

```
MINISTRY OF SUPPLY
AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS
```


# The Thermodynamics of Frictional Resisted Adiabatic Flow of Gases Through <br> Ducts of Constant and Varying Cross Section 

By
W. R. Thomson

## ERRATA

Page 6 - Equation 19 should read:-


Page_7 - Equations 21, 23 and 24 should read: -

$$
\begin{align*}
& \frac{\partial P}{P}=\frac{2\left\{1+(y-1) M^{2}\right\}}{2+(y-1) M^{2}} \frac{d A}{M} \tag{21}
\end{align*}
$$

$$
\begin{align*}
& \frac{2\left(1-M^{2}\right) d M}{2 h} \frac{d A}{\gamma M^{2} A}-\frac{2 M^{3}\left\{2+(y-1) M^{2}\right\}}{-\infty}=0 \tag{24}
\end{align*}
$$

Fig. 11. In the upper series of curves, on the extreme left, the space between $M=0.35$ and $M=0.4$ (both correctly positioned), has been divided into oight parts instead of 10.

```
C.P. No. 158.
Report NO, R. 119
September;}195
```

NATIONA G GAS TURBINE ESTABLISHMENT

The Thermodynamics of Frictional Resisted Adiabatic
Flow of Gases through Ducts of Constant and Varying Cross Section

- by -
W. R. Thomson


## SUMMARY

The report presents an analytical study dealing with the adiabatic flow of gases whth frictional losses through ducts of constant and varying cross section. The thermodynamac treatment is along lines published by other workers such as Bailey and Fabri and is essentially one-drmensional in character in so far that frictional effects are assumed to be uniformly distributed over the total cross sectional area of flow. With this simplifying assumption, relationships are deduced connecting the pressure, temperature, velocity and flow area of the gas at any one plane wath those at any other plane in a duct.

The main relationships are unusable for quantitative estimation except through graphs and the main value of the report lies in the presontation of these graphs, the use of whach should facilitate the solution of duct flow problems.


## ILLUSTRATIONS (cont'd)

Fig. No.
Titlo


## 10 Introduction

The subject of the flow of gases in ducts forms an important application for the science of gas dymanics and 2ts analytical treatment is of obvious importance in those branches of engincering involving flow machinery such as turbinc engines. The part of the subject of duct flow dealt with in this report comprises cases where it may be assumed that the flow is adiabatic i.e. no heat is transmitted to or from external sourcos. Such cases have application to flov in diffusers and propclling nozzles of gas turbine and ram jet engines.

The treatment given here is for ducts of varying cross sectional area, includes for the effects of friction, and makes the usual simplafying assumption that the flow is one-dimensional i.e. the effects of friction are distributed unformly over the cross-scctional area of flow instead of being confined to the boundary layers as they are in practice. Nothing original is claimed for the analysis; it is considered that the man value of the work lies in the resulting generalisod curves forming part of the report which are, as far as as known, presented for the first time to a large enough scale and in sufficient detail to facilitate the solution of duct flow problems.

Work by Neil P. Bailey (reference 1) and Jean Fabri (reference 2) has been freely used by the Author in this treatment and acknowledgement is made of the help their origimal worle hes afforded.

### 2.0 The basic equations

At any plane in a duct the flow equation is

$$
\frac{Q \sqrt{T_{t}}}{A P_{t}}=\sqrt{\frac{Q \gamma}{R}} \frac{M}{\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}}} \cdots \cdots \cdot \ldots(1)
$$

0 is the fluid mass flow, constant over the length of the duct. $T_{t}$ is the total head temperature which from the principle of the conservation of energy is constant over the length of the duct i.e. the flow is adabatic.
$P_{t}$ is the total head pressure at the plane considered. This in the presence of fraction, will fall over the duct length. A is the area of cross section at the plane considered and $M$ the Maoh numner of the flow at that plane.
$R$ is the gas constant and $\gamma$ the ratio of specific heats $K_{p} / K_{V}$.
Eqn. (1) is plotted in Fig. 1, for subsonic flow oniy, in the form of three parametors: $\frac{Q \sqrt{T_{t}}}{A P_{t}}$ against $M$ with curves of $\gamma$.

