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Using the Prandtl mixing length (8 = ky), equation (23) gives 

64 = 2 d [exp i h(sin-’ w - sin-’ w,)]] (28) 
dq v dz 

whereas the Van Karman mixing length 

(25)) 

gxves (equation 

. 

cm 1 
z=i;* exp 1 h(sin-' w - sin -' '$1 (25) 

Consequently, as compared with the incompressible flow case of 
section 2, estlmtes of skin friction m compressible flow vary accordmg 
to the hypothesm used for mixmg length. The final results, obtained 
by integration of equation (27) with either equation (28) or equation (25), 
and assuming that v IS large, gives the following formulae for local 
skin friction 

(a) From 8 = ky. (Equations (27) and (28) 

@ 1 k2 fek" 1 
-=- In + - In Re, Cf.&, (*9a) - 

cfm + d-$k 2 Jik 
. 

where subscript "w" denotes that density and viscosity are evaluated at 
wall temperature and 

m=; l- 
-, A -B/a -, A “/v-B/W 

sin _-..-.._-- sin . +A" 
b/l + nY4-42 /(I +B2/4U) -7 1 (30) 

a-d A and B are the coefficients m the temperature-velocity relation 
as even in section 4.1. 

(Equations (27) and (25) 

-= 1 ln k2feks m 

G- n.k 
+ -!- In Re, Cf 

2 ?m 
w 

%, 

(2%) 

. 
where @ 1s given by equation (To), as m case (a). 
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ddference between equations (29.3) and (29b) lies in the 

of the former. 

By comparison of these two equations with the incompressible flow 
formula of section 2 

ln k2 ks fe + i- In Re, cf (11) 
2 J2k 

we see that if k, f and. s are unchanged, the effects of Mach nlunber 
and heat transfer on local skin frxtion coefficient can be summarised by 
the relations 

=fw 
'fi = p 

when Rexi 

(31) 

where subscript "1" dewtes the incompressible values and 

m = & for Prandtl mixing length 8 = ky 

m = 0 for Karman mixing length 4= k (g /$ 
> 

Furtherrrore we shall assume that the same relations will apply to 
the mean skin friction coefficient. 

Variations in k, f and s with Mach number and heat transfer could 
be included in the function @ lf necessary so that equations (31) are 
of fairly general validity. Also the notion of "equivalent" incompressible 
skin friction coefficients and Reynolds numbers can be extended to include 
the results from other shearing stress assumptions as is shown by the 
following table (see Appendix I for further details). 

/Table 
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Shearing Stress Used by Replace cfi Replace Rei 
Assumption by by 

( > 

2 
-To = pe2 g 

(4 e = ky Smith and Hax-r~p'~ cf R%w@ T 
2 T-1 + 

Van Driest5 w/G ( > w 
Clemmo& Li and 
Naga&&+ @ from equation(30) 

(b) e= k d"/dY Wilson' ' (zero heat % /@2 Re, m2 
transfer) 

d2Y/dY2 @ from equation (30) 

r. = 82 !yy 

(a) &= ky Clemnor$ 
cfw /F2 Rex?!7 F2G2) 

Li and Nagamatsu' 
F from Appendxx I A from temperature - 
equations 1.9, I.3 velocity relation, 

section 4.1 

$)A = k au/dY Clemow6 "fw/F2 Rexw F2. 2 (l+A*) 
d2a/dy2 

F from Appendix I 
equations 1.9, I.3 

:onstancy of Cope9 C" L! 
relocity profile Re 

(Zero heat transfer) lw xw T 
Monaghan'* 17 



i 

i 

It should be noted that the variations ascribed to various 
authors in the above table are those which result from the shearing stress 
assumptions which they made and do not necessarily correspond exactly 
to the formulae quoted in their reports. Thus Smith and Harrop'* take 
an erroneous value for A and adopt an unusual approximation when 
evaluating the mo 
Clenrmow's results i! 

entum integral, which yields a different formula. AlSO, 

are in effect all for the Prandtl mixing length 
4 = ky and there are errors in his final conversions to free stream 
conditions. 

