

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Analysis of Flight Measurements on the Airborne Path during Take-off By
W. R. Buckingham, B.Sc. and D. Lean, B.Sc, A.F.R Ae.S.

LONDON: HER MAJESTY'S STATIONERY OPTCE

Technical Note No.Aero 2191
October, 1952

BOYAL ATRCRAFT EST, BLISHENT

Analysis of Flight Measurements on the Airborne Path during Take-off
by
W.K. Buokingham, B.So.
and
D. Lcan, B. Sc., A.F.R. Ae.S.

- sUmanary

Analysis of a series of systematic take-off tests with a Meteor IV airoraft has shown that to a good approximation the minimum airborne path to 50 ft may be treated as an arc of a circle. With this assumption, it is a simple prooess to derive the mean oquivalent lift ooefficient used during this part of the take-off.

It has boen found that the total equivalent lift coefficient usod during the airbormo phase docroasos with inoroase in tho ratio of the airspeed to the stalling speed in a simple manner, whioh is independent of the thrust/roight ratio whon the shortest possible distanoc is required.

Using the results of a similar analysis applied to three other airoraft, an empirical rule has been developed, from whioh the mean equivalent lift coefficient increment, and hence the minimum airborne distanoe to 50 ft , can be estimated simply and with reasonable accuraoy.

The airborne distanoes thus obtained must be regardod as the minimum possible values. A factor of 1.5 may be required to allow for normal take-off teohniques, particularly when the thrust/weight ratio is low.
Page
1 Introduction 3
2 Information Required from Flight Tests 3
3 Test Procedure - Heteor IV 7
4 Corrections 7
5 Results and Disoussion 7
6 Use of Additional Data 8
7 Methods of Prediction 9
8 Choice of Method 12
9 Choice of Speed Margin at Take-off 12
10 Conclusions 12
11 Further Work 13
References
LIST OF TABLES
Table
Measured Takeoff Data - Meteor EE. 597 I
Information Derived from Take-off Measurements I I
LIST OF ZLIUSTRATIONS
FIg.
Alternative Forms of Flight Path to 50 ft 1
Effect of Normal Acceleration on Trans tion Distance 2
Airborne Distances to 50 ft for Circular Flight Path 3
Effect of Normal and Longitudinal Acceloration on Airborne Distance to 50 ft 4
Lift Coefficients used during Take-off = Metoor IV 5
Lift Coefficients used during Take-off m Dakota 6
Inift Coefftcients used during Tako-off - Hermes 7
Lift Coefficien is used during Take-off m None-Viking 8
Estimation of $\mathrm{C}_{\mathrm{L}}{ }^{\prime}$ from CL max 9
Application of Prediction Procoss to Meteor IV 10
Longitudinal Acoeloration roquirod for tho stoady climb angle to be roachod at 50 foot 11
Longitudinal acceloration roquirod for no drop in airspoed boforo the 50 ft point 12
..

The major unoertainty in the ostimation of take-of distance to 50 ft arises from the assumptions that have to be made regarding the piloting technique during the airborne part of this manoeuvre. Earlier methadslof estimating take-off distance may be modified, as in Section 2 below, to allow for variations in piloting teohnique. The theory serves to emphasize the importance of the technique on the distanoe involved, but the accuraoy of the estimation could not be improved until more quantitative data were available on piloting technique during actual take-offs.

The unoertainty of the estimates has increased in recent years, sinoe these earlier methods generally assumed that steady climb oonditions would be achieved before the standard 50 ft height was reached. With modern airoraft, this is often not the case, and estimation methods need modification aooordingly.

To obtain quantitative information on piloting technique, and to test the accuracy of proposed methods of estimation, a series of recorded take-offs has been made with a liateor IV aircraft, having a static thrust/ weight ratio of around. 0.5.

Test conditions were slightly artifiaial in that the pilot was asked to achieve the shortest practicable take-off distance, consistent with safety. The results must therefore be interpreted. as minimum distances.

To oheck such conclusions as were obtained from analysis of the Meteor results, use was made of the results of a large number of recorded take-offs made by the A \& A.E.E. on two propeller-driven and one jetpropelled transport airoraft. "This large volume of information has proved invaluable. '

2 Information Required from Flight Tests
The take-off manoeuvre may be considered to be divided into three phases:-
(1) the ground run up to the take-off speed;
(2) the transition phase, during which the speed and. climbing angle are changed to the steady climb values,
and (3) the steady climb.
The airborne path from the point of take-off to the point where the standard 50 ft height is reached may involve both phases (2) and (3), or it may lie entirely in phase (2). It is in phaso (2) that the main assumptions have to be made regarding piloting teohnique.

In an early method of deriving the equation to the path followed in phase (2), the main assumption was that the lift coefficient was held constant at the initial value $\mathrm{C}_{\mathrm{I}_{0}}$ (appropriate to steady flight at the take-off equivalent airspeed $V_{g}, \mathrm{O}_{\mathrm{f}} t / \mathrm{sec}$) until the aircraft reached a speed $V_{a} f t / s e c$ and climbing angle γ radians equal to the steady angle of climb at V_{a}. The lift coefficient'was then supposed to drop instantaneously to the value $\mathrm{C}_{\mathrm{I}_{\mathrm{o}}} .\left(\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{a}}\right)^{2}$ and the steady climb followed.

The take-off technique thus defined is one in which the aircraft is allowed to fly itseli off. The theory can, however, be modified to allow for the knom ability of the pilot to increase the lift ooeffioient at take-off', producing a finite normal acceleration from the start. The authors are indebted to C.H. Naylor for this suggestion, which leads to a relation betweon height gamed, h, and forward distance travelled, s, both in feet, of the form: -

$$
\begin{equation*}
h=\gamma_{0}\left(s-\frac{V_{g}^{2}}{\sqrt{2} \cdot g \sigma} \cdot \sin \frac{\sqrt{2} \cdot g \sigma_{s}}{V_{g}{ }^{2}}\right)+\frac{\Delta \mathrm{C}_{L}}{\mathrm{C}_{I_{0}}} \cdot \frac{\mathrm{~V}_{\mathrm{g}}{ }^{2}}{2 g \sigma}\left(1-\cos \frac{\sqrt{2} \cdot g \sigma s}{\mathrm{~V}_{\mathrm{g}}{ }^{2}}\right) \tag{1}
\end{equation*}
$$

where ACL is the increment in lift coefficient applied at take-off in excess of that required for flight at the take-off speed. The total lift coefficient is assumed to remain constant throughout the transition, and the increase in drag associated with the lift inorement is assumed to be small. The take-off longitudinal acceleration (in g-units) and the steady angle of olimb (in radians) at the take-off equivalent airspeed V_{g} are both equal to γ_{0}. Over the range of speed involved, variation of Y_{0} with airspeed is ignored. The remaining symbols heve their usual meaning.

