llunary

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Effect of Rolling on Fin-and-Rudder Loads in Yawing Manoeuvres

By
D. R. Puttock, D.C.Ae.

Report No. Structures 139
January, 1953

ROYAL AIRCRAFT ESTABLISHIENT

The Effect of Rollang on Fin-and-Rudater

Loads in Yawing Manoeuvres
by
D.R. Puttock, D.C.Ae.

Abstract

SUMMARY

Exact solutions are derived for angle of sideslıp and fin-and-rudder loads for an aircraft performing two yawng manoeuvres induced by the rudder. Angles of sideslip and fin-and-rudder lpads are then oalculated for three selected aircraft and compared wi th results obtained by a sumplified method in which rolling motion is neglected. Further oalculathons are made using a modufied method in mich the coefficyents of the response formulae of the sumplified mothod have been adjusted to take some a.ocount of rolling.

The analysis shows that errors of 20% may be incurred if rolling is neglected in the estimation of fin-and-rudder loads for anrcraft with swept and delta wings. The errors increase rith altıtude. The modufied method greatly reduces these errors, and may therefore be used where the response of the aurcraf't is appreciably affected by rolling.

LIST OR CONTENTS

Prge
1 Introduction 4
2 Scope of Investigation 4
3 Disoussion 5
3.1 Estimation of Angles of Sideslip 5
3.2 Fin-and-Rudder Loads 6
4 Conclusions 6
Notation 7
References 10
LIST OF APPEDDICES
Appendix
1
Mathematical analysis of the problem I
Comparison of the solutions of the three methods II
Factorization of the Quartic (Equation (5)) III

LIST OF TABLES

Table
Relevant Aerodynamic Data I
Roots of the Lateral Dynamic Stability Equation II
Maximum Angles of Sideslip (Local) III
Local Maximum Fin-and-Rudder Loads - "Instantaneous Rudaer Deflection" IV(a)
Local Maximum Fin-and-Rudder Loads - "Fish-Tail Manoeuvre" IV (b)
LIST OF ILUUSTRATIONS
Figure
Response to an Instantaneous Rudder Deflection ζ_{0} 1
Time History of Fin-and-Rudder Loads after an Instantaneous Rudder Deflection ζ_{0} 2
Response to a Sinusoidal Rudder Deflection $\zeta=\zeta_{\mathrm{e}} \sin J \tau$ 3
Time History of Fin-and-Rudder Loads Produced by a Sinusoidal Rudder Deflection $\zeta=\zeta_{e} \sin J \tau$, Arreraft "A" 4
Time History of Fin-and-Rudder Loads Produced by a Sinusoidal Rudder Deflection $\zeta=\zeta_{e} \sin J \tau$, Alrcrafft "B" 5

Introduction

In the simplified method previously recommended for the determination of the angles of sideslip and fin-and-rudder loads during the asymmetran manoeuvres specafied for design ${ }^{1}$, rolling of the aurcraft is neglected. This assumption appears to be acceptable for aurcraft whth unswent vine, but its applicability to aurcraft ;ith highly swept or delta mangs is less certain.

However, in this method it is indicated how the coefficients of the response formulae may be modified to take account of rolling, but up to the present, there is no evidence to show that such a modification gives a more accurate solution. When the method is modufied in thas ray it is referred to throughout as the "modified method" in order to distinguish it from the original method, which is called the "simpliffed" method.

In the present note, exact solutions for angles of sidesilp and fin-and-rudder loads for aurcraft in the specified yawing manoeuvres are derived, and compared numerically with those given by the simplified and modified methods. Three aircraft with straight, highly swept, and delta planforms, respectively, are used as examples.

Details of the exact and simplafied solutions, together with a disoussion of the significance of the modifled method for taking account of rolling wathout recourse to the exact treatment, are given in the Appendices.

2 Scope of Investigation

Detazls of the exact, simplified and modified methods for estumating angles of sideslip and fin-and-rudder loads for a glven alroraft are presented in Appendax I, paragraphs 2.1, 2.2 and 2.3 respectively. Three kinds of aircraft, each typucal of existing trends in deslgn are considered in thas report, viz.-

Aircraft	Wing Planform
A	stralght - slıght taper
B	delta
C	highly swept - slight taper

The aerodynamic characteristics of these axroraft, which are all assumed to fly at high altıtudes and medium values of C_{L}, are given in Table I.

The two manoeuvres considered are:-
(1) Instantaneous rudder movement to angle ζ_{0} :
(2) Sinusoidal rudder movenent at the natural frequency of the alroraft $\zeta=\zeta_{e} \sin J \tau$.
A number of response curves for β and P are included, Figs. 1 - 5, but the main results are tabulated in Tables II - IV as "local maxima", that is, values of β and P at $J \tau=\pi$ for the first manoeuvre, and $J \tau=2 \pi, 3 \pi$ for the second manoeuvre. Czaykowski ${ }^{2}$ shows that, in the simplified method, very close approxamations to the true maxima are found if β and P are calculated at these times although strictly speaking, the value of β at $J_{\tau}=\pi$ for the first manoeuvre is the only true maximum,

3.1 Estimation of Angles of Sideslip

The exact response curves for aurcraft "A" and "B" performing the two manoeurres, and the corresponding curves obtained from the sumplified and modified methods, are shom in Figs. 1 and 3.
(a) First manoeuvre

Results given by the exact and simplified methods compare favourably at the beginning of the manoeuvre, but differences become noticeable as the manoeuvre develops. Consideration of local maxima (see Table IV) shows that the use of the simplified method for calculations on arrcraft "B" and "C" may lead to errors of about 20%. These errors may be reduced to about 5% if the modified method is used. As expected, the use of the simplif eed method for calculations on aurcraft "A" is permissible. Howev ϵ_{2} ", if the modufied method is employed, the accuracy of the results may be improved still further.

It is shown in Appendix II that two of the parameters in the response formulae of the exact method, R^{\prime} and r_{s}, which do not occur in the simplufied method, have little effect on the numerical values of the coefficients of these formulae. Thus the exact formulae may be concidered to be functions of R and J and errors due to the use of the surplified method for certain aircraft instead of the exact method are due prinarily to the limitations of the method as a means of estimating R and J. The significance of the derivation of the modified method, in which the exact values of R and J are used in the formulae of the simplified method, is therefore clear. It follows that, in this manoeuvre, the angle of sideslip is a function of $\frac{1}{R^{2}+J^{2}}$ for aircraft with either straight or swept wings.

