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1 Addendum to Introduction, p.k

It should be mentioned that many of the theories developed for
turbulent skin friction in compressible flow stem from the pioneer work
of Frankl and Voishellk,

2 Extension of range of validity of conclusion &, p.31

Addational experimental cvidence! 918 now makes 1t possible to extend
the comparisons shown in Figs.3 and 7. This 1s done in Fig.10, which
shows that both Rubesin's interpolation formula (equation 33) and also
equation 32b (resulting from the assumption of constancy of velocity
profile) give variations of skin friction in reasonable agreement with
experiument at least up to M = L.5. All the experimental results were
obtained wnder zerop heat transfer conditions, but 1f conclusion 3 is
valid this would mean that the formulaec would alsc be adequate under
heat transfer conditions for values of T./T, up to 5. Experimental
checks of the heat transfer case are obviously highly desarable.

Some of the experimental results in TFi1g.10 are for local skan
friction, whereas the curves are based on formulae for mean skin friction.
The two are not strictly comparable 1f the rach number variation is
dependent on the Reynolds number of the test, as 1s indicated by theory.
For example at T, = 4 and Re = 10 million, the assunption of con-
stancy of velocity profile would give a value of local skin friction
ratzo Cf/Cfl approximately 5 per cent below the corresponding ratio

for mean skan friction as gaven in Fig.10. However a difference of
this order was not considered significant.

Lakewise, small variations could alsc arise from alterations in the
index chosen for the viscosity temperature relationship (which was taken
as 0.8 in Fig.10)
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L review and assessment of various formulae for
turbulent skan friction in compressible flow

by

R. J. svonaghoan, M. A.

SUMMARY

Despite a lack of experimental evidence, numerous formulac have
been developed for the variation of turbulent skin friction on a flat
plate in compressible flow, with and without heat transfer,

The present note makes an extended comparison of available formulae
and examines the assumptions made an thelr development, checking against
experwmental cvidencc wherc possiblc.

It shows that thc shearing stross assunption

P /du l;"/ d2u
To = pkTlr=) /=%
\dy/ / \ay?

i

gaves the valucs of turbulent skin friclion 1n best agrecacnt with experi-
mental results in the region 1.6 < M < 2.8 undcr zero heat transfer condi-
tions. However, the formulac given in Refs.9 and 10 (based on the assump-
tion of constancy of velocity profile) gave cqually good agreement with
experimental results zn this range, have the rierat of sumplicity and under
heat transfer conditions the formula of Rcf.10 mives a reasonable approxi-
mation to results obtaaned fron the above shooring streass assunption.

Therefore 1t 1s suggcstced that the latter foxrmulac should be
sufficlently accurate in application probably up to ¥ =4 until further
cxperimental cvidence may make refaincnient possible,
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1 Introduction

By contrast with the laminar boundary layer, evaluation of the
turbulent boundary layer in compressible flow is hampered by a lack of
knowledge of the mechanism of turbulence under such conditions, Even
measurements of the mean flow conditions an compressible turbulent
boundary layers are few in number, particularly under heat transfer
conditions.

However a number of suthors have developed formulae for the skin
friction in the compressaible turbulent boundary layer on a flat plate
with zero pressure gradient, There have been two starting points for
these developments. The fairst is to generalise the expression for shear-
ing stress accepted in incompressible flow and to make plausible asgump-
tions concerning the boundary condifions, TPiS was done by Rubesin®,
Ferrarij, Lilt) Van Driest5, Clemmow”, Wilson " ana by Smath and Harrop12.
The second 18 to assume that the log-law velocity distribution found in
incompressible flow will apply also in compressible flow if density and
v1SCosit¥oare evaluated at wall temperature, This was done by Cope” and
Monaghan'~,

As a result, numerous formulae are available, some more complex
than others, and comparison is made difficult by differences in notation
and in methods of presentation, A comparison of some of the formulae is
made by Rubesin, Maydew and Varga in Ref.3. The object of the present
note 1s te extend this comparison and also to examine more fully the
back~ground to the assumptions made in the various investigations.

To that end, section 2 gives a survey of the position in incompres-
sible flow and sections 3 and 4 examine the generalisations which are
made 1n going to compressible flow, Section 5 then gives a graphieal
comparison of the various formulae available under zero heat transfer
conditions and section 6 considers the case when heat is being transferred.
It will be seen that of the two "starting points" mentioned above, the
first is not so far an advance of the second as it might appear, mainly
because of the restrictive nature of the boundary conditions assumed.

An attempt has been made to keecp the mathcematics to a minimum and
experimental evidence 1s drawn upon where available.

2 Velocities and skin friction., Incompressible flow

In the mathematical treatment of turbulent incompressible flow
(see Ch,V of Ref,1) it is usually assumed that the motion can be separated
into

(a) a mean flow whose components are u, v, W'

and (b) a superposed turbulent flow whose components are u', v', w',
the mean values of which are zero,

* 4, vand w are the velocity components parallel to the x, y and =z
axes respectively. The notation here is changed from that of Ref.1,
where U, V and W refor to the mean flow and u, v and w refer to the
fluctuating flow.



Thus at any time the velocities at 2 point in the fluid are u + u',
v+ v, w+w and by substitution of these quantities in the equations
of motion and of continuity, and by taking mean values, it is found that
the resulting equations for the mean flow can be expressed in "laminar®
form if stress components such as

-pu‘v'
are added to the stresses associated with viscosity, These virtual
stresses are known as Reynolds stresses. (The bar over the top of a

fluctuating quantity denotes a mean value wath respeet to txme at a fixed
point. Thus by defanition

' = v =w =0

but, in general, correlations such as

uivl

will not be zero).
After making the usual boun layer approximations it can then

be shown that the shearing stress (7) in a two dimensional incompressible
turbulent boundary layer is given by

T==-puv' +p-§§i (1)

where p is density
and o4 is viscosity.

Except in limited regions very c¢lose to the wall, the Reynolds
stress will outweigh the viscous stress, in which case equation (1) becomes

T = -pu'v' (1a)

The quantity pu'v' can be interpreted as representing the rate of
transport by turbulence of x-momentum across unit area of a plane normal
to the y-axis. TFor its determination, Prandtl put forward the hypothesis
that

2 du. /d
TV = - gu. [du
u'vt = - ¢ 3 E Kd ) (2)

if the mean velocity u is a function of y only. Equation (2) serves
to define a "mixture length" £ and is based on the assumption that
a'2 o V'2

and that u' and v' are closely correlated.
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Over a small region of the boundary layer close to the wall we may
assume that

A
1

const

= %
o

where T, 18 the local shearing stress at the wall,

In the same region there are two hypothesis available for predicting
£ . The first 1s that of Prandtl, who took

and the second is that of Von Karman, who took
2
du/ 2%u
£ = kp, = b
2 o 55F (3b)

where k,] and k2 are constants,

Velocity distributions near the wall can then be determined as
follows.

