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Page 6 - Equation 19 should read:- 

dV 2 aM 
-- = ---m---------- -- 
v 2+(Y- 1)M' M 

Pane 7 - Equations 21, 23 and 24 should read:- 

dP 2 [I + (Y - 1) My 8% dA 
-- = -,----------..------m we - -- 
P 2+(Y-i)Ma M A 

m 1 aA 2 {I + (y - 1) P] cud 
---- = - --- -- - m-m---_e----_----- __- 

ul YM' A 2+(Y-I)$ YM3 

..*(lS) 

. ..(21) 

. ..(23) 

fdL aA 2 (' - M') aM 
--- - mm-- - ----mm-----_-------_ = rJ 
2h j'M'A )/Ma [2 + (y - I) M'] 

. ..(a+) 

Fg In thir upper series of curves, on the extreme left, the space between 
= a.35 ma M = 0.4 (both correctly posz.tioned), has been divided Into 

eight parts instead of IO. 
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NATIONAL GAS TURBINE ESTABLISMhV 

The Thermodynamics of Frictional Resisted Adlabatzc 

Flow of Gases through Ducts of Constant 

and Varying Cross Section 

- by - 

W. R. Thomson 

The report presents an analytical study dealing vlth the adiabatic 

flow of gases with frictional losses through ducts of constant and varying 

cross section. The thermodynamlo treatment is along lines published by 

other workers such as Bailey and Fobri and is essentially one-dimensional 

in character in so far that frictional effects are assumed to be uniformly 

distributed over the total cross sections1 ares of flow. With this 

simplifyxng assumption, relstlonships are deduced connecting the pressure, 

temperature, velocity rind flm? area of the gas at any one plane vtlth those 

ot any other plane in s duct. 

The rraln relationships arti unusable for qusntltative estimtlon 

except through graphs and the main value of the report lies in the 

presontationof these graphs, ths use of whxh should facilitate the 

solution of duct flow problems. 
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10 Introduction 

The subject d' the flzr-4 of gases in ducts forms an important appll- 
cation for the science of gas dynamics and Its analytical treatment is of 
obvious importancein those branches of engineering involving flow machinery 
such as turbine engines. The part of the subject of duct flow dealt with 
in this report comprises cases where 11 may be nssumd that the flow is 
ndisbatlc I.e. no heat is trnnsmlttd to or from external sources. Such 
cases hsve application to flmf in diffusers 3n.d propelling noeelco of ga3 
turbine and ram jet engines. 

The trcotment given here is for ducts of varyzng cross sectional 
nren, includes for the effects of frlctlon, and ekes the usual simplifying 
assumption that ths flow is one-dimensions1 i.e. the effects of friction arc 
distributed unlforniLy ov3r the cross-scctlonal arca of fl~i instead of being 
confined to the bxndry layers as they arc in practice. Nothing origin31 
is claimed for the andysis; it is consdered th3t the main value of the 
work lies in the resulting gencrallscd cuws formlng part of the report 
whloh are, as far ns 1s kncwn,presented for the first tune to a large enough 
scale and in sufficient detail to facditnte the solution of duct flow 
problems. 

Work by Neil P. Eaxley (reference 1) and Jean Fabri (reference 2) 
hss been freely used by the Author in this treatment and acknowlekement 
is m?.de of the help their ori,glnd~rd~ his nffor&<. 

2.0 The basic equations 

At any plane in a duct the flow equation is 

Q& ‘E -=- 

Apt I 
M 

. . . . . . . . . ...(l) 
R Y+l 

( 

l+&M2 .G=n 
2 > 

0, is the fluid n~ss flow, constant over the length of the duct. Tt 
is the total head teinperature which from the principle of the conservation 
of energy 1s constant over the leng$h of the duct i.e. the flow is adiabatic. 

Pt is the total head pressure at the plane considered. This in the 
presence of frlotion, ~111 fall over the duct length. A is the area of cross 
section at the plane considered and 81 the Maoh numner of the flow at that 
plane. 

R is the gas constant 3rd y the ratio of specific heats I$,&. 

Eqn. (1) 1s plotted in Fig. 1, for subsonic flow only, in the form 

of three parametars: 9E 
Apt 

against ?.4 with curves of y. 

Also at any plane the rolntionship bctwcen total head and static 
pressures is given by 

% Pt -= ( l+Y - 1 M2 
P 2 > 

. . . . . . . . . . . . . . . . . . . . ...(2) 
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This 1s plotted in Fig. 2, for subsonlc flow only, in the form of 
three parameters: Pt/p against Mwlth curves of y. 

