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1. Sumnary

An estimate is made of the effeot of variation of aspect ratioc and
thickness parameter on the damping derivative of a rectanguler wing performing
pitching oscillations in a supersonic stream. After a discussion of various
theories_of wnsteady two-dimensional supsrsgonic flow round aerofoils, that due to
Van Dyka7 is combined with the linearized supersonic theory for a rectangular {lat
plate to obtain the effect en the damping in pitch. The values given apply to wings
of symmetrical biconvex section oscillating at low frequency, in a stream of
.Mach rumber such that the shock at the leading edge ig attached.

2. Notation

o] chord of wing
k thickness ratio = maximum thickness/o
Vo free stream velocity
a speed of sound in free stream
M, = Vo/a free stream Mach number
B, Vi -1
b distance of pitching axis downstream of leading edge
h == be
£ frequency of ogecillation
w 2nf
A= lwc/V o - frequéncy, 41.':a.'tga:rletea.'
P _density of -air‘ :Ln fres gtream
A ospect ratio
o = a' exp (iwt) angle of pitoh (positive if it tends to raise the
leading odge and depross the trailing edge)
i) ~ pitching moment (positive in the same sense as o)
¥ time
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¥ ratio of specific heats (token as 1.4)
I (y +1) M3
* 2
2 ﬂo
T pressure on surface of aerofoil
Py free stream pressure
C, s Cp,Cy D Busemann coefficients (see Ref,2)
x distance measured dowvnstream of lcading edge
¥y distance perpendicular to free stream, positive upwords
y = Y(x) cquation of upper surface of cerofoil
1
Ho = sin™t - Mach engle in free stream
M
)
P~ P,
C. = =~ —— pressure coefficient
P 4 v2
2 po [o}

Suffix 1 refers to conditions downstrcam of the shock at the apex of a wedge

m, stiffness coefficient in pltching moment derivative
me damping coofficicnt in pitching moment derivative.

3. Introduction

This note draws attention to the necd for more information about the
forces acting on oscilleting wings at transonic and supersonic speeds. Linearized
flat platc theory, which is available for two-dimensionnl motion and certain
three—dimensional plan forms (see, e.g., Refs. 12, 20, 21), predicts negative
damping in pitch at supersonic speeds under some circumstances, e.g., in Hwo-
dimensions when the pitching axis is forward of the two-thairds chord position end
the Mach number is sufficiently near to unity. This prediction is supported by
certain incidents which have occurred during tests of guided misgiles and which
appear to be due to one-degree~of-freedom instabillty of the all-moving control
surfaces. However a knowledge of the cffect of finite thickness is still required.
Several two-dimensional theories dealing with the effect of thickness have been
produced (Refs. 2 to 10), and are discussed in 8., but unfortumately they disagree,
and no transonic or three-dimengional supersonic theory including thickness effects
appeecs to be available. No systomatic experimental investigation has been carried
out, although a few results are availaeble in particular cases, e.g., those of
Ref,17. Tegts at tho N.P.L. on double and single wedge profiles which it is
rroposed to carry out in the near future may throw some light on the situation.

L, Consideration of Unsteady Two-dimensional Supersonic Flow Theorieg

(1) Discussion of Theorics for General Profiles

Several authors {Refs. 2-10) have produced theories giving the effect of
finite thickness on the forces acting on a two-dimengsional acrofiorl performing small
amplitude oscillations in a supersonic stream, It is assumed that the shock at the
leading edge is attached and, usually, that the frequency is small., Unfortunately
the results differ widely from theory to theory, and in this section some
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congideration is given to the methods by which they were obtained, The only
experimental work which scema to be available ag a check is that described in
Rof,.17, and the rosults given therc are not sufficient to deecide which, if eny, of
the theories is correct.

