NATIONAL AERONAUTICAL ESTABLLISHMENT
LIBRARX

MINISTRY OF SUPPLY
aeronautical research council CURRENT PAPERS

Theoretical Load Distributions on Wings with Cylindrical Bodies at the Tips

By
D. E. Hartley

$$
\text { C.P. NO. } 147
$$

Ad.d.ondum to
Report No. Aero 2469
June, 1952.

ROYAL ATRCRAFT ESTABLISHIENT
 Theoretical Load Distributions on Vings whth Cylindrical Bodues at the Tips

by
D.E. Hartley, B.A.

ADDENDUM

From theoretical reasoning, in connection with the load on a wing with one cylindrical body at one end (Reference 7), it has been suggested to replace equation (49) for the effective aspect ratio of the ring-body combination by the following relation:-

$$
\frac{A_{e}}{A}=1+\frac{D}{b}
$$

With this relation, the theoretzcal estimates obtained from the present method agree well wh thexperimental results, as show in an unpublishod report by Spence and Holford.

Report No. Aero 2469
June, 1952.

POYAL AIRCRAFT ESTABLISHMENTI

Theoretical Load Distributions on Wings oth Cylindrucal Bodies ai the Tips
by
D. ت. Hartley, B.A.

SUMARYY

The effect of tip-tanks on spanrise lift distributions is anvestrgated theore cically for the case of minmum induced drag in incompressible potential flow.

Charts enabling rapid estimation of the changes in span loadings, total lifts and induced drags are presented for a pracincal range of the ratio of tank diameter to wing span.

It is shom hout the results may be applied approximately to vings of any planform, ancluding chose 7 th siveep or of low aspect ratio.

IIST OF CONTENTS

Page
1 Introducion 5
2 Conformal transfonmations 5
3 The potential 12
4 The luft 14
4.1 The relationshaps betieen potential, lift and
carculation 14
$\begin{array}{ll}\text { 4.2 Determination of } & \mathrm{V}_{\mathrm{Z}_{\infty}} \\ 14\end{array}$
4.3 Expressions for local and overall loads 16

5 The induced drag 17
6 The effects of low aspect ratio, non-minimum planforms
and sutepback
6.1 Lort aspect ratio 18
6.2 Non-minumum planforms 19
6.3 Sweepback 19

7 Calculation procedure 20
8 Further :rork 22
References 22
Appendix - Mstimation of $\Delta \alpha_{T} \quad 23$
Table I - Specamen calculation 25

LIST OF ILLUSTRATIONS

Fㄱg.
Wing with tip-tanks and downstream vortex surface 1
Section through the vortex surface 2
Principal stages in the conformal transformations 3
The そ-plane 4
The ζ_{1}-plane 5
A strip of the ζ_{2}-plane 6
The ζ_{3}-plane 7
Half of the ζ_{3}-plane 8
The ζ_{4}-plane 9
The ζ_{5}-plane 10
The ζ_{6}-plane 11
The additional geometric incidence $\Delta \alpha_{T}$ due to the flow round the tanks 12
Chart for determination of induced incidence 13
The function J_{W} required in the estimation of the total wing load 14
Ratio of loads on tark and wing 15
Some spanwase load distributions on the wing and tanks 16
Interpolation curves for determining the spanwise wing loading 17
Some spanwise load distributions on the tanks 18
Interpolation curves for determining the spanmise load distribution on the tanks 19
Planforms and wing loadings for a 59° swept wing, $A=3.61$, with tanks $2 \mathrm{D} / \mathrm{b}=0.15$, by an approximate method utilising a constant value along span of the section laft-curve slope ' a ' 20
Planforms and wing loadungs for a 59° swept wing, $A=3.61$, withtanks $2 \mathrm{D} / \mathrm{b}=0.15$, by a more precise calculation utilising valuesof the section lif't-curve slope 'a' appropriate to the real wing(straight taper; tip chord/centre line chord $=0.25$)21
Increnents in wing load due to tanks $2 \mathrm{D} / \mathrm{b}=0.15$ on a 59° swept wing, $A=3.61$, by the approximate and more precase calculations 22Distributions of wing load and lift-coefficients on a straight-tapered 59° swept wing, $A=3.61$, with and wathout tip-tanks,$2 \mathrm{D} / \mathrm{b}=0.15$23

IIST OF SMMBOLS

x, y, z	rectangular co-ordinates of the physical space; x in free stream direction, y sideways, z downwards
$\zeta=z+1 y$	comordinate in the physical $z-y$ plane
$\zeta_{\nu \nu}=z_{\nu}+2 y_{\nu}$	co-ordinate in the transformed planes
where $v=1,2,3,4,5$ or 6	
D	tank dıameter
b	wing span, excluding the tanks
c	local chord
$\overline{\mathrm{c}}$	mean chord
A	aspect ratio
A_{e}	effective aspect ratio
φ	mean sweepback angle of the half-chord line
φ_{e}	effective sweepback angle
t / c	wing thickness-chord ratio
α	geometruc wing incudence
α_{i}	induced incidence due to the trailing vortex system
$\Delta \alpha_{T}$	upwash incidence due to flow across the isolated tanks
R	Reynolds number
V_{0}	free stream veloczty
v	velocity
$\mathrm{v}_{2 \infty}$	downash velocity far downstream due to the trailing vortices
$\omega=\frac{2 \alpha_{I} V_{O}}{v_{Z \infty}}$	downwash factor
W	potential function defined in Appendix (Eq, A2)
$\Phi=\phi+i \psi$	complex potential function
r	curculation
$\mathrm{C}_{\text {L }}$	local luft coefficient
$\overline{\mathrm{C}}_{\mathrm{L}}$	mean total lift coefficient
$\overline{\mathrm{C}}_{\mathrm{I}_{W}}$	mean wang lift coefficzent
$\overline{\mathrm{C}}_{\mathrm{IE}_{\mathrm{E}}}$	mean lift coefficient on an elliptical wing alone

LIST OF SYMBOLS (conta)

a
$\mathrm{n}=\frac{\omega}{2}$
J, J_{W}, J_{T}
section lift-curve slope
coefficzent occurring in the calculation of ' ω ' and ' a '
functions related to the total lift, wing lift and tank lift respectuvely

Suffices
US upper surface
IS lower surface
w wing (tanks present)

T
E
e

J
∞
tanks
elliptical wing alone
effective
junction
Infinity

At the present time a considerable amount of attention is being given to the problems associated with the carriage of external stores such as fuel tanks and, amongst other aerodynamic effects, it has been observed tha' tip-tanks give rise to large increments in lift. The present paper provides a method of estimating the magnitude and spanwise distribution of such increments.

The calculations relate to wangs wathout camber or twist and fitted with two equal, circular-cylindrical tip-tanks situated symmetrically with respect to the plane of the wing.

Incompressible potential flow is assumed and only the case of minimum induced drag (with the tip-tanks in position) is considered - that is, the calculations strictly refer to nne partacular set of planforms,

The problem is attacked by the method developed hy M.M. Munk ${ }^{\dagger}$, L. Prandtl ${ }^{2}$ and E. Trefftz 3 and adopted by W. Mangler 4,5 in his work on aerofoils with endplates.

It is assumed that the velocity $\alpha_{1} V_{0}$ induced at the acrofoll by the tramling vortices is constant, and that the vortex sheet far behind the aerofoil moves downwards with a constant velocity $v_{z \infty}$. The lift forces are deduced in section 4 from the velocity potential on the vortex sheet far downstream in terms of $v_{z \infty}$ and the relationships between circulation, induced ancidence and lift-curve slope existing on the aerofoll serve to determine $v_{z \infty}$. Calculation of the potential function for downstream is essentially the problem of finding the two-dimensional flow past a solid boundary shaped like a cross-section of the vortex shect. Conformal transformations enabling this to be done in the present case were found (section 2) to be already existing in a report ${ }^{6}$ by I. E. Garrick on the potential flow about biplane aerofoils and in W. Mangler's work ${ }^{\text {a }}$. on aerofoils with endplates.