From a survey of previous worl ${ }^{3}$, it is concluded that the errors in estimating R and J by the simplificed method can be expected to be greatest when $\left(-l_{v}\right)$ is large and n_{v} is small. Reductions in air density will increase these errors. Consequently it may be advisable to use a more rigorous method of estimating R and J in cases where the aircraft has high $\left(-l_{v}\right)$ and low n_{v}, (for example, aircraft with swont wings).
(b) Second manoeuvre

Here again the dufferences between the simplufied and exact solutions become apparent only as the manoeuvre develops. The errors in the maxima, although smaller than for the first manoeuvre, may be as high as 10%. However, these may be reduced to 1% if the modified method 1.s used. Further, rolling has little effect on the times of occurrence of the local maxima (approximately at $J \tau=2 \pi, 3 \pi$ etc.). It follows that the basic structures of the coefficients in the response formulae of the exact and simplified methods are very similar, (see paragraph (a) above), and for this manoeuvre, angles of sadeslip are directly dependent on $\frac{1}{R J}$. As already mentioned, the errors. In estimation of R and J by the simplafied method depend on the magnitudes of $\left(-l_{v}\right)$ and n_{v}. Thus the conclusions drawn in paragraph (a) apply equally well to both manoeuvres.

(c) General

Comparison of the successuve maxima (see Table III) shows that the error introduced by neglect of rolling is not always conservative. We have seen that the magnitude of the error is dependent on the relatave magnitudes of the exact and simplified values of R and J. The results of previous investigations ${ }^{3}$ suggest that the sign of the error is greatly influenced by the signs and magnitudes of n_{p} and I_{E}; if they are both negative the error is, in general, conservative.

In Appendix III It is shown that R and J may be obtained accurately without recourse to the stabalıty quartic. However, whether this method, or solution of the quartic by "trial and error", is used, the product of inertia term i_{E} should be included. If it is not, the modufied method may not give expected improvement over the sumplıf $\perp e^{2}$ method. Calculations have been made with the present examples to illustrate this point; see Tables III and IV.

3.2 Fln-and-Rudder Loads

Specimen time histories of the fan-and-rudder loads for aurcraft "1" and "B" during the two manoeurres are shown in Figs.2, 4 and 5. The loads are closely linked with the corresponding angles of sideslip (see Appendix I, paragraph 3) and many of the remarks made in the preceding paragraphs are therefore relevant here. The results are tabulated in Table IV(a) and IV(b).

Consideration of the first manoeuvre, shows that the errors in estimation of the fin-and-rudder loads, introduced through neglect of rolling, are as high as 25%. Thus the error is greater than that arising in the calculation of the corresponang angles of sideslap. This is due to the form of the equation for F . The errors may be reduced to 5% If the modified method 1 s used to determine the angles of sidesinp.

In the fish-tail manoeuvre, where the equation for P as slightly different, the errors in estimation of P arising from the neglect of rolling are comparable with those occurring in the corresponaing angles of sideslip. The figures in Table IV(b) indicate that, provided the angles of sideslip are calculated by the modified method, the associated fun-and-rudder loads for this manoeuvre will also be accurate.

4 Conclusions

(1) Neglect of rolling motion in manocuvres induced by the rudder may introduoe appreciable errors in the estimation of the angles of sideslip and the associated loads of certain aircraft.
(2) These errors are due primaraly to the errors in estmating the damping and frequency parameters of the lateral oscallations, f and J. In this respect, the samplufined method is only acceptable when used on aircraft with straight wings.
(3) The errors in estimation of R and J can be expected to be greatest when the aircraft has high $\left(-\ell_{v}\right)$ and low n_{v}. The errors will increase with altitude.
(4) It is confirmed that a simple method for reducing the crrors due to neglect of rolling is to use the exact values of R and J in the formulae of the sımplified method.
(5) The product of inertia term i_{E} should be included in any estimate of the exact values of R and J. If this term is neglected the modified method may not prove any more accurate than the simplifzed me thod.
(6) The procedure suggested by Neumark (sce Appendix III) is perhaps the simplest for finding the exact values of R and J if the main interest is in angles of sldeslip and fin and rudder loads in yawing manoeurres.

NOTATION

$A_{0}, B_{0}, C_{0}, D_{0}, E_{0} \quad:$ coefficients of equation (8)
$A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, F_{1}:$ coefficients of equation (10)
$B_{2}, C_{2}, D_{2}, E_{2} \quad$: coefficients of quartic equation (2)
$F_{2}, G_{2} \quad:$ coefficsents in equation (2)
$\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$, etc. : coefficients of equation (20)
$I_{1}, I_{2}, I_{3}, I_{4} \quad:$ factors in quartic influenced by the inertia coupling term i_{E}
$a_{1}=-\frac{\partial C_{Y_{f}}}{\partial \beta}$
$a_{2}=+\frac{\partial C_{Y_{f}}}{\partial \zeta}$
b : wing span
$C_{L} \quad:$ lift coefficient (total)
$C_{Y_{f}}$
$f, h \quad:$ coefficients of equation (6) or equation (13)
g : gravity constant
$i=\sqrt{-1}$
$\mathrm{i}_{\mathrm{A}} \quad:$ inertia coefficient about x axis

I_{C}	: inertia coefficient about a axis
$i_{ \pm}$: incrtıa couplıng about $x-z$ axie coeffacient of product of incrtia
J	: non-dimensional frequencer of lateral oscillatzons - also carcular frequency of disturbance
$k=\frac{C_{L}}{2}$	
ℓ	fin -and-rudder arm
ℓ_{R}	: distance of C.P. of fin-and-rudder load due to rudder deflection to C.G. of aircraft
l_{p}	: damping derivative an roll
ℓ_{r}	: rolling moment derivative due to yaw
e_{v}	- dahedral stabılity derivative
n_{p}	: yawing moment deravative due to roll
n_{r}	- dampine derivative in yaw
n_{v}	: statac stabality derivatuve in yaw
$\hat{p}=\mathrm{p} \hat{t}$: angular velocity in roll (non-dımensional)
P	fin-and-rudder Inad
R	: damping factor of lateral oscillations
R^{\prime}	: damping factor of rolling subsıdence
r_{s}	: dampzng factor of spiral motion
$\hat{r}=r \hat{t}$: angular velocity in yaw (non-dimensional)
S	- wing area
S'	: fin-and-rudder area
t	: tame in seconds
$\hat{\mathrm{t}}=\frac{W}{\mathrm{~g} \rho \mathrm{~S} V}$: unit of aerodynamic time in secrnds
V	: true velocaty of C.G. of ajrcraft