The airspeed, V_{a} at any point during this manoeuvre is related to the take-off airspeed ${ }^{\mathrm{a}} \mathrm{V}_{\mathrm{g}}$ by the equation

$$
\begin{equation*}
\mathrm{V}_{\mathrm{a}}^{2}=\mathrm{V}_{\mathrm{g}}^{2}\left(1+\sqrt{2} \cdot r_{0} \sin \frac{\sqrt{ } 2 \mathrm{~g} \sigma \mathrm{~s}}{\mathrm{~V}_{\mathrm{g}}^{2}}-\frac{\Delta \mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{I}_{0}}}\left[1-\cos -\frac{\sqrt{2} \mathrm{~g} \sigma \mathrm{~s}}{\mathrm{Vg}_{\mathrm{g}}^{2}}\right]\right) \tag{2}
\end{equation*}
$$

and the instantaneous angle of climb, y , is given by

$$
\begin{equation*}
Y=\gamma_{C}\left(I-\operatorname{Cos} \frac{\sqrt{2} g \sigma s}{V_{g}{ }^{2}}\right)+\frac{\Delta G_{I}}{\sqrt{2} \cdot \sigma_{L_{0}}} \sin \frac{\sqrt{2 g \sigma s}}{V_{g}{ }^{2}} \tag{3}
\end{equation*}
$$

The transition ends when $\gamma=\gamma_{0}$, i.e. when

$$
\begin{equation*}
\mathrm{s}=\frac{\mathrm{V}_{\mathrm{g}}^{2}}{\sqrt{2 \mathrm{~g} \sigma}} \cdot \tan ^{-1} \gamma_{0} \sqrt{2} \mathrm{C}_{\mathrm{L}_{0}} / \Delta \mathrm{C}_{\mathrm{L}} \tag{4}
\end{equation*}
$$

If the height gained (given by equation (1)) at the end of the transition exoced 50 ft , then, clearly, conditions are not steady at 50 ft , and equation (1) would be used to estimate the airborne distanoe to 50 ft with the substitution $\mathrm{h}=50 \mathrm{ft}$.

If, however, stendy conditions are reached. before the 50 ft point is passed, we then define the transition distance (Fig. 1) as the differenoe betweon the actual distance to some point on the steady olimb path and the distanoo in which this point would have been reached had the airm craft boon ablo to olimb straight off the ground at the steady olimbing anglo γ_{0}. The transition distance, S_{T}, (which is not the same as that given by oquation (4)) may then be written

$$
\begin{equation*}
s_{\mathrm{m}}=\mathrm{f} \cdot \frac{\mathrm{~V}_{\mathrm{g}}{ }^{2}}{\sqrt{2 g \sigma}} \tag{5}
\end{equation*}
$$

where the factor f is given by

The steady olimb distance to 50 ft is then simply $50 / r_{0}$ feet, and the total airbormo distance to the $\mathbf{5 0} \mathrm{ft}$ point is:-

$$
\begin{equation*}
s_{\mathrm{A}}=\varepsilon_{\mathrm{T}}+50 / \gamma_{0} \tag{7}
\end{equation*}
$$

Fig. 2 shows the variation of the factor f with γ_{0} for a range of values of $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{I}_{0}}$ from 0.1 to 0.8 . Whan $\Delta \mathrm{C}_{\mathrm{I}}=0$, we have $\mathrm{f}=1$. It is clear that the value of $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{I}_{0}}$ ohosen has a marked effect on the transition distance, as it has also, of course, on the total distanoe to 50 ft derived from equation (1).

It is worth noting that equation (1) and (2) may be combined to give, with $\mathrm{h}=50 \mathrm{ft}$,

$$
\begin{equation*}
\mathrm{s}=\frac{I}{\gamma_{0}}\left(\frac{\mathrm{~V}_{\mathrm{a}}^{2}-\mathrm{V}_{\mathrm{g}}}{2 \mathrm{~g} \sigma}+50\right)=\mathrm{s}_{\mathrm{A}} \tag{8}
\end{equation*}
$$

where s_{A} is now the total airborne distance to 50 ft . This equation does not involve ACL, but requires instead a knowledge of the variation of the airspeed during this phase.

Equation (8) is, of course, one that oould have been obtained quite simply by consideration of the changes in energy oocurring during the airborne path, with the assumption that the drag remains sensibly oonstant.

We have, now, basioally, two methods available for the estimation of the airborne distance to 50 ft . We may use either of equations (1) or (7) (according to whether the steady olimb state is reached after or before the 50 ft point is passed), requiring a knowledge of $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{I}}$, , but with variations in speed appearing only as a dependent variable? Alternatively, equation (6) may be used, not directly dependent on ACL, but requiring a knowledge of the variations in speed ocourring during the airborne phase.

The flight tests described below might therefore have been directed towards providing data as a basis for estimating either the value of $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{O}_{\mathrm{I}_{\mathrm{o}}}$ used in practice, or the changes in airspeed that occur, during the airborne phase.

The recording technique was such that changes in airspeed could not be measured with sufficient accuracy, and, further, it is seen from equation (2) that these speed changes are a complex function of γ_{0} and ACL, i.e. of the airoraft oharacteristics and piloting technique. Attention has therefore been concentrated on deriving the mean equivalent ACL used during the airborne phase. This information could then be used in developing a method for predicting the value of ACL to be used in estimating the airborne distano for other aircraft, using equations (1) or (7) as appropriate.

Equations (1) or (7) result in very oumbersome methods for evaluating the mean equivalent $A C L$ for a particular take-off' and, in addition, a knowledge of γ_{0} is required. On the Meteor IV, which was the prinoipal subject of this investigation, γ_{0} has been measured by partial. olimb tests, but it could not be obtained accurately for other airoraft on which takeoff measurements were avgilable.