Jones' theory of Ref.2 is an attempt to obtain the unsteady pressurcs
for low frequency oscillations by taking the steady Busemann theory for two-
dimensional aerofoils in the form

P - PO W W Y 01 L 2 We 2

————————— Ci ——— + 02 — + 03 e - - D e teve (1 )
1 P

z Po Vg Vs Vs 3 J\V, v,

vhere Cy , C3, C3 and D are the Buscmarn coefficicnts, V/V _ is the tongent

of the local angle of upward deflection of the flow, and we/vo igs the corresponding
value at the leading cdge, and replacing W/VO by an appropriatc equivalcont
unsteady value in order to obtain the unsteady pressures. For small frequencies,
two-dimensional flat plate theory! sugpgests that Vi/V, be replaced in (1) by an
equivalent unsteady local defloction given by

_ o fx 9 [V
W/vo - W/vo — —————— / —r rama dx TR (2)
o 0t \V,

where W is now the instantaneous upwagh due to the shape and oscillating motion
of the aerofoil., The justificotion is that when W ls substituted for W in
equation (1), end only the first term on the right hand side is retained, the value
of p - p, is that given by oscillating flat plate theory. The integral in (2)
thug allows for the effect of tho motion of these parts of the aerofoil lying
between the leading edge and the point corresponding to x. Since W/V, is known
from the prescribed oscillatory motion of the aerofoil, the pressure may be ,
determined by (1) and (2). If it is agsumed that the amplitude of oscillation is
sufficiently small for its square to be neglected the pressure isz given to first
order in thicknecss by the firgt two terms on the right hand side of (1), s0 that
the agsumption involved in results to this accuracy is that the modification implied
by (2) to the first term of (1) may also be used in the second, TFor a 745 biconvex
wing pitchaing about the half-cherd axis this theory gilves better agrcament with

tho experimental valuog of Ref.17 than does linearized flat plate theory, insofar

as 1t predicts positive demping for pitching about the half-chord axig, whereas

flat plate theory predicts negative damping at the Mach numbers considered.

The method of Ref.3 consists of a small perturbation procedurc applied
to the known steady flow round a two~dimensional profile, resulting in a linear
dafferential ecquation for the wvolocity potontial of the small unsteady part of the
velocity field., TFor the case of an attached ghock this equation is hyperbolic in
type and is golved by a numerical step~by-step method starting at the leading edge
shock wave and procecding downstream. Near the leading edge (assumed pointed) the
velooity potential is taken to be thoe solution for a flat plate oseillating in a
stream of Mach number equal to that irmedlately behind the attached shock. This
method is not rostricted to low frequency, and provided the starting solution is
correct it is difficult to see any objection to it, apart from the practical one
that in general it involves a considerable amount of computation for each
combination of frequency parameter and Mach mummber, In the case of a single-wedge
profile the method becomes particularly simple since the step-by-step solution
can be replaced by an analytical one; this profile will be congidered later.

Wiyllyts thoory (Refs. &, 5 ond 6) is based on an expansion of the velocity
potential in a series of powers of the thickness paresmeter and frequency paramster,
the resulting linear differentiai equations being solved by a complicated analytical
method, The pressure cocfficient on the upper surface of the aerofoil is given in
t+he notation of the present report by

%/



2 2 A
C.o= == (Y ) #me {Dt == (2= + (¥ = g wwm
P g v, B ° 28,
a x b
+ o= (Y =g) { == D + =B cerens (3)
VO B; 2ﬁ0

mere A 5 e o e o - D B = Mg (Y + 1 ) L Z‘_

- 5 . y(RM = ME) + M - 40MS + 10M)
2B2 '

This result is open to objection for two reasons, One, due to Van Dyke7f is based
on the fact that at the leading edge the pressure is entirely determined by the
local upwash, 1.6., by ¥' = o + &b/V, and thiz condition is not satisfied by (3).
The other rests on the fact that the limiting furm of (3) for very large

does not_sgree with Lighthill!s high Mach number theory10 whereas the theoriocs of
Van Dyke7 end Jones2 1o so agree, Wylly's theory for closed profilcs predicts a
large damping effect due to thickness for all axis positions, in disagreement with
the other theories which predict destabllizing effects for forward axis positions.