2.1 Velocity distributions

2.11 Assuming the Prandtl mixing length £ = k,y

Taking T = 1, combination of equations (1a), (2) and (3a) gaves

a first order differential equetion whach integrates to give the velocity
distribution

1
¢ =%~ 1ln M+ const (&)
1
u
where = —
¢ o
y
no ¥
V
v 15 kinematic viscosity = éf
l"""%"‘o'
and u. = ?TD 15 the so called "fraiction velocity".

Because of the assumptions made in its derivation we shouwld only
expect this distribution to be valid close to the wall, but in fact it is
found that experimentally observed velocity dastributions in pipes are
well Titted in their entirety (Ref.?, Ch.,VIII, pp.336) by taking kq = O.4
and the constant to be 5.5, i.e,

2.5 1In n + 5.5

) (5)

I

' = 5.75 logqg M + 5.5

as plotted in Fig.1



The same experimental results also support the idea that very close
to the wall there is a "laminar sub-layer" where viscous stresses predomin-
ate, In this region (from equation (1))

_, du
T T H Gy

and hence the wvelocity profile is gaven by

¢ = 7 (6)

as plotted in Fig,1.

Between the laminar sub-layer (equation (6)) and the turbulent core
(equation (5)), there 1s a transition region where the viscous and
Reynolds stresses are of comparable magnitude. It happens that equation (&)
gives a reasonable fit to the experimental results in this region 1f we
choose k1 = 0,2 and the constant to be -3.05, i.e.

¢ = 51lnm - 3.05 (5a)
This curve 1s shown in Fig.1. It meets the turbulent core (equation (5))
at n = 30 and has a smooth join with the lamnar sub-layer (equation (6))
at = 5.

Between them, equations (5), (52) and (6) specify the velocity dis-
tribution across the whole of the turbulent boundary layer., This analysis
including the transition region is due to Von Karman., Earlier analyses
made by Taylor and by Pranditl) postulated that there was a sharp boundary
between the laminar sub~layer (cquation (6)} and the turbulent core
(equation (5)). Reference to Fig.? shows that this would occcur at

¢=m = 11,6

and this value 1s usually denoted by “s". This is of interest since it
forms a boundary condition much used by authors when deriving formulae

for the turbulent boundary layer in compressible flow. It can easily be
shown in this case that combining equation (4) with the boundary condition

@ =m = s (7)
at the edge of the laminar sub-layer gives

1 1 ekt ®
¢ = — Inm+ —1n

k4 ky 8

(4a)

as the equation for the velocity distribution in the turbulent core.
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2,12 Assuming the Von Karman mixing length £ = ko & 32
S

In this case, combination of equations (1), (2) and (3b) gives a
second order differential eguation which, by successive integrations gives

® - ¢, ke (8)
an
and
¢=-}§;1nk201+-ﬁ1—2-1n(n+02) (9)

Thus in distinction to the result obtained from the Prandtl mixing
length, there are now two constants (in addition to k2) available for
determining the velocity distribution.

Following the Taylor-Prandtl analysis, one constant is determined
by the boundary condition

¢ = M = 8 (7)

At the junction with the laminar sub-layer, and the second constant can
be determined by assigning a slope to the profile at the same point, i.e,

g..(‘E = f
5 (7a)
when ® = M = s
Equation (9) then becomes
1 4 L (ne o) (
p=1lnko f € + Liln{n+—-s 9a)
ks, k, k£

The form of the result usually quoted (equation (5)) requires

and k2 =k

(Thus if k; = 0.4 and s =" 11,6 we have f = 0,216),

The subscriptd to k will therefore be dropped in the subsequent
work., : - .

Equatio@z€§51§§i§§§§§;ﬁiﬁs another solution which i$ of interest in
that it agrees fairly well with experimental results in the transition
region as well as in the turbulent core. This is obtained by taking



(i.e. continuity of slope at the junction with the laminar sub-layer)
and by choosing s so that the result¥ing profile agrees with equation (5)

© = 5.5+ 2.5 1nn (5)

when 7 is large., With k = 0.4 this means that
=] = 7-8
and equation (9a) becomes
¢ = 5.5+ 2.51n (n~ 5.3) (5b)

The resulting curve is shown in Fag.1.

The form of equation {9b) is referred to in Ref.2 as the basis of
the "Buffer Layer Analysis" amd it should be noted that it cannot be
obtained from the Prandtl mixing length. (Section 2.11).

2.2 Skin friction

This is obtained by substituting the above velocity profiles in the
momentum equation

T a 6
1 e~ EER « A _ =
5 Cp = ou? = ax .[ ™ (} u1> dy (10)
« 0
where cf is the loecal skin friction coefficient
and u, 3is the free stream velocity

(This is the form of the momentum equation which is applicable when there
are no pressure gradients in the stream direction).

Pt 2= [= j@)}

I

u
and 2z = Uy
(Thus ¢ = = = vz)
Ug

then equation (10) can be written

)

o - S 2 -] 10

— = V"~ {:v ]. z (1 - 2) ” dZ} (10a)
o



=

and it can easily be shown that use of either the Prandtl or the Karman
mixing length gaves

@. = _1.. ek(tp"'s)
do f
5
. 1 ekv(z-;) (8a)
fl

Substituting equation (8a) in equation {10a) and integrating
neglecting the very small influence of the laminar sub-layer where

%% = 1) we obtain the final result, valid if v is large,

2, ks
LA 1ln k fe + ! in ReX Cf (17)
- c.? Yok 2 VoK
u1x
where Rex = jr— .

Numerical values are as follows, for k = 0.4,

(a) from the Taylor-Prandtl analysis which assumes a sharp
Jjunction between the laminar sub-layer and turbulent core,
giving s = 11,6 and £ = 0.216,

= 1.04 + 4,07 logﬂ)' Re, c, {(t1a)

J_;

1

c

n

f

and (b) from the buffer layer analysis, giving s =7.8, and f = 1,

L = 1.05 + .07 log,  Re, cp (11b)

c 2

f

and this equation is close to that which would be obtained by modifying
the Taylor-Prandtl analysis to include Karman's transition region.

However, Kempf's experimental results for a flat plate support the
formula

|-

= 1.7 + 4,15 1og10 Re, Cp

o]
|

(usually quoted as the Kerman-Kempf formula, see Ref.1, Ch.VIII, pp.36L).

- 10 -



Thus a slight forcing of constants is necessary if equation (11), derived
from pipe~flow velocity distributions, is to be applied to give the skan
friction on a flat plate.

Turning now to mean skin friction coefficients (Cp) defined by

Cp P
where /ﬂ 7 dx 1is the total friction over a length £ of the plate, then
o

for boundary layers which are turbulent from the leading edge, experimental
results are fitted by Schoenherr's formula

]

4,13 log,, Re Cp (12)

M L*
pfs

u16
where Re = -

Comparison with equation (11) shows that only the constant k appears
in thas formula. {(The value 4.13 corresponds to k = 0,392).