Finally, 2 is usually taken to be zero in equation (30) for @, 
which makes calzulation easier since @ is then independent of v (i.e. 
independent of skin friction). The value of this approximation is 
considered in section 5 below. 

5 Comparison of formulae for mean skin friction (Zero heat transfer) 

The analysis of section 4 led to the Karman-Kcmpf type formulae of 
equations (ZVa), (b) for local skin friction in compressible flow. The 
corresponding formula for mean skin friction would be of the same type, 
with constants as given by Schoenherr (equation (12)). However these 
formulae are not particularly amenable to quick calculation, so in the 
comparisons of this section the various relations tabulated at the end 
of section 4 have been applied to the Prandtl-Schlichting fornmla for 
mean skin friction in incompressible flow 

cFi = 0.46 (1og,o Rei) 
-2.6 

(13) 

to obtain the appropriate formulae for compressible flow. 

Thus, for example, if we assume that 

then the table, or equations (31), give 

CF I 
cFi =$ j 

I, 

when Rei =Rew+ 

and substituting in equation (13) we obtain 

(lb) 

CF 

$ = 0.46 log,0 Rew @ 
2 T, m 

0 7 
-2.6 

5 i (32) 

as the formula for compressible flow. Likewise the assumption of constancy 
of velocity profile would also give an equation of the type of equation 
(32), but with m = m i- 1. 
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The validity of replacing the Schoenherr formula by the Prandtl- 
Schlichting formula was checked. by calculating the variations of mean 
skin friction pnth Mach number given by both formulae when modified in 
accordance with the assumption of constancy of velocity profile. The 
results are given in Fig.6a, which shows that the two formulae give 
variations within 2; per cent of each other up to M = 4, both for 
Re = 106 and for Re = 107. . 

On the other hand, Fig.6b shows that a sunilar generalisation of 
the Blasiw power law formula (equation (14)) which gives a single curve 
for all Reynolds numbers, would not give such good agreement with the 
generalised Schoenherr formula. As a result, the Prandtl-Schlichtlng 
formula was chosen for the main calculations of this section. 

Fig.7 then gives a comparison between the variations of mean skin 
friction obtained for Re = IO7 from the various shearing stress assump- 
tions listed at the end of section 4 and quotes the authors who have 
used these assumptions. It also includes the variations arising from 
the assunption of constancy of velocity profile (Gopeg, Monaghan'O)and 
from Rubesin's interpolation formula*. 

-2 58 IT, Q.467 
$ = 0.472 (loqo Re) 

. 
4 T (33) 

Some general points should be noted concerning the structure of 
this flgure, as follows:- 

(1) 

(2) 

(3) 

(4) 

In 
to 
s 
Y 

evaluating m or F, : was taken to be zero. This corresponds 
the procedure used by the authors quoted. (The effect of taking 
unequal to eero 1s considered In section 5 .I below). . 

As already noted at the end of section 4, the variations ascribed 
to various authors are those which result from the shearing stress 
asslrmptions which they made and do not necessarily correspond 
exactly to the values quoted in thexr reports. 

The viscosity-temperature relation IJ n: T was used in the caloula- 
tions and this accounts for the small difference between the 
comparable curves m Figs.6 and 7 (the Curves for constancy of 
velocity profile) since the relation p oc TO.8 was used In Flg.6. 

'w 
T 

The abscissa is 
TI ( > 

=wo 
Tl 

since under zero heat transfer 

conditions the function @ or F depends only on Tw , If the 
T1 T 

abscissa were M, then an additional relation linking y and 
Tl 

Ml (equation (20) or (21)) becomes necessary. However, a sub- 
sidiary scale of 11, is given which corresponds to 

T 
2~ I + O.++M, 
TI 

. 
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Experimental results cbtauxd by Wilscx? and Rubesln 2 
and 

included for ccmparmon. The R .A .E. experimental results89'0 at M, = 
2.43 and. 2.82 are not included suce they were obtained at a cord&ably 
lower Reynolds number, but they agreed xth the variation gLven at that 
Reynolds number by equation (32), with G = 1, m = 1, i.e. 

which 

%V 
= 0.46 loglo (32b) 

is the curve labelled "constancy of velocity profile". 