The method of obtaining Van Dyke's result’

26 f2 -M3 (M3 - 2)
C, = == (Y =) + ommme] emceem X + B} + e (Y19 . 2¥1g)
jel 7 2 BQ
ﬁO Bo [s] ﬁ0 Q

2% 2MS(N-1)1’+ (2 - MM - 1) (M3 - 2)

v BS Bo B3

Ch2 T )

Q
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has not been published so that no comment is possible, Equation {(4) agreeg with
Lighthill's gheory wvhen My 1is very large, end moreover it agrees to second order
in thickness® with an extension to eny axis position of Carrier's theory? for'a sindle
wedge oscillating about its apex.

Lighthil1's theory'Q is applicsble to very high Mach rmmbers and uses the
fact that when the Mach number is very large the veriation of the flow with y is
very large compared to the variation with x so that the problem reduces to one ir
which y i1s the only independent variable for each particular velue of %, The
range of Mach numbers considered is outside that for which nogative damping in pitoh
may be expected so that the theory does not apply so far as this note is concerned,
but, as has been stated, it gives a check on the limiting forms of the others,

Fig.1 shows the stability diagrams corresponding to these theories for
n 5% thick biconvex aerofoil oscillating in pitch sbout an axis distance he
behand the leading edge. No curve corresponding to Wylly's theory oppears since
this predicts positive damping for 21l combinations of h and M, , All the
theories predict an incroese in damping for axes behind the half-chord but vary
for axes forward of this position,
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Van Dyke's theory has now been published as "Supersonic flow past oscillating
airfoils including non-linear thickness effects", N.A.C.A. Tech. Note 2982,

Ju]{y’, 1953'



(i1) The Single Wedgc Profile

A particularly simple case ariges when the profile is a single wedgo,
since the stream behind the shock (assumed to be attached) is then uniform., Tt
geams plausible to assumo that the forcos on the surface arc thosc on a flat plate
cgeillating in a stream of Mach number, density, etec., equal to those behind the
ghock, If free stream valucs arec denoted by the guffim O and those behind the
shock by suffix 1, then the forces on a wedge in a free gtream of Mach number M,
are agsumed to be thoge on a flat plate in a free stream of Mach number M, .
Since the relation between M, and My is ocasily found from shock tables it is
possible to plot a stability diagram for any particular wedge angle., An objection
to this procedure is that since the Mach lines behind the shock arc inclined at an
engle WMy 1to the surface and cut the shock, the flat plate corresponding to the
surface of the wedge is not oscillating in an unlimited region of Mach mumber M,
but one limited by the shock-wave, so that the shock may have some effcct on the
aerofoil, Sewelll? has shovm that the small variatioms in shock pogition due to
the ogeillation will have no effect., A stability diagrem plotted in this way for
a wedge of 5° semi-apex angle is included in Tig,2; the procedure is equivalent
to that of Ref.? and the curve is so marked,

If this assumption is made the pressure on the upper surfacc is given,
for low frequency, by {lat plate theory as

o xd (2 -2 b,
p-p = - PIV: """{} """" Y "'{T"" ) reeeee (5)
Bj_ 1 Bi 4 {31

If this is transformed by using the approximate relations between
corresponding quantities behand and shead of the shock (Ref.18), i.e.,

M B M2
s - By, e = e weR (W)
I‘}l':O BQ BO

P yM2 p M2

_.1-'. = 1 + ——9 [ P -2- = ‘] -4 ..-9. )

o P, fo B,

v w

S R,

v, B,

where & 1s the wedge somi-apex angle and the cxpressions are correct to first
order in w, then

2 26x 2 - M? (M°N - 2) xdw 2

1 -] Q [8)
P - PO = §povo —— (UJ - a,) +om——, .-.-....;-...- - 20 ............-...2...-......... t om—— ....:
0 VO ’BO Bo Vo i30

x [(2 ~ M) (M - 1) + 22 ~ 1)]

P& | 2 PN - 1)
- — 2w'---9--—;-‘-—-—— rresan (6)
v, |8 2

which corresponds to Ven Dyke's result exoept for the last term where MIN ~ 4
replaces MgN - & ., This difforence is presumably duc to the difference in boundary
conditions at the shock mentionced above,

Equation/
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Equation (5) may alsc be obtained by teking a result proved for steady
flow in RGf-B, ioG‘O,

_ o
- = -0Vt . a, ovene (7)

and substituting for ¢ an equivalent unsteady angle of incidence as described in
comnection with Ref.2, Here suffix 1 refers to quantities in the undisiurbed
pogition of the acrofoil, and p 18 thc pregssure corresponding to o asmslil angle
of incidence o .