Equation {12) is not in a convenient form for meking quick estimates
of skain friction for a given Reynolds number, so in its place the Prandtl-~
Schlichting interpolation formula (with constants given by Wieghardt),

-2.6
Cp = 0.46 (log1o Re) (13)

is found useful. A further formula in more general use is

Gp = 0.074Re” /5 (1)

given by Blasius,

A comparison of these three formulae {equations (12) to (14)) is
made in Fig.2 over the range

108 < Re < 10°

The Schoenherr (equation (12)) and Prandtl-Schlichting (equation (13))
formulae are in close agreement over the whole of the range whereas the
Blasius formule (equation (14)) agrees with them only in the region of

Re = 107. This demonstrates a limitation of the Blasius power-law
representation,

- 11 -



3 General remarks on the shearing stress relation in compressible
turbulent boundary layers

The picture of the incompressible turbulent boundary layer presen-
ted in section 2 was artificial in that apparent stresses were introduced
in order to retain a standard form for the equations of the mean flow and
a number of assumptions were then made which enabled a simple solution
to be cobtained. The justification for this procedure rests entirely on
the fact that it produced certain results in good agreement with cxperi-
ment, whach implies that any extension of 1t must also be backed by
experiment.

This applies 1n particular to the turbulent boundary layer in
compressible flow, The standard nalytical approach has been to extend
the incompressible flow picture to include density fluctuations, cte., but
when this is done there is still eonsiderable difficulty in formulating
an "equivalent laminar motion" for the mcan flow, particularly if the
continuity equation 1s to retain its standard form.

Van Driest5, Clemmow6 and Young7 (1n chronological order) are among
those who have extended the turbulent boundary layer equations to include
compressible flow and there arc slight variations in the derivation of
their final expressions for the shearing stress in the boundary laycr
on a flat plate. However it i1s fortunate that the simplest extension of
the incompressible flow picture gives the skin friction formulae which
are in the best agreement with the limited experimental data at present
available (up to M = 3, sec below), so that the dafficulties in deriva-
tion have not yet become of major practical importance.

In incompressible flow we had

T = —pu' v (1a)

which arose from generalising thc term puv in the eguations of mot:on
to include fluctuating as well as mean velocities,

In compressible flow, density fluctuations must be included, and

we run into difficulties when attempting to generalise terms such as puv,
Thus if we generalise the whole quantity we have

puv + (puv)' = (p+p){u+u)(v «v')

and by expanding the raght hand side of thas equation and taking mcens,
we obtain

{puv)" = pu'vi +up'v + v pfu' + plu'v

On the other hand, since we arc considering a rate of transport of
x=-momentum (pu) by a velocity (v) in the y-dairection, 1t might secm more
natural to generalise the quantity (pu).v, which can be shown to give

pu)'v! = pu'v' +u p'v' + p'u'v!
i.e. there is one term less than in the expansion of (Puvi',
However, if we_are considering conditions withir a boundary layer

then v p'u' and p'u'v' are almost certain to be small by compariscn
with the remaining terms, and the expressions become identical. There is

- 12 -



still difficulty in equating either expression with the shearing stress,
but 1f we make this assumption then

T = -pu'v! - g p'v' (15)
when viscous stresses are neglected.
As in section 2 we shall asgume that 7 = T, and that

/0 \2
62}&11

= -
ey \dy

We now make the additional assumption that

pyreli 2du 42
S Y&y

(which is one of the the samplest assumptions that can be made concerning
the behaviour of p'v'

Substituting in equation (15) we obtain

+ qu e¢ &
\p a QE) d; (17)

which ig in the form used by Li and Nagamatsul‘“ and (for a« = 1) by
Clemmow®,

Pig.3, taken from Li and Nagamatsu's article® shows the effect of
the factor "a" on the variation of skin friction with Mach number under
zero heat transfer conditions, These variations were derived from
equation {17) and the momentum equation by & method similar to that des-
cribed in section 4 below, and were based on the Prandtl mixing length

£ = ky (3a)

Also shown in Fig.3 1s a regresentatlve set of values from the
available experimental evidence? > » ' which indicate that for M < 3
(and probably up to M = 4) experimental conditions are best represented
by teking a = 0, i.e, p'v' negligible by comparison with u'v', in which
case equation (15) becomes

T= - pulv! (1a)
as in incompressible flow,

Li and Nagamatsu suggest that the factor a may vary with Mach number,
being zero at low speeds but tendang to unity at extremely high speeds.
At this stage mention must be made of Ferrari's work’?, which 1s based on
equation (15) but uses less straightforward expresslonq for WV’ and
p' v, the latter containing a suggested arbitrary variation with Mach
number (An appreciation of Ferrari is given by Clemmow® who shows that
his results are in qualitetive agreement with those from equation (17)).
However, the worth of such a variation cannot be decided until suitable
experimental evidence becomes available at high Mach numbers and to check
this and other points, Li and Nagamatsu say that an "intensive experimental

- 13 -
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programme” will be conducted an the higher supersonic range, using the
U.S. Army Ordnance - GALCIT Hypersonic Wind Tunnel.

Meanwhile, the following sections of this note contain a more
detailed examination of the effects of various assumptions concerning
mixing length, boundary conditions, etc,, when applied in conjunction
with equations (1a) or (15), but 1t should be remembered that a thorough
examination of the derivation of thcse equations will become necessary if
they are to be applied at Mach numbers greater than about L,

L Temperatures, velocities and skan friction. Compressible flow

If, as in incompressible flow, we take

T = T = const.
o)
and assume
Y
_ 2 {du
vt o= =g \\as',) (2)

while

p'v' << u'v!

as was indicated in section 3, then equation (15) gaves
’dd\z

- (1b)
\&)

T = 962

Two estimates of the mixing length (£) are available from incompres-
sible flow, namely

Prandtl, £ = ky (3a)
| p22
d d
and Karman, L = k(é%} i/é;%) (3p)

but, in distinction to the incompressible flow case, the density (p) will
now be variable, However, since the static pressure (p) 1s constant
across the boundary layer, the equation of state

gives

const,

pT

so that the density distribution can be obtained from the temperature
distribution, which will now be considered,

41 Temperature distribution across the turbulent boundary layer in
compressible flow

An expression for the temperature distribution which has some
theoretical and experimental backing 1s

T & 4 4Bz -4 22 (18)

T

- 1y -



where 2 = L

and T, is the wall (surface) temperature,
Some known values of 4 and B are as follows.