Pinally the relatlonshlp between total head and static temperatures, 
in the form for most accurate calcul.at~on, 1s given by 

6T 1 
G=l+ 2 

. . . . . . . . . . . . . . . . . . . . . . ..n..... (3) 

(Y - 1) IfI2 

Here ST 1s the difference between the total head and static 
temperatures 1.e. the temperature equivalent of the velocity. This eqn. 
is plotted in Fig. 3 up to &i = 2.6 1.n the form of three parameters: W$ 
ngainst lv1 nith curves of y. 

3.0 Evaluation of Msch number 

In the classical proof of the equations for maximum mass flow under 
insentropic expansion In a nozele,the ratios of the throat or crltxal 
values of the static temperature and pressure to the total head values 
are given by 

T 
c= 

2 
_- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tt Y+l 
(4-l 

Y 

P 2 
c= - 

pt i ) 

Y-y-l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Y+l 

(5) 

while the crltuxl velocity is given by 

VC2 = gyRT, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..a.. (6) 

It 1s to be n&ad that in this classical proof y is defined as the 
mean value between Tt snd To i.e. over the range of the expansion. 

In turn the Nach number of any velocity of flov V is defmed by 

M = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
d-a@ 

(7) 

where T is the static temperature oorrespondlng to velocity V and y is the 
mean value betiieen Tt and T. 

It ~111 be found (see Appendix VI) that the treatment here 
developed of flow In s nozzle v&h friction yields ;I = 1 in the 
throat rrhen the rzuss flov is D. mxtiw. 

4.0 Ma!Iaiin-gnslysis 
-5 ) 

The dikferential equation for resrsted flon may be written 

vm + gva.P + * <= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 
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where v is the speclflc volume (l/,) 

dL is nn elemental length of the flow path 

f 1s the friction coefficient 

and h is the hydraulic mean depth. 

This will be combined with the equations 

$ = V2 gyHp . ..I....................~............... *(Y) 

P = Pm . . . ..*.*..........*.............*....... (10) 

Q = pnv e............,..............,........... (11) 

v2 
Tt = T+2gJXp . . ..*............*. * . . . . ..*......... (12) 

and with their respeotlve differential equations 

2%. al E=o 
M FT- v 

. . . . . . . ..‘................... (13) 

aP dP aT 

7-T-r 
= 0 ,.........................,.. (14) 

3?+aiz+av=o 
I' A V 

(Q be1n.g c%stant)...........(l5) I 

$J +vdv 

@'$ 
= 0 (Tt being constant) . . . . . . . ..(16) 

to obtnln differentlal equations for sny change In terms of M as the 
independent vnrlable. 

4.1 Derived differentxal equations 

In all the above equations consistent values of Kp and y, i.e. 
mcsn values Over the temperature range Tt to T, etmble combimtion of 
various equations to be effected. 

Thus from eqwtlons 

(9) ana (161, cl!= - 1 ar 
(y - 1) N2 T 

. . . . . . . . . . . . . . . . . . . . ..(17) 
V 

(13)o& (17), _ = - 2 (y - l) Id2, %! .q............,,....(18) aT 
T 2+(1.-1)&I' M 

(13) and. (18), 
av - = - 2 + (: _ 1) 
V h2 

z ................. ..(ly) 

(14) and (15), dP _ dT . dV - - F,- T - 9 
P 

......................... (20) 
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(18), (191, and (zo), F = 2$dd&g! T-F * . . . . . . . . . . (21) 

The basic eqn. (8) can be written 

-+dv+gvap = 0 faL 
2h V V2 

. . . . . . . . . . . . . . . . . . . . . . ...*......*.. (22) 

Nap F = @Z dp using (lo), 
v2 P 

1 aP E-- 
& P 

using (91, 

by using (21). 

1 CL\ 
=--- 2 (1 + (y - 1) M2) anI 

m A 2+(y - 1) 112 y? 
. . . . . . . . . . . . ..(23) 

Then combining eqns.(22) and (19) end (23) 

faL ali 2 (1 - I!?) ad w--u = 0 . . . . . . . . . . . . . . . . . . . 
2h &I yM2 12 + (y - 1) M2' 

(24) 

I 
The re uired dlffercntial equations are then (21) for the pressure 

change and ? 24) for the frxctlon-length effect. 

At this point the further atulysis may conveniently be divvkd into 
two ports - one for constant area, and the other for variable area ductmng. 

5.0 The equations for constant aree ducting 

Here dA = 0 and eqn. (23.) becomes 

$= +.+p& . . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

This equation is integrated to give 

loge P = - loge&I - $ loge 
{ 

2 + (y - 1) M2 + constant . . . . ..(26) 

or between planes 1 end 2 XI-I the-flow path. .~ pi --~ -~~ 
,- ~-. 