V	: velocity of sideslıp
$\bar{V}_{R}=\frac{S^{\prime \prime} \ell_{R}}{S b}$: fin-and-rudder volume coefficient
W	: weight of aircraft
$\vec{y}_{v}=-y_{v}$: lateral force derıvative due to sideslıp
$\beta=\frac{V}{V}$: angle of sideslip
$\delta_{n}=-\frac{\mu_{2} \bar{V}_{R} a_{2}}{i_{C}}$: ruader effectiveness
$\varepsilon=R^{\prime}-\nu_{l}$: see equation (20)
ら	: rudder angle
λ	: stability root
$\mu_{2}=\frac{2 W}{g \rho S b}=\frac{2 V \hat{t}}{b}$: relative density of aurcraft (referred to semi span)
$\mu_{3}=\frac{W}{g \rho S l}=\frac{b}{2 l} \cdot \mu_{2}$: relative density of aircraft (referred to length)
$v_{l}=-\frac{e_{p}}{i_{A}}$	
$\nu_{l x}=\frac{\ell}{i_{A}}$	
$\nu_{n}=-\frac{n_{r}}{i_{C}}$	
$\nu_{n p}=-\frac{n_{p}}{i_{C}}$	
ρ	: air density
τ	: aerodynamic time (non-dimensional)
ϕ	: angle of bank
$\omega_{e}=-\frac{\mu_{2} l_{v}}{i_{A}}$	

$$
\omega_{n}=\frac{\mu_{2} n_{V}}{{ }^{2} C}
$$

Suffices

-

e

REFERHNCES

Author

1

2 T. Czaykowskı

3 K. Mitchell, A.V. Thorpe and E.M. Frayn

4 A. W. Thorpe

5 S. Neumark

6 I. W. Bryant and
: maximum rudder angle in first manocuvre and quantities due to that angle
: maximum rudder angle in second manoeuvre and quantities due to that angle

Design Requirements for Aeroplanes.
(1) A.P.970, Vol.I, Ch. 202 (Amendment List No.49).
(2) A.P.970, Vol.II, Leaflet 202/1 (Amendment List No. 14).

Dynamic Fan-and-Rudder Loads in Yawang Mianoeuvres.
R.A.E. Report No. Structures 76. 1250.

A Tncoretical Investigation of the Fesponse of a Hzgh Speed Aeroplane to the Application of Azlerons and Rudders. K \& $\mathrm{mi} 2294 . \quad$ Nay, 1945.

Note on the Effect of Product of Inertia on Dynamac Lateral Stability.
A.R.C. 13258 Anral, 1950.
i Sumplafied Theory of the Lateral
Oscillations of an alrcraft with Rudder Free, Including the Effect of Friction in the Control System.
R\& M No.2259. May, 1945.
Nomenclature for Stability Coefficients. R \& M No. 1801.

October, 1937.

APPENDIX I

Mathematical Analysis of the Problem

1 General Equations of Motion
The linearised differential equations of lateral motion of an alrcraf't may be written (of. Refs. 5 and 6).

SidesIIp:-

$$
\begin{array}{ll}
\text { Sidesinp:- } & \frac{d \beta}{d \tau}+\overline{\mathrm{y}}_{\mathrm{v}} \beta+\hat{r}-\mathrm{k} \phi=0 \\
\text { Roll:- } & \omega_{\ell} \beta+\frac{d \hat{p}}{d \tau}+\nu_{\ell} \hat{p}-\frac{i_{E}}{i_{A}} \frac{d \hat{r}}{d \tau}+\nu_{\ell r} \hat{r}=0 \tag{1}\\
\text { Yaw:- } & -\omega_{n} \beta-\frac{i_{E}}{i_{A}} \frac{d \hat{p}}{d \tau}+\nu_{n p} \hat{p}+\frac{d \hat{r}}{d \tau}+\nu_{n} \hat{r}+\delta_{n} \zeta=0
\end{array}
$$

Kinematic
Relationshıp:- $-\hat{p}+D \phi=0$

The last term in the yawing equation is the disturbing function expressed in terms of the applied rudder angle. Similar terms in the other two equations, representing the effects of rudder movement on the sideforce and rolling moments respectively, have beon neglected. The effects of any displacement between the wind axes and principal axes of inertia are included.

2 Solutions

2.1 Exact Solution for Angle of Sideslip

If equations (1) are written as a function of β alone, we have, expressing the result in a form suitable for the application of the Laplace Transform:-
$\frac{\alpha^{4} \beta}{d \tau^{4}}+B_{2} \frac{a^{3} \beta}{d \tau^{3}}+C_{2} \frac{a^{2} \beta}{d \tau^{2}}+D_{2} \frac{\alpha \beta}{d \tau}+E_{2} \beta=\delta_{n}\left(\frac{d^{2} \zeta_{5}^{2}}{d \tau^{2}}+F_{2} \frac{d \zeta}{d \tau}+G_{2} \zeta\right)$
where

$$
\begin{align*}
& B_{2}=\nu_{\ell}+\nu_{n}+\bar{y}_{v}+I_{1} \\
& c_{2}=\bar{y}_{v}\left(\nu_{\ell}+\nu_{n}\right)+\left(\nu_{\ell r} \nu_{n p}+\nu_{n} \nu_{e}\right)+\omega_{n}+I_{2} \\
& D_{2}=\vec{y}_{v}\left(\nu_{l x} \nu_{n p}+\nu_{n} \nu_{l}\right)+\omega_{l}\left(\nu_{n p}+k\right)+\omega_{n} \nu_{\ell}+I_{3} \tag{3}\\
& E_{2}=k\left(\omega_{\ell} \nu_{n}-\nu_{\ell r} \omega_{n}\right) \\
& F_{2}=\nu_{\ell}+I_{4} \\
& G_{2}=-v_{\ell_{r}} k
\end{align*}
$$

$$
\begin{aligned}
& I_{1}=\frac{i_{E}}{i_{A}} \nu_{n p}-\frac{i_{E}}{i_{C}} \nu_{l n} \\
& I_{2}=\bar{y}_{V} I_{1}-\omega_{l} \frac{i_{E}}{i_{C}} \\
& I_{3}=-\omega_{n} \frac{I_{E}}{i_{A}} k \\
& I_{4}=-\frac{i_{E}}{i_{A}}
\end{aligned}
$$

effects of inertia coupling i_{E}

The corresponding stability quartzc is

$$
\begin{equation*}
\lambda^{4}+B_{2} \lambda^{3}+C_{2} \lambda^{2}+D_{2} \lambda+E_{2}=0 \tag{5}
\end{equation*}
$$

whach may, in general, be factorised to

$$
\begin{equation*}
\left(\lambda+r_{s}\right)\left(\lambda+R^{\prime}\right)\left(\lambda^{2}+f \lambda+h\right)=0 \tag{6}
\end{equation*}
$$

The four roots are then

$$
\begin{align*}
& \lambda_{1}=-r_{s}=\text { damping factor of the spiral motion } \\
& \lambda_{2}=-R^{:}=\text {damping factor of the rolling motion } \\
& \lambda_{3,4}=-\frac{1}{2} \pm \pm i \sqrt{h-\frac{f^{2}}{4}}=\text { complex roots of lateral oscillation } \tag{7}\\
&=-R \pm i J
\end{align*}
$$

where $R=$ damping factor of the lateral oscillation
$J=$ frequency factor of the lateral oscillation
If we solve equation (2) for the two specified manoeuvres we obtain:-
(i) For the first manoeuvre:-

```
Using equations (2) and (6)
with \zeta = \zeta
and inctial conditions }p=\phi=r=\beta=
at \tau}=
```