Also at any plane the rolationship between total head and static pressures is gaven by

$$
\frac{P_{t}}{P}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}
$$

This is plotted in Fig. 2, for subsonic flow only, in the form of three parameters: $P_{t} / P$ against $M$ with curves of $\gamma$.

Finally the relationship between total head and static temporatures, in the form for most accurate calculation, is gaven by

$$
\begin{equation*}
\frac{\delta T}{T_{t}}=\frac{1}{I+\frac{2}{(\gamma-I) M M^{2}}} \tag{3}
\end{equation*}
$$

Here $\delta T$ is the difference between the total head and static temperatures i.e. the temperature equivalent of the velocity. This eqn. is plotted in Fig. 3 up to $\mathrm{M}=2.6$ in the form of three parameters: $\delta \mathrm{T} / \Gamma_{\mathrm{t}}$ against $M$ with curves of $\gamma$.

### 3.0 Evaluation of Mach number

In the classical proof of the equations for maximum mass flow under insentropic expansion in a nozzle, the ratios of the throat or critical values of the static temperature and pressure to the total head values are given by

$$
\begin{align*}
& \frac{T_{c}}{T_{t}}=\frac{2}{r+1} \quad \cdots  \tag{4}\\
& \frac{P_{c}}{P_{t}}=\left(\frac{2}{r+1}\right)^{\frac{\gamma}{\gamma-1}} \tag{5}
\end{align*}
$$

Whale the cratical velocity is given by

$$
\begin{equation*}
\mathrm{v}_{\mathrm{c}}^{2}=\mathrm{grRT} \mathrm{c}_{\mathrm{c}} \tag{6}
\end{equation*}
$$

It is to be noted that in this classical proof $\gamma$ is defined as the mean value between $T_{t}$ and $T_{c}$ i.e. over the range of the expansion.

In turn the mach number of any velocity of flow $V$ is defined by

$$
\begin{equation*}
M=\frac{V}{\sqrt{g} \sqrt{\mathrm{RI}}} \tag{7}
\end{equation*}
$$

where $T$ is the static temperature corresponding to velocity $V$ and $\gamma$ is the mean value between $T_{t}$ and $T$.

It wall be found (see Appendix VI) that the treatment here developed of flow in a nozzle with friction yields il $=1$ in the throat when the mass flow is a maxinum.
4.0 Main-ánalysis

The differential equation for resisted flow may be written

$$
\begin{equation*}
V d V+g v d P+\frac{f V^{2} d L}{2 h}=0 \tag{8}
\end{equation*}
$$

where $v$ is the specific volume ( $1 / \rho$ )
dL is an elemental length of the flow path
$f$ is the friction coefficient
and $h$ is the hydraulic mean depth.
This will be combined with the equations

$$
\begin{align*}
& \mathrm{H}^{2}=\frac{\mathrm{V}^{2}}{\mathrm{~g} \mathrm{\gamma RT}}  \tag{9}\\
& P=P R T  \tag{10}\\
& Q=P A V  \tag{11}\\
& T_{t}=T+\frac{V^{2}}{2 g J K p}  \tag{12}\\
& \text { and with their respective differential equations }
\end{align*}
$$

$$
\begin{align*}
& \frac{d M}{M}+\frac{d T}{2 T}-\frac{d V}{V}=0 \quad \ldots \ldots \ldots \ldots \ldots \ldots .  \tag{13}\\
& \frac{d P}{P}-\frac{d P}{\rho}-\frac{d T}{T}=0 \quad \ldots \ldots \ldots \ldots \ldots \ldots .  \tag{14}\\
& \frac{d P}{\rho}+\frac{d A}{A}+\frac{d V}{V}=0 \quad(Q \text { beang constant }) .  \tag{15}\\
& d T+\frac{V d V}{g J K_{p}}=0 \quad\left(T_{t}\right. \text { being constant) } \tag{16}
\end{align*}
$$

to obtain differential equations for any change in terms of $M$ as the independent variable.