P2 

G 
=a ; ,: :-+: ;; $ . . . . . . . . . . . . . . . . . . . . . . . . . ..(27) 

: UP -1 ,.*- 
illso, eqn. (24) becomes 8: I_~ -i 

yf&& 2 (&--f&q cm;, 
2 'I+s &L 1) -$ 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
25 ri3- 

(28) 

. p ,,-.-g { 1 
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Tps equation is integrated to give 

YfL M22 - Ml2 Y+ 1 M2' 2 + (y - 1) 2h.z - ---log, 4 Xl2 - ..*...,.. 22 
Ml2 

-- 2 + 
x2* 

(29) 
2x* "'1 (y 

- 
1) 

where L is the pipe length betwee'n the tw planes c~nsidercd. y?L/2h is 
conveniently shztcned to E and may be called the "pipe functron". 

5.1 The Rraphs for constant area ducting 

The treatment 1s simplified by replacing the second plane referred 
to in pars. 5.0 above, by that plane, actual or hypothetical, where N = 1. 
This critical plnne is then referred ix under suffixed symbols PC, cc, 
etc. At the same time the numbtirix of the prmry plane msy be gmitted 
and that plane referred to by symbds withgut suffices as P, M, etc. 

'Then eqns. (27) and (29) becgme rcspeotlvely 

;=:j2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

YfL, 1 - M2 y + 1 12t(y-l)$ 
EC = - = 

2X* 
" - log, - 

ai* 
. . . . ..(31) 

. 2h 4 Y+ 1 

where L, 1s the pipe length between the section under conslderatlon (normally 
either entrance z)r exit) and that plnne, actual or hypothetical, where id = 1. 

In the plotting here given, only subsonic flow is covered. Three 
graphs sre deluded, Fig. 5 covering the range $8 = 1 to 0.1, but, for 
the sake of accuracy, being actually used fw the lcwtir portion only of 
that rarge viz. from l4 = 0.16 to 0.1. 

TWO enlar:(emsnts of the upper portion nre then given ~1s. Fig. 6 
covering the range M = 0.35 to 0.16, and FL@;. 7 for the remaining range, 
M = 1.0 to 0.35. 

In these graphs pressure ratio, pc = P/P,, 1s plotted against pipe 
functlgn, EC = yfL,/2h 571th Intersecting curves gf M and y. 

To dlustratc thz use of these graphs an example 1s included in 
Appendix III. The usual problem of finding the total head pressure drop 
in a length of ductiT is set rind the methd of accurately estiwting this 
IMY be fdlowed m the example. 

6.0 The equations for convergent and dlvergent ducting 

Eqn. (21) is integrated directly to give 

logs P = - +j loge 
1 

2 + (y - 1) l4* 
I 

- loge M - loge h + constant ..(32) 

or between planes 1 and 2 in the flew pith 

% 
log, - = 1 log 

2 t (Y - 1) Ml* R Al 
. 

5 * e 2 + (y - 1) I%** 
+ locc - + loge - . . . . . . . . ..(33) 

M2 A2 
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This simplifws to the equation 

Qw&~* 
. . . . . . . . . . . . . . . . . . . . . . . . ..a. (34) 

Equation (74) is rwrrrltten 

-0-a aA 2 (1 - M2) a 
--- = - 

2h M2r, MJ 2 + (y - 1) X2 

2 (1 - x2) d&f 

M3 12 + (y - 1) N2 
I 

Now 1,/h = S, the poruneter of the cross-section, hcnoe the eqn. 
becomss, 

i 
yf s a.? 
--- . . . . . . . . . . . ..a....... (35) 

\ 

2 dA 

> 
If the first term withln the bracket were constant, integration 

would be possible follower separation of the variables. As the yf/2 
is constant for purposes of the , 
the remaining term S dL/dA. 

integration it renw.xs only to examine 
It 1s found that, for certain slmplc tapering 

ducts formed by conic and pyramidal frusta, this term does lndwd remain 
constant, 

Thx being so It is oonvanxnt to rewrite eqn. (35) m the form 

2 (1 - M2) dM 

2+(y-1)M2 
. . . . . . . ..*................. (36) 

where a = 2s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2 aA 

(37) 

S clL/dL 
Certsrn casss are oxted in Appendix IV in which the quantity 

1s derived Ln terms of ths duct geometry. 

Thus for the special crises of circular or square cross-sectlon 
frusta 

rr a = - 2l!nnP 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (38) 

where p is the half-nngl,e of the cons or pyramid. 