$\frac{\beta}{\delta_{n} \zeta_{0}}=A_{0}+B_{0} e^{-R^{\prime} \tau}+C_{0} e^{-r} s \tau+e^{-R \tau}\left\{D_{0} \cos J \tau+\frac{E_{0}-D_{0} R}{J} \sin J \tau\right\}$

The coefficients $A_{0}, B_{0}, C_{0}, D_{0}$ and E_{0} may be deduced from the following equations:-

$$
\begin{align*}
& B_{0}+C_{0}+D_{0}+\frac{G_{2}}{E_{2}}=0 \\
& \left(r_{s}+f^{\prime}\right) B_{0}+\left(R^{\prime}+f\right) C_{0}+\left(R^{\prime}+r_{s}\right) D_{0} \quad+E_{0}+\frac{G_{2}}{E_{2}} \cdot B_{2}=0 \\
& \left(r_{s} f+h\right) B_{0}+\left(R^{\prime} f+h\right) C_{0}+R^{\prime} r_{s} D_{0}+\left(R^{\prime}+r_{s}\right) E_{0}+\frac{G_{2}}{E_{2}} \cdot C_{2}=1 \tag{9}\\
& r_{s} h B_{0} \quad+R^{\prime} h C_{0} \quad+R^{\prime} r_{s} E_{0}+\frac{G_{2}}{E_{2}} \cdot D_{2}=F_{2} \\
& A_{0}=\frac{G_{2}}{E_{2}} \\
& \text { (ai) For the second manoeuvre, similarly:- } \\
& \text { with } \zeta=\zeta \sin J \tau \\
& \text { and initial conditions } p=\phi=r=\beta=0 \\
& \text { at } \tau=0 \\
& \frac{1}{J}\left(\frac{\beta}{\delta_{n} \zeta_{e}}\right)=A_{1} e^{-R^{\prime} \tau}+B_{1} e^{-x_{s} \tau}+e^{-R \tau}\left\{C_{1} \cos J \tau+\frac{D_{1}-C_{1} R}{J} \sin J \tau\right\} \\
& +E_{1} \cos J \tau+\frac{F_{1}}{J} \sin J \tau \tag{10}
\end{align*}
$$

and the corresponding equations for the coefficients are:-

§

In the present investigation equations (9) and (11) are solved numerically for the three aurcraft.

Note:- The coefficients of the stabilaty quartic B_{2}, C_{2}, D_{2} and E_{2} may also be written

$$
\begin{aligned}
& B_{2}=R^{\prime}+r_{S}+f \\
& C_{2}=R^{\prime} r_{s}+h+f\left(R^{\prime}+r_{S}\right) \\
& D_{2}=h\left(R^{\prime}+r_{s}\right)+f^{\prime} R^{\prime} r_{s} \\
& E_{2}=R^{\prime} r_{s} h
\end{aligned}
$$

2.2 SImplufied Method (cf. Ref's. 1 and 2)

If rolling motion as neglected completely, equation (2) becomes

$$
\begin{equation*}
\frac{d^{2} \beta}{d \tau^{2}}+\left(\bar{y}_{v}+\nu_{n}\right) \frac{d \beta}{d \tau}+\left(\omega_{n}+\nu_{n} \bar{y}_{v}\right) \beta=\delta_{n} \zeta^{2} \tag{12}
\end{equation*}
$$

The correspondıng stability quadratic is

$$
\left.\begin{array}{rl}
\lambda^{2}+f \lambda+h & =0 \tag{13}\\
f & =\bar{y}_{v}+\nu_{n} \\
h & =\omega_{n}+\nu_{n} \bar{y}_{v}
\end{array}\right\}
$$

and the roots are

$$
\begin{align*}
\lambda_{1}, \lambda_{2} & =-\frac{f}{2} \pm i \sqrt{h-\frac{f^{2}}{4}} \\
& =-R \pm i J \tag{14}
\end{align*}
$$

where R and J are again the damping and frequency factors of the lateral oscillations. In view of the assumption of zero rollang motion these roots will not be exact.

The corresponding complete solutions for the two manoeuvres considered are:-
(i) $\quad \frac{\beta}{\delta_{n} \zeta_{0}}=\frac{1}{R^{2}+J^{2}}\left[1-e^{-R \tau}\left(\cos J \tau+\frac{R}{J} \sin J \tau\right)\right]$
(ii) $\frac{1}{J}\left(\frac{\beta}{\delta_{n} \zeta_{e}}\right)=\frac{1}{R\left(4 J^{2}+R^{2}\right)}\left[\frac{R}{J} \sin J \tau-2 \cos J \tau+e^{-R \tau}\left(2 \cos J \tau+\frac{R}{J} \sin J \tau\right)\right](16)$

2.3 Modified Method (Refs. 1 and 2)

When the simplified method for the estumation of sideslip angles and fin-and-rudder loads was proposed, it was thought that acceptable solutions would be obtained in most cases. For the outstanding cases, where rolling motion might have a marked effect on the response, it wos suggested that a closer approximation would be reached if the exact values of R and J, obtained from a rigorous solution of the quartic, were used in the coefficients of the response formulae equations (15) and (16).

3 Fin-and-Rudder Loads

The general expression for the aerodynamic load on the fin-andrudder during a manoeuvre may be written

$$
\begin{align*}
P & =\frac{1}{2} p V^{2} S^{\prime \prime}\left(-a_{1} \beta+\frac{\ell}{V} r a_{1}+a_{2} \cdot \zeta\right) \tag{17}\\
& =A\left(-B \beta-C \frac{d \beta}{d \tau}+a_{2} \zeta\right) \tag{18}
\end{align*}
$$

where

$$
\begin{aligned}
& A=\frac{1}{2} \rho V^{2} S^{\prime \prime} \\
& B=\left(1+\frac{\overline{\mathrm{y}}_{\mathrm{v}}}{\mu_{3}}\right) a_{1} \\
& C=\frac{1}{H_{3}} a_{1}
\end{aligned}
$$

APPENDIX II
 Comparison of Results of Exact,
 SImplificed and Modzfoed Methods

First Manoeuvre

Consider the formulae of the exact and simplified methods
$\frac{\beta}{\delta_{n} \zeta_{0}}=\left(A_{0}+C_{0} e^{-r_{s} \tau}\right)+e^{-R \tau}\left\{D_{0} \cos J \tau+\frac{E_{0}-D_{0} R}{J} \sin J \tau\right\}+B_{0} e^{-R^{\prime} \tau}$
$\frac{\beta}{\delta_{n^{2} 0}}=\frac{1}{R^{2}+J^{2}}+e^{-R \tau}\left\{-\frac{1}{R^{2}+J^{2}} \cos J \tau-\frac{R}{J\left(R^{2}+J^{2}\right)} \sin J \tau\right\}$
The term $e^{-R^{\prime} \tau}$, in the exact solution, is very small since the damping in roll R^{\prime} is usually large. Numerical results indicate that the coefficient B_{0} is also very small. Thus the term $B_{0} e^{-R^{\prime} \tau}$ may be neglected in the exact solution. The spiral term $C_{o} e^{-r} s{ }^{\tau}$ must be retained since $e^{-r} S^{\tau}$ is approximately unaty whilst calculations show that A_{0} and C_{0} are comparable but of opposite sign. Thus the general structures of the two formulae are essentially similar.