Comparing the theoretical and experimental results, we may say, 

(4 as in Flg.3, the shearxng stress assumpr;ion 

7: I -pu v (Ia) 

combined with 

gives results in better agreement with experrment than the 
assumption 

-- 
z = -(pu'v' + u p'v') (15) 

b) accepting result (a) then the Xarman hypothesis for mixing 
length 

( i.e. Wilson's curve) gives bettur agreement w-ith experiment 
than the Prandtl muxng length 

(as used 

e= ky 

by Smith, Van Driest and Clerrmcw). 

(3s) 

Result (b) is emphasised by the fact that Rubesin's lnterpolntion 
formula is baged on equations (la), (2) and. (3b), above, but was obtalned 
from a set of nurrsrical integrations of the momentlun equation Instead of 
by approximate integration as used by Wilson and in section 4. It 1s 
therefore of considerable interest that the variation It gives is close 
to that obtained from the assumption of constancy of velocity profile 
(equation (32b)), so that the latter canbe regarded ss a very good . . approxlmatun to the mOre fundamental solution. 

(It should .dso be noted that while Rubesin's formula gives the 
same variation with Mach number for all Reynolds numbers, equation (32b) 
agrees with Wilson's formula in predicting that the variation with Mach 
nrrmber will also vary with Reynolds number). 
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5.1 9 Effect of boundary condition v 

The foregoing results were obtained neglecting terms involving % 
in the formulae for q or F, e.g. if, in accordance with the above results, 
we take 

and 

then the results of'section 4.3 end equation (32) give 

3 
$2 

= 0.46 

where, under zero heat transfer conditions, equation (30) gives 

-1 sin -1 A-sin A :+A: 
I 

9 so that neglecting terms involving v mems assuming 

-1 sin A LA: 
V 

(32a) 

(304 a 

Now v = c 4 2 
% >I is usually of the order of 20, so that with 

s = 11.6 this approxumtion would only be valid for mall values of A, 

i.e. for small values of 3 
Tl 

or Ml since 

T 
wo 1 

A* = Ts- 

Tl 

(IPb) 

T2 n under zero heat transfer conditions. 
q2 + 5 

The extent of the errors involved LS shown by Fig.8 which compares 
the variations obtained from . 
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.(I) equations (32~~) and (30a), neglecting the terms in f 
(Corresponding to Wilson's curve in Fig.7), 

(2) equations (32a) and. (30a) taking s = 11.6 and appropriate 
values of v, 

and (3) Rubesm's interpolation formula (equation (33)) obtained by 
numerical integration of the momentum equation. 

These show that inolusion of the terms xnvolvlng $ gives results 
much closer to Rubesin's values than did the original anaLysis for 
s = 0. Hence, since the variation obtalned from the assumption of 
v 
constancy of velocity profile has already been shown (Flg.7) to be close 
to that obtalned from Rubesin's formula, it can be saCi that the variations 
in velocity profile shove in Fig.& have little effect on the final estimates 
of skin friction under zero heat transfer conditions. 

What happens when heat is being transferred 1s considered In the 
following section. 

6 Heat transfer effeot on skin friction coefficient 

In section 5 it was found that the formula 

CF 
2 

12.6 
w 
m2 

(32a) 

gave the best agreement with experunental results under zero heat 
transfer conditions, so we shall now apply the same formula to study the 
additional variations which may arise when heat IS being transferred 
between the plate and the stream. In this case 

I sin 
-, A- B/W . - , A s/V - B/~A 

J(l +~*/442)- ‘=II J(l+ B24A2) 
27 

+ * vJ 
(30) 

and we shall take values of A and B from Reynolds analogy (section 
4.11) i.e. 