Further, for the specxd cases of elliptical or rectangular cross- 
section frusta 

a=* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (39) 

where (3 is the larger of tho two half-angles of the cone or pyramid. 
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Finally for the general case of a. break-down of the duct length into 
a number ~3 short lengths 

a= g q9.p . . . . . . . ..a........*....... (40) 

where Sm is the mean perzmeter of the short length 6L, U bcrq the change 
in crxs-sectlonnl area in that length. 

Eqn. (36) 1s mtegratcd to give 

logeA = - log&I- ; ; ; 2a loge (1 - aM2) + Y+l 
Y 2 (Y- 1 + 2a) loLT0 

1 
2 + (y - + constant . . ..*.....(41). 

Then bztwecn planes 1 and 2 in the flow path 

A2 Xl l-a 
log, 

l- aM12 -f+l 
log, - = log, - + t 

"1 M2 -f -1+'2a 1 - c&i22 2(y-1+2a) 

log, 
2 t (Y - 1) M22 

2 t (Y - 1) Ml2 
. . . ..(42) 

which simplifies to 

a being as iiefined above in eqns. (37) to (40) and being negntive for 
convergent ducts and positive for divcrSent d.uctS. 

6.1 The graphs for convorgcnt and diVergent ducting 

The trentment is simplified by replacing the first plane, referred 
to in SectIon 6.0 above, by that plane , actual or hypothetioal, where 
M = 1. This crlticnl plane is then referred to under the suffured symbols 
P,, A,, etc. (& being 1). At the same time the numbering of the second 
plane lnay be omrtted and that plane referred to under symbols without 
suffixes P, A, M, etc. 

Then eqns. (34) for the pressure ratio and (43) for the nrca ratio 
become respectively 

P =iL 
J 

Y+l 
r; AM 2 + (Y - 1) M2 

. . . . . . . . . . . . . . . . . . . . . . . (44) 
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(for supersonic flow), 1s plotted agalns 
(for subsonic flow) or P& 

F / 6 ‘ic with intersectlw curves 
of 31 and a,. Three sets of curves for y ?a 1.3, 1.35, ana 1.4 a&r&t of 
interpolation for any nwmal value of y. Subsonic and supersonic flows 
*re covered scpsrately. Subsgnlc flow is taken dwn to about it = 0.1 
and supersonic flow up to about ?I = 2. 1.s regards frlctlon a range of 
a of from -0.1 to 0 for wnvergent ducts and from 0 to to.1 for 
divergent ducts enables cones of very smdl apex angles tg be included. 

To illustrate the use of these graphs an example is given in 
;ippendix V. The case chosen is that of expansion ln the ccrnvergent- 
divergent nozzle of .a jet eqine. 

*(45) 

7.0 The 3;ich nun&r of flow in the throat for w.ximum MSS flow 

Appenduc VI gives the prg,of that in the simple one-dmcnslonal 
treatment of flow with frlctlon used In this work, the Mach number of the 
flow m the throat of n duct under ~~XLIIIUIII mass flow cond1tlon.3 1s unity. 
This is regarded as a most satlsfaotory feature of the treatment In so far 
that it agrees nlth the simple qualitotrve result based on the fact that 
pressure effects In .a fluid can only be transmitted with sonic veloolty. 

8.0 The temperature-ontrDpy alagram for duct flCw 

Appendix VII gives the eqwtlon for entropy ohange during nn expansion 
or compression. By nnnlyslng the chsnge In the form dT/d$, the general 
shapes of the expansion and compresslon tempemturc-entropy curves may be 
inferred in explanatlDn of the friction process accompanying the chsnge. 
These are illustrated in Fig. 20. 

9.0 Conclusion 

It 1s considered that the plotting of the equations (unusable 
directly, except through a graph) resultiqy from the srmple treatmsnt 
of flow with friction enables ductlng problems t3 be solved with a high 
degree of consistency of result. The scope of the supersonic graphs to 
cover higher Mach numbers of flow can readily be extended by additional 
graphs ns the requirement arises. 
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mPEmIx I 

10.0 List of symbols 

A 

a 

B 

Y 

D 

E 

f 

h 

J 

% 

K, 

L 

Id 

P 

P 

Q 

9 

R 

r 

P 

s 

T 

v 

v 

P, 

A 

0 

m 

= Ima 

= Varmble area ducting friction index 

= Half-angles of conic and pyrom&d frusta 

=Yp/K, 

= Dmmeter 

= Pipe Function 

= Frictlm Caefficient 

= Hydraulic mean aepth 

= Mechamcal equivalent of heat 

= Specrfic heat at constant pressure 

= Specific heat at constant volume 

= Length of ductmg 

= Hach number 

= Pressure 

= Pressure ratio 

= ljlass flw 

= Fuel-sir ratlo 

= Gas constant 

= Radius 

= Density 

= Permeter 

= Temperature 

= ve1cc1ty 

.= Specrfic volume 

= Entropy 

10.1 List of subscripts 

= hlrcraft 

q Critical 

= Mean 
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List of subscripts (contTd) 

t = Total head 

1 = Initial plane of reference 

2 = Fuml plane 9f reference 
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APPENDIX II 