If we now examine the numerzeal values of the respective coofficients, using the exact values of R and J (modified approach) in the sumplified formula, (equation (15)) we have the following results.

Aircraft	"A"	$" B^{\prime \prime}$	$" C^{\prime \prime}$
A_{0}	-0.38853	-0.23888	-0.09194
C_{0}	0.44478	0.32525	0.138819
B_{0}	0.00015	0.00063	0.0001
$\frac{1}{R^{2}+J^{2}}$	0.0565	0.0876	0.04694
$\left(A_{0}+C_{0} e^{-r^{2}}\right)_{J \tau}=\pi$	0.05625	0.08637	0.04688
$-\frac{1}{R^{2}+J^{2}}$	-0.0565	-0.0876	-0.04694
D_{0}	-0.0564	-0.08701	-0.04698
$\frac{R}{J\left(R^{2}+J^{2}\right)}$	-0.0053	-0.00348	-0.00264
$\frac{E_{0}-D_{0} R}{J}$	-0.00501	-0.00192	-0.00135

The respective coefficients are almost identical in all cases. Thus it may be inferred that the corresponding coefficients of the two formulae are similar functions of R and J and that the slight variations between the numerical values of the coefficients are due to the parameters R^{\prime} and r_{s}. The errors arising from the use of the simplified method for certain aircraft instead of the exact method are therefore due primarily to the lamitations of the method as a means of estimating R and J.

Second Manoeuvre

The two response formulae for β may be written

$$
\begin{align*}
\frac{\beta}{\delta_{n} \zeta_{e}}=J\left(A_{1} e^{-R^{\prime} \tau}+B_{1} e^{-r s^{\tau}}\right) & +e^{-R \tau}\left(J C_{1} \cos J \tau+\left[D_{1}-C_{1} R\right] \sin J \tau\right) \\
& +J E_{1} \cos J \tau+F_{1} \sin J \tau \tag{10}
\end{align*}
$$

$\frac{\beta}{\delta_{n} \zeta_{e}}=e^{-R \tau}\left(2 H_{e} \cos J \tau+\frac{R}{J} H_{e} \sin J \tau\right)-2 H_{0} \cos J \tau+\frac{R}{J} H_{e} \sin J \tau$
where

$$
H_{e}=\frac{J}{R\left(4 J^{2}+R^{2}\right)}
$$

Numerical results show that $J\left(A_{1} e^{-R^{2} \tau}+B_{1} e^{-r} S\right)$ may be disregarded (see table below) and then the general forms of the two equations are identical. If the numerical values of the coefficients are calculated, again using the exact values of R and J, modafied method, we have:-
/Table

Aircraft	" ${ }^{\text {A }}$	"B"	"0"
$J\left(A_{1} e^{-R^{\prime} \tau}+B_{1} e^{-r} S \tau\right)$	-0.00013	-0.00085	-0.0011
2 He	0.30109.	1.10462	0.41895
$\mathrm{J} \mathrm{C}_{1}$	0.30023	1.09811	0.41889
$\left(D_{1}-C_{1} R\right)$	0.01251	0.00145	0.0003
$\frac{\mathrm{R}}{\mathrm{J}} \mathrm{H}_{\mathrm{e}}$	0.01423	0.02192	0.01176
- $2 \mathrm{H}_{\mathrm{e}}$	-0.30109	-1.10462	-0.41895
$J \mathrm{E}_{1}$	-0.30001	-1.0969	-0.41766
$\frac{\mathrm{R}}{\mathrm{J}}$	0.01423	0.0219	0.01176
F_{1}	0.0158	0.0418	0.02319

The numerıcal values of the respectuve coefficients are almost identical. It follows that for this manoeuvre also the errors arising from the use of the simplafied method are due prumarily to ats lamatations as a method of estimating R and J.

APPENDIX III

Factorization of the Quartic Equation (5)

- In the main text it is shown that acceptable solutions to the response of an aircraft in yaw can be obtanned if the exact values of R and J are known. In the simplified theory, the expressions for R and J are explicit, but the inclusion of rolling motion destroys this mathematical simplicity. Hence an accurate estimation of angle of sideslip and fin-and-rudder loads is reduced to the problem of deriving the exact values of R and J, i.e. the factorlzation of the quartic, and the use of the simplified formulae.
(1) If the numerical values of the lateral stability coefficients 1_{n}, C_{2}, D_{2} and E_{2} are known, the quartic may be solved by "trial and error" using the characteristics of the lateral quartic for selecting the first approximations to λ_{1} and λ_{2}, i.e.

$$
\begin{equation*}
\lambda_{1} \bumpeq-\frac{E_{2}}{D_{2}} \quad \lambda_{2} \bumpeq-B_{2} \tag{19}
\end{equation*}
$$

(2) If the main interest is in the response, rather than the stabillty of the aircraft, however, it may be more convenzent to use the method suggested by Neumark5. This method can be readily tabulated for computational purposes. The relevant formulae are presented here, with certain additions covering the effects of inertia coupling terms (neglected $\perp n$ the original report).

$$
\varepsilon=\frac{\mathrm{H}_{0}}{\mathrm{H}_{1}}+\left(\frac{\mathrm{H}_{0}}{\mathrm{H}_{1}}\right)^{2} \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}-\left(\frac{\mathrm{H}_{0}}{\mathrm{H}_{1}}\right)^{3}\left\{\frac{\mathrm{H}_{3}}{\mathrm{H}_{1}}-2 \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}\right\}+\text { etc. }
$$

where

$$
\begin{align*}
& H_{0}=\omega_{l}\left(\nu_{n p}+k\right)-\left(v_{l}-\bar{y}_{v}\right) \nu_{\ell r} \nu_{n p}-\frac{E_{2}}{v_{l}}+\left[I_{3}-\nu_{l}\left(I_{2}-v_{l} I_{1}\right)\right]_{1}^{\prime} \\
& H_{1}=\omega_{n}+\left(\nu_{e}-\nu_{n}\right)\left(\nu_{e}-\bar{y}_{v}\right)+\frac{\omega_{e}\left(\nu_{n p}+k\right)+\bar{y}_{v} e_{n} \nu_{n p}}{\nu_{e}}-\frac{2 E_{2}}{\nu_{e}^{2}}+\left[\frac{I_{3}}{\nu_{e}}-\nu_{e} I_{1}\right] \tag{20}\\
& H_{2}=-v_{e}+\frac{D_{2}}{\nu_{e}^{2}}-\frac{3 E_{2}}{\nu_{e}^{3}} \quad H_{3}=\frac{D_{2}}{\nu_{e}^{3}}-\frac{4 E_{2}}{v_{e}^{4}} \text { etc. }
\end{align*}
$$