### 4.1 Derived differential equations

In all the above equations consistent values of $K_{p}$ and $\gamma$, i.e. moan values over the temperature range $T_{t}$ to $T$, enable combination of various equations to be effected.

Thus from equations
(9) and (16), $\quad \frac{d V}{V}=-\frac{I}{(\gamma-1) r^{2}} \frac{d T}{T}$
(13) and (17),

$$
\begin{equation*}
\frac{\partial T}{T}=-\frac{2(r-1) M^{2}}{2+(r-1) M^{2}} \frac{d M}{M} \tag{18}
\end{equation*}
$$

(13) and (18), $\quad \frac{d V}{V}=-\frac{2}{2+(\gamma-1) n^{2}} \frac{d M}{M}$
(14) and (15), $\quad \frac{d P}{P}=\frac{d T}{T}: \frac{d V}{V}-\frac{d \Lambda}{A}$
(18), (19), and (20), $\frac{\partial P}{P}=\frac{2\left\{1+(\gamma-1) M^{2}\right\}}{2+(\gamma-1) M^{2}} \quad \frac{d M}{M}-\frac{d A}{A}$

The basic eqn. (8) can be written

$$
\begin{equation*}
\frac{f^{\prime} d L}{2 h}+\frac{d V}{V}+\frac{g V d P}{V^{2}}=0 \tag{22}
\end{equation*}
$$

Now $\frac{g v d P}{V^{2}}=\frac{g R T}{V^{2}} \frac{d P}{P}$ using (10),
$=\frac{l}{\gamma \operatorname{Hin}} \frac{d P}{P}$ using (9),

$$
\begin{equation*}
=\frac{1}{\gamma M 2} \frac{d}{A}-\frac{2\left\{1+(\gamma-1) M^{2}\right\}}{2+(\gamma-1) M^{2}} \frac{d M}{\gamma M^{2}} \tag{23}
\end{equation*}
$$

by using (21).
Then combining eqns. (22) and (19) and (23)

$$
\begin{equation*}
\frac{f d L_{1}}{2 h}-\frac{d \Lambda}{\gamma M^{2} A}-\frac{2\left(1-M^{2}\right) d M}{r^{2}\left\{2+(r-1) M^{2}\right\}}=0 \tag{24}
\end{equation*}
$$

The required differcntial equations are then (21) for the pressure change and (24) for the friction-length effect.

At this point the further analysis may conveniently be divided into two parts - one for constant area, and the other for variable area ducting.
5.0 The equations for constant area ducting

Here $d A=0$ and eqn. (21) becomes

$$
\begin{equation*}
\frac{d P}{P}=-\frac{2\left\{1+(\gamma-1) M^{2}\right\} d M}{M\left\{2+(\gamma-1) M^{2}\right\}} \tag{25}
\end{equation*}
$$

This equation is integratcd to give
$\log _{e} P=-\log _{e} M-\frac{1}{2} \log _{e}\left\{2+(\gamma-1) M^{2}\right\}+$ constant
or between planes 1 and 2 in the flow path

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\frac{M_{1}}{M_{2}} \sqrt{\frac{2+(\gamma-1) M_{1}^{2}}{2+(\gamma-1) M_{1}^{2}}} \tag{27}
\end{equation*}
$$

Also, eqn. (24) becomes

$$
\begin{equation*}
\frac{\gamma f+E^{2}}{2 h}=\frac{2\left(1-m^{2}\right) d M_{4}}{M^{3}\left\{2 F-(4-1) M^{2}\right\}} \tag{28}
\end{equation*}
$$

This equation is integrated to give

$$
\begin{equation*}
\frac{\gamma f L}{2 h}=\frac{M_{2}^{2}-M_{1}^{2}}{2 M_{2}^{2} M_{1}^{2}}-\frac{r+1}{4} \log _{e} \frac{M_{2}^{2}}{M_{1}^{2}} \frac{2+(\gamma-1) M_{1}^{2}}{2+(\gamma-1) M_{2}^{2}} \tag{29}
\end{equation*}
$$

where $L$ is the pipe length between the two planes considered. $\gamma f \mathrm{f} / 2 \mathrm{~h}$ is conveniently shortened to $\varepsilon$ and may be called the "pipe functzon".