11.0 The vnlue of y 

y 1s obtained fundamentally fromKp using the fact that R is constant 

at 96 ft. lb. p. lb. - 'C., i.e. Kp - I$, IS constant at 0.0686 O.H.U. p. 

c 

. -'C. for air rind combustion products of hydrocarbon fuels. In turn 
is dependent upon T. However, frequently the range of nn expansion or 

compression is indlcnted prlrrwrlly by the pressure ratio. Nakiw use of 
data @ven in Reference 3 dealing with the thermozynnmic properties of air 
and combustion products Fig. 4 has been prepared to red directly the 
temperature range corresponding t9 any pressure ratio (and efficiency of 

process) so that, knowing the initial temperature rrf the ctm~e, the firm1 

temperature can be read with sufficient nocurnoy to mke a sntisfnotory 
estinmte of the mean 

Kp 
for the change. 

Further, znstead of obtaining the mean Kp over the temperature 

rnnge so given, It is swgested that the true Kp at the orithemetical 

mean temperature be used. Not only IS this a much easier operation thnn 
that of Qbtalnmng the mean Kp but for low pressure ratios (less then 2) 

it gives a more accurate answer since the random error to which the mean 
Kp method is subJect exceeds the systenmtic error present in the suegested 

method. 

Thus FL&. 4 covers five parameters, p (pressure ratio), 'b, (polytropic 
efficiency), q (fuel-aw ratio), Tl and T2 (initinl nn?l find temperatures) 

and is used to obtain Tm = 2 L*(Tl + Tz), Tl being knave. I$, is then rend 

from the curves of Reference 3. 

The presence of \ is unnecessary for the partlculnr application 

to flow in ducts where an nssumptlon of 100 per cent will introduce very 
little error into the preluninary calculation for mean temperature but has 
the advantage gf renderm~ the graph of general application to compression 
and expansion in compressors and turbines of gns turbine plant. 

For calculntions involvir@ the relationship betmeen t3bl head nd 
Stntrc condltlons (ns in Section 2.0 of the text) the true value of y at 

Tm = i(Tt + T) would be used. 

For other calculations the true vnlue of y at Tm = $Tt + T) would 

be used, T being the statrc temperature at the end of the expansion or 

beginnlw of the compression. 
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!ePmDIx III 

12.0 Exmple of 0 cnlculoticn for ccnstont sccticn auctlx 

12.1 Prcblcm -- 
Frnd the totd hod. pressure drop ~.n 10 ft. length or auctlrg of 15 in. 

x 9 in. rectaqgitor internal section with Q = 40 lb. p.scc., q = 0.0185, 
Tt = 850°iC., Ptl = 3.1 p.s.i.a., f = 0.005. 

12.2 Solution 

h z 15 x 9 
48 = 0.2345 ft. 

&SPt at entry = 40$850 
Apt 15 x 9 x x.1 

= 0.2532 

Guess y = 1.35. Fig. 1 elves Xl = 0.443. 

Fig. 3 ~IVCS GTfft = 0.03365 .'- ST = 28.6; Tm = 836. 

Kp = 0.2718; 'G = 0.2032; y = 1.337 

Fle;. 1 gives Ml = 0.445 (no need to repeat calculations fw y) 

PI&. 2 gives P.&P1 = 1.1385 . . ~1 = 29.95 

Guess y = 1.337 for the whole expansion through the pipe. 

EC1 - EC2 = 
'0.005 x 1.337 x 10 = oJ+21j 

2 x 0.2345 

Enter ~1~. 7 at 1~ = 0.445, y = 1.337 and ryid .cC1 = 1.152 rind 

Pl& = 2.390. Then sc2 = 1.152 - 0.1425 = 1.0095 

Enter Fig. 7 at ~~2 = 1.00~5 and y = 1.337 and read M2 = 0.462 
and P2/P, = 2.295. 

(>l.B. y cculd now be recclculated frm a now oT2 UslrY Fig. 3 mth 
IA* q 0.462 sna Y = 1.337. H~rever m this cnse this refinement is 
unnocessory ~YLW to the small degree of extra expansscn in the pipe.) 
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APPENDIXIV 

13.0 The value of a 

a= $ s,$ . . . . . . . . . . ..*......................... (37) . 
is repeated for reference. 