4,11 Assuming Reynolds analogy, ¢ = 1 and % = 0

Reynolds analogy assumes that in turbulent flow momentum and heat
will be transferred in the same way. If in addition there is no pressure

/ \
gradient in the stream direction and 1f the Prandtl number G\\= EEE,) is

unity, (the latter assumption is necessary because of the presence of a
laminar sub-layer and transition region), Then

A
W
(19a)
w1, =1 ’
2 /1y
and A =
TW/T1

where Ty, is the free stream total temperature and is related to the
free stream static temperature (T,) by

TH1 ooq o Yzly? (20)
T, 2

where M1 is the free stream Mach number

C
and ¥ = -2 (= 1.4 for air).
CV

Under zero neat transfer conditions, we have

Ty = Ty

and thus obtain the familiar formula for A4,

1,2
5 e i ¥

2
A
M12 + 5

1014-

0.72 and & = o

4,12 From experimental measurements, o P

Experimental measurements8 of' the temperature distribution in a
compressible turbulent boundary layer on a flat plate, using air as the
working fluid ( o = 0,72}, suggest the values

- 15 -
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Y

(19v)

T .
5 WO,/ T
TW/T1 -

where Tgo 18 the wall temperature for zero heat transfer and is related
te T ¥
1

T
._V:_Q. = 1+o.93ﬁ7;_-11~rl12 (21)

(Thus Tg4 of section 4.11 is replaced by T,, in the formulae for
A and B).

Equation (21) only applies if air is the working fluid, but 1t is
in good agreement with Squire's suggested formula

1

-1
1=0.89% 54,2 if o = 0.72

Thus for fluids othzr t ai1r it is suggested that equation (21a)
should be used for obtaining ~WO/T, in equation (19b).

4,2 Velocity distribution

Using equation (18) and the fact that
pT = const.
equation (1b) (as given at the beginning of section L) can now be written

TO - _E_.ez [_@_Ej
Py Pw  \GY

it
O
N
NS
[\




In the subsequent work we shall follow the procedure of section 2

and put
(%
u, = -
)
o = o
Uy
I S
U o
T
where Cp = ; o >
w
Fl Pwu1
z = & (thus ¢ = vz)
Uy
and n o= T e
Vi

Thus the symbols will have the same meaning as in section 2 provided
the terE\per'ature dependent quantities (p, 4 ) are evaluated at wall tempera
ture (T_).

w

4s in section 2, we shall now obtain velocity distributions,
(a) assuming the Prandtl mixing length, & = ky, {in equation (22))

. s _ 4 du d2u
and (b) assuming the Karman mixing length, £ = k = | %
equation (22)) Y [ dy

and shall consider the effect of the boundary conditions imposed.

L.,21 Velocity distribution assuming 4 = ky

Substituting € = ky in equation (22), and making the various
substitutions listed above,we obtain a first order differential equation
between ¢ and m , which, when integrated in conjunction with the boundary
condition

¢ =m = 8 (7a)

at the junction of the laminar sub-layer, gives the velocity distribution

M =8 exp [%1 (sin™ 1 w - gin™] ws)} (23)
where 4z - B
2A

w = (24.)

- 17 -
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and w. is the value of w for ¢ = s (i.e. for z = %)

3

Equations (23) and {24) reduce to the incompressible form {corres-
ponding to egquation (4a))

n = sexp{kv(z-%)}
= sexpik (g -s)}
when B> 0 followed by A - 0%,
(.2
22 Velocity distributi o= Ju/du
L. elocity distribution assuming = y»’c—i—;;g

In this case, substitution in equation (22) gives a second order
differential equataon, which, when integrated in conjunction with the
boundary conditions

d o

= £ (70)
when ¢ =1 = 83 (73)
gives

do 1 _ kv co=1 -1 7

= = f.exp[ ; ( sin”' w-sin WS)J (25)
and

2N
B
2 j(‘l + =
\ 2) (1= )
y = M u) V-2 exp | M(sin~! wsin™! w )7.4- const. (26)
5 Py 57 )
AT+ kf

where w 15 given by equation (24)

kv
d - ——— "
an A n

Thus, unlike the incompressible flow case, different velocity di ibutions
result from use of the Prandtl or the Karman hypotheses for ng length.
(It con be verified that equation (26) also reduces to equation (L4a) if
B> 0 followed by A - 0).

L.23% Effect of boundary conditions

In either casze there is the choice of boundary conditions s and f.

* The same result does not follow from 4 » O followed by B = 0, because
when A4 = O the fundamental equation is of different degree and has a
different solution.
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If we assume (as 1s usvally done) that these will have the numerical values
found in incompressible flow from the Taylor-Prandtl analysis, i,e.

f 0.216

and s

i

11.6,

then we are in effect specifying that in compressible flow the velocity
profile must pass through the point

= m = 11,6

and also that it must have the same slope at this point as the curve

¢ 5.5 + 2.5 1nn )

| (5)
5.5 + 5.75 logygm

]

found for incompressible flow in section 2,11, (bearing in mind that in
compressible flow,density and viscosity in ¢ and m are to be evaluated
at wall temperature).

Now Cope9 (for zero heat transfer) and the present author 1© (heat
transfer cases included) assumed that the velocity profile in the compres-
sible turbulent boundary layer would always be given by equation (5} if
density and viscosity were evaluated at wall temperature,

S0 it is of interest to compare the profiles obtained
(a) from equation (23) or (26) with the boundary conditions
f = 0,216, s = 11,6

and (b) from equation (5), with density and viscosity evaluated at
wall temperature,

This is done in Fig.)4 for some representative cases (with and with-
out heat transfer and choosing equation (26) for the comparison) which
show the extent of the approximation afforded by equation (5). Actually
this approximation may be better than it seem= at first sight, saince the
"more accurate" solutions can only be expected to apply in the inner
portion of the boundary layer because of the assumptions made in their
derivation, and (as in the incompressible flow case) any agreement with
experiment near the outer edge would be fortuitous.

Thus it appears that despite the more fundamental approach, the
velocity distributions given by equation (26) (or (23)) will be of little
more value than that given by equation (5) until the variations (if any)
of the boundary conditions in compressible flow have been determined by
experimental measurement, Unfortunately, limitations in tunnel size have
meant that the majority of measurements to date have been of thin layers
of the order of 0.25 in, thickness and less, so that the inner regions
of the boundary layer remain unexplored.

However, two sets of experimental prof‘iles8 are plotted in Fig.5
for comparison with the corresponding profiles given by equation {26)
with the boundary conditions f = 0.216 and & = 11,6 (full lines). Under
zero heat transfer conditions there is perhaps tolerable agreement but
when heat is being transferred (Fig.5b) the boundary conditions are
obvicusly inadequate.

- 19 ~



A possibility for improvement might be to assume that in applying
the boundary conditions

f 0.216

1.6

1)

8

density and viscosity (in ¢ and m ) should be evaluated at the temperature
at the edge of the laminar sub-layer instead of at wall temperature.
Then for ¢ and m in terms of wall temperature, the boundary conditions

would be
7 0.8
X - 0,216 (-Jf>
an Ty
1
Ts 7z
: T,
. 0.8
if g oe T

where Ts is the temperature at the edge of the laminar sub-layer®.