Then

$$
\begin{align*}
& R^{\prime}=\nu_{\ell}+\varepsilon \\
& r_{s}=\frac{E_{2}}{D_{2}-E_{2} / R^{\prime}} \\
& f=\left(\nu_{n}+\bar{y}_{v}\right)+I_{1}-\left(r_{s}+\varepsilon\right) \tag{23}\\
& h=\left(\omega_{n}+\bar{y}_{v} \nu_{n}\right)+v_{\ell r} \nu_{n p}+\left(R^{\prime}-\nu_{n}-\bar{y}_{v}\right)-R^{\prime} I_{1}+I_{2}-r_{s} f \tag{24}
\end{align*}
$$

These equations include the product of inertia term I_{E}, Thorpe ${ }^{4}$ has recently shown that serious errors may arise in the estimation of R if this term is omitted. It has been convenient to check this point in the present investigation and the results are included in Tables II IV. The calculations show that both R and J are affected by such an omussion (Table II), and, in view of the remarks in Appendix II, the omission of i_{E} must introduce appreciable errors into any lateral response calculations made on aircraft flying at moderate and high values of C_{L}.

The results in Tables III and IV suggest that if R and J are caiculated on the assumption that i_{E} is negligible and are then substituted into the simplified expressions for β etc., the errors incurred may be comparable with those associated with the results obtained when rolling is ignored.

Since the coupling term has such a powerful influence on the estimated response of an aircraft, the relative anclinations of the principal and body axes should be determined before response calculations are attempted.

TABEE I

Relevant Aerodynamic Data

	Aircraft "A"	$\underset{\text { "Bl" }}{\text { Anroraft }}$	$\begin{aligned} & \text { Anrerart } \\ & \text { "C" } \end{aligned}$
$\mathrm{C}_{\text {L }}$	0.147	0.2	0.3
μ_{2}	36.8	50.02	91.4
金	1.34	1.601	2.654
k	0.0735	0.1	0.15
ℓ_{V}	-0.04	-0.062	-0.081
e_{p}	-0.34	-0.21	-0.252
e_{r}	0.04	0.055	0.135
n	0.07	0.055	0.086
n_{p}	0.05	-0.011	0
n_{r}	-0.08	-0.07	-0.157
$\overline{\mathrm{y}}_{\mathrm{v}}$	0.23	0.177	0.168
a_{1}	2.5	2.35	2.78
a_{2}	1.8	0.85	0.316
$\mathrm{i}_{\text {A }}$	0.07	0.063	0.055
${ }^{2} \mathrm{C}$	0.14	0.278	0.290
${ }^{1} \mathrm{E}$	0.005	-0.0056	-0.0058
ω_{n}	18.4	9.895	17.965
ω_{e}	20.93	42.137	134.85
ν_{e}	4.85	3.355	4.69,
$\nu_{e r}$	0.57	0.875	2.532
$\nu_{n p}$	-0.29	0.04	0
ν_{n}	0.57	0.252	0.54 .1
δ_{n}	22.53	5.995	8.794
B_{2}	5.6098	3.7974	5.4587
C_{2}	21.5024	12.3586	24.0544
D_{2}	85.2019	40.3188	105.3632
E_{2}	0.1079	0.3679	4.1286

Aircraft	Method of Solution	ε	$r_{\text {s }}$	R'	f	h	R	J	Remarks
"A"	Exact Exact Smplified Modified Exact	$\left\lvert\, \begin{gathered} -0.0331 \\ -0.03308 \\ - \\ 0.1018 \end{gathered}\right.$	$\left[\begin{array}{c} 0.00127 \\ 0.00127 \\ - \\ 0.00127 \end{array}\right.$	$\begin{gathered} 4.8169 \\ 4.81692 \\ - \\ 4.9518 \end{gathered}$	$\begin{gathered} 0.79158 \\ 0.79156 \\ \overline{-} \\ 0.69699 \end{gathered}$	$\begin{array}{\|c\|} \hline 17.6823 \\ 17.6824 \\ - \\ \hline 18.7873 \end{array}$	$\begin{aligned} & 0.39579 \\ & 0.35578 \\ & 0.400 \\ & 0.39579 \\ & 0.34849 \end{aligned}$	$\begin{aligned} & 4.1864 \\ & 4.1864, \\ & 4.2928 \\ & 4.1864 \\ & 4.3204 \end{aligned}$	\| Quartic factorized by "trial and error" method Quartic factorized by Neumark's method (two approximations) Simplified values of R and J Exact values of R and J Omission of coupling terms from quartic
"B"	Exact Exact Simp7ıfied Modified Exact	$\begin{gathered} 0.1654 \\ 0.16597 \\ - \\ 0.30708 \end{gathered}$	$\begin{gathered} 0.00915 \\ 0.00915 \\ - \\ 0.00917 \end{gathered}$	$\begin{gathered} 3.520 \\ 3.5206 \\ \overline{-} \\ 3.6617 \end{gathered}$	$\begin{gathered} 0.26825 \\ 0.26768 \\ \overline{-} \\ 0.11255 \end{gathered}$	$\begin{gathered} 11.4197 \\ 11.4216 \\ - \\ 10.9667 \end{gathered}$	$\begin{aligned} & 0.13412 \\ & 0.13384 \\ & 0.2144 \\ & 0.13412 \\ & 0.0563 \end{aligned}$	$\left\|\begin{array}{l} 3.3766 \\ 3.3769 \\ 3.1455 \\ 3.3766 \\ 3.3111 \end{array}\right\|$	Quartic factorized by "trial and error" me thod Quartic factorized by Neumark's method (two approximations) Simplified values of R and J Exact values of R and J Omission of coupling terms from quartic
"C"	$\begin{aligned} & \text { Exact } \\ & \text { Exact } \\ & \text { Simplified } \\ & \text { Modified } \\ & \text { Exact } \end{aligned}$	0.2022 0.2024 - 0.47471	$\begin{gathered} 0.03954 \\ 0.03950 \\ - \\ 0.03959 \end{gathered}$	$\begin{gathered} 4.5016 \\ 4.9018 \\ - \\ 5.1741 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.51756 \\ 0.51738 \\ - \\ 0.19510 \end{array}$	$\begin{gathered} 21.3033 \\ 21.3042 \\ - \\ 20.1674 \end{gathered}$	$\left\{\begin{array}{c} 0.25878 \\ 0.25869 \\ 0.3547 \\ 0.5278 \\ 0.0976 \end{array}\right.$	$\begin{array}{\|l\|} \hline 4.6083! \\ 4.6084! \\ 4.2344 \\ 4.683 \\ 4.4898 \end{array}$	Duartic factorized by "trial and error" method Quartic factorized by Neumark's method (two approximations) Simplified values of R and J Exact values of R and J Omission of coupling terms fran quartac