Fortunately, it was found that, in the case of the Meteor, the mean equivalent lift coefficient inorement, ACL, could be derived with sufficient accuracy by assuming that the flight path up to the 50 ft point is an arc of a circle, provided that this mean equivalent increment is defined so as to include the increase in lift arising from any increase In airspeed during the airborne path.

If V_{m} is the R.M.S. oquivalent airspeed during the airborne path, whose oonstant radius of curvature in the vertical plane is R, and $C I_{m}$ is the lift coefficient corresponding to steady flight at V_{m}, then, if the speed changes are small,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}}^{2} / \operatorname{Rg} \sigma=\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime} / \mathrm{C}_{\mathrm{I}} \tag{9}
\end{equation*}
$$

$\Delta \mathrm{C}_{\mathrm{I}}{ }^{\prime}$ is the mean equivalent lift coefficient inorement and, by simple geometry, the airborne distanoe, s_{A}, to 50 ft is:-

$$
\begin{equation*}
s_{A}=\sqrt{\frac{200 w_{S}}{\rho g \Delta G_{L^{\prime}}}-2500} \tag{10}
\end{equation*}
$$

This expression for s_{A}, which is independent of both V_{g} and γ_{0} is plotted in Fig. 3 as a function of $\Delta \mathrm{C}_{\mathrm{L}}$! for a range of values of the wing loading $W_{S}{ }^{\prime}$

The mean equivalent lift coefficient increment $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\mathbf{t}}$ is defined by equation (10), and includes any increase in lift arising from the increase in airspeed occurring during the airborne phase. The inorement thus defined can therefore remain positive for the airborne path as a whole, even though there may be no increase in the aotual lift coefficient at take-off, and is generally larger than the increment, ACL, used in equation (1) et seq.

Lift ooeffioient increments quoted in this Note were obtained by this method and include the effect of the increase in airspeed. The problem is therefore to devise-a method-of predicting $\Delta \mathrm{C}_{\mathrm{T}}{ }^{\text {' }}$ for any given aircraft condition.

Take-offs were made from a concrete runway and photographed wath the $F .47$ take-off camera. Having established the absolute manimum airspeed at which the airaraft could be pullod off, the pilot was asked to do a series of take-offs in which the aircraft left the ground at airspeeds 10, 20, 30 and 40 knots above this minimum. Prelıminary tests showed that the piloting technique which could be repeated most consistently was that in which a rearward. pressure on the stiok was applied at about 10 knots bolow the desired take-off speed, with the pilot attempting to keep the increase in airspeed after take-off as small as possible. This technique was expected to produce the shortest practicablo airborne distance.

For each nominal take-off sped, each of three engine powers was used, corresponding to $\Psi_{4}, 600$ R.P.M. (full throttle), 13,800 R.P.M. and 13,000 Rn. R^{2}. At maximum thrust, the pilot was able, on the average, to keep the speed increase between take-off and 50 ft down to 10 knots. At 13,800 R.P.M., the inorease averaged 3 knots, while at 13,000 R.P.M. there was on the average a 3 knots reduction in airspeed, suggesting that in this case, the climbing angle was too high.

The take-off weight was varied only by oonsumption of fuel. Tho flap setting was $\mathbf{2 5}$ degrees throughout.

A two-axis accelerometer mounted in the airoraft was used to record the normal acceleration durang most of the take-offs.

A minimm of 3 take-offs was made at each combination of take-off speed and engine R.P.M.

In addition to the take-off tests, partial climb tests were made, oovering the whole range of airspeeds and engine powers used for the take-offs. When corrected to the atmospheric oonditions appropriate to each take-off, the longitudinal acceleration, γ_{0}, at takomoff could be obtainod (negiecting ground effects).

4 Correotions

The airborne distanos, from the point at which the wheels left the ground to tho point 50 ft above the take-off point, was corrected to zero headivind by the method of Ref.2. No further corrections to the distance were necessary, since for each take-off the mean equivalont lift coefficient incroment $\Delta \mathrm{C}_{\Phi}{ }^{\prime}$ could be oalculated from equation (10), using the appropriate valuos for wing loading (allowing for fuel consumption), air density (from Meteorological Offioe records) and the airborne distance to 50 ft in zero headwind.

5 Results and Discussion

Table I presents the results of the measurements of airborne distance to 50 it and the corresponding airspeeds and climb angles, together with the longitudinal acceleration at take-off, derived from the results of the partial clamb tests.

In Fig. $4, \mathrm{~V}_{\mathrm{g}}^{2} / \sqrt{2} \mathrm{~g} \sigma$ has beon plotted. against $\left(s_{A}-50 / \gamma_{0}\right)$. The straight lines through the origin oorrespond to various values of the oorrection factor, "f", dofinod in equation (6), and if the transition had ended before the 50 ft point had been reached, this diagram could be used to determine the-value of $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{CL}_{0}$ used during the transition, since the aoceleration γ_{0} is know. Though this process aces, in
fact, give values of $\Delta C_{I} / C_{I_{0}}$ (using Fig.2) which are comparable with those determined from equation (10) in some-oases, it is.theoretioally unsound since the reoords show that, generally, conditions are not steady at the 50 ft point, although, at the lowest engine thrust, the steady climb angle was reached and exceeded before the 50 ft point was passed.

Fig. 4 shows that the factor "f" decreases as the take-off speed is inoreased (at oonstant weight) and as the longitudinal acceleration γ_{0} deoreases. This is in line with the reduction in transition distance indicated in Fig.2. At the higher take-off speeds, larger values of $\Delta C_{I} / C_{I_{1}}$ oan be applied without danger of stalling.

It will be noted that some of the take-offs, partioularly those at the lowest engine R.P.M., have produced very low values of the faotor "f", in some oases less than 0.1. In these oases, the olimbing angle at 50 ft was greater than that appropriate to a steady olimb at the same speed, produoing an exoeptionally short airborne distanoe.

With the assumption that the airborne path is a oontinuous manoeuvre, with. 8 constant radius of ourvature, the msan equivalent lift ooeffioient inorements have been evaluated, from equation (10), and the values are given in Table II, together with the lift ooeffioient $\mathrm{C}_{\mathrm{L}_{0}}$ oorresponding to steady flight at the take-off speed Vg . The oaloulated value of $\Delta C_{I} / G_{L_{0}}$ is compared with that derived from the accelerometer records.