Fig.2 shows stability diagrams corrcsponding to the veorious thecries for
a 5° semi~apex angle single wcdge profile., A1l agrec in the goneral trend but
differ as to its megnitude,

In this note Van Dyke's thcory has been used though it cannot be
rogarded as certain that it is correet, Use of this theory invelves reatvaction
to low freqguency paramcter and an attached shock at the leading edze. As Tar as
the subsequent work is conccrned it would have becn equelly simple t¢ use any
of the others.,

5. Formulae for Rectansular Wines

For a wing pitching about any given axis the pitching moment may be
expressed in tho form

’\*ﬂ- = Jf povfj Ca eiﬂ)t A{fﬂa + im&} resron (8)

where and my are functions of M, and h, Here my is the cocfficient
determining the damping in pitch, damping being positive 1f ms < O,

Several authors (Refs, 11 to 16) have investipgated by linearized theory
the problem of determining ms for a planc rectangular wing of zerc thickness;
the value used here ig taken %rom the work of WatkinsiO where it is given in a
convenient form. In the notation of 82,

1 1/h 1 2 2 1 /2 1
_m&z-—— h2"h+~+-;--- —-“; haﬂ—h-*---z- =~ h = - (9)
BD 5 BO 2 5 Aﬁc 5 BO3 c

for small frequencies.

The first term corresgponds to the two-dimensional flat-plate theory, the
second gives the effect of finite aspect ratio,

Now according to Van Dyke's thcory7, for a symmetrical biconvex aerofoil,

L 1 4 fh 1 4 MA(N - 1)
-mg = = h? « ht =+ | == +1<;.--; h---—-;—---—(MgN-z)(*l-2h)
Bs 3 BEN2 3 385 o

eeress {(10)

the first term again being the two-dimensional flat-plate rosult, end the sccond
giving the thickness effect.

It
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It sccms reasonable to combine (9) and (40) and toke

b 1 1 /n 1 2 2 1 /2 1L
~my = == {h¥ B4 md ]| e B~ mhtmmf - h - -
Bo 3 Bo\2 3 ARS 3 Po\3 2/
b Ma(N -~ 1)
+k == {h ceacaam - (M2N - 2)(1 - 2h) ceeses (11)
385 Bs

as the eguation giving - ms for a rectanguler wing of aspect ratio A, and
biconvex section of thickness ratio k , oscillatang at low frequency; that is to
say it is assumed that the tip effect can be superimpoged on the thickness offect.

This equation was used to compute - my for various combinations of
A, k,M, and h, and the results are given i Figs. 3 to 7. Fag.3 shows the
cffect on the stability diagram of varying A alone with k = 0, and shows the

stabilizing effect of reducing aspect ratio. Since equation (9) applics only to
1
wings with A > ~- it is not certain whether a sufficiently low aspect ratio will

B
climinate the instgbility altogether., Pig.h illustrates the result of varying k
alone, with A = o0, showing the stabilizing cffect for axcs downstream of about
0,39 of the chord and destabilizing forward. Figs. 5 and 6 show the effect of
combining these two variations. If tho infinite flat plate (A = o0, k = 0)
is taken as the basis of comparison, and only axcg lying on the wing (0 <h <1)
are considered, it appears that except for axes very near the leading edge, a
reduction of aspect ratio to 6 is sufficient to overcome the dostabilizing effect
of en increase of k from O to 0.05, i.c., for axes on the wing, a wing with

k = 0,06 and A = 6 is at least as stable as an infinite flat plate, except
for axeg very near the leading edge., A gimilar result is truec for A = 3 and
k = 0.10. PFig.7 shows some values of - mg corresponding to the values of A

and k used in Fig,5 and leads to the same conclusion,

Since thc leading cdge shock becomes dctached for M, <1.27 for
k = 0,05, and for My <1.,47 if k = 0.10, ourves corresponding to these
thickness parameters become meaningless for Mach numbers below these valuecs.
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