Maximum Sideslip Angles (Local)

$\begin{aligned} & \text { Alr- } \\ & \text { craft } \end{aligned}$	Method of Solution	R	J	$\frac{\mathrm{R}}{\mathrm{J}}$	Manoeuvre (1)		Manoeurre (2) - (Fish-Tail)				Remarks
					$\left(\frac{\beta}{\zeta_{0}}\right)_{J \tau=\pi}$	\% Irror	$\left(\frac{\beta}{\zeta_{e}}\right)_{J \tau=2 \pi}$	\% Error	$\left(\frac{\beta}{\zeta_{e}}\right)_{J \tau=3 \pi}$	\% Error	
"A"	$\|$Exact Simplified Modified Modifined	$\begin{aligned} & 0.39579 \\ & 0.40 \\ & 0.39579 \\ & 0.34849 \end{aligned}$	$\begin{aligned} & 4.1864 \\ & 4.2928 \\ & 4.1864 \\ & 4.3204 \end{aligned}$	$\begin{aligned} & 0.0945 \\ & 0.0932 \\ & 0.0945 \\ & 0.0807 \end{aligned}$	$\begin{aligned} & 2.2024 \\ & 2.1169 \\ & 2.2213 \\ & 2.1303 \end{aligned}$	$\begin{aligned} & -3.90 \\ & +0.90 \\ & -3.27 \end{aligned}$	$\begin{aligned} & -3.0290 \\ & -2.9023 \\ & -3.0398 \\ & -2.9703 \end{aligned}$	$\begin{gathered} - \\ -4.17 \\ -0.37 \\ -1.92 \end{gathered}$	$\begin{aligned} & 3.9820 \\ & 3.8264 \\ & 4.0016 \\ & 3.9778 \end{aligned}$	$\begin{array}{r} -3.91 \\ 0.50 \\ -0.10 \end{array}$	Equations (8) and (10) respectively Equations (15) and (16) respectively Exact values of R and J in Equations (15) and (16) R and J modified by cmission of i_{E}; Table II
"B"	Exact 'Simpliffied Modified Modıfined	$\left\lvert\, \begin{aligned} & 0.13412 \\ & 0.2144 \\ & 0.13412 \\ & 0.0563 \end{aligned}\right.$	3.3766 3.1455 3.3766 3.3111	$\left\{\begin{array}{l} 0.0397 \\ 0.0682 \\ 0.0397 \\ 0.0170 \end{array}\right.$	$\begin{aligned} & 0.9616 \\ & 1.050 \\ & 0.9884 \\ & 1.0648 \end{aligned}$	$\begin{array}{r} - \\ 13.35 \\ 2.79 \\ 10.7 \end{array}$	$\begin{aligned} & -1.4525 \\ & -1.5466 \\ & -1.4627 \\ & -1.6291 \end{aligned}$	$\begin{array}{r} 6.63 \\ 0.84 \\ 12.31 \end{array}$	$\begin{aligned} & 2.0430 \\ & 2.1042 \\ & 2.0662 \\ & 2.3808 \end{aligned}$	$\begin{array}{r} - \\ 2.99 \\ 1.13 \\ 16.53 \end{array}$	Tquations (8) and (10) respectively Equations (15) and (16) respectuvely Equations (15) and (16) Exact values of R and J F and J modificed by omission of i_{E}; Table II
"C"	Exact Simplified Modified Modificed	$\begin{aligned} & 0.2588 \\ & 0.3547 \\ & 0.2588 \\ & 0.0976 \end{aligned}$	4.6083 4.2344 4.6083 4.4898	$\begin{aligned} & 0.0562 \\ & 0.0838 \\ & 0.0562 \\ & 0.0217 \end{aligned}$	$\begin{aligned} & 0.7261 \\ & 0.8614 \\ & 0.7589 \\ & 0.8438 \end{aligned}$	$\left\|\begin{array}{c} - \\ 18.63 \\ 4.5 \\ 16.15 \end{array}\right\|$	$\begin{aligned} & -1.0542 \\ & -1.1959 \\ & -1.0953 \\ & -1.2808 \end{aligned}$	$\begin{gathered} - \\ 9.3 \\ 0.10 \\ 17.05 \end{gathered}$	$\begin{aligned} & 1.4931 \\ & 1.5955 \\ & 1.5141 \\ & 1.8590 \end{aligned}$	$\begin{gathered} - \\ 6.86 \\ 1.4 \\ 24.51 \end{gathered}$	Equations (8) and (10) respectively Equations (15) and (16) respectively Equations (15) and (16) Exact values of R and J P and J modufied by mission of $]_{\mathbb{C}}$; Table II

TABLE IV (a)

Local Maxımum Fın and Rudder Loads - "Instantaneous Rudder Defiection"