A problem closely related to the present one - the loadng on a rear fuselage and fin, which for small values of the ratio of fuselage diameter to fin span may be looked upon as a wing with one tip-tank - has been solved ${ }^{7}$ by J. Weber, concurrently with the present work. Here again the manmum induced drag problem has been studied; there is little likelihond that nonmanamum solutions wall be fortheoming for either problum. H. Multhopp's general solution of the loading on a wirg with a fuselage (extended ${ }^{8}$ by J. Weber to take sweepback into account) is a particular case in which a transformation could be used leading to boundary conditions exactly the same as those for a wing alone; similar cases will obviously not occur frequently.

The possibillties of applying the present solutions to wings of ar"bitrary planform, including low aspect ratıo and sweep, are discussed in section 6.

A numerical procedure, suitable for pxactical applications of the results, is outlined in section 7 and Table I.

2 Conformal Transformations

In the physical space, a rectangular co-ordinate system x, y, z is taken; x is measured in the free stream durection, y to starboard and z vertically downwards.

A wing is consıdered which has a span b, mean chord \bar{c} and aspect ratio A, together with tip-tanks which are basically circular cylunders
of diameter D. The wing is assumed thin, with no camber or twist and of a planform such as to give minimum induced drag when in conjunction with 'the tanks. Fig. 1 shows a wing whth tip-tanks and a part of the downstream vortex system. Fig. 2 shows a cross-section of the vortex sheet far downstream, perpendicular to the stream direction, and it is desired to calculate the potentials on this surface when it moves downwards with velocity $\mathrm{v}_{\mathrm{z} \infty}$. As a step towards this goal, the flow must furst be obtained for a streaming motion past the stationary object. The state of affairs is shown in Fig. 3 (1). Since the potential function for this motion is not known, conformal transformations must be made until a shape is obtained for which the potential function of the corresponding flow is available.

The transformations are in two main groups: the first group, which is taken from a report ${ }^{6}$ by I.E. Garrick, transiorms the shape of Fig. $3(1)$ in that corresponding to a wing, with endplates (Fig.3(11)), and the second group, transformations of W. Mangler 4,5 , converts the aeroforl-endplates configuration into a straight line (Fig.3(1ii)). A parallel stream at infinity in the physical plane becomes the flow due to a doublet on the axis in the final stage of the transformations.

The complex co-ordinate ζ_{ν} as uscd in the transformed planes where

$$
\zeta_{\nu}=z_{\nu}+i y_{\nu}
$$

and $\nu=-1,2,3,4,5$ or 6 ;
in the physical plane the corresponding co-ordinate is ζ where

$$
\zeta=z+.1 y .
$$

In the figures showing the various planes, corresponding points are denoted by the same letter but with appropriate suffices. Geometrical proportions have been maintained roughly between Figs. 4 and 7 and between Figs. 8, 9 and 10.

The transformations will now be described briefly, with some attention being paid to points arising out of thear particular applacation to the present problem where the tank daameter as small compared with the wing span. A list of the symbols is given at the beganning of the Report.
(i) By the transformation

$$
\begin{equation*}
\frac{\zeta_{1}}{s}=\frac{\zeta+2 s}{\zeta-1 s} \tag{1}
\end{equation*}
$$

the whole of the ζ-plane (Fig.4) external to the carcles K and K^{\prime} Is transformed into the annular region between two concentric curcles K_{4} and K_{g}^{\prime} in the ζ_{1}-plane (Fig.5).

The derivation of the transformation may be understood if, an the ζ-plane, the circles K and K^{\prime} are considered members of a coaxial system of circles wath limiting points at Q and Q^{\prime} and if Q and Q^{\prime} are taken as oragans for two polar co-ordinate systems (ρ, δ) and $\left(p^{\prime}, \delta^{1}\right)$. Q and Q^{\prime} are the points \pm is, where

$$
\begin{equation*}
s=\sqrt{\frac{b}{2}\left(\frac{b}{2}+D\right)} \tag{2}
\end{equation*}
$$

and are close to the centres 0 and O^{\prime} of K and K^{\prime}.

Any point in the ζ-plane may then be wrutten

$$
\zeta=z+1 y=1 s+p e^{I \delta}=-1 s+p^{\prime} e^{1 \delta^{\prime}}
$$

and so from equation (1)

$$
\frac{\zeta_{1}}{s}=\frac{\zeta_{\zeta}+1 s}{\zeta_{c}-1 s}=\frac{\rho^{\prime}}{\rho} e^{i\left(\delta^{\prime}-\delta\right)}
$$

Using polar co-ordunates $\left(r_{1}, \theta_{1}\right)$ wath the origin at $y_{1}=0$

$$
y_{1}=r_{1} e^{I \theta_{1}}
$$

and

$$
\begin{equation*}
r_{1}=s \frac{\rho^{\prime}}{\rho}, \quad \theta_{1}=\delta^{\prime}-\delta \tag{3}
\end{equation*}
$$

Thus the coaxial carcles $\rho^{\prime} / \rho=$ constant become the concentric carcles $r_{1}=$ constant in the ζ_{-1}-plane and the orthogonal system of circles (such as $P P^{\prime} P^{\prime \prime} P^{\prime \prime \prime}$) are transformed Into the straight lincs $\theta_{1}=$ constant (e.g. $P_{1} P_{1}^{\prime \prime \prime} P_{1}^{\prime \prime} P_{1}^{\prime}$).

In particular for the circles K and K^{\prime}
where

$$
\begin{gather*}
r_{1}=s e^{ \pm \beta} \\
\beta=\cosh ^{-1}\left(1+\frac{b}{D}\right) \tag{4}
\end{gather*}
$$

and the points C and E, vertically above and below O, transform into C_{1} and E_{1} on K_{1} at

$$
\theta_{1}=\mp \tan ^{-1}\left(\frac{2 s}{D}\right)
$$

(ii) By the transformation

$$
\begin{equation*}
\zeta_{2}=\geq \log \left(\frac{\zeta_{1}}{s}\right) \tag{5}
\end{equation*}
$$

the whole of the $\zeta_{\mathcal{H}}$-plane 2 mapped onto an infinite number of strips of width 2π and parallel to the imaginary axis in the ζ_{2}-plane (Fig.6). The region external to the carcles K_{1} and K_{2} an the ζ_{-}-plane becomes a rectangular region on each of these strips. Attention will be confined to the strip of the ζ_{2}-plane between the lines $z_{2}= \pm \pi$.

Since

$$
\begin{gather*}
\zeta_{2}=I \log \left(\frac{\zeta_{1}}{s}\right)=i \log \left[\frac{r_{1}}{s} e^{1 \theta_{1}}\right]=i \log \frac{r_{1}}{s}-\theta_{1} \\
z_{2}=-\theta_{1} ; \quad y_{2}=\log \left(\frac{r_{1}}{s}\right) . \tag{6}
\end{gather*}
$$

Thus the concentric carcles $r_{1}=$ constant in the $\zeta_{-1}-p l a n e$ become straight lines parallel to the real axis in the ζ_{2}-plane and the straight lines $\theta_{1}=$ constant remain straight lines parallel to the magunary axis.

The point at infinity in the $\zeta_{-p l a n e, ~ w h a c h ~ c o r r e s p o n d s ~ t o ~} H_{1}\left(\zeta_{1}=s\right)$ in the ζ_{1}-plane, is transformed into the origan H_{2} in the ζ_{2}-plane.
(11ii) By the transformation *

$$
\begin{equation*}
\zeta_{3}=-2\left[Z\left(\zeta_{2}\right)+Z\left(\zeta_{2}+2 i \beta\right)\right]-i \tag{7}
\end{equation*}
$$

the rectangular region in the $\zeta_{2}-p l a n e$ which corresponds to the region external to K and K^{\prime} in the ζ-plane is transformed into the whole of the ζ_{3}-plane external to the figure $A_{3} B_{3} C_{3} D_{3} E_{3} F_{3} G_{3}$ and its reflection in the z_{3}-axis (Fig.7). This is the end of the first stage of the transformations corresponding to Fig. 3(1i): the shape of a section through the tracling vortex system of a wing with tap-tanks has been transformed into the corresponding shape for an aerofoil with endplates.