TH1/T, - ' 
A2 = --= 

(~92bf.1~ 

WT, TdT, 

B = THl/T, - ' 

and assume that p L T. 
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. . * of inean skin friction with Mach number 

~~~or~:~'~~~:~'~~ = 1) and two heat transfer:? = 0.5, 

conditions, for Re = 107, are shown by the full line curves in 
graph of Fig.9. A considerable variation lvlth heat transfer 

is evident. 

At a given Mach number, the skin friction is reduced if heat is 

flowing from the plate to the air stream and is increased 

if heat is flowing in the opposite direction. 

or 

Now the asswnption of constancy of velocity profile, IO . . 
E9vJJ-G 

(3%) 

would suggest that for a given Reynolds number, CE might be a function 
T 

of Li alone. 
Tl 

This would mean that instead of CE being a function of 

Reynolds number, Mach number dnd heat transfer rate, it is simply a func- 
tion of Reynolds number and of the ratio of free stream static to wall 
temperature. Thus, at a given Reynolgs naber, the skin&i&ion for 

M = 2 and serc heat transfer when-X = 1.8 if Reynolds analogy is 

assumed 
) 

c Tl * 
should be identical with that obtained for M = 0 and a heat 

transfer rate given by Twz18 T, '- 

To check this, the skin friction results obtained from equation 

(32a) above are re-plotted against 3 
Tl 

in the upper graph of Fig.9. By 

comparison with the plots against Mach number, this shows a big reduction 
in the variation with heat transfer. In fact, for the range considered, 
the skin friction coefficient is always within IO per cent of its zero 
heat transfer value. 

The above result is based on values of A and B derived from 
Reynolds analogy, but use of the empirical values of A 2nd B given 
in section 4.12 should not make any radical alteratxon to the curves. 
Another source of errcr is the fact that the boundary condition "s" was 
taken to be 11.6 throughout whereas the experimen+xl velocity profiles 

* vaues of v[ = ,@,j for substitution in equation (30) were 

obtained for convenience from the incompressible flow power law formula 
for local skin friction, rnodifled in accordance with the constancy of , 
velocity profile assumption. Errors thus introduced should be small. 
The value of "s" was taken to be 11.6. 

. 
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in Flg.5 suggested that lt should vary. To check the order of the error 
thus introduced, a skin frxtion coefficient was calculated for 
T TH1 _ r = 4.0 and y 
TI 

- 0.5, using the revxed boundary condition gxvcn m 
w 

section 4.23 (which gave a velocity distribution displaced in slmllar 
fnshlon to the broken lines xn Fig.5). The result of the calculation 1s 
shown by the cross symbol In Flg.9, whose displacement from the correspond- 
ing full line curve 1s seen to be small. 

Thus it may be said that the variatzon iven by the assumption of 
constancy of velocity profile (equation (3Zb) should give results vrithin 7 
the order of 10 per cent of the "more fundamental" theoretical formula 

(equation (32a)) over the range 
T 

1<rel+ 
T1 

TH1 < 2 and 0.5 e qj- . For 

comparison purposes, the actual variations given by equatyon (32b) are 
added as broken lines in the two graphs of Pig.9. 

Finally It should be mentioned that the only available experimental 
results8 for flat plates at supersonic speeds have shown a variation of 
skin friction with Nach number but not with heat transfer. These results 

"%I are for M = 2.43 ana 2.82 and for y = 0.74 and 0.64. On the 

other hand, skin friction results from f:ow in pipes at low speeds but at 
high heat transfer rates have shown a definite variation with heat transfer 
which has been correlated well'3 by a formula of the type of equation 
(32b). Further experimental evidence 1s obviously necessary, but mean- 