Profiles calculated from equation (26} with these revised boundary
conditions are shown by broken lines in Fig.5 and exhibit trends in the
same direction as the experimental results. However, it would not be
profitable to extend this investigation before further experimental
results become available, Meanwhile the analysis will continue with the
usual assumption that the boundary conditions are evaluated at wall
temperature and 1t will be shown that the modifications suggested above
would have very little effect on the final skin friction results, at
least within the range of speeds and temperatures of interest at present,

4.3 Skin frietion

This is obtained through the momentum equation

To _ispu (T-P—d
P 12  ax | Y g Y

which with the substitutions already defined (at head of seetion 4.2)
becomes

1
a 1 -

.L.l.:]. = Ve — {v2f —-—-_—.—Z( ) Ef dz] (27)

Var dx 1 +Bz - 4222 d¢

by comparison with equation (102) in incompressible flow.

* In deriving these sxpressions it 1s assumed that the temperature dis-
tribution is given by equations (18), (19b) and (21).
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Using the Prandtl mixing length (£ = ky), equation (23) gaves

N =5 4 [exp { A(sin™! w - sin”] WEX] (28)
de v dz
/ du dzu\
whereas the Von Karman mixing length { ¢ =k E—-/—w—) gives (equation
(25)) e

an
d

=5 . exp | l(sin'1 w (25)

b2

]
!
i1}
..J
o
]

=z

Consequently, as compared with the incompressible flow case of
section 2, estimates of skin friction in compressible flow vary according
to the hypothesis used for mixang length, The final results, cbtained
by integration of equation (27) with either equation {28) or equation (25),
and assuming that v 1s large, gives the following formulae for local
gkin friction

(a) From ¢ =ky. (Equations (27) and (28)

-+

) 1 k2 feks 1 ,
7 = in + 1n Reyy Qgﬁ(
cp? Y2k 2 V2k

) (29a)

By

H

w

where subscript "w" denotes that density and viscosify are evaluated at
wall temperature and

(30)

] , h-P/2 4 A /vy -B/2a s
d = —*[Sin- s ——————— sin™ r e + A~
A J +BY 142 J(1 +3%/382) s

and A and B are the coefficients in the temperature-velocity relation
as given in section 4.1,

2
(b) from4 =k 9-‘5/9-—-‘-21 . (Bquatians (27) and (25)

2. ks
1
cp 7 vk 2 v 2k
W

where ® 1s given by equation (30), as in case (a).
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The only dafference between equations (29a) and (29b) lies in the
T

7
factor ( Tj') of the former.
W

By comparison of these two equations with the incompressible flow
formula of section 2

2 . ks
1= ink fe + 1 inRe, o (1)

L=
¢ ok 2 VoK

we see that if k, £ and s are unchanged, the effects of Mach number
and heat transfer on local skin friection coefficient can be summarised by
the relations

N (31)

2/ T\
when Rexi = Rexw ] (@ J

where subscript "1" denotes the incompressible values and

m = & for Prandtl mixing length £ = ky
'.2
/du /d"u
m = 0 for Karman maxing length £= k| 5%/
S \dy)’ ay?

Purthermore we shall assume that the same relations will apply to
the mean skin friction coefficient.

Variations in k, f and s with Mach number and heat transfer could
be included in the function & 1f necessary so that equations (31) are
of fairly general validity. Also the notion of "equivalent" incompressible
skin friction oefficients and Reynolds numbers can be extended to include
the results from other shearing stress assumptions as is shown by the
following table (see Appendix I for further details).

/Table
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_ga....

Shearing Stress

Used by

Replace Cfi

Replace Rej

Assumption by by
2
du
= pegd(8u
o7 P (dy>
4
(a) e=ky Smith and Harrop’? | ¢, re. 2[% )“2*
Van Driest” w/ 82 ) xw T
Clemmow® Li and
Nagamatsult ¢ from equation(30)

(v) ¢=k Way

Wilson'! (zero heat
transfer)

“Far /32

a%y/dy2 & from equation (30)
T, = 62 du d(pu)
dy dy
2/ >
(a) £=ky Clemmow® %ty /52 Re,, F2 V(14 142)

Lt end NagamatSul"

F from Appendax T
equations 1,9, I.3

A from temperature -
velocity relation,
section L.1

du T
(b} =k __z/d_yz Clemmow® o /52 Re 2, ﬁ (1+42)
b}
a*y/dy F from Appendix I
equations 1,9, I.3
T
Constancy of Cope9 Ca Re A
+ XW iy

velocity profile

(Zero heat transfer)
Monaghan1o




-)

It should be noted that the variations ascribed to various
authors in the above table are those which result from the shearing stress
assumptions which they made and do not necessarily correspond exactly
to the formulae gquoted in their reports. Thus Smith and Harrop12 take
an erroneous value for 4 and adopt an unusual approximation when
eveluating the momentum integral, which yields a different formula. Also,
Clemmow's results® are in effect all for the Prandtl mixing length
£ = ky and there are errors in his final conversions to free stream
conditions,

Finally, % is usually taken to be zero in equation (30) for &,

which makes calculation easier since € is then independent of v (a.e,
independent of skin frietion)., The value of this approximation is
considered in section 5 below,

5 Comparison of formulae for mean skin friction (Zero heat tronsfer)

The analysis of section 4 led to the Karman-Kempf type formulae of
equations (29a), (b) for local skin friction in compressible flow. The
corresponding formula for mean skin friction would be of the same type,
with constants as given by Schoenherr {cquation (12)). However these
formulae are not particularly amenable to guick caleulation, so in the
comparisons of this section the various relations tabulated at the end
of section L4 have been applied to the Prandtl-Schlichting formula for
mean skin friction in incompressibie flow

-2.6

to obtain the appropriate formulae for compressible flow.

Thus, for example, 1f we assume that

2
2 (du
T, = pe \ay ) (1b)
then the table, or equations (31), give
C
o o |
. T L2
1 & '
X (31)
T, I
271
when Rei = Re & (Tw )
and substituting in equation (13) we obtain
-2.6
CFW = 0.46 {log,.Re @2 T—1-m7 (32)

as the formula for compressible flow, Likewise the assumption of constancy
of velocity profile would also give an equation of the type of equation
(32), but with & =m= 1,
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The validity of replacing the Schoenherr formula by the Prandtl-
Schlichting formula was checked by calculating the variations of mean
skin frietion wath Mach number given by both formilae when modified in
accordance with the assumption of constancy of velocity profile. The
results are given in Fig.6a, which shows that the two formulae give
variations within 2% per cent of each other up to M = 4, both for
Re = 106 and for Re = 107.

On the other hand, Fig.6b shows that a similar generalisation of
the Blasius power law formula (equation (14)) which gives a single curve
for all Reynolds numbers, would not give such good agreement with the
generalised Schoenherr formula. As a result, the Prandtl-Schlichting
formula was chosen for the main calculations of this scction.