The relationshyps between points in the ζ_{2} and ζ_{3}-planes are as follovis:

$$
\zeta_{3}=-2\left[z\left(\zeta_{2}\right)+Z\left(\zeta_{2}+21 \beta\right)\right]-1
$$

where $Z\left(\zeta_{2}\right)=\frac{1}{2} \cot \left(\frac{\zeta_{2}}{2}\right)+2 \sum_{l=1}^{\ell=\infty} \sum_{m=1}^{m=\infty} e^{-4 \beta l m} \sin \left(m \zeta_{2}\right)$.

Splitting this into real and imaganary parts,

$$
\begin{align*}
& z_{3}=-2\left[M\left(z_{2}, y_{2}\right)+M\left(z_{2}, y_{2}-2 \beta\right)\right] \\
& y_{3}=-2\left[N\left(z_{2}, y_{2}\right)+N\left(z_{2}, y_{2}-2 \beta\right)\right] \tag{9}
\end{align*}
$$

where**
$M\left(z_{2}, y_{2}\right)=\frac{\sin z_{2}}{2\left(\cosh y_{2}-\cos z_{2}\right)}+2 \sum_{\ell=1}^{\ell=\infty} \sum_{m=1}^{m=\infty} e^{-4 \beta \ell m} \sin \left(m z_{2}\right) \cosh \left(m y_{2}\right)$
$N\left(z_{2}, y_{2}\right)=-\frac{\sinh z_{2}}{2\left(\cosh y_{2}-\cos z_{2}\right)}+2 \sum_{l=1}^{\ell=\infty} \sum_{m=1}^{m=\infty} e^{-4 \beta l_{m}} \cos \left(m z_{2}\right) \sinh \left(m y_{2}\right)$

[^0]In particular along $\mathrm{B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$

$$
\begin{equation*}
z_{3}=-4 M\left(z_{2}, \beta\right), \quad y_{3}=1 \tag{10}
\end{equation*}
$$

and the pount H_{2}, the origan of the $\zeta_{2}-p l a n e$, becomes the point at infinaty in the ζ_{3}-plane.

As the tank size tends to zero $(2 \mathrm{D} / \mathrm{b} \rightarrow 0, \quad \beta \rightarrow \infty)$ the ratio of the infunte series terms to the other terms in the expressions for z_{3} and y_{3} also tend to zero, the semд-height of the endplate tends to D / s and the extreme points C_{3} and E_{3} correspond exactly to the points C and

For tanks of funzte suze we may write
$M_{n}\left(z_{2}, y_{2}\right)=\frac{\sin z_{2}}{2\left(\cosh y_{2}-\cos z_{2}\right)}+2 e^{-4 \beta} \sin z_{2} \cosh y_{2}+0\left(e^{-8 \beta+2 y_{2}}\right)$
$N\left(z_{2}, y_{2}\right)=-\frac{\sinh z_{2}}{2\left(\cosh y_{2}-\cos z_{2}\right)}+2 e^{-4 \beta} \cos z_{2} \cosh y_{2}+0\left(e^{-8 \beta+2 y_{2}}\right)$
where the third term wall always bo neglıgible but where the second term may need to be considered.

For the maxamum size of tank taken in the numerical work of this report, the first terms of the scrzes (the second terms in equation (11)) contribute 0.4% and -0.9% to the endplate height and wang semi-span respectively. For tanks equal in diameter to the somi-span, the values would still be only 2.9% and -5.9%. Condztions are not very dafferent therefore from the limiting case $2 \mathrm{D} / \mathrm{b} \rightarrow 0$ and in Figs. 4 and 7 the points C and C_{3} are shown in positions which strictly only corrospond to each othor in the lamating case.
(iv)* The transformation

$$
\begin{equation*}
\zeta_{3}=2 \sqrt{\frac{\zeta_{2}}{1}} \tag{12}
\end{equation*}
$$

transforms one half of the ζ_{3}-plane (Fig. 8) into the whole of the $\zeta_{4}-p l a n e$ (Fig.9) in such a way that the points H_{3} at infinity on the z3-axis become the point H_{4} at minus-infinaty on the y_{4}-axis and the endplate $2 s$ transformed into a parabolic arc.

Since

$$
r_{3}=1 \sqrt{\frac{\zeta_{4}}{i}}
$$

then

$$
\begin{equation*}
\mathrm{y}_{4}=\mathrm{y}_{3}^{2}-\mathrm{z}_{3}^{2}, \quad \mathrm{z}_{4}=2 \mathrm{y}_{3} \mathrm{z}_{3} \tag{13}
\end{equation*}
$$

Thus the longth $A_{4} B_{4}$ remans equal to the length $A_{3} B_{3}$ whilst the vertical distance $\mathrm{C}_{4} \mathrm{~B}_{4}^{+}$is $2 \mathrm{~K}_{0}$ where K_{0} is the length $\mathrm{C}_{3} \mathrm{~B}_{3}$.

[^1]Before the next transformation is made, the parabolic arc $C_{4} E_{4}$ is approximated by an arc of a circle passing through C_{4}, D_{4} and \mathbb{E}_{4} with its centre at $\left[0,-i\left(1+K_{0}^{2} / 2\right)\right]$. The error in this approximation is small for the size of tanks taken in the calculations of this report, but for larger tanks, say $2 \mathrm{D} / \mathrm{b}>1$,* further consideration must be given to it.
(v) The transformation

$$
\begin{equation*}
\zeta_{L_{4}}=\frac{\left(3+K_{0}^{2}\right) \zeta_{5}}{4+K_{0}^{2}+2 \zeta_{5}} \tag{14}
\end{equation*}
$$

transforms the curcle in the ζ_{4}-plane into a straight line, of which $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5}$ is a part, in the ζ_{5}-ptane (Fig.10).

By separating equation (14) into real and maginary parts,

$$
\begin{align*}
& z_{4}=\frac{\left(3+K_{0}^{2}\right)\left(4+K_{0}^{2}\right) z_{5}}{\left(4+K_{0}^{2}-y_{5}\right)^{2}+z_{5}^{2}} \\
& y_{4}=\frac{\left(3+K_{0}^{2}\right)\left[y_{5}\left(4+K_{0}^{2}-y_{5}\right)-z_{5}^{2}\right]}{\left(4+K_{0}^{2}-y_{5}\right)^{2}+z_{5}^{2}} \tag{15}
\end{align*}
$$

In particular

$$
\begin{aligned}
& B_{5}=I \\
& C_{5}=i-\frac{K_{0}}{2}\left(3+K_{0}^{2}\right)
\end{aligned}
$$

and the point H_{4} at -im in the $\zeta_{L_{4}}$-plane beomes the point H_{5} at $i\left(4+K_{0}^{2}\right)$ in the Y_{5}-plane.
(va) By the transformations

$$
\begin{aligned}
& \frac{\zeta_{5}}{i}=1-\frac{\left(1+\frac{1}{\zeta_{6}}\right)}{\left(1+\frac{1}{g_{0}}\right)} \sqrt{\left(\frac{\left.g_{1}-\frac{\zeta_{6}}{1}\right)\left(\frac{1}{g_{1}}-\frac{\zeta_{6}}{1}\right)}{\left(g_{1}-g_{0}\right)\left(\frac{1}{g_{1}}-g_{0}\right)}\right.} \\
& \text { for } y_{6}<g_{1}, \text { 1.e. along AB } \\
& \frac{\zeta_{5}}{I_{1}}=1+\frac{\left(1+\frac{i}{\zeta_{6}}\right)}{\left(1+\frac{1}{g_{0}}\right)} \sqrt{\left(\frac{\left.g_{1}-\frac{\zeta_{0}}{1}\right)\left(\frac{1}{g_{1}}-\frac{\zeta_{6}}{1}\right)}{\left(g_{1}-g_{0}\right)\left(\frac{1}{g_{1}}-g_{0}\right)}\right.} \\
& \text { for } y_{6}>\frac{1}{g_{1}},
\end{aligned}
$$

[^2]and
\[

$$
\begin{align*}
& \frac{\zeta_{5}}{1}=1+i \frac{\left(1+\frac{1}{\zeta_{6}}\right)}{\left(1+\frac{1}{g_{0}}\right)} \sqrt{\left(\frac{\zeta_{6}}{i}-g_{1}\right)\left(\frac{1}{g_{1}}-\frac{\zeta_{6}}{i}\right)} \tag{16}\\
& \left.\quad \text { for } \frac{1}{g_{1}} \geqslant y_{6} \geqslant g_{1}\right)\left(\frac{1}{g_{1}}-g_{0}\right)
\end{align*}
$$
\]

the ζ_{5}-plane 1 is transformed into the upper half of the ζ_{6}-plane (FIE.11) whilst the figure $\mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~F}_{5} \mathrm{~F}_{5} \mathrm{G}_{5}$ becomes a part of the Y_{6}-axis.