13.1 Cases folk&v for which a remans constant over the whole 
length of the duct. 

13.1.1 Right cmcular cone of radius r 

Here S : 2xr, A = nr2, dr: = 2nrdr. 

Then S dL/dA = aL/d.r whvhlch is constant and equal to l/?anp where p is 
the half-angle at the cme apex Thus as quoted in the text, for this 
case (and for that below in 13.1.2) 

Y-f a= Ezg . . . . . . . . . . . . . . . . . . . . . . . . . ..*........... (38) 
13.1.2 R&ght square pyramid of side 2a 

Here S = Sa, A = l+a2, $1 = 8a da. 

Then S dL/dA = dL/ds which is constant and equal to l/$'anp where @ is the 

half-angle at the pyramid apex i.e. TanC;= a2 - a1 
L 

where 202 and 2s1, are 

the frusts sides of the larger and smaller ends respectively and L the 
length norm1 to the end planes. a is then given m eqn. (38) 

13.1.3 R@tellipticol cone of semi-diameters a and b 

Here b/a = 
A = xab : xca2; 

constant, say c; s = R (a + b) = x (1 + ~)‘a; 
ail = 27tca da. 

Then S cjJ,/& = l+c %’ = n+b !& 1 
2c da 2b 

aa. which is constant. 

dL/da q l/kanp where p is the half-angle at tho apex in the plane of 
the mjor semi-diameter. 

Thus as quded in the text for this case (and for that below in 
13.1.4) 

a= g$$& . . . . . . “...# . . . . . . . . . . . a... ..%......(JP) 

13.1.4 Right rectawular pyrmnd of sides 2a and 2b 

Here b/a = constant, say c; s = 4 (a + b) = 4 (1 + c) a; 
A = &eb = 4ca2; &+ = 8 w da 

l+c al a + b dL which is constant. ThenSdL/ti = 2c z = - - 
2b da 

dL/da = l/!Can@ where p is the half-angle at the apex to the bisector of 
the lesser side. a is given in eqn. (39). 
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13.2 For cases other than &a Pmegomg It is unlikely that a will 
remin omstent over thevhole leqth of the duct.. Then the duct length must 
be broken dm-n into sh&t let&he for each of which it must then be assumd 
that a will remm constant. 

Then for any one.of these sections 

ads&3 . . . . . . . . . . . . . . . . . . . . . ..z...-.‘.‘.. . . ..(lto) 

where S, is the mean perimeter of the section 

6L is the length of the short sectron 

6A is the change in cross-sectional area over the short section considered. 

13.3 In 011 cases M or CM, hence p and TanBp hence a, will be 
negative for convergent‘&cts and positive for dive-gent ducts. 
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:IPPEND1x V 

l.4.0 Example of a cdculation for 09nverjient-diver.yent ductine; 

IA.1 Problem 

Find the thrust given by n jet engine at its design point when 
fitted with n convergent-divergent nozzle: altitude 36,000 ft., flzght 
Mach number 1.4. At entry to the nozzle the flow conditions are Tt = 
loa7.5%. q = 0.02092; Pt = 23.075; Xl = 0.45. Assume for 
the mazle design c%Ccal ducting for both convergent and divergcnt portions 
of the nozzle, fi = - 71/2' for the former and + 7l/2" for the latter. 
f = 0.005. :,tmospherlc pressure, Pa = 3.283. Aircraft Velocity, 
VA = 1355.6. P = 77.65. 

14.2 Solution 

Using y roughly as 1.35 with Ml = 0.&5, Fig. 3 gives for entry 
conditions 8Ttlbt = 0.034 1.e. bT = 37. Tm = 1063. up = 0.2852. 
$ = 0.2166 y = 1.317. 

Using y = 1.317 and Ml = 0.45, Fig. 1 gives - = 0.2665 whence at 

zlPtl 
*1 = 2.892. Fig. 2 gives Ptl& = l.l411rfhence Pl = 20.22 

b vnlue of y is now required to cover the whole expansion from total 
head inlet o~nditlons to static conditions at exit from the divergent portion 
where Pa = 3.283. The pressure ratio over the whole expansion is thus 
23.075/3.283 q 7.03. Using rl = 100 per cent oncl Tt = 1087.5 Fig. 4 

gives T2 = 665 approx. OQ 

(N.B. If desired an cffrciency can be applied to this colculatron with- 
out much effect on the value of y obtained). 

ThenT, = 3 (1087.5 + 665) = 876. 1% = 0.2752. XC, = 0.2066 

Y = 1.333. 

For the convergent portion a = - 2 x o,l3l7 = - 0.0253 1.333 x 0.005 

Use of n pair of subsonic graphs (for y = 1.30 and 1.35) gives the 
folloti~ table usmg $11 = 0.45 and a = - 0.0253: 

Fig. 5 6 Dlff. Diff. 