Fig.,7 then gives a comparison between the variations of mean skin
friction obtained for Re = 107 from the various shearing stress assump-
tions listed at the end of section 4 and quotes the authors who have
used these assumptions, It also includes the wvariations arising from
the assumption of constancy of velocity profile (00pe9, Monaghan10)and
from Rubesin's interpolation formula<,

/7, \O 467
-2,58( T1
Cp = 0.472 (log,, Re) > k?r';) (33)

Some general points should be noted concerning the structure of
this fagure, as follows:-~

(1) In evaluating & or F, % was taken to be zero. This corresponds

to the procedure used by the authors quoted. (The effect of taking

5 unequal to zero 1s considered in section 5.1 below).
v

(2) 4s already noted at the end of section 4, the variations ascribed
to various authors are those which result from the shearing stress
assumptions which they made and do not necessarily correspond
exactly to the values quoted in their reports.

(3) The viscosity-temperature relation H =« T was used in the calcula-
tions and this accounts for the small difference bhetween the
comparable curves in Figs.6 and 7 (the curves for constancy of
velocity profile) since the relation M « 70.8 was used 1n Fig.6.

T
(4) The abscissa is =X (: ﬂ) since under zero heat transfer

T4 T,
T.
conditions the function & or F depends only on TE + If the
1 T
abscissa were M, then an additional relation linking TE and

;
M, (equation (20) or (21)) becomes necessary. However, a sub-

sidiary scale of M, is given whach corresponds to

T
X-1+0,9 N 21
T1 + 9 > 1 ( )
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Experimental results obtained by Wilsoﬂ11 and Rube81n2 and
included for camparison. The R.A.E. experimental results8,10 at M, =
2.43 and 2.82 are not included since they were obtained at a considersably
lower Reynolds number, but they agreed with the variation given at that
Reynolds number by equation (32), with &= 1, m = 1, i,.e,

T
Cp, = 0.46 log,g (Rew Ti) (32b)

which is the curve labelled "constancy of velocity profile".
Comparing the theoretical and experimental results, we may say,

(a) as in PFig.3, the shearing stress assumpvtion

T = -pu'v (1&)
combined with
2
Tl o —
T = () (2)

gives results in better agreement with experiment than the

asaumption
v = -(pu'v' +up'v') (15)
(v)  accepting result (a) then the Karman hypothesis for mixing
length
2
du !du
L= k=— | b
3y | 32 (3b)

(i.e. Wilson's curve) gives bettcr agreement with experiment
than the Prandtl mixaing length

&= ky (32)
(as used by Smith, Van Driest and Clemmow).

Result (b) is emphasised by the fact that Rubesin's interpolation
formula is based on equations (1a), (2) and (3b), above, but was obtaired
from a set of numerical integrations of the momentum equation instcad of
by approximate integration as used by Wilson and in section 4. It 1s
therefore of considerable interest that the variation 1t gives is close
to that obtained from the assumption of constancy of velecity profile
(equation (32b)), so that the latter can be regarded as a very good
approximation to the more fundamental solution.

(It should &lso be noted that while Rubesin's formula gives the
same variation with Mach number for all Reynolds numbers, equation (32b)
agrees with Wilson's formula in predicting that the variation with Mach
number will also vary with Reynolds number).
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5.1 Effect of boundary condition <

The foregoing results were obtained neglecting terms involving %

in the formulae for & or F, e.g. if, in accordance with the above results,
we take

T = -pu'v' (1a)
2
T L g2 /du
alvl = <4 \dy) (2)
and

2

du) /4
= (92} 2 b
) (dy)/dy2 (3b)

then the results of ‘section 4.3 and equation (32) give

;{2— = 0,46 [If.og10 Re 2 ]- (32a)

where, under zero heat transfer conditions, equation (30) gaves

2 ain? il A8, 8
@:A[sn.n A - sin Av+Av] (30a)

8o that neglecting terms involving % means assuming

4]
[.
]
o
< |w
iH
o
< o

[+
f,

W
8 = 11,6 this approxamation would only be valid for small values of A4,

Now v [:j(—2->]is usually of the order of 20, so that with

T
i.e, for small values of -’.I-.‘E or M1 since
1

%‘E‘E’.- 1
1
2% = (19b)

Ty

Ty

2
M‘I

i

—ra— under zero heat transfer conditions,
M42 4 5

The extent of the errors involved is shown by Fig.8 which compares
the variations obtained from
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ab

(1)  equations (32a2) and (30a), neglecting the terms in %
(Corresponding to Wilson's curve in Fig.7),

(2) equations (32a) and (30a) %taking s = 11.6 and appropriate
values of v,

end (3} Rubesin's interpolation formula (equation (33)) obtained by
numerical integration of the momentum equation.

These show that inclusion of the terms znvolving % gives results

much closer to Rubesin's values than did the original analysis for

8 = 0. Hence, since the variation obtained from the assumption of
-

constancy of velocity profile has already been shown (Fig.7)} to be close

to that obtained from Rubesin's formula, it can be sai1d that the variations
in velocity profile shown in Fig.L have little effect on the final estimates

of skin frietion under zero heat transfer conditions.

What happens when heat is being transferred i1s considered in the
following section.

6 Heat transfer effect on skin friction coefficient

In section 5 it was found that the formula

CF —2.6
W

2
= = 0.46 [mgw Re, @ J (32a)

gave the best agreement with experimental results under zero heat
transfer conditions, so we shall now apply the same formula to study the
additzonal varaiations which may arise when hcat 1is being transferred
between the plate and the stream, In this case

1 1 A~ B/ 1 A s/y - B2 s> (30)
§ =~ t8in - sin” + A= $
A { V(1 +8%/,42) V(1+382/,,2) 7

and we shall take values of 4 and B from Reynolds analogy {section
4.11) i.e.

2
2 TH1/T1 -1 (Y—1/2)M1

(192)
Boo= Tyyp, -1

and assume that u « T.
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The resulting variagions* of mean skin fraiction with Mach number
{ TH1 TH1

under zero heat transfer \.EL-z 1) and two heat transfery 7 = 0.5,

Ty \ T

2.0/ conditions, for Re = 107, are shown by the full line curves in
the” lower graph of Fig.9. A considerable variation with heat transfer
is ewvident.

At a gaven Mach number, the skin friq%ion is reduced if heat is
I
flowing from the plate to the air stream Til = 0.5> and 1s increased
w

if heat is flowing in the opposite direction.

Now the assumption of constancy of velocity profile,10 giving

r, 2.6 3
1
CF,, 0.46 [:10g10 Rey T_-w:| [

T,] ,”T1‘3 _2.6 ‘
a—— [—
CF O.}+6 TW i:log“) Re\TW) ] J

would suggest that for a given Reynolds number, Cp might be a function

of TE alone. This would mean that instead of Cp Dbeing a function of

1
Reynolds number, Mach number and heat transfer rate, it is simply a func-
tion of Reynolds number and of the ratio of free stream static to wall
temperature. Thus, at a given Reynol%s number, the skanfriction for
M = 2 and zero heat transfer { when TE = 1.8 if Reynolds analogy is
1

assumed | should be identical with that obtained for M = 0 and a heat

or

I}

. TW
transfer rate given by = = 1.8,

T4
To check this, the skin friction results obtained from equation
T
(32a) above are re-plotted against T? in the upper graph of ¥ig.9. By

comparison with the plots against Mach number, this shows a big reduction
in the variation with heat transfer. In fact, for the range considered,
the skin friction coefficient is always within 10 per cent of its zero
heat transfer value.