### 5.1 The graphs for constant area ducting

The treatment is simplified by replacing the second plane referred to in para. 5.0 above, by that plane, actual or hypothetical, where $\mathrm{M}=1$. This critical plane is then referred to under suffixed symbols $P_{c}, \varepsilon_{c}$, etc. At the same tume the numbering of the primary plane may be omitted and that plane referred to by symbols without suffices as $P$, M, etc.
'Then eqns. (27) and (29) become respectively

$$
\begin{aligned}
& \frac{P}{P_{c}}=\frac{1}{M} \sqrt{\frac{\gamma+1}{2+(\gamma-1) M^{2}}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(30) \\
& \varepsilon_{c}=\frac{\gamma f L_{c}}{2 h}=\frac{1-M^{2}}{2 M_{2}^{2}}-\frac{\gamma+1}{4} \log _{e} \frac{1}{N^{2}} \frac{2+(\gamma-1) M^{2}}{\gamma+1} \cdots \cdots \cdot(31)
\end{aligned}
$$

where $L_{c}$ is the pipe length between the section under consideration (normally either entrance or exit) and that plane, actual or hypothetical, where $M=1$.

In the plotting here given, only subsonic flow is covered. Three graphs are included, Fig. 5 covering the range $h=1$ to 0.1 , but, for the sake of accuracy, being actually used for the lower portion only of that range viz. from $M=0.16$ to 0.1 .

Two enlargements of the upper portion are then given viz. Fig. 6 covering the range $=0.35$ to 0.16 , and $\operatorname{Fig} .7$ for the remaining range, $M=1.0$ to 0.35 .

In these graphs pressurc ratio, $p_{c}=P / P_{c}$, is plotted against pipe function, $\varepsilon_{c}=\gamma f L_{c} / 2 h$ with intersecting curves of $M$ and $\gamma$.

To $11 l u s t r a t e$ the use of these graphs an example $1 s$ included in Appendix III. The usual problem of finding the total head pressure drop in a length of ducting is set and the method of accurately estimating this may be followed in the example.

### 6.0 The equations for convergent and divergent ducting

Eqn. (21) is integrated directly to give

$$
\log _{e} P=-\frac{1}{2} \log _{e}\left\{2+(\gamma-1) M^{2}\right\}-\log _{e} M-\log _{e} \Lambda+\text { constant } \ldots(32)
$$

or between planes 1 and 2 in the flow path

$$
\begin{equation*}
\log _{e} \frac{P_{2}}{P_{1}}=\frac{1}{2} \log _{e} \frac{2+(\gamma-1) M_{1}^{2}}{2+(\gamma-1) M_{2}^{2}}+\log _{e} \frac{M_{1}}{M_{2}}+\log _{e} \frac{\Lambda_{1}}{\Lambda_{2}} \tag{33}
\end{equation*}
$$

This simplifies to the equation

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\frac{\hat{i}_{1} M_{1}}{A_{2} M_{2}} \sqrt{\frac{2+(r-1) M_{1}^{2}}{2+(r-1) M_{2}^{2}}} \tag{34}
\end{equation*}
$$

Equation (24) is rewritten

$$
\begin{aligned}
& \frac{\gamma f d L}{2 h}-\frac{d A}{M^{2} A}=\frac{2\left(1-M^{2}\right) d M}{M^{3}\left\{2+(\gamma-1) M^{2}\right\}} \\
& \left.\left(\frac{\gamma f}{2} \frac{\Lambda d I}{h d A}-\frac{I}{M^{2}}\right) \quad \frac{d A}{A}=\frac{2\left(1-1 M^{2}\right) d M}{M^{3}\left\{2+(\gamma-1) M^{2}\right.}\right\}
\end{aligned}
$$