The relationships (16) are sumpler than those gaven 4,5 by W Mangler owing to the symmetry of our 'endplates' wath regard to the 1 maginary aisis and since the endplates are always at the tips of the wings.

The coefficients g_{1} and g_{2} are related to each other by

$$
\begin{equation*}
1+g_{2}+\frac{1}{g_{2}}=\frac{1}{2}\left(g_{1}+\frac{1}{g_{1}}\right) \tag{17}
\end{equation*}
$$

and to the endplate helght by

$$
\begin{equation*}
K_{0}=\left(1+\frac{1}{g_{2}}\right) \sqrt{\frac{\left(g_{2}-g_{1}\right)\left(\frac{1}{g_{1}}-g_{2}\right)}{\left(g_{1}-1\right)\left(\frac{1}{g_{1}}-1\right)}} \tag{18}
\end{equation*}
$$

The constant g_{0} is then obtainable from

$$
\begin{equation*}
3+K_{0}^{2}=\frac{2}{\left(1+\frac{1}{g_{0}}\right)} \sqrt{\frac{\left(g_{1}-1\right)\left(\frac{1}{g_{1}}-1\right)}{\left(g_{1}-g_{0}\right)\left(\frac{1}{g_{1}}-g_{0}\right)}} \tag{19}
\end{equation*}
$$

In any particular calculation, K_{0} is known from the furst three transformations, so equations (17) and (18) must be solved by trial and error for g_{1} and g_{2} and sumilarly wath equation (19) for g_{1}.

From the relationships (16) It may be shown that corresponding points on the upper and lower surface of the figure $\mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5} \mathrm{~F}_{5} \mathrm{G}_{5}$ are related in the ζ_{6}-plane by

$$
\begin{equation*}
\left(y_{6}\right)_{U S}=\left(\frac{1}{y_{6}}\right)_{L S} . \tag{20}
\end{equation*}
$$

The point at infinity in the ζ-plane 1 s transformed into the point H_{6} on the maginary axis at $y_{6}=1$.

The ζ_{6}-plane is the last stage of the transformations sance it is possible to write down the potential function for the flow which as obtained in this plane.

The potential function Φ is required for the trailing vortex system (Fig. 2) far behind the aerofoll moving downwards with velocity $v_{z \infty}$ in a stream which is undisturbed at infinity. It will be calculated as the sum of two parts:
(1) Φ_{1}. The potential function of a flow of velocity $-v_{2 p \infty}$ at infinity, streaming past the stationary form of the vortex sheet.
(11) Φ_{2}. The potential function due to a uniform stream of velocity $v_{z \infty}$ everywhere. This second part is simply the superposition of a constant velocity onto the flow field (i) so that the vortex sheet is given its vertical velocity and the stream at infanity is brought to rest.
Φ_{1} Is calculable from the transformations of section 2, Φ_{2} may be written down immediately.

Calculation of Φ_{2}
The potential function for a strcam of velocity $v_{z \infty}$ parallel to the real axis in the ζ-plane is

$$
\begin{equation*}
\Phi_{2}=\phi_{2}+ı \psi_{2}=v_{z \infty} \cdot \zeta \tag{21}
\end{equation*}
$$

Calculation of Φ_{1}
In section 2 it 1 s shown that in going from the ζ_{-}to the ζ_{6}-plane the original boundary transforms into a straight line which is part of the y_{6}-axis whilst the point at infinity transforms into the point H_{6} on the y_{6}-axis.

In the ζ-plane, the flow to be considered is a parallel one at infinity in the direction of the negative real axis and it will be shown that thas transforms solely into the flow due to a doublet at H_{6} wath $1 t s$ axis coincident wath the 1 maganary axis.

Consıder the flow in the ζ-plane near $\zeta=\infty$; \quad its potential function is

$$
\begin{equation*}
\Phi_{1}=-v_{z \infty} \zeta . \tag{22}
\end{equation*}
$$

In transformang to the ζ_{3}-plane via equations (1), (5) and (7)

$$
\left|\frac{d \zeta}{\partial \zeta_{3}}\right|_{\zeta \rightarrow \infty}=s
$$

so that

$$
\begin{equation*}
\Phi_{1}=-v_{z \infty} \cdot s \cdot \zeta_{3} \tag{23}
\end{equation*}
$$

From equations (12), (14) and (16), near $\zeta_{6}=1$ (1.e. H_{6}),

$$
\begin{equation*}
\zeta_{3}=-\frac{H}{\left(\frac{\zeta_{6}}{I}-1\right)} \tag{24}
\end{equation*}
$$

where

$$
H=\sqrt{\frac{4\left(4+K_{0}^{2}\right)}{\left\{1-\frac{1}{2}\left(\frac{g_{1}+1}{g_{1}-1}\right)^{2}\right\}}}
$$

and hence

$$
\begin{equation*}
\Phi_{1}=\phi_{1}+i \psi_{1}=\frac{v_{z \infty} \cdot s \cdot H}{\left(\frac{\zeta 6}{2}-1\right)} . \tag{25}
\end{equation*}
$$

This represents the flow due to a doublet sl'tuated at $\zeta_{6}=1$ and anrected along the y_{6}-axis.

In the ζ-plane the conditions to be satisfice were that there should be a parallel flow at infinity and that the shape of the cross-section of the trailing vortex system should be a streamiine. The equation for this flow could not be written down inmediately except for the rogion at infunity (equaicon (22)) and thus transformations were necessary. The state of affairs reached in the ζ_{6}-plane is a satisfactory one since the transformed boundary (part of the y_{6}-axis) is part of a streamline of the doublet flow. Thus it engenders no disturbances of the purc doublet flow and equation (25) which was derıved for the region close to $\xi_{6}=1$ is valıd for the whoie of the ζ_{6}-plane.

The complete potential function is thus

$$
\begin{equation*}
\Phi=\Phi_{1}+\Phi_{2}={ }_{z \infty}\left[\frac{s \cdot H}{\left(\frac{\zeta_{6}}{I}-1\right)}+\zeta\right] \tag{26}
\end{equation*}
$$

and the velocity potential ϕ for points on the vortex surface $z_{6}=0$ is

$$
\begin{equation*}
\phi=v_{z_{\infty}}\left[\frac{\mathrm{s} \cdot \mathrm{H}}{\mathrm{y}_{6}-1}+\mathrm{z}\right] . \tag{27}
\end{equation*}
$$

4 The Laft

4.1 Relationships between potential, lift and curculation

At any spanwise position on the wing-tank arrangement, the lift load* is gaven by

$$
C_{L}(y) c(y)=\int_{-\infty}^{+\infty}\left(C_{p_{U S}}-C_{p_{L S}}\right) d x
$$

and since

$$
C_{p} \approx 2 \frac{v_{x}}{V_{0}}=\frac{2}{V_{0}} \frac{\partial \phi}{\partial x}
$$

then

$$
\mathrm{C}_{\mathrm{L}}(\mathrm{y}) c(\mathrm{y})=\frac{2}{\mathrm{~V}_{\mathrm{O}}}\left[\begin{array}{cc}
\phi_{\mathrm{US}} & -\phi_{\mathrm{LS}} \\
(\mathrm{x=} \mathrm{\infty}) & (x=\infty)
\end{array}\right]
$$

and the carculation is

$$
\begin{equation*}
\Gamma(y)=\frac{C_{\mathrm{L}}(\mathrm{y}) c(\mathrm{y}) \mathrm{V}_{0}}{2}=\underset{\substack{\phi_{\mathrm{US}} \\(x=\infty)}}{ }-\phi_{\mathrm{IS}} \tag{28}
\end{equation*}
$$

Thus the load distribution and curculation are related directly to the difference in potential between corresponding points on the upper and lower surfaces of the vortex system far downstream.

$$
\begin{align*}
& \text { From equations (20), (27) and (28) } \\
& \qquad \frac{\Gamma(y)}{v_{z \infty 0} \cdot \frac{b}{2}}=\frac{2 s H}{b}\left(\frac{y_{6}+1}{y_{6}-1}\right)+\frac{2}{b}\left(z_{U S}-z_{L S}\right) \tag{29}
\end{align*}
$$

so that the spanwise load distribution is calculable from the transformations in terms of $\mathrm{v}_{\mathrm{z} \infty}$, the rate of vertical descent of the vortex sheet, far downstream.