In Fig.5, the calculated values of $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ are shown graphioally as a function of $\left(V_{m} / V_{S}\right)^{2}$, where V_{m} is the root mean square equivalent airspeed during the airborne path to 50 ft and VS is the engine-on stalling speed. On each of the three graphs (one for eaoh take-off R.P.M.) the lower set of points gives the calculated inorement, while the upper set of points shows the variation of total lift ooeffioient $\left(C_{I},+\Delta C_{I}{ }^{\prime}\right)$ with $\left(V_{m} / V_{S}\right)^{2}$, where $C_{I_{m}}$ is the lift ooefficient oorresponding to steady flight at the R.M.S. airspeed Vm. The intermediate ourve indioates the lift coefficient $\mathrm{C}_{\mathrm{I}_{\mathrm{m}}}$ as a function of $\left(\mathrm{V}_{\mathrm{m}} / \mathrm{V}_{\mathrm{S}}\right)^{2}$.

It will be seen that the total lift ooeffioient $\left(C_{I_{m}}+\Delta \mathrm{C}_{\mathrm{L}^{\prime}}{ }^{\text {}}\right.$) is approximately a linear funotion of $\left(V_{m} / V_{S}\right)^{2}$ and that the inorement $\Delta G_{L}{ }^{\prime}$ vanishes at a value of OI_{m} oqual to the maximum available lift ooefficient, power on. This maximum, which includes the effect of engine thrust, varies slightly with take-off R.P. M.

At the upper end of the speed soale, the ourves of $\left(C_{I_{m}}+\Delta C_{L}{ }^{\prime}\right)$ and CI_{m} will, if extrapolated, interseot again at some lower lift ooeffiaient CI^{\prime}. It is, of oourse, not implied that take-off would be impossible at lift coefficients less than this value, and the significanoe of this second point of intersection lies mainly in the use of $\mathrm{C}_{\mathrm{L}}{ }^{\text {' }}$ in fixing the position of the $\left(\mathrm{C}_{\mathrm{I}_{\mathrm{m}}}+\Delta \mathrm{C}_{\mathrm{I}}{ }^{1}\right)$ line for the purpose of prodjoting the $\Delta \mathrm{G}_{\mathrm{L}}{ }^{\prime}$ likely to be used at any particular value of $\left(V_{m} / V_{S}\right)^{2}$.

6 Use of Additional Data

The Meteor take-off measurements have shown that 8 mean equivalent lift ooeffioient incroment ΔC_{L} ' may be derived from equation (10) with satisfaotory accuracy and that $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ could be estimated for any take-off speed if we could predict where the $\left(C_{I_{m}}+\Delta C_{L}{ }^{\prime}\right)$ line would reminterseot the CI_{m} ourve, as in Fig. 5.

Tho above analysis has therefore been applied to the results of take-off measurements made by the A \& A.E.E. On the Neno-Viking, Dakota and Hermes.' The increments of lift coefficient ΔC_{T}^{\prime}, and tho total lift ooeffioients ($\mathrm{CI}_{\mathrm{m}}+\Delta \mathrm{II}^{\mathbf{1}}$) are plotted. in Figs.6, 7 and 8 as funotions of $\left(V_{m} / V_{S}\right)^{2}$, for these 3 additional airoraft.

The scattor of the points jn Figs. 6, 7 and 8 is larger than that in Fig.5, as we should expect. The Meteor pilot was attempting, in every oase, to producethe shortest practioabls airborme distance, whereas the A \& A.E.E. results, obtained on civil airoraft, were more strongly influenoed by safety considorations.

In each case, the $\left(\mathrm{C}_{I_{m}}+\Delta \mathrm{C}_{\mathrm{L}}{ }^{\text { }}\right.$) line has been drawn to intersect the GIm curve at a lift ooefficient equal to the maximum lift ooefficient in the take-off condition, power on. The line passes mainly through the points oorresponding to the larger values of ΔC_{L}, sinoe these were presumably obtained under conditions more closely resembling those for the Meteor take-offs. For normal take-off conditions, it is suggested that the increment $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ might be taken as half the maximum practical value, thereby increasing the airborne distance by a factor of about 1.5 .

The $\left(C_{I_{m}}+\Delta C_{I}{ }^{\prime}\right)$ and the $C_{I_{m}}$ lines have been extrapolated as necessary to re-intersect at the lower value of lift coefficient, $\mathrm{C}_{\mathrm{L}}{ }^{\prime}$, referred to in Section 5. In Fig. 9, this lift coofficient $\mathrm{C}_{\mathrm{L}}{ }^{\prime}$ is plotted against C_{L} max. in the take-off configuration. The 3 points for the Metoor, plus these 3 oxtra points, are seen to define reasonably well a straight line.

No attempt is made here to justify theoretically this linear relation between $C_{I_{1}}{ }^{\prime}$ and C_{I} max, , nor that between ($\mathrm{C}_{\mathrm{I}_{\mathrm{m}}}+\Delta \mathrm{C}_{\mathrm{I}}{ }^{\mathbf{}}$) and $\left(V_{m} / V_{S}\right)^{2}$. However, a roduotion in total $l_{\text {If }} t$ ooofficient ($\mathrm{CI}_{\mathrm{m}}+\Delta \mathrm{G}_{\mathrm{L}}{ }^{1}$) with increasing airspeed is to be expectech. A finite time is required to apply the inorement ΔC_{5}^{\prime} dfter tako-off (especially if this is done by an increase in inoidonoo) and at the higher take-off speeds, the time during which the lift coefficient is inoroasing is a proportionately larger fraction of the total time to reach the 50 ft point. The mean effective lift coofficient increment therefore may be expectod to deorease although the final valuo may be the same. The basic lift coefficient CIm decreases with increase in speed and so the total ooeffioient (CL_{I} + $\Delta \mathrm{G}_{\mathrm{L}}{ }^{\text { }}$) does likewise.

7 Methods of Prediction

The proposed method is based mainly on the empirioal relationships establishod in the previous sectionsfor the estimation of the lift ooefficient increments used during the airborne phase. The increments thus derived mast be regarded as the maximum practicable values, and their use may, in some oases, lead to excessively steep angles of climb at the 50 ft coint, or an undesirable loss in airspeed. The first prediction method described below takes no account of the condition of the aircraft at the 50 ft point and gives the minimum practicable airborne distance.