while It is suggested that the formula (equation (32b)) obtained from 
the assumption of constancy of velocity proflle has the merit of slmpllcity 
In application, and therefore that skin friction should be regarded as 
a function only of Reynolds number and of temperature ratio Tw/Tj. This 

should be valid up to 3 =4 
Tl 

( corresponding approxlnmtely to M = 4 

under zero heat transfer conditions). At higher values of 5 
Tl 

(or of 

Mach number or of both) density fluctuations may be of importance, as 
discussed in section 3. 

7 Conclusions 

1 Of the different shearing stress assumptions made by various 
authors2,4,5,6,",'2 the assLnnption 

leads to the variation of skin friction with Mach number which is in the 
best agreement lrnth experimental results in the region 1.6 < N < 2.8 
under zero heat transfer conditions (Fig.7). 

2 The asswnption of constancy of velocity profile 9,10 gives skin fric- 
tion results in equally good agreement with experiment under zero heat 
transfer conditions (Fig.7). 

3 Under heat transfer conditions the same assumption gives a reasonable 
approximation to results obtained from the shearing stress assumption of 
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conclusion 1 (Fig.9). This would mean that skin friction may conveniently 
be regarded as a function only of Reynolds number and of the ratlo of 
free stream static to wall temperature (instead of as a function of 
Reynolds nwnber, Mach number and heat transfer rate). 

4 The explanation of conclusions 2 and 3 is that veloczty proflles 
obtained from the assumption of conclusion 1 (or from any other shearing . 
stress assumption) are usually forced by artificial boundary conditions 
to agree with the "constant" velocity profile at points near the wall 
(Fig.4). 

5 Extensive further measurements of turbulent boundary layers In 
compressible flow would be necessary before these restrictions could be 
overcome. This 1s particularly true for flows with heat transfer. 

6 Meanwhile It 1s suggested that the formula 

=o .46poqo 
Tl 

I 

-2.6 

Fi 

obtained from the assumption of constancy of velocity profile has the 
merit of simplicity and should be sufficiently accurate In application 

up to Tw - = 4 (corresponding approximately to M = 4 under eero heat 
Tl 

transfer conditions). 
T 

7 For Mach numbers 
( 

and possibly -INL 
Tl > 

greater than four it will 

probably become necessary to make a thorough examlnatlon of the derivation 
of the equations for the turbulent boundary layer In compressible flow 
since density fluctuations may assume importance. . 

LIST OF SYMBOLS 

X,Y distances parallel and normal to plate 

u,v mean velocity components parallel and normal to plate 

P density 

T temperature 

P viscosity 

" kinematic viscosity 

Subscript "I" denotes free stream conditxons (outside boundary layer) 

Subscript "w" denotes wall temperature conditions (i.e. at surface of 
plate) , 

Subscript "55" denotes temperature condltlons at outer edge of laminar 
sub-layer . 
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List Of Sydbols (Contd.~ 

i 

f 

C’ f 

CF 

Re 

Y 

A2,B 

friction velocity [=J$ 
w > 

is constant in expression for mixing length (= 0.4 in 
incompressible flow) 

is value of q (or n ) at edge of lamlnar sub-layer (= 11.6 m 
incompressible flow) 

is value of 2 at edge of laminar sub-layer (= 0.216 in 

incompressible flow) 

local skin friction coef'ficxent 
( 

= 70 

s Ply 
2 > 

mean skin friction coefflclent F = 
3 PlU,2, > 

Reynolds number 

2 ,l( ) - 

"f, 

coeffxlents in temperature-velocity distribution 

r 
‘p, - 1 + B, - A2z2 

T 
In general B = wow, 

Tw 

A2 = 
Two/T, - ' 

Tw/T, 

where ?%To is wall temperature for zero heat transfer 
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APPENDIX I. 