Y 1.30 1.35 0.05 1.333 0.033 

AlA 1.454 1.&8 - 0.006 1.450 - 0.0% 

Plh, 1.614 1.634 0.020 1.627 0.013 

Then A, = 2.892/1.450 = 1.995 

PC = 20.22b.627 = 12.43 
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14.2.2 Design of the divergent portion - . 

The prossum,mtio ovythis portron~~~~i?~/P2 a 12.43/3.283 = 
3.785. a = + @:b%f with y ra&imng ot 1.333 and again use a pam of 
supersonic graphs (for y = 1.30 and 1.35) gxves the fdlowiw Table using 
PC/P2 and a: 

Pig. 12 13 D‘lff. Diff. 

Y 1.30 1.35 0.05 1.333 0.033 

If2 1.918 1.918 0 1.918 0 

@, 1.697 1.668 - 0.029 1.678 - 0.019 

Then M2 = 1.918 and n2 = 1.995 x 1.678 = 3.345 

kg. 3 &es 6T2/Tt = 0.379 i.e. DT2 = 4l2 

v22 = 2gJ x 0.2752 x 412 = 10.23 x 106 . . v2 = 3200 

14.2.3 Thrust of the nozzle 

Net thr& = -y-y- (3200 77.65 - 1355.6) = 4450 lb. 
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IIXPENDIX VI 

15.0 The l&oh number of flw in the thrrrat for nux~mum mss flow 

If the known conditizw of the flow at entry are suffixed "l", and 
those at nny subsequent section carry no suffix , the changes in czvditlgn 
are covered by the follcwlrg equations: 

Comblnatign of eqns. (3!+) and (43) gives 

la, Y+a 
\ y-l+& 

P 1 - a,?,12 
-= 
Pl 

c i 

I 
, y-1+2a 

2 c (y - 1) Ml2! 
l- 'f 2 rn‘l 

(* + (y - l) Id2 i 

. . . . . . . . . . . . . . . . . . 

I 

(46) 

For the two static pressures theri: are two total haod pressures to 
correspond, Ptl rind Pt rcsoeotrvely, related to Pl rind P by eqn. (2) 

pt - 

Pt1 

The mess flow eqn. (1) then becomes 

Q 
r- mt 

qJ ;F; 

Pt Q /=-t pm- - 
pt1 at .! &Y 

l-a 

/ \ 
y-l+& I 

or, collecting all 

i 1 2 2 + + cy (y 
- 1) 1) 1x2 Ml2 

1 

=! 2 - 
12 + (Y -1) ?I2 

. . I 

the constant quantities with Q/A on the loft-hand side 

7$?$%, --* Q /-& . 
(l-a&$2) (2+(y-1)N12) 2 TP, By 

1-a 
Y-l+& , 

. . . . . ..~.......(47) 

l-a -- 
y-1+2@. 

E M (1 - d2) 
Y+'+1 

. . . . . . . . . . . . . . . . . ..-................... (48) 

2 + (y - 1) M2 
1 

20 

Then for a given EISS flow Q, the duct aren A becomes B minimum 
when Q/ri 1s R mximum 1-e. when the right-hnnd side of eqn. (45) is a 

.mximtm, i.e. when 

1-a 
Fi7.z 

a M - zi (1 aM2) :: 0 

1 2 + (Y - 1) 2&&) 
18) 
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1.e. duv=O 
au w , 1’ 

Or ln its most convanvat.form 

/ 

i.e. 1 - 
2a (1 - a) 1142 (Y - 1) (Y + 1) i-d* 

! 

=o 
(1 - df )(Y - 1 + 2~5) (y - 1 + &) 2 + (y - 1)M 

....*..e..,....... (49) 

the solution of which i3 M = 1. 
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bPPEKDIX VII 

15-O The temperature-entropy dmgram for duct flow 

The basic equation for thz friction work is 

63' = @Ta@ in absolute units . . . . . . . . . . . . . . . . . . . . . ...* (50) 

Written In the same umts eqn. (8) of section 4.0 becomes 

* = fv2aL -= . . . . . . . . . . . . .."........ 
2h 

- vav - gvaP (51) 

15.1 Constant nren ducti% 

Using eqns. (12), (X6), (20), and (lo), with (50) and (51) 

a$ = q$ZwKD;Q aT 
Tt - T 

. . . . . . . . . . ..-............ (52) 

which may be rewritten 

3 = .p& .*................................. (53) 

Further, integration of eqn. (52) gives 

a;-fi = T2 - Y 
-1 

l°Ce 
et - T1 

Tl 2 Tt - T2 
. . . . . . . . . . . . . (54) 

for the entropy change. 