Aircraft	Method of Solution	$\left(\frac{\beta}{\zeta_{0}}\right)_{J \tau=\pi}$	$\frac{d}{d \tau}\left(\frac{\beta}{\zeta_{0}}\right)_{J \tau=\pi}$	B	C	$-B \frac{\beta}{\zeta_{0}}$	$-C \frac{d}{d \tau}\left(\frac{\beta}{\zeta_{0}}\right)$	a_{2}	$\frac{\mathrm{P}}{\mathrm{A} \zeta_{0}}$	\% Error	Remarks
"A"	Exact Simplified Modıfied Modュfıed	2.2024 2.1170 2.2213 2.1303	$\begin{gathered} -0.0357 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 2.5167 \\ & 2.5167 \\ & 2.5167 \\ & 2.5167 \end{aligned}$	$\begin{aligned} & 0.0727 \\ & 0.0727 \\ & 0.0727 \\ & 0.0727 \end{aligned}$	$\left\|\begin{array}{l} -5.5418 \\ -5.3279 \\ -5.5860 \\ -5.3613 \end{array}\right\|$	0.0026 0 0 0	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\left\lvert\, \begin{aligned} & -3.7392 \\ & -3.5279 \\ & -3.7860 \\ & -3.5613 \end{aligned}\right.$	$\begin{array}{r} - \\ -5.65 \\ 1.25 \\ -4.76 \end{array}$	Exact values of R and J R and J modified by omission of I_{E}
"B"	Exact Simplufied Modified Modified	$\begin{aligned} & 0.9616 \\ & 1.090 \\ & 0.9884 \\ & 1.0648 \end{aligned}$	$\begin{gathered} -0.0456 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 2.3554 \\ & 2.3554 \\ & 2.3554 \\ & 2.3554 \end{aligned}$	$\begin{gathered} 0.0304 \\ 0.0304 \\ 0.0304 \\ 0.0304 \end{gathered}$	$\left\|\begin{array}{l} -2.2650 \\ -2.5674 \\ -2.3281 \\ -2.5080 \end{array}\right\|$	$\begin{aligned} & 0.0014 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.85 \\ & 0.85 \\ & 0.85 \end{aligned}$	$\left\lvert\, \begin{aligned} & -1.4136 \\ & -1.7174 \\ & -1.4781 \\ & -1.6580 \end{aligned}\right.$	$\begin{gathered} -. \\ 21.49 \\ 4.56 \\ 17.3 \end{gathered}$	Exact values of R and J R and J modifined by omission of I_{E}
"C"	Exact Simplıfied Modified Modified	$\begin{aligned} & 0.7261 \\ & 0.8614 \\ & 0.7589 \\ & 0.8434 \end{aligned}$	$\begin{gathered} -0.091 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 2.7851 \\ & 2.7851 \\ & 2.7851 \\ & 2.7851 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & -2.022 \\ & -2.3991 \\ & -2.1136 \\ & -2.3488 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.316 \\ 0.316 \\ 0.316 \\ 0.316 \end{array}$	$\begin{aligned} & -1.7036 \\ & -2.0831 \\ & -1.7976 \\ & -2.0328 \end{aligned}$	$\begin{array}{r} - \\ 2223 \\ 5.52 \\ 19.33 \end{array}$	Exact values of R and J ,R and J modified by onission of i_{E}

Local Maximum Fin and Rudder Loads - "Fish-Tail Manoeuvre"

Aircraft	Method of Solution	$J \tau=2 \pi$				$J \tau=3 \pi$				Remarks
		$-\mathrm{B} \frac{\beta}{\zeta_{e}}$	$-C \frac{d}{d \tau}\left(\frac{\beta}{\zeta_{e}}\right)$	$\frac{\mathrm{P}}{\mathrm{A} \mathrm{C}_{\mathrm{e}}}$	\% Error	$-B \frac{\beta}{\zeta_{e}}$	$-C \frac{d}{d \tau}\left(\frac{\beta}{\zeta_{e}}\right)$	$\frac{P}{A \zeta_{e}}$	\% Error	
"A"	Exact Simplified Modified Modified	$\begin{aligned} & 7.6218 \\ & 7.3042 \\ & 7.6503 \\ & 7.4753 \end{aligned}$	$\begin{aligned} & -0.0481 \\ & -0.0422 \\ & -0.0437 \\ & -0.0376 \end{aligned}$	7.5737 7.2620 7.6066 7.4377	$\begin{gathered} - \\ -4.1 \\ 0.43 \\ -1.8 \end{gathered}$	$\begin{aligned} & -10.02 \\ & -9.630 \\ & -10.07 \\ & -10.011 \end{aligned}$	$\begin{aligned} & 0.0636 \\ & 0.0556 \\ & 0.0576 \\ & 0.0503 \end{aligned}$	$\begin{gathered} -9.9579 \\ -9.5743 \\ -10.013 \\ -9.9607 \end{gathered}$	$\begin{array}{r} -3.85 \\ 0.55 \\ 0.03 \end{array}$	Exact values of R and J R and J modified by omission of i_{E}
"B"	Exact Simplaficed Modified Modified	$\begin{aligned} & 3.4165 \\ & 3.6429 \\ & 3.4452 \\ & 3.8372 \end{aligned}$	$\begin{aligned} & -0.0055 \\ & -0.005 \\ & -0.003 \\ & -0.0014 \end{aligned}$	$\begin{aligned} & 3.4110 \\ & 3.6380 \\ & 3.4422 \\ & 3.8358 \end{aligned}$	$\begin{array}{r} -7 \\ 6.7 \\ 0.9 \\ 12.5 \end{array}$	$\begin{aligned} & -4.8123 \\ & -4.9562 \\ & -4.8666 \\ & -5.6078 \end{aligned}$	$\begin{aligned} & 0.0079 \\ & 0.0069 \\ & 0.0042 \\ & 0.0020 \end{aligned}$	$\begin{aligned} & -4.804 \\ & -4.9494 \\ & -4.8624 \\ & -5.6058 \end{aligned}$	$\begin{aligned} & - \\ & 3.02 \\ & 1.01 \\ & 16.7 \end{aligned}$	Exact values of R and J R and J modified by omission of i_{E}
"C"	Exact Simplified Modified Modified	$\begin{aligned} & 3.0474 \\ & 3.3308 \\ & 3.0505 \\ & 3.5670 \end{aligned}$	$\begin{aligned} & -0.008 \\ & -0.0064 \\ & -0.0030 \\ & -0.0019 \end{aligned}$	$\begin{aligned} & 3.0392 \\ & 3.3244 \\ & 3.0475 \\ & 3.5651 \end{aligned}$	$\begin{gathered} 9.38 \\ 0.38 \\ 17.30 \end{gathered}$	$\begin{aligned} & -4.1584 \\ & -4.4436 \\ & -4.2168 \\ & -5.1774 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.0086 \\ & 0.0059 \\ & 0.0027 \end{aligned}$	$\begin{aligned} & -4.1469 \\ & -4.4350 \\ & -4.2109 \\ & -5.1746 \end{aligned}$	$\begin{array}{r} 6.95 \\ 1.54 \\ 24.80 \end{array}$	Exact values of R and J R and J modified by cmission of i_{E}

FIG 2.TIME HISTORY OF FIN \& RUDDER LOADS AFTER AN INSTANTANEOUS RUDDER DEFLECTION ς_{0}

FIG3. RESPONSE TO A SINUSOIDAL RUDDER DEFLECTION $\xi_{=}=\varphi_{e} \operatorname{SIN} J \tau$

FIG4. TIME HISTORY OF FIN \& RUDDER LOADS PRODUCED BY A SINUSOIDAL RUDDER DEFLECTION $\varphi=\varphi_{e}$ SIN J τ.

Crown Copyright Reserved

PUBlished by her majesty's stationery office

To be purchased from
York House, Kingsway, london, w c 2. 423 Oxford Street, london, w. 1
PO Box 569, London, sel
13a Castle Street, edinburgh, 2 1 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Street, belfast
or from any Bookseller
1954
Price 2s. 6d. net
printed in great britain