Now $h_{1} / h=S$, the parameter of the cross-section, hence the eqn. becomes

$$
\begin{equation*}
\left(\frac{\gamma f}{2} \frac{S d I}{\partial \Lambda}-\frac{I}{M^{2}}\right) \frac{\partial \Lambda}{\Lambda}=\frac{2\left(1-M^{2}\right) d M}{M^{3}\left\{2+(\gamma-1) M^{2}\right\}} \tag{35}
\end{equation*}
$$

If the first term withan the bracket were constant, integration would be possible followng separation of the variables. As the $\mathrm{\gamma f} / 2$ is constant for purposes of the integration, it remanns only to examne the remaining term $S d I / d A$. It is found that, for certain sumple tapering ducts formed by conic and pyramidal frusta, this term docs inducd remain constant.

$$
\begin{align*}
& \left(a-\frac{1}{M^{2}}\right) \frac{d \Lambda}{\Lambda}=\frac{2\left(1-M^{2}\right) d M}{M^{3}\left\{2+(\gamma-1) M^{2}\right\}}  \tag{36}\\
& \text { where } \quad a=\frac{\gamma f}{2} \frac{S d I_{1}}{d \Lambda} \quad \cdots \tag{37}
\end{align*}
$$

Thas being so it is convenzent to rewrite eqn. (35) in the form

Certan cases are cited in ippendix IV in which the quantity $S \mathrm{dL} / \mathrm{d} h_{i}$ is derived in terms of the duct geometry.

Thus for the special cases of circular or square cross-section frusta

$$
\begin{equation*}
a=\frac{\gamma f}{2 \operatorname{Tan} \beta} \tag{38}
\end{equation*}
$$

where $\beta$ is the half-angle of the cone or pyramid.
Further, for the special cases of elliptical or rectangular crosssection frusta

$$
\begin{equation*}
a=\frac{\gamma f(a+b)}{4 b \tan \beta} \tag{39}
\end{equation*}
$$

where $\beta$ is the larger of the two half-angles of the cone or pyramid.

Finally for the general case of a break-down of the duct length into a number of short lengths

$$
\begin{equation*}
a=\frac{\gamma f}{2} \frac{S_{m} \delta L}{\delta A} \tag{40}
\end{equation*}
$$

Where $S_{m}$ is the mean perimeter of the short length $\delta I$, $o \Lambda$ being the change in cross-sectional area in that length.

Eqn. (36) is integratod to give
$\log _{e} A=-\log _{e} \operatorname{Mi}-\frac{1-\alpha}{\gamma-1+2 a} \log _{e}\left(1-\alpha M^{2}\right)+\frac{\gamma+1}{2(\gamma-1+2 \alpha)} \log _{e}$

$$
\left\{2+(\gamma-1) M^{2}\right\}+\text { constant } \ldots \ldots \ldots(41)
$$

Then between planes $I$ and 2 in the flow path

$$
\begin{array}{r}
\log _{e} \frac{\Lambda_{2}}{\Lambda_{1}}=\log _{e} \frac{\tilde{M}_{1}}{M_{2}}+\frac{1-a}{\gamma-1+2 \alpha} \log _{e} \frac{1-a M_{1}^{2}}{1-a M_{2}^{2}}+\frac{\gamma+1}{2(\gamma-1+2 a)} \\
\log _{e} \frac{2+(\gamma-1) M_{2}^{2}}{2+(\gamma-1) M_{1}^{2}} \cdots(42)
\end{array}
$$

which simplifies to
$\frac{\Lambda_{2}}{A_{1}}=\frac{M_{1}}{M_{2}}\left(\frac{1-a M_{1} 2^{2}}{1-a M_{2}^{2}}\right)^{\frac{1-\alpha}{\gamma-1+2 \alpha}}\left\{\frac{2+(\gamma-1) M_{2}^{2}}{2+(\gamma-1) M_{1}^{2}}\right\}^{\frac{\gamma+1}{2(\gamma-1+2 a)}}$
a being as defined above in eqns. (37) to (40) and being negative for convergent ducts and positive for divergent ducts.