Relations between compressible and incompressible skin 
frlctlon coefficients 

Based on the shearxng stress relation 

andwith 

the enalysls of section 4 gave the relations 

when 

“f z x5x 
$2 

Rexi= Re,,m 

(31) 

between incompressible (subscript "i") and compressible skin frlctlon 
coefficients and Reynolds numbers, where subscript "vi" denotes that 
density and viscosity are evaluated at wall temperature T and T, is 
the static temperature of the stream outsu3.e the boundary yayer. @ is 
a fun&Ion of Mach number and of temperature, bexng defined by equation 
(30) of the maln text and the Index "III" takes the values 

m = G for Prandtl mixing length e. = ky 

ana au d2U 
m = 0 for Karman rmxing length .$ = k - I 

dYl2 
. 

(37) 
Thx Appendix considers the modlfuations Introduced into equatxons 

(1) by taking the shearxng stress relation 

z 7 
=0 

-pu v - tlp'v' 

or (2) by assurmng constancy of velocity profile as in Ref.10. 

1 Shearing stress relation 'Co = -pu'v' - up' 

and 

We shall consider the form obtained by assuming 

u'= 

- 36 - 



whxh gives 

I.1 

The effect of the various values of "8" are as follows. 

la Prandtl value 8 = ky 

In this case by substituting for 8 in equation 1.1, by making the 
substitutions llsted at the beginning of section 4.2, by taking 

Pw=L=l 
P 'pw 

+ Be - A*z* 

where 

and by integrating, we obtain the velocity distribution 

7y = C ekv* 

where 
4 

* = 1 + A2z2 dz 
1 + Bz - A*z* 

I.2 

lj- a . -11+&z = y lG2,, smh 
a -AZ 

,b sinh-1 ’ -bAz _ s:nh-’ Az~ 
qb*+l b+Az j I.3 

with ---_ 
it/ 

a = it 1 + $)+ & 
\, \ 

The constant C 1s defined by conditions at the edge of the 
laminar sub-layer; giving 

C = semkvSS I.4 

where $, denotes that z = c in equation 1.3. 
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In incompressible flow the constant 

ci = se-ks (; $ &s if s 

so that equation 1.4 an be nrrltten 

c = ci e-kv(*s - 5) 

1s 

1 
=i;T > 

1.5 

The momentum equation 

becomes 

1 
s (1-z) d - (ekyJT) dy 

l+Bz-A222 az 1 I.6 

and by integration by parts and assuming v large, we obtain the final 
form 

Jr,- *s +s , k2feks 1 
-+=-in-+- ln 

"f$ <2k 2 
(Re, Cf, 6 A') 

m . 
I.7 

where Jr, denotes that s = 1 in equation 1.3. 

Therefore by comparison mith the incomprcsslblc flow equation 

1 1 - 
c,$ 

=.-+&?g& +L. 
(2% 2 -J2k 

IJI (Rexi Cf.1 1 
1 

we obtain the relations 

'fi =$ 

when Rexi = Rexw F24-i-2 

I.8 

where F = $,-I) s 
++ I.9 

and Jr is given by equation 1.3. 
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lb Karman value 8 = k $ /$ 

Proceeding as before we obtain 

22 = c2 ekvq 
am 1.10 

where 

1 -kvl), c2 = f. e 

and Jr is defined by equation I.3 as before. 

Taking s = 2 and relating C2 to Ci as given in section la, 

we obtain 

c2 
= k ci e-kv('b -5, I.11 

Substituting from equation 1.10 in the manentum equation remember- 

ing that LL = t -& 
NJ > 

we obtain 

I.12 

and thxs time the final form is 

Jr,-Jr,+: 1 k2feks 1 

-=zY 
+ - In 

"fwF 2 712k c 
Re &%I:[? +A2)j I.13 

so that the relation between incompressible and compressible flow values 
is 

I.14 

when Rexi = ReDV F 2 3 (1 + A") 

where F is given by equation 1.9. 
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2 Assumption of constancy of velocity profile 

In this we assume that the velocity profile in comprcsslble flow 
is given by 

'p= A+Blnq I.15 

where A and B are the experimental constants found valid in incom- 
pressible flow, (but remembering that density and viscosity m 'p and 11 
are to be evaluated at wall temperature), 

Using equation I.15 the momentum equation gives (see Ref.10) a 
skzn friction formula whwh is related to the incompressible flo~i formula 

when 
Tl 

Rexi = R~,F 
w 

I.16 
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