The result illustrated in Fig. 9 may be expressed in the form

$$
\begin{equation*}
C_{L}^{\prime}=0.53 C_{L \max }-0.38 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\Delta C_{\Psi}{ }^{\prime}=\left[\left(\frac{V_{m}}{V_{S}}\right)^{2}-1\right]\left[C_{I} \max \left(\left(\frac{V_{S}}{V_{m}}\right)^{2}-0.53\right)+0.38\right] \tag{12}
\end{equation*}
$$

and, finally, using the approximate expression for the airborne distance s_{A} from equation (10), in standard atmospheric conditions, we have

$$
\begin{equation*}
s_{A}=51 \sqrt{\left[\left(\frac{V_{m}}{V_{S}}\right)^{2}-I\right]\left[C_{I_{\max }}\left(\left(\frac{V_{S}}{V_{m}}\right)^{2}-0.53\right)+0.38\right]} \tag{13}
\end{equation*}
$$

It should be noted that to use the lift coefficient increment $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ estimated from equation (12) in the more exaot expression for the airm borne path given in equation (1) would be to include the effect of the inorease in lift due to increase in airspeed twice. In the case of the Meteor this processs ga distances up to 10% less than those derived $f \& m$ equation (13). In Fig. 1Ω, the distance estimated for each individual take-off by equation (13) is compared with that actually measured. It will be seen that 75% of the results are within 10% of the measured values. In view of the marked dependenoe of the distanoe upon piloting technique, this agreement is considered to be satisfactory.
'It is considered that a more normal piloting technique will result from the uso of a lift coefficient increment of about half that predicted by equation (12). The use of this reduced increment would increase the distance to 50 ft (using equation (13)) by a factor of 1.5 .

In some oases, particularly for civil airoraft, olose attention must be paid to the airspeed and angle of climb at the 50 ft point. The above prediction method is based on a technique which may only be regarded as safe when the thrust/weight ratio is adequate.

Equation (4) gives the distance from the take-off point to the point at which the instantaneous angle of climb is equal to the steady angle of climb at the take-off speed. This value of the distance may be substituted in equation (1) and the solution of the resulting equation for the case when $h=50 \mathrm{ft}$ will give the value of the longitudinal acceleration γ_{0} for which the climbing angle at 50 ft is equal to the steady climb angle. This solution is shown graphically in Fig. Il. If the longitudinal acceleration at take-off is less than that given by this diagram (at the appropriate values of Vg and $\Delta \mathrm{C}_{\mathrm{I}} / \mathrm{C}_{\mathrm{L}_{0}}$) then the technique whioh forms the basis of the first prediotion method will result in a climbing angle at the $\mathbf{5 0} \mathrm{ft}$ point in exoess of the steady climb angle. Similarly, Fig.12, which is derived from equation (8), shows the value of γ_{0} which will ensure that the speed at the 50 ft point is not less than the take-off speed.

When it is inadmissible for the climb angle at the 50 ft point to exceed the steady climb angle, or for the speed at that point to be less than the take-off speed (as predioted by Figs. 11 and 12), then steady climb conditions must be assumed before the $\mathbf{5 0}$ ft point is reached, and an alternative estimation method used.

The lift coefficient increment used during the initial transition phase is estimated by the process already described. This inorement is used to determine the factor "f" from Fig. 2, and hence the transition distance may be calculated from equation (5). The error introduoed by the use of a lift ooefficient increment which includes the effect of an increase in airspeed will be small, since we are conoerned here mainly with relatively low thrust/weight ratios, and the transition distance is, in any case, only part of the total distance to 50 ft . To this transition distance is added tho stoady climb distance $50 / \gamma_{\rho}$, whero γ_{0} is the steady climb anglo at tho take-off spoed (in radians), or the longitudinal acceleration at take-off (in g-units).

Two examples will serve to illustrate the applioation of the various methods.

ExampleI.. (Fighter)
Take-off speed $=140$ knots ($=1.15 \times$ engine-on stalling speed.)
Wing loading $=60 \mathrm{lb} / \mathrm{sq} . f t$. Longitudinal acoeleration at take-off $=0.3 \mathrm{~g}$.
$C_{L \max }=\underset{\text { effect) }}{1.2 \text { (engine on, but not including ground }}$

$$
\Delta \mathrm{C}_{\mathrm{L}}^{\prime}=0.21 \text { (from equation } 12 \text {), and } \Delta \mathrm{C}_{I^{\prime}} / \mathrm{C}_{\mathrm{I}_{0}}=0.23
$$

Minimum airborne distance to $50 \mathrm{ft}=870 \mathrm{ft}$ (from equation 13)
Using half the above lif't coefficient inorement (i.e. $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}=0.105$)
Normal airborne distance $=1230 \mathrm{ft}$.
From Fig. 11 , the minimum accoleration, γ_{0}, required to ensure that the climb angle at 50 ft is not groater than the steady climb angle is 0.125 at the maximum $A C$, or 0.095 at half the maximum. The value of γ_{0} required to ensure that the speed does not fall below the t\&e-off speed is 0.058 at the maximum $\Delta \mathrm{C}_{\mathrm{L}}$, or 0.040 at half the maximum. The available $\gamma_{0}(0.3)$ is weIl above these limits, so that the quoted distances a0 not involve an exceptional technique.

Example 2. (Overloaded bomber)
Take-off speed $=180$ knots ($=1.20 \times$ engine-on stalling speed)
Wing loading $=80 \mathrm{Ib} / \mathrm{sq} . f t$. Longitudinal acceleration at take-off $=0.05 \mathrm{~g}$

$$
\begin{aligned}
{ }^{\mathrm{C}_{\mathrm{L} \text { max. }}} & =1.05 \text { (engine-on) } \\
\Delta \mathrm{C}_{\mathrm{L}^{\prime}}{ }^{\prime} & =0.24 \text { (from equation } 12 \text {) and } \Delta \mathrm{C}_{I^{\prime}} / \mathrm{C}_{\mathrm{L}_{0}}=0.33
\end{aligned}
$$

- Minimm possible airborne distance to 50 ft (irrespective of climb angle or speed at that point) $=930 \mathrm{ft}$.