The above result is based on values of A and B derived from
Reynolds analogy, but use of the empirical values of A a2rd B given
in section 4.12 should not make any radical alteration to the curves.
Another source of error is the fact that the boundary condition "s" was

taken to be 11.6 throughout whereas the experiment.:l velocity profiles

* Values of v { = {(ﬁf%->:} for substitution in equation {30) were
T\ Cfy
obtained for convenience from the incompressable flow power law formula
for local skin friction, modified in accordance with the constancy of
velocity profile assumption. Errors thus introduced should be small.
The value of "s" was taken to be 11.6.
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in Fig.5 suggested that 1t should vary. To check the order of the error
thus introduced, a skin friction coefficient was calculated for
T T
EE = 4.0 and s 0.5, using the revised boundary condition given in

1 w
section 4.23 (which gave a velocaty distrabution displaced in simlar
fashion to the broken lines an Fig.5). The result of the calculation 1s
shown by the cross symbol an Fig.9, whose displacement from the correspond-
ing full line curve 1s seen to be small.

Thus it may be said that the variation given by the assumption of

constancy of velocity profile (equation ( 32b)§ should give results within

the order of 10 per cent of the "more fundamental" theoret1ca1 formula
H1

=~

T
(equation (32a)) over the range 1 ¢ ?ﬂ ¢l and 0.5 ¢ T < 2. For
1
comparison purposes, the actual variations given by equatlon (32b) are
added as broken lines in the two graphs of Fig.9.

Finally 1t should be mentioned that the only available experimental
results8 for fiat plates at supersonic speeds have shown a variation of
skin friction with Mach number but not with heat transfer. These results

T
are for M = 2,43 and 2.82 and for Tﬁl = 0.7 and 0.64. On the
w

other hand, skin friction results from flow in pipes at low speeds but at
high heat transfer rates have shown a definite variation with heat transfer
which has been correlated welll3 by a formula of the type of equation
(32b), Further experimental evidence 1s obviously necessary, but mean-
while 1t is suggested that the formula (equation (32b)) obtaincd from

the assumption of constancy of velocity profile has the merait of samplacity
in application, and therefore that skan friction should be regarded as

a function only of Reynolds number and of temperature ratio Tw/T1 This

should be valid up to =~ =4 (corresponding spproximately to M = A

T
1 T
under zerc heat transfer conditions). At higher values of EE (or of
1
Mach number or of both) density fluctuations may be of importance, as
discussed in section 3.

7 Conclusions
1 Of the different shearing stress assumptions made by various

authorss,4,5,6,11,12 the assumption

2n\¢
o |

leads to the variation of skin friction with Mach number which is in the
best agrecment with experimental results in the region 1.6 < M < 2.8
under zero heat transfer conditions (Fig.7).

2 The assumption of constancy of velocity profile9’10 gives skin fric-
tion results in equally good agreement with experiment under zero heat
transfer conditions (Fig.7).

3 Under heat transfer conditions the same assumption gives a reasonable
approximation to results obtained from the shearing stress assumption of
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conclusion 1 (Fig.9). This would mean that skin friction may conveniently
be regarded as a function only of Reynolds number and of the ratio of

free stream static to wall temperature (instead of as a function of
Reynolds number, Mach number and heat transfer rate).

L The explanation of conclusions 2 and 3 is that velocity profiles
obtained from the assumption of conclusion 1 (or from any other shearing
stress assumption) are usually forced by artificial boundery oconditions
?o agr?e with the "constant" velocity profile at points near the wall
Fig.4t}.

5 Extensive further measurements of turbulent boundary layers in
compressible flow would be necessary before these restrictions could be
overcome. This 1s particularly true for flows with heat transfer.

6 Meanwhile 1t 15 suggested that the formula

i—_ T1 -206
Cp,, = 0.46 l—log,lo Re,, -T—;]

obtained from the assumption of constancy of velocity profile has the
merit of simplicity and should be sufficiently accurate in application

T
up to TE = 4 (corresponding approximately to M = 4 under zero heat
1
transfer conditions).

T

7 For Mach nunbers (and possibly T¥') greater than four it will

probably become necessary to make a thorough examaination of the derivataon

of the equations for the turbulent boundary layer in compressible flow
since density fluctuations may assume importance,

LIST OF SYMBOLS

X,y distances parallel and normal to plate

u,v mean velocity components parallel and normal to plate

P density

T temperature

B viscosity

v kinematic viscosity

Subscript "1" denotes free stream conditions (outside boundary layer)

Subscript "w" denotes wall temperature conditions {i.e, at surface of
plate)

Subscript "s"  denotes temperature conditions at outer edge of laminar
sub-layer
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List of Symbols (Contd.)

T,
u friction velocity ’{ = /—0
\ W Pw
u
z 15—
44
. u
¢ 18 E;
N
n is ——
Yo
k is constant in expression for mixing length (= 0.4 in
incompressible flow)
8 is value of ¢ (or m ) at edge of laminar sub-layer (= 11.6 in
incompressible flow)
iy is value of -3—_‘2 at edge of laminar sub-layer (= 0.216 in
incompressible flow)
T
Ch locel skin friction coefficient (= = 2)
z2 P14
Cp mean skin friction coefficient ("-: —F )
5 p1u12x
Re Reynolds number
(&)
v —
C,
O
A%.B coefficients in tempereture-velocity distribution
— 2,2
T = 1T+B, - A%
w
T
{In general B = —= -1
T
w
o TWO/T-1 -1
A® =
TW/T,I
where Two is wall temperature for zerc heat transfer}

- 32 -



List of Symbols (Contd,)

Title, etc.

Modern Developments in Fluid
Clarendon Press, Oxford 1938

Analvytical and experimental investi-
gation of the skin friction of the
turbulent boundary layer on a flat
plate at supersonic speeds

Washington, [.C. Peh. 1951

Study of the boundary layer at super-
sonic speeds in turbulent flow: case
of flow along a flat plate

Quarterly Applied Mathematics

Vol, VIII No.t, pp.33 April, 1950

A is &Y
A
Az - E/ZA
w i ——
V(1 + BY/14%)
& defined by equation (30), section 4.3
B defined in Appendix I
REFERENCES
No. Author
1 Edited by S. Goldstein
Dynamics
2 M. W. Rubesin,
R. C. Maydew and
5. A, Varga
NACA T.N. 2305
3 C. Ferrari
L T. Y. Li and

H. T. Nagamatsu

Effects of densaity fluctuations on
the turbulent skin friction of an
insulated plate at high superscnic
speeds

Journal of the Aeronautical Sciences
Vol.18 No.10, pp.696 Oct, 1951

- 33 -



[ 1)

REPERENCES (Contd.)

Eg: Author Ticle, ete.