4.2 Determination of $\mathrm{v}_{\mathrm{Z} \infty}$

In order to obtain the magnitude of the loads the value of $v_{z \infty}$ must be found. Nothirg can be said about $\mathrm{v}_{\mathrm{z} \infty}$ from consideration of the flow

[^3]far downstream but it can be related to the induced ancadence at the wing which may be determaned from the boundary conditions on the wang.
$\mathrm{v}_{\mathrm{z} \infty}$ and the induced incidence α_{i} are related to each other by
\[

$$
\begin{equation*}
\frac{v_{Z \infty}}{V_{0}}=\frac{2}{\omega} a_{1} \tag{30}
\end{equation*}
$$

\]

where ω is a 'downwash factor' varyang from one for wings of very large aspect ratio to two for wings of very small aspect ratio.*

At the wing the effective ancidence $\alpha_{e}(y)$ is composed of the geometrical incidence α, the induced incidence α_{i}, and an additional upwash incidence $\Delta \alpha_{T}(y)$ due to the tanks. This last addational incidence is produced by the flow component αV_{0} of the mainstream perpendicular to the axes of the tanks (see Fig.12) -nd is quate distanct from the influence which the tanks have on the trailung vortex system. Estimation of $\Delta \alpha_{T}(y)$ is dealt with in the Appendux.

The effectuve ancidence is gaven by the relationship

$$
\begin{equation*}
a_{e}(y)=a+\Delta a_{T}(y)-a_{1} \tag{31}
\end{equation*}
$$

and the local lift coefficient is

$$
\begin{align*}
\mathrm{C}_{\mathrm{L}}(\mathrm{y}) & =a(y) \alpha_{e}(y) \\
& =a(y)\left[\alpha+\Delta \alpha_{T}(y)-\alpha_{i}\right] \tag{32}
\end{align*}
$$

where $a(y)$ is the sectional lift-curve slope. However, the circulation is already known from equation (29) and the local littt may also be expressed in terms of this:-

$$
\begin{align*}
\mathrm{C}_{\mathrm{L}}(\mathrm{y}) & =\frac{2 \Gamma(\mathrm{y})}{\mathrm{V}_{0} c(y)} \\
& =\frac{\Gamma(\mathrm{y})}{\mathrm{v}_{\mathrm{z} \mathrm{\infty}} \cdot \frac{b}{2}} \cdot \frac{\mathrm{~b}}{c(\mathrm{y})} \cdot \frac{\mathrm{v}_{z \infty}}{v_{0}} \tag{33}
\end{align*}
$$

or, by equation (30)

$$
\begin{equation*}
=\frac{\Gamma(y)}{v_{2 \infty} \cdot \frac{b}{2}} \cdot \frac{b}{c(y)} \cdot \frac{2}{\omega} a_{1} . \tag{34}
\end{equation*}
$$

Eliminating C_{L} from equations (32) and (34) gaves an expression for the local chord

[^4]\[

$$
\begin{equation*}
c(y)=\frac{2}{\omega} \cdot \frac{b}{a(y)} \cdot \frac{\frac{\Gamma(y)}{v_{z \infty} \cdot \frac{b}{2}} \alpha_{i}}{\left[\alpha+\Delta a_{T}(y)-\alpha_{i}\right]} \tag{35}
\end{equation*}
$$

\]

from which the particular minumum planforms implied by the method are calculable when α_{7} is known.

Integration of equation (35) leads to an implıcit relationship for α_{i} in terms of known quantaties; for by definstion

$$
\frac{1}{A}=\frac{2}{b^{2}} \int_{0}^{b / 2} c(y) d y
$$

whence from equation (35)

$$
\begin{equation*}
\frac{1}{A}=\frac{2}{\omega} \int_{0}^{1} \frac{\frac{\Gamma(y)}{v_{z \infty} \cdot \frac{b}{2}} \cdot \alpha_{i} \cdot d\left(\frac{2 y}{b}\right)}{a(y)\left[\alpha+\Delta \alpha_{T}(y)-\alpha_{1}\right]} \tag{36}
\end{equation*}
$$

In general this equation can be solved numerically for A in terms of α_{i} but since, in practice, A is known and α_{i} is required a process of successive approximation will be necessary and will involve considerable numerical computation. However for straight wangs $a(y)$ is constant along the span and $\frac{\Gamma(y)}{v_{Z \infty} \cdot \frac{\mathrm{D}}{2}}$ and $\Delta \alpha_{\Gamma}(y)$ are both functions of D / b so that a
set of integrations can be made for $\frac{4 a}{A}$ in terms of α_{i} / α and D / b only. From this a chart may be prepared relating α_{1} / α to D / b and $\frac{\omega a}{A}$; this has been done and appears as Fig. 13.

The possibility of applyang this chart generally is discussed in section 6.

4.3 Expressions for local and overall loads

Once α_{i} has been fixed in value, $\frac{v_{z \infty}}{V_{0}}$ is given by $\frac{2}{\omega} \alpha_{i}$ and the local and overall loads are eashly determined from equation (33) and ats integrated forms. By equation (33),

$$
\begin{equation*}
C_{L} c=b \cdot \frac{v_{z \infty}}{V_{O}} \cdot \frac{\Gamma}{v_{Z \infty} \cdot \frac{b}{2}} \tag{37}
\end{equation*}
$$

and integrations over the wang semispan, the tank and the whole semi-span lead respectively to

$$
\left.\begin{array}{l}
\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{W}}}=A \cdot \frac{\mathrm{v}_{Z \infty}}{\overline{\mathrm{~V}}_{\mathrm{O}}} \cdot J_{\mathrm{W}} \tag{38}\\
\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{T}}}=A \cdot \frac{\mathrm{v}_{Z_{\infty}}}{\mathrm{V}_{\mathrm{O}}} \cdot \mathrm{~J}_{\mathrm{T}} \\
\overline{\mathrm{C}}_{\mathrm{L}}=A \cdot \frac{v_{Z \infty \infty}}{\mathrm{~V}_{\mathrm{O}}} \cdot \mathrm{~J}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
J_{W}= & \int_{0}^{1} \frac{\Gamma}{v_{z \infty} \cdot \frac{b}{2}} \cdot d\left(\frac{2 y}{b}\right) \\
1+\frac{2 D}{b} \tag{39}\\
J_{T}=\int_{1} \frac{\Gamma}{v_{z \infty} \cdot \frac{b}{2}} \cdot d\left(\frac{2 y}{b}\right) \\
J=\int_{0} \frac{\Gamma}{v_{z \infty} \cdot \frac{b}{2}} \cdot d\left(\frac{2 \mathrm{D}}{b}\right)
\end{array}\right\}
$$

For an isolated elliptical wing the value of J is $J_{E}=\pi / 2$.
Combining equation (37) with the f'irst equation (38) gaves the shape of the load distribution on the wing and tanks:

$$
\begin{equation*}
\frac{\mathrm{C}_{\mathrm{L}} c}{\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{W}}} \bar{c}}=\frac{1}{J_{W}} \frac{\Gamma}{v_{Z \infty} \cdot \frac{\mathrm{~b}}{2}} \tag{40}
\end{equation*}
$$

Some examples of wing loads are glven in Figs. 16 and. 17, and of tank loads in Flgs. 18 and 19.