Fig. 11 shows that the available $\gamma_{0}(0.05)$ is insuffioient to ensure that the steady olimb angle has not been exoe日ded, even at half the stated value of ACL, and Fig. 12 shows that the speed would have fallen below the take-off speed, when using the full valuo of $\Delta \mathrm{C}_{\mathrm{I}}$. The alternative-estimation method is therefore used.

```
            The factor "f" = 0.11 (from Fig.2)
            Transition distance = 220 ft (from eqm.5)
            Steady climb distance = 1000 ft
            Total airbome distance = 1220 ft.
Using half the above value of }\Delta\mp@subsup{C}{L}{\prime}\mp@subsup{}{}{\prime}\mathrm{ , i.e. 0.12, we have
            f=0.21 (from Fig.2)
.. Transition distance = 430 ft
and total airborne distance = 1430 ft.
```

The choiee betweon the first and second methods, and between the use of the full or half lift coefficient inorement depends on what safety faotors are to be applied in deciding on safe runway lengths. Two altematives are apparent - either to oalculate the absolute minimum distanoe and to apply a generous safety margin, or to calculate the distance which the average pilot might reasonably be expected to achieve, and to apply a reduced safety margin.

The absolute minimum distance is obtained by using the full lift coefficient increment and ignoring the spoed and angle of climb at the 50 f't point. At the other extreme we should use half the lift coefficient inorement and pay striot attention to conditions at the 50 ft point. The difference in the two estimates of the distanoe depends on the longitudinal acooleration at take-off, but is of the order of $\frac{1}{2}$ of the shorter distance, i.e. as a rough estimate, the comfortable, safe distance may be taken as $\mathbf{1 5 0} \%$ of the minimum possible distance.

9 Choice of speed margin at Take-off

Speed margins $\left(\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{S}}\right)$ of 1.15 and 1.20 have been used in the two examples. The shortest airborne distances will be obtained when the speed margin is suoh as to make $\Delta \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ a maximm (equation 12). Typioal values of the optimum ratios are 1.3 when CL max. is 2.0 , or 1.6 when $\mathrm{C}_{\mathrm{L}} \max$. is LO. The ground run, however, increases roughly as the square of the take-off speed, so that the shortest overall distance, from the start of the ground run to the 50 ft point, is obtained at relatively small values of this speed margin. The margin must give adequate proteotion against inadvertent stalling, and should allow the application of the desired lift coefficient increment in safety. For this reason, a speed margin of at least 1.15 is recommended.

10 ConcIusions

Aralysis of a series of systematic take-off tests with a Meteor IV airoraft has show that to a good approximation the minimum airborne path to 50 ft may be treated as an arc of a circle. With this assumption it is a simple pmoess to derive a mean equivalent lift coeffioient for this part of the take-off.

It has been found that the total equivalent lift coefficient Used during the airborne phase deoreases with increase in the ratio of airspeed to stalling speed, for a particular aircraft, in a simple manner which is independent of the thrust/weight ratio.

Using the results of a similar analysis applied to three other aircraft, an empirical rule has been developed, from which the mean equivalent. lift coefficient increment, and hence the airborne distance to 50 ft , can be estimated simply and with reasonable accuracy. Allowance can be made for the effect of low thrust/weight ratios.

The airborne distances thus obtained must be regarded as minimum possible values. A factor of 1.5 may be required to allow for normal take-off techniques.

11 Furthor Work

To enable this empirical method of estimation to be used with greater confidence, it is desirable to compare estimated airborne distances to 50 ft with measured values on as many aircraft as possible.

LIST OF REFERENCES

No. Author
1 Ewans and

2 Jackson

Title, etc.
Note on a method of calculating take-off distances.
RAE B.A. Dept. Note No. 20. August 1940.
The reduction to standard conditions of take-off measurements on a turbo-jet airoraft.
R c. Il. 2890 . June 1951.