It 1s to 
T = To. 

be note: that this reaches .e uxcimum (from eqn. (53)) when 

The interpretition of this result is that with subsxx flow at 
the entry to a pope, provided the pipe 1s of sufficient length, the 
leaving velocity will have s. &ach number of unity and this cannot be 
exceeded. Also with supersonic flow et the entry to a pipe, again 
provided the pipe is of sufficxnt length, the leaving velocity will 
again have a rich number of unityand no further diffusion can take 
place. 

Eqn. (53) shows that the Tg curve representing subsgnio expansion 
in a pipe has negntlve slope at the start, this slope becomi 
until at T q T, It IS running vertically. .7 

steeper 
Similarly the T c-e 

representing supersonic diffusion in a pipe has positive slope at the 
start, this slope becoming steeper until at T = T, 1.t 1s running 
vertically. 

15.2 Convergent and. divergent ducti% 

Using eqns. (12), (UC), and (36) with (50) and (51) 

aa’ = - &a (Tt - T)(l - M2) did 

M (1 - 0x2) {2 + (y - 1) K2 
t 

. . . . . . . . . . . . . . . . . ...*...*. (55) 

But Ed2 = 



- 23 - 

whence cqn. (55) becomes 

a$ = . . . . . . . ..".......... (56) 

T 
dT = - 

(y - 1 + 24 T - ZaTt 

D w (y + 1) T - 2Tt 
.*............*...... (57) 

Three cr?ses my be exanwxd 

15.2. 1 i'h<n T = Tt (CA purely hypothotlcal case) 1.e. at 
the start 0f nn exP3nsson rrom, or nt the ena 0f 0 alffhsl0n t0 tot31 hena 
c3naltlons, 

dT Tt 
T@ = qz 

. . . . . . . . .,..-..........................,. (58) 

Thus for a subsonlc expanswn in a conver~tint duct (IX - ve) the 
slope 3f the T$ curve mould be - ve, whilst for a subsQnlc alffus~~n In 3. 
alvargent duct (o, t ve) the siopu would be + ve. 

Between this case and the next the dgp,a w%iLd become ntecgor. 

15.2.2 When T = To 

$$ =w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (59) 

i.e. for b&h expansion and dlffunlDn the Ta ourvc wodd run vertlcolly. 

Between this case rind the next the slo_oe of the curve would becorn< 
less steep accornp~~n~ed of cc)urse by incrensiw entropy. 

15.2.3 Yihen T = 0 (3 purely hypothetical case) i.e. at 
the ena of on expnnslon to, or at the commencement of a dlffuslon from 
limiting conditions, 

m - 0 
g- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (60) 

I.e. bgth curves run horizontally. 

15.2.4 The entropy cbayo 
1 and 2 durlw oxp3nszon or diffuslgn 15 
(56) as , 

between nny two planes of.flow 
obtimea by lntegmtx~n of eqn. 

(Y - 1 + 2a) T2 - 2aTt 

loge (y - 1 + 24 T1 - 2aTt 
1 / 

Thede curvBs nre showK'&*Fi&. 
,t;2y: 

20, nbove for nn expnnslon, and 
balm fw a dtifusion. .- 
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In Fig 2OA a shockless expnnslon from subsonic conditions ot 1 
suprsonic conditions at 2 1s shwn on the general curve, the frlctlon 

the energy or heat of the two portlow of this expansion, before and aftor 
crltlcal point o, being represented by the two orcns ~lC& and $$2laj 
respectively. The general ourve extends from the total head oonditizns at 
t, referred to in eqn. (58) and Section 15.2.1 above, to fully expanded 
conditions at 0, referred to in eqn. (60) and Section 15.2.3 above, and 
passing through the crituzal point C referred to in eqn. (59) and Section 
15.2.2 abova 

In Pig. 2OB a shocklcss diffusion from supcrwnic ogndltlons at 3 
to subsgnio conditions at J+ is shown on the general ourw, the friction 
energy or hect of the two portions of this dli'fusion, before and after 
the critical pglnt C, being represented by the two areas @X$c and a',C/+$h 
respectively. The general curve extends from zero pressure conditions at 
0, referred to in eqn. (60) and Section 15.2.3 above, to fully diffused 
total head conditions at t, referred to in eqn. (58) and Section 15.2.1 
nbwe, and passing through the orltical pQ,int C, referred to In cqn. (59) 
and Section 15.2.2 above. 

to 









































FIG 20. 

FIG.ZOA: T# DIAGRAM FOR AN EXPANSION (SHOCKLESS> 
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& 208: T$ DIAGRAM FOR A DIFFUSION (SHOCKLESS.) 
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