Dividing the first two equations (38) gives the ratio of the lnads on the tanks and on the wing

$$
\begin{equation*}
\frac{\overline{\mathrm{C}}_{\mathrm{L}_{T}}}{\overline{\mathrm{C}}_{\mathrm{I}_{W}}}=\frac{\mathrm{J}_{T}}{J_{W}} \tag{4,1}
\end{equation*}
$$

which is a function of D / b only and is shown in Fig. 15.
The function J_{V} is shown in Fig. $14 ; J_{T}$ and J are derivable from Figs. 14 and 15.

5 The Induced Drag

It is necessary only to consider the changes in vertical momentum and energy of the stream in passing from far upstream to far downstrcam of the wing. Assume that a cross sectional area S^{\prime} of air is given a constant
vertical velocity $v_{z \infty}$ far downstream (see p.190, reference 9); a mass of aur $\rho_{0} V_{O} S^{\prime}$ is influenced by the wing-tank arrangement every second and the equations of momentum and energy are

$$
\begin{aligned}
I & =\rho_{0} V_{0} S^{\prime} \cdot V_{z \infty} \\
D_{i} V_{0} & =\rho_{0} V_{0} S^{\prime} \cdot \frac{1}{2} V_{z \infty}^{2}
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{\bar{C}_{D_{i}}}{\bar{C}_{L}}=\frac{D_{1}}{I}=\frac{v_{Z \infty}}{2 V_{0}} \tag{42}
\end{equation*}
$$

In terms of lift coefficient $\overrightarrow{\mathrm{c}}_{\mathrm{I}}$, by equation (38)

$$
\begin{equation*}
\bar{C}_{D_{1}}=\frac{\bar{C}_{L}^{2}}{2 \cdot \mathrm{~A} \cdot \mathrm{~J}} \cdot \tag{43}
\end{equation*}
$$

Since J for a wing with tanks is always greater than for the isolated wing, its induced drag at a gaven total lift is always smaller. For an isolated elliptic wing (which is not exictly the same as the isolated wang to give minimum induced drag in conjunction with tanks) $J_{E}=\pi / 2$ and the expression $\frac{2 A J}{\pi}$ may be looked upon in some respects as an effective aspect ratio (this concept will be used later, see section 7).

6 The effects of low aspect ratio, non-minimum planforms and sweepback

6.1 Low aspect ratio

Theoretical work on wing loading has in the past been mostly confined to wings of large or very small aspect ratios, the downwash at the wing being taken in the one case equal to a half of that at infinity and in the other equal to the whole of it. The two have now been linked ${ }^{10}$ by the concept of an induced inczdence factor ω, varying from one to tro, by D. Kichemann. In this way the usual equations relating lift, effective incudence, induced drag et cetera, which are derived under the assumptions of large aspect ratio, are enabled to retain the same form for the whole range of aspect ratio from zero to infinity. The expressions for ω and a will be found in section 7 .

In connection with the present problem it will usually be true that the aspect ratio of the bound-vortex system on the tanks is much smaller than that on the wing, implyang different values of ω. However, since equation (36) refers only to condations on the wing, $v_{z_{\infty}}$ will not depend on the valuc of ω for the tanks; furthermore, the loads on the ring and tank are dependent on $v_{z o \infty}$ but not on ω (equation (38)) so that the aspect ratio of the tank does not enter into the manimum-anduced-drag problem. This happy state of affairs is somewhat illusory, since some of the lift on the tanks is occurring further forwards than that on the wing so that its induced dornwash has almost reached the full value at the wing; thus the assumption of constant induced velocity far aownstream is incompatible with the assumption of constant induced velocity at the wing. In other words the shape of the vortex sheet (even neglecting any rolling up of the sheet) will change as it moves downstream. This effect would not be expected to cause large errors in the present application, and no attempt is made to take it into account.

6.2 Non-minimum planforms

If comparisons are made between the local lift coefficients and the load distributions of isolated plann vings, it is found that the former vary widely between wings of differing planforms whilst the latter are never far from being elliptical - the load distribution for manimum induced drag. Hence in applying the present results to non-minımum planforms, it might be expected that the additional loads due to the tanks wall apply with fair accuracy, but not so the addytional lift coefficients.

The particular planforms to which the calculations apply are given by

$$
\begin{equation*}
\frac{c}{\overline{\mathrm{c}}}=\frac{\frac{\mathrm{C}_{\mathrm{L}} c}{\alpha \overline{\mathrm{c}}}}{a\left[1+\frac{\Delta \alpha_{T}}{\alpha}-\frac{\alpha_{i}}{\alpha}\right]} \tag{44}
\end{equation*}
$$

which is another form of equation (35). The loads on these wings whout tanks may be obtained by the normal methods (e.g. by Ref.11), or if less accuracy may be tolerated the load distribution on an elliptic wing may be assumed. Some light on such an approximation will be shed by the rorked example in the next section.

6.3 Sweepback

The dommant effect of sweepback is 9 to cause increases in the sectional lift curve slope near to the tips and decreases in it over the rest of the wing, especially near to the centre.

Local values of a could be introduced into equation (36) - values appropriate to the real wing being considered - and the equation solved by an iteration process for each particular example. Such a procedure is tedious and should be avoided if possible so it is proposed that a mean value of a be used* (for large aspect ratio this is taken as ao cos ϕ), in which case the results in Fig. 13 stall apply. This approximation implies a change in α_{i} and hence in the level of the loads on the wing-tank arrangement, but no change in the shape of the load distribution (equation (40) is independent of a). Since, however, a different basic wing is implied (equation (44)) these statements do not necessarily apply to the additional loads.

To obtain some idea of the magnitudes Involved in the approximation some calculations have been made relevant to a straight tapered ving of 59° sweepback and aspect ratio 3.61 (this is the wing of the worked example in reference 11) with tip-tanks of diameter 0.15 x semi-span.

Span loadings have been calculated for minimum wing-tank configurations $[2 \mathrm{D} / \mathrm{b}=0.15, \mathrm{~A}=3.61$] under the assumptions of (i) a mean value of a and (ii) local values of a as for the real wing. They have also been obtained r^{2} or the isolated vings implied by the minimum induced-drag condition.

Fig. 20 shows the results for constant a. The planform assumed is not far from being elliptical, nor 15 Its loading.

[^5]Fig. 21 shows the results wath varying a. The planform is almost elliptical except over the inboard 40% of the semi-span and the load distribution on this wing alone is close to that on the real wing (i.e. the straight tapered wing). The value of α_{1} obtained from equation (36) using local a values is 10% less than when a is kept constant. However, the same is roughly true for the implied isolated wings and from Fig. 22 it is seen that the differences between the addrtional loads calculated by the two netiods are very small.
ibz comparison, there is ancluded an Fig. 22 the difference in load petweer the minimum arrangement for constant a and the corresponding isolated elliptical wing. The order of accuracy given by this very swaft approximate method may be sufficient for most applications; the errors involved whll of course decrease whth tank size.

Fig. 23 shows the local loads and lift coefficients on the real wing and on the real wing with tanks The addztional loads have been taken from the $a=$ constant calculation.

The conclusions to be drawn from the example are:-
(a) It will be sufficiently accurate in practice to use a mean value of the sectional lift-curve slope, and
(b) It may be necessary, where large tanks are concerned, to work out the loading on the wing alone implied by the calculations in order to obtain accurate estimates of the distribution of the additional load.

Some of the numerical work anvolved in the example will be found in Table I.

7 Calculation Procedure

The method of calculation wall be outlined for examples an which it is assuned to be sufficiontly accurate to take an Elliptical wang alone as datun. (see section 6 for a discussion of the accuracy in doing this); some numerical results for such an example are given on Table I.

In any particular application the known quantities are wang aspect ratio A, the mean sweepback of the half-chord line φ, the thickness-' chord ratio t / c and the tank diameter as a fraction of the wang semi-span $2 \mathrm{D} / \mathrm{b}$.