Attached:
Tables I and II
Drg. Nos. 27612.S to 27621.5

Take-Off Neight lb.	Nominal Take-off Speed knots	$\left\lvert\, \begin{aligned} & \text { Engin } \theta \\ & \text { R.P.In. } \end{aligned}\right.$	Take-off Airspeed $v_{g}<\sigma \sigma$ $\mathrm{ft} / \mathrm{sec}$. (see note 1)	Take-off Acceleration r_{0} (g-units) (see note 2)	Airborne Distance to 50 ft s_{A} feot (see note 3))	Airspeed at 50 ft $V_{A}+\sqrt{\sigma}$ $\mathrm{ft} / \mathrm{sec}$. (see notio 44))	$\begin{gathered} \text { Climb } \\ \text { Angle } \\ \text { at } \\ 50 \mathrm{ft} . \\ \mathrm{r}_{50} \\ \text { rads. } \end{gathered}$
1	2	3	4	5	6	7	8
$\begin{aligned} & 13,515 \\ & 13,090 \end{aligned}$ $12,767$	$\begin{aligned} & 110 \\ & n \\ & n \end{aligned}$	$\begin{gathered} 14,600 \\ " 11 \\ \prime \prime \end{gathered}$	$\begin{aligned} & 175.8 \\ & 176.2 \\ & 181.0 \end{aligned}$	$\begin{aligned} & 0.294 \\ & 0.300 \\ & 0.310 \end{aligned}$	$\begin{aligned} & 565.0 \\ & 565.0 \\ & 561.5 . \end{aligned}$	197.5 193.1200 .2	$\begin{aligned} & 0.195 \\ & 0.206 \\ & 0.201 \end{aligned}$
13,650 13, 132	1.20	14,600 11 11	$\begin{aligned} & 185.0 \\ & 184.3 \\ & 183.0 \end{aligned}$	$\begin{aligned} & 0.297 \\ & 0.301 \\ & 0.305 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.5 \\ & 585.0 \\ & 507.0 \end{aligned}$	$\begin{aligned} & 204.7 \\ & 208.6 \\ & 197.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.200 \\ & 0.218 \\ & 0.227 \end{aligned}$
$\frac{71}{7}, 426$ 14,184 14,064	130	14,600	$\begin{aligned} & 201.2 \\ & 197.8 \\ & 197.2 \end{aligned}$	$\begin{aligned} & 0.288 \\ & 0.294 \\ & 0.296 \end{aligned}$	$\begin{aligned} & 590.0 \\ & 538.5 \\ & 561.0 \end{aligned}$	$\begin{aligned} & 215.6 \\ & 210.5 \\ & 210.1 \end{aligned}$	$\begin{aligned} & 0.186 \\ & 0.200 \\ & 0.205 \end{aligned}$
14,362 14,022	11	$14,60 \pi$ 11	$\begin{aligned} & 24.6 .8 \\ & 241.0 \\ & 252.8 \end{aligned}$	$\begin{aligned} & 0.259 \\ & 0.268 \\ & 0.264 \\ & \hline \end{aligned}$	526.5 505.0 530.0	$\begin{aligned} & 253.8 \\ & 256.9 \\ & 258.7 \end{aligned}$	$\begin{aligned} & 0.221 \\ & 0.215 \\ & 0.207 \end{aligned}$
$\begin{aligned} & 14,556 \\ & 13,941 \end{aligned}$	150	14, 600	$\begin{aligned} & 271.8 \\ & 273.0 \\ & 287.0 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.249 \\ & 0.250 \end{aligned}$	$\begin{aligned} & 586.5 \\ & 587.0 \\ & 595.0 \end{aligned}$	$\begin{aligned} & 301.0 \\ & 297.1 . \\ & 312.2 \end{aligned}$	$\begin{aligned} & 0.182 \\ & 0.188 \\ & 0.182 \end{aligned}$
$\begin{aligned} & 14,508 \\ & 13,900 \\ & 13,619 \\ & 13,375 \\ & \hline \end{aligned}$	$\frac{110}{11}$	13,800	$\begin{aligned} & 176.8 \\ & 177.7 \\ & 176.4 \\ & 186.0 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.186 \\ & 0.191 \\ & 0.197 \end{aligned}$	$\begin{aligned} & 936.0 \\ & 700.0 \\ & 643.0 \\ & 631.5 \end{aligned}$	$\begin{aligned} & 190.8 \\ & 192.4 \\ & 192.7 \\ & 207.7 \end{aligned}$	$\begin{aligned} & 0.145 \\ & 0.171 \\ & 0.171 \\ & 0.185 \end{aligned}$
$\begin{aligned} & 11_{4}, 508 \\ & 1_{4}, 103 \\ & 13,642 \\ & 13,294 \\ & \hline \end{aligned}$	120	$\begin{gathered} 13,800 \\ \prime \prime \\ n \\ n \end{gathered}$	$\begin{aligned} & 193.8 \\ & 211.3 \\ & 196.3 \\ & 198.7 \end{aligned}$	$\begin{aligned} & 0.187 \\ & 0,200 \\ & 0.200 \\ & 0.205 \end{aligned}$	$\begin{aligned} & 648.5 \\ & 615.5 \\ & 551.0 \\ & 540.0 \end{aligned}$	$\begin{aligned} & 216.8 \\ & 223.4 \\ & 200.6 \\ & 202.8 \end{aligned}$	$\begin{aligned} & 0.186 \\ & 0.126 \\ & 0.218 \\ & 0.223 \end{aligned}$
14,022 13,698 13,456	$\begin{gathered} 130 \\ " 1 \\ -140 \end{gathered}$	13,800 $\begin{gathered}11 \\ 7\end{gathered}$	$\begin{aligned} & 211.5 \\ & 215.6 \\ & 220.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.202 \\ & 0.207 \\ & 0.206 \end{aligned}$	$\begin{aligned} & 593.0 \\ & 585.0 \\ & 576.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 232.5 \\ & 217.8 \\ & 219.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.193 \\ & 0.213 \\ & 0.221 \end{aligned}$
14, 184 13,860 13,198	1	13,800 n n	$\begin{aligned} & 231.3 \\ & 244.8 \\ & 240.0 \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 0.189 \\ & 0.185 \\ & 0.194 \\ & \hline \end{aligned}$	$\begin{aligned} & 549.0 \\ & 576.5 \\ & 514.5 \end{aligned}$	$\begin{aligned} & 236.9 \\ & u C 9.2 \\ & 254.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.226 \\ & 0.233 \\ & 0.231 \end{aligned}$
$\frac{1}{4}, 022$	$\begin{gathered} 150 \\ 10 \end{gathered}$	$13,800$	$\begin{aligned} & 288.5 \\ & 271.5 \\ & 267.3 \end{aligned}$	$\begin{aligned} & 0.158 \\ & 0.170 \\ & 0.173 \end{aligned}$	$\begin{aligned} & 591.5 \\ & 543.0 \\ & 514.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 263.1 \\ & 252.4 \\ & 243.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.203 \\ & 0.214 \\ & 0.209 \end{aligned}$
14,556 14,103 12,930	110	$13,000$	$\begin{aligned} & 187.2 \\ & 192.0 \\ & 183.3 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.116 \\ & 0.122 \end{aligned}$	799.6 726.0	$\begin{aligned} & 185.2 \\ & 199.0 \\ & 200.3 \end{aligned}$	$\begin{aligned} & 0.1113 \\ & 0.117 \\ & 0.150 \end{aligned}$
$\begin{aligned} & \frac{11_{4}, 540}{1,184} \\ & 13,860 \end{aligned}$	120	$13,000$	$\begin{aligned} & 200.3 \\ & 195.1 \\ & 194.5 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.115 \\ & 0.117 \end{aligned}$	$\begin{aligned} & 666.4 \\ & 647.2 \\ & 595.7 \end{aligned}$	$\begin{aligned} & 187.1 \\ & 174.8 \\ & 180.0 \end{aligned}$	$\begin{aligned} & 0.133 \\ & 0.157 \\ & 0.163 \end{aligned}$

Continued
14.

Table I (Conta.)