5 E. R. Driest Turbalent boundary layer for cam-
pressrble fluiads o an insulated
flat plate
North Americen Avaation Report
No, AL ~ 9586 Sept. 1949

" E. R, Van Driest Turbulent boundary layer for com-
pressible fluids on a flas plate
with heat vransfer
North American Aviation Repert No.

AL - G Jan, 1950

6 D, ¥. Clemmow The turbulent boundary layer flow of
a camnpressible fluid along a flat
plate

A R.C. 14051
D.G. ".R.D. Report 50/6 Aug. 1950

7 A. D, Young The equations of wotion and energy
and the velocity profile of a turbulent
boundary layer in a campressible fluid
A,R.C. 13921
Cranfield Report Ne. 42 Jan. 1951

8 R. J. Monaghan and The measurement of heat transfer
J. R Cooke and skin friction at supersonic
speeds. Part III Overall heat
transfer and boundary measurements
on & flat plate at My = 2,043

C.P. 139 Dec. 1951
" R. J. Monaghan and The measurement of heat transfer
J. R. Cooke and sldn friction of supersonic

speeds. Part IV Tests on a flat
plate at i = 2,82

CeP, 140 June, 1952
g 7. F. Cope The turbulent boundary layer in
compressible flow
R & M.2840 Nov, 1943
10 R. J. Monaghan and The measurement of heat transfer and
J. B. Johnson skin friction at supersonic speeds.

Part II Boundary layer measurements
on a flat plate at il = 2.5 and zero
heat transfer

C.P. No,6L, A.R.C, 13064 Dec. 1949

- Bl -



No. Author

11 R, E. Wilson

12 F. Smith and
R, Harrop

13 R. J. Honaghan

REFERENCES (Contd.)

Titvie, etc.
Turbulent boundary layer characteristics
at supersonlc speeds -~ Theory and experiment
C.M. - 569, D.R,L., - 221
Def'ense Rescarch Laboratory
Universaity of Texas Hov., 1945

The turbulent boundary layer wath heat
transfer and compressible flow
R.A.E. Tech Note No. Acro 1759 Febh. 1546

Comparisen between cxperimental measurcments
and a suggested formula for the variation
of wurbulent skin friction in compressible
flovr

A.R.C, Current Paper No.45 Feb. 1950

..35.-



APPENDIX T

Relations between compressible and 1ncompr3551ble skin

fraction coefficients

Based on the shearing stress relation

O

and with

D ———

T = _Pulvt

3.\
! o= 0P (QE>

\dy

the analysis of section 4L gave the relataions

Cfl =

when Re .
xi

1]

cp )

52

(31)

Rogy 52 (51)

-

between incompressible (subscript "i") and compressible skin friction

coefficients and Reynolds
density and viscosity are
the static temperature of
a function of Mach number
(30) of the main text and

numbers, where subscript "w" denotes that
evaluated at wall temperature T and T4 is
the stream outside the boundary layer. & is
and of temperature, being defined by eguation
the index "m" takes the values

m = % for Prandtl mixang length ¢ = ky
and m = O for Karman mixing length &=k du /QE%
BB Syl ay
This Appendix considers the modafications introduced into equations
(31)
(1) by taking the shearing stress relation
— 1
Ty = -pu'v! - u p'v
or (2) by assuming constancy of velocity profile as in Ref.10.
1 Shearing stress relation 7, = -pu'v' - up'v'
We shall consider the form obtained by assuming
utvt = - 62 (Sﬁijz
dy
and PYE R
dy dy



which gives

s hY
Ty = ng +p 42,2 du
dy dy dy

22 du dlou) .1

dy dy

H

The effect of the various values of "4" are as follows.

1a Prandtl value & = ky

In this case by substituting for € in equation I.1, by making the
substitutions listed at the beginning of section 4.2, by taking

?.E:T_:1+BZ-A222
P Tw
where
u
z = -
24

and by integrating, we obtain the velocity distribution

J
n = ¢ vV I.2
where e
¥, 2 2
¥ =f 1 + A7 dz
1 + Bz - A222
-1 1 +al - ~bi -
s SRR NNV LT Sy R UR
Al Va2 4+ 8 ~Ag B2 + 1 b+hz J
with | — -
17 2 B
a = 1+ ~+—
YA 2> 2A
and —
lr 82\ B
= (11 == T
P AT Mz) 24
The constant C 18 defined by conditions at the edge of the
laminar sub-layer; giving
—kvi
C = sekvvﬁ I°}+

where 1?8 denotes that 2z = in equation I.3.

s
v
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In incompressible flow the constant is
4
_ ks [ 1 ks 1
Cj = se \"kfe if s‘kf)
so that equation 1.4 can be wraitten

)
c = Ci e“kV(lb'S - V) I‘5

The momentum equation

becomes
1 (
1 -~ d
g Zz_d_[cV f —2llo8)d (k) dy] 1.6
V2 U-'] dx 1+BZ"A 2 dz

and by integration by parts and assuming v large, we obtain the final
form

1 —
v 2
= 1n + In (Re,, € Y1 42 ) 1.7
3 V2k 2 Yok AERELNES

where ¢1 denotes that z = 1 in equation I.3.

Therefore by comparison with the incompressiblc flew equation

2p ks
..:L_..1 - 1k £ +—— 1n (Rexi Co.)
cp E-4 Vox 2 v2k 1

1

we ogbtain the relatioms

Cp
Cfi = Fg ]

I.8
- Ny 2J
when Rexi = Rexw F2 1 + A
8
where F = WT - ws + 3 I.9
and ¥  is given by equation I.3.
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b Karman value ¢4 = k du
dy

an kv
= = ., €
P 2 I.10
where
_ ,1 "'kv \{JS
02 = 7 e

and ¥ is defined by equation I.3 as before,

Taking s = k—l: and relating C, to C; as given in section 1a,
we obtain
3
- “kv(lg - F)
02 = k Ci € I.11

Substituting from equation 1.10 in the momentum equation< remember-

. d 14 .
ing that 3 " v dz we obtain
v j 4
—2(1 -2}

I Cy v2 / £ ;2 &7V g, 1.12

v2 uy dx 1+Bz - A%z
and this time the final form is

2, ks
V-4 +2 1 x°fre 1 T
L S 1n + in [Rech __1_:@*(1 +A2>7' I.13
cp 2 vk 2 2k fNT1 \ J
W

so that the relation between incompressible and compressible flow values
is

f.
Cf. = Jz 1
i F
{ I.14
2 Ty D J
when Rey; = Reyy F --; (1 + 249

where P is given by equation I.9.
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2 Azsumption of constancy of velocity profile

In this we assume that the velocity profile in comprcssible flow
is given by

¢ = A +B Ilnn 1.15

where A and B are the experimental constants found valid in incom-
pressible flow, (but remembering that density and viscosity in ¢ and n
are to be evaluated at wall temperature),

Using equation I.15 the momentum equation gives {see Ref,10) a
skin friction formula which is related to the incompressable flow formula
by

cfi = wa
when : I1.16
Ty
ReXl = Rexw T—
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