In order to determine ${ }^{-\alpha} / \alpha$ from Fig. 13, the parameter $\frac{\omega a}{2 \pi A}$ must be calculated, for which purposes the following expressions* of D. Ki̛chemann may be used:

$$
\begin{align*}
& \omega=2 n=2-\frac{1}{\left.\left\{1+\left(\frac{a_{0} \cos \varphi_{e}}{\pi A_{e}}\right)^{2}\right]^{4\left(1+\frac{\varphi_{e}}{\pi / 2}\right.}\right)} \tag{45}\\
& a=\frac{2 a_{0} n \cos \varphi_{e}}{1-\pi n \cot \pi n} \tag{46}
\end{align*}
$$

[^6]where
\[

$$
\begin{equation*}
\varphi_{e}=\frac{\varphi}{\sqrt[4]{1+\left(\frac{a_{0} \cos \varphi}{\pi A_{e}}\right)^{2}}} \tag{47}
\end{equation*}
$$

\]

In these expressions e_{o} is a sectional lift curve slope given by

$$
\begin{equation*}
a_{0}=K \cdot 2 \pi\left[1+0.8 \frac{t / c}{\cos \varphi}\right] \tag{48}
\end{equation*}
$$

where K is a factor depending on Reynolds number, equal to about 0.92 for $R=2 \times 10^{6}$ and equal to 1.00 for non-viscous flow. The equations also include an effective aspect ratio A_{e} which is introduced from the phsyical reasoning that ω and a are dependent on tho distribution of vorticity over the wing and tanks rather than the geometrical aspect ratio of the wing. A_{e} is taken arbitrarily the same as the effectuve aspect ratio to guve the correct induced drag (sce section 5), that is

Owing to the dafferent effective aspect ratios of the wang with tanks and the isolated elliptical wangs, it is necessary to derıve values of $\frac{\omega a}{2 \pi A}$ for both of them (see Table I).

Values of α_{i} / α are read from $F_{2 g} .13$ and $\frac{1}{\alpha} \frac{v_{z \infty}}{V_{0}}$ calculated from equation (30).

Overall lift coefficients on the wing with tanks and the wang alone are given by equations (38).

The mean lift coefficient on the tanks is obtaincd from that on the wing and the value of $\frac{\overline{\mathrm{C}}_{\mathrm{L}}}{\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{W}}}}$ read from Fig.15. [N.B. $\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{T}}}$ and all mean lift coefficients are made non-dimensional with the wing area.]

The distributions of the loads on the wing and tanks are obtainable in the form $\frac{C_{L} c}{\bar{C}_{I_{W W}} \bar{c}}$ and $\frac{C_{L} c}{\left(C_{L} c\right)_{J}}$ from Figs. 17 and 19 respoctively and these may be compared with the values for the isolated elliptac wang aftor conversion into coefficients of the form $\frac{C_{L} c}{\alpha \bar{c}}$ by appropriate multiplications.

Thus the addıtional loads due to tanks are given by

$$
\begin{equation*}
\Delta \frac{C_{L} c}{\alpha \bar{c}}=\frac{C_{L} c}{\alpha \bar{c}}-\left(\frac{C_{L} c}{\alpha \bar{c}}\right)_{E} \tag{49}
\end{equation*}
$$

Which may be added to the load distribution on the actual ming alone, estimated by one of the usual methods (e.g. by Ref. 10). Local lift coefficients are finally derived by dividing the load coefficients by the c / \bar{c} values of the real iting.

8 Further Tork

The first three transformations of section 2 together with 7. liangler's transformations ${ }^{5}$ for tings with unboard endplates could be used to obtain span loadungs on wings with nacelles.

REFHRENCESS

No.	Author	Tatle, etc.
1	M. Mi. Munk	Isoperimetrische Aurgaben aus der Theoric des Fluges. Diss. Gottangen (1918).
2	I. PrandeI	Tragflügeltheorle I and II.
3	卫. Trefftz	Prandtlsche Tragflächen - und Propeller - theorie. Z.a.M.M. Vol.1, p. 206 (1521).
4	W. liangler	The discribution of lift over an aerofoll with endplaces. ARC Report TO. 3414. (1938).
5	TV. ilangler	Liff distribution around aerofolls whth endplates. R.T.P. Translation No. 2338.
6	I.E. Garrick	Potential flov about arbitrary biplane ming sections. NACA Report No. 542 (1936).
7	J. Weber	Theoretical load distributions on a wing inth a cylindrıcal body at one end. RAE Report ITO. Aero 2467. ARC ITO. 15,232.
8	J. Weber D.A. Kirby D.J. Kettle	An extension of tiulthopp's method of calculatang the spantise loading of wing fuselage combinations. RAE Report iTo. Aero 2446. ARC No. 14,830.
5	I. Prandtl O.G. Tretgens	Applied hydro- and aero-mechanics.
10	D. Fuichemann	A sumple method for calculating the span and chordwise loading on straight unswapt mings of any given aspect ratio at subsonic speeds. RAE Report No. Aero 2476 (1952). ARC No. 15,633.
11	D. Küchemann	A simple method of calculating the span and chordstise load.ng on thin swept irings. ARC No. 13,758. August 19,50.
12	D. Kitchemann D.J. Kettle	The effect of endplates on surep ing C.P. 104. June 1951.

APPPENDIX

Estimaticn of $\Delta \alpha_{T}$

The tank upwash incidence α_{T} can only be convenzently calculated for circular cylindrical tanks which extend a long way ahead and behind of the wing and this is the only case which wall be consadered. Since in practice these conditions will not generally be fulfilled, the sstimated loads may be too large. At the same time, there are reasons to believe that a very short length of cylinder is sufficient to give local twodimenstional conditions close to the surface, where the effects are most intense, and so the errors involved may not be great.

Assuming the tanks have no incldence relative to the wing, which is inclined at an angle α to the mainstream, there wall be a velocity component αV_{0} perpendicular to the axes of the tanks, giving rise to increased vertical velocities in the plane containing the wing, especially near to the tank-wing Junctıons (Fig.12). The distribution of this velocity may be estımated from the two-dimensional flow of a parallel stream at infinuty past two ciroles, the undusturbed stream direction being perpendicular to the line of centres of the carcles. The problem is that of findung the velocaty distribution along $A B$ in Fig. 4 when $A B$ is no longer a solyd boundary. Transformations as far as the ζ_{3}-plane only need be considered, where the carcles have become stralght lunes coincident with streamlines.

Along $A B, z=0, z_{2}=\pi$ and in transforming to the V_{3}-plane a velocity αV_{0} al infinity in the physical. plane becomes a velocity s. $\alpha . V_{0}$. Hence 1 it may be shown that the velocuty along $A B$ is given by

$$
\begin{equation*}
v_{z}=-\alpha V_{0}\left(1+\frac{\alpha T}{\alpha}\right)=\frac{d W}{d \zeta_{3}} \cdot \frac{d \zeta_{3}}{d \zeta_{2}} \cdot \frac{d \zeta_{2}}{d \zeta_{3}} \tag{A1}
\end{equation*}
$$

winere

$$
\begin{align*}
W & =-s \cdot \alpha V_{0} \zeta_{3} \tag{A2}\\
\frac{d \zeta_{2}}{d \zeta} & =\frac{2 s}{s^{2}-y^{2}} \tag{A3}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d \zeta_{3}}{d \zeta_{2}}= & \frac{1}{1+\cosh y_{2}}+\frac{1}{1+\cosh \left(y_{2}+2 \beta\right)} \\
& -4 \sum_{\ell=1}^{\ell=\infty} \sum_{m=1}^{m=\infty} m(-1)^{m} e^{-4 \beta \ell m}\left\{\cosh y_{2}+\cosh \left(y_{2}+2 \beta\right)\right\} . \tag{A4}
\end{align*}
$$

Alternatuvely, sunce the tanks are far apart compared with their diameters, an approximate estamate may be made by sunply ading the velocuties at any guven point due to each cylinder separately. The exprossion for α_{T} is then

$$
\begin{equation*}
\frac{\Delta \alpha_{T}}{a}=\left(\frac{D}{b}\right)^{2}\left[\frac{1}{\left(1+\frac{2 y}{b}+\frac{D}{b}\right)^{2}}+\frac{1}{\left(1-\frac{2 y}{b}+\frac{D}{b}\right)^{2}}\right] \tag{A5}
\end{equation*}
$$

and for tanks of the size considered in thas report, the approxumation is extremely good (Fig.12).