Take-of Vti ght lb.	Nominal Take-off Speed knots	Engine $\mathrm{R}_{0} \mathrm{P} . \mathrm{M}_{0}$	Takemoff Airspeed $\mathrm{V}_{g} / \sqrt{\sigma}$ $\pm \mathrm{t} / \mathrm{sec}$. (see note 1)	$\begin{aligned} & \text { Take-off' } \\ & \text { Accelera- } \\ & \text { tion } \\ & \gamma_{0} \text { (g-units) } \\ & \text { (see } \\ & \text { pote 2) } \end{aligned}$	Airborne Distance to 50 ft s_{A} feot (seo note 3)	Airspeed at 50 ft $V_{A} / \sqrt{\sigma}$ $\mathrm{ft} / \mathrm{sec}$. (see note 4)	Climb Angl at 50 ft. γ_{50} rads.
1	2	3	4	5	6	7	a
14,508	130	13,000	225.2	0.112	687.5	237.5	0.163
14,070	"	"	22Itc. 3	0.116	593.0	227.8	0.182
13,698	n	"	220.3	0.119	609.0	232.9	0.184
13,294	"	"	221,4	0.122	573.5	225.4	0.201
14,589	14.0	13,000	232,8	0.110	528.1	216.2	0.209
14,265	\#		239.5	0.110	518.1	224.5	0.206
13,860	*	n	24.4	0.112	559.5	227.2	0.203
14,589	150	13,000	254. 5	0.102	561.0	24.9 .5	0.211
$11_{4}, 184$	"	"	254.5	0.105	537.3	24.9 .0	0.224
13,860	"	"	255,2	0.107	537.8	242.1	0.224

Note $1 \mathrm{~V}_{\mathrm{g}} / \sqrt{ } \sigma=$ Measured ground speed from P. 47 film + wind speed.
$2 \gamma_{0}$ is derived from partial olimb tests, converted to test atmospherio conditions.
$3 s_{A}$ has been correated to zero headwind.
$\begin{aligned} 4 V_{A} N_{\sigma}= & \text { Measured airspeod along flight path.-(inoludes vertioal } \\ & \text { oomponent and wind speed). }\end{aligned}$

Information dorived from take-off measurements
Moteor Iv EE597

Take-off kis.	Enqine R.P.M.	Take- of f lift cocff: ${ }^{C_{L}}$	Mean lift cooff: increment $\Delta C_{L}{ }^{1}$	$\frac{\Delta \mathrm{C}_{\mathrm{L}^{\prime}}}{\mathrm{C}_{\mathrm{L}_{0}}}$	Mean excess normal aocn. g-units (acoelerometer)
110	2, 600	1.039	0.310	0. 298	0.306
"		1.010	0.303	0.300	0.307
"	"	0.935	0.299	0.320	0.343
120	"	0.959	0.298	0.311	
"	"	0.947	0.290	0.306	
"	"	0.943	0.378	0.401	
130	"	0.858	0.307	0.358	
"	"	0.872	0.362	0.416	
*	"		0.331	0.381	
${ }_{4} \mathrm{O}$	"	0.860	0.383	0.676	0.672
,	"	0.579	0.406	0.701	0.618
"	"	0.518	0.362	0.699	0.741
150	"	0.475	0.314	0.662	0.592
	"	0.451	0.301	0.667	0.631
"	"	0.390	0.280	0.718	0.625
210	13,800	1.111	0.123	0.111	0.135
"	3,	1.054	0.210	0.200	0.230
"	"	1.050	0.244	0.232	0.195
"	"	0.922	0.248	0.269	0.249
120	"	0.926	0.256	0.276	0.258
"	"	0.757	0.276	0.363	0.282
"	"	0.851	0.332	0.390	0.340
${ }^{\prime \prime}$	*	0.808	0.337	0.417	0.347
130	"	0.751	0.295	0.393	0.387
	"	0.707		0.51 .8	0.403
"	"	0.660	0.299	0.453	0.463
$\mathrm{L}_{4} \mathrm{O}$	"	0.636	0.348	0.547	0.547
	"	0.556	0.309	0.557	0.688
"	"	0.550	0.364	0.664	0.630
150	"'	0.411	0.298 0.341	0.725	
"	"	0.442 0.449	0.341 0.372	0.771 $\mathbf{0 . 8 2 8}$	0.757
120	13,000	0.955	0.104	0.109	
"	"	0.916	0.164	0.179	
120	"	0.924	0.182	0.197	0.225
120	"		0.243	$\begin{aligned} & 0.279 \\ & 0.280 \end{aligned}$	
:	"	G .896 0.896	0.251	0. 280	
"	"	0.896	0.295	0.329	
130	"	0.688	0.228	0.331	0.282
"	"	0.673	0.297	0.441	0.389 0.348
"	"	0.652	0.300	0.403 0.459	0.361
4.0	"	0.647	0.388	0.599	
	"	0.599	0.384 0.328	0.658	
150	"	$0.54+2$	0.343	0.634	-
"	"	0.527	0.364	0.690	
"	"	0.521	0.361	0.692	

16.

CASE (B) STEADY CLIMB STARTING ABOVE SOFT.

FIG. I. ALTERNATIVE FORMS OF FLIGHT PATH TO 50 FEET.

FIG.2.

FIG.2. EFFECT OF NORMAL ACCELERATION ON TRANSITION DISTANCE.

FIG.3.

FIG.3. AIRBORNE DISTANCES TO 50 FT., FOR CIRCULAR FLIGHT PATH.

FIG.4. EFFECT OF NORMAL AND. LONGITUDINAL ACCELERATION ON AIRBORNE DISTANCES TO SOFT.

FIG.5.

FIG.5. LIFT COEFFICIENTS USED DURING TAKE OFF - METEOR IV

FIG. 6 \& 7.

FIG.6. LIFT COEFFICIENTS USED DURING TAKE- OFF - DAKOTA.

FIG.7. LIFT COEFFICIENTS USED DURING TAKE - OFF - HERMES.

FIG. 8. LIFT COEFFICIENT-S USED DURING TAKE - OFF - NENE - VIKING.

FIG.9. ESTIMATION OF CL FROM $C_{L_{\text {MA\% }}}$.

FIG.IO.

FIG. IO. APPLICATION OF PREDICTION PROCESS TO METEOR IV.

F IG.I2. LONGITUDINAL ACCELERATION REQUIRED FOR NO DROP IN AIRSPEED BEFORE THE 50 FT. POINT.

Crown Copyright Reserved

PUBLISHED BY HER MARESTY'S STATIONERY OFFICE To be purchased from
York How. Kıngsway, LONDON, w.c 2 : 423 Oxford Street, LONDON, w.l
P.O. Box 569, LONDON, 8 e. 1

13a Castle Street, edinburoh, 7. I St. Andrew's Crescent, cardifp
39 King Street, manchestbr, 2 Tower Lane, bristol, I
2 Edmund Street, birminoham, 380 Chichester Street, belpast
or from any Bookseller
1954
Price 2s. Od. net
printed IN GREAT britain