TABLE I

Specimen calculation

Data:

$$
\begin{aligned}
& A=3.61, \quad \varphi=55^{\circ}, \quad 2 D / b=0.15 \\
& t / c=0.14, \quad R=2 \times 10^{6} .
\end{aligned}
$$

Calculations:

Elliptic wang alone

$$
J_{\mathrm{F}}=1.571
$$

Wang with tanks
$J_{W}=2.16$
$\frac{\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{I}}}}{\frac{\overline{\mathrm{C}}_{\mathrm{I}_{W}}}{}}=0.067$
$A_{e}=5.30$

Eq. (49)

$$
a_{0}=2 \pi \times 1.15
$$

$$
2 \pi \times 1.15
$$

En. (47)
Eqn. (45)
Eqn. (46)

$$
\varphi_{\mathrm{e}}=53.3^{\circ}
$$

$\omega=1.021$ 54.1^{0}
$=4.19$ 1.011

Fig. 13

$$
\begin{aligned}
& \frac{\omega a}{2 \pi A}=0.189 \\
& \frac{\alpha_{I}}{\alpha}=0.275
\end{aligned}
$$

$$
0.222
$$

Overall loads
Tans. (30), (38)

$$
\frac{\overline{\mathrm{C}}_{\mathrm{LE}}}{\alpha}=3.05
$$

$\frac{\bar{C}_{L_{V I}}}{\alpha}=3.42$

$$
\begin{aligned}
& \frac{{\overline{\bar{L}_{\Psi}}}^{\alpha}}{}=0.23 \\
& \frac{\bar{C}_{L_{1}}}{\alpha}=3.65^{*}
\end{aligned}
$$

Lift on wang and tanks

$\frac{\overline{\mathrm{C}}_{\mathrm{L}}}{\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{E}}}}=1.195^{* *}$

Extra lift due to tanks \div

[^7]
Distribution of Extra Load due to Tanks

$2 \mathrm{y} / \mathrm{b}$	Ellıptical Wing			Wing with tanks	
	(1) $\begin{equation*} \frac{C_{L} c}{c_{L} \bar{c}} \tag{1} \end{equation*}$	(2) $\begin{equation*} \frac{G_{L} c}{\alpha \ddot{c}}=3.05 \tag{3} \end{equation*}$	(3) $\frac{\mathrm{C}_{\mathrm{L}} \mathrm{c}}{\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{W}}}}$	(4) $\frac{C_{L} c}{a \bar{c}}=3.42$	$\begin{aligned} &(5) \\ & \Delta \frac{\mathrm{C}_{\mathrm{L}} \mathrm{c}}{\alpha \overline{\mathrm{c}}} \\ &=(4)-(2) \end{aligned}$
0	1.273	3.88	1.137	3.89	0.01
0.2	1.247	3.80	1.119	3.83	0.03
0.4	1.167	3.56	1.072	3.66	0.10
0.6	1.018	3.07	0.991	3.39	0.32
0.8	0.764	2.33	0.875	2.99	0.66
0.9	0.555	1.69	0.798	2.73	1.04
0.95	0.398	1.22	0.768	2.63	1.41
1.00	0	0	0.741	2.53	2.53
$\frac{y-b / 2}{D / 2}$					
0.100	-	-	0.669	2.29	2.29
0.233	-	-	0.597	2.04	2.04
0.367	-	-	0.534	1.83	1.83
0.500	-	-	0.475	1.62	1.62
0.667	-	-	0.380	1.30	1.30
0.833	-	-	0.267	0.91	0.91
0.900	-	-	0.203	0.69	0.69
1.00	-	-	0	0	0

Colums (1) and (3) are obtained from Figs. 17 and 19.

FIG. I,2\& 3

FIG.I WING WITH TIP-TANKS AND THE DOWNSTREAM VORTEX SURFACE.

FIG. 2 SECTION THROUGH THE VORTEX SURFACE
 CONFORMAL TRANSFORMATIONS.

FIG. 4,5,6\&7

FIG. 4

FIG. 5 THE $\xi_{1}^{D_{1}}$ - PLANE.

FIG. 6 A STRIP OF THE ζ_{2} - PLANE.

FIG. 7 THE $\xi_{3}-$ PLANE.

FIG. 8 HALF OF THE ζ_{3}-PLANE

FIG. 9 THE $\zeta_{4}-$ PLANE

FIG. IO THE ζ_{5}-PLANE

FIG. II THE ζ_{6}-PLANE

FIG. 12 THE ADDITIONAL INCIDENCE $\Delta \alpha_{T}$ DUE TO FLOW AROUND THE TANKS.

FIG.I4.

FIG.I4. THE FUNCTION J_{w} REQUIRED IN THE ESTIMATION OF TOTAL WING LOAD.

FIG. 16 SOME SPANWISE LOAD DISTRIBUTIONS ON THE WING WITH TANKS.

FIG.I7.

FIG.I7. INTERPOLATION CURVES FOR DETERMINING THE SPANWISE WING LOADING.

FIG.I8\&I9.

FIG. 18.
SOME SPANWISE LOAD DISTRIBUTIONS ON THE TANKS.

FIG.I9.
 INTERPOLATION CURVES FOR DETERMINING THE SPANWISE LOAD DISTRIBUTION ON THE TANKS.

FIG. 20

FIG.20. PLANFORMS AND WING LOADINGS FOR A 59° SWEPT WING, $A=3.61$, WITH TANKS $2 \mathrm{D} / \mathrm{5}=\mathrm{O} \cdot 15$, BY AN APPROXIMATE METHOD UTILISING A CONSTANT VALUE ALONG SPAN OF THE SECTION LIFT-CURVE SLOPE, ' a '.

FIG. 21

FIG.22\&23.

FIG.22. INCREMENTS IN WING LOAD DUE TO TANKS 2D/b=0.15 ON A 59 ${ }^{\circ}$ SWEPT WING, $A=3 \cdot 61$, BY THE APPROXIMATE AND MORE PRECISE CALCULATIONS.

FIG.23. DISTRIBUTIONS OF WING LOAD AND LIFT-COEFFICIENTS ON A STRAIGHTTAPERED 59° SWEPT WING, $A=3.61$, WITH AND WITHOUT TIP-TANKS, $2 \mathrm{D} / \mathrm{G}=0 \cdot 15$.

Crown Copyright Reserved

PUBLISHED BY HER MANESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, London, w.c 2. 423 Oxford Street, london, w 1 P.O Box 569, LONDON, s.e 1

13a Castle Street, edinburgh, 2 1 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 80 Chichester Street, belfast or from any Bookseller

1954
Price 3s. 6d. net
printed in great britain

[^0]: \# Z is an elliptic function of the first kind, the zeta-function of Jacobi and Hermite, and its expansion is given later in section (iii).
 ** It would appear that in Ref. 6 algebraic errors have arisen in the expressions for M and N in passing from equation (23) to equation (25). The expressions quoted above differ from those of equation (25) of Ref. 6 in having the factor 2 in front of the infinite serıes terms and in having a posituve sign in front of the first term in the expression for $M\left(z_{2}, y_{2}\right)$.

[^1]: *rithe transformations (iv), (v) and (vi) differ in form from W. Mangluc's transformations ${ }^{4,5}$ owing to a negative rotation of all axes through $\pi / 2$.

[^2]: * Such cases may arise in the application on the method to the problem of wings with nacelles (see section 8).

[^3]: *In this report the tanks are assumed to be very long and attention is restricted to that part of their lift in the neighbourhood of the wing. In practice there are forces on the noses and tails of the tanks owing to the flow components across them; because of the downwash behind the wing and the presence of boundary layers the downloads on the tails, which exactly balance the uploads on the noses for isolated tanks in potential flow, are reduced, so that a net lift load results. This cffect is discussed in connection with fuselages in Ref. 8 and equations (34) and (35) of that report may be used to estimate it. It must be remembered that those equations apply to one fuselage whilst in the present instance there are two tanks.

[^4]: * Some discussion of ω will be found in section 6.1.

[^5]: *The same approximation in connection with swept wings with endplates ${ }^{12}$ gives satisfactory agreement with exporimental results.

[^6]: *These will appear shortly an Ref. 10.

[^7]: * Lift due to nose and tail effects is not included, see section 4.1 ** Correct to nearest 0.005 .