### 6.1 The graphs for convorgent and divergent ducting

The treatment is simplified by replacing the first plane, referred to in Section 6.0 above, by that plane, actual or hypothetical, where $M=1$. This critical plane is then referred to under the suffuxed symbols $P_{c}, A_{C}$, etc. ( $M_{C}$ being 1 ). At the same time the numbering of the second plane may be omitted and that plane referred to under symbols without suffires $P, A, M$, etc.

Then eqns. (34) for the pressure ratio and (43) for the area ratio become respectuvely

$$
\begin{equation*}
\frac{P}{P_{C}}=\frac{A_{C}}{A M} \sqrt{\frac{\gamma+I}{2+(\gamma-I) N A^{2}}} \tag{44}
\end{equation*}
$$

$\frac{A}{\Lambda_{c}}=\frac{1}{M}\left(\frac{1-a}{1-a r_{i}^{2}}\right)^{\frac{1-a}{\gamma-1+2 a}}\left\{\frac{2+(\gamma-1) M^{2}}{\gamma+1}\right\}^{\frac{\gamma+1}{2(\gamma-1+2 a)}} \ldots \ldots \ldots \ldots(45)$
In the graphs, Figs. 8 to $19, P / P_{C}$ (for subsonic flow) or $P_{C} / P$ (for supersonic flow), is plotted against $h / A_{C}$ with intersecting curves of M and a. Three sets of curves for $\gamma=1.3,1.35$, and 1.4 admit of interpolation for any normal value of $\gamma$. Subsonic and supersonic flows are covered scparately. Subsonic flow is taken down to about if $=0.1$ and supersonic flow up to about $M=2$. as regards friction a range of $a$ of from -0.1 to 0 for convergent ducts and from 0 to +0.1 for divergent ducts enables cones of very small apex angles to be included.

To 2llustrate the use of these graphs an example is given in nppendix $V$. The case choson is that of expansion in the convergentdivergent nozzle of a jet engine.

### 7.0 The Hiach number of flow in the throat for maximum mass flow

Appendix VI gives the proof that in the simple one-dimensional treatment of flow with friction used in this work, the fiach number of the flow in the throat of a duct under maximum mass flow conditions is unity. This is regarded as a most satisfactory feature of the treatment in so far that it agrees wath the simple qualitative result bascd on the fact that pressure effects in a fluid can only be transmitted with sonic velocity.

### 8.0 The temperature-entropy diagram for duct flow

$A$ ppendix VII gives the equation for entropy change durang on expansion or compression. By analysing the change in the form $d T / \alpha \phi$, the general shapes of the expansion and compression temperature-entropy curves may be inferred in explanation of the friction process accompanying the change. These are illustrated in Fig. 20.

### 9.0 Conclusion

It is considered that the plotting of the equations (unusable directly, except through a graph) resulting from the simple treatment of flow with friction enables ducting problems to be solved with a high degree of consistency of result. The scope of the supersonic graphs to cover higher Mach numbers of flow can readily be extended by additional graphs as the requirement arisos.

## REFERENCES

| No. | Author | Tatle |
| :---: | :---: | :---: |
| 1 | Neil P. Bailey | "The Thermodynamics of $\Lambda$ ar at High Velocıties". G.E.C., Journ. ise.Sc., July 1944 |
| 2 | Jean Fabri | "Miethode Rapide de Determination des Caracteristiques d'un Ecoulement Gazcux a Grande Vitesse". O.N.E.R.i., 1947 |
| 3 | D. Fivicine and <br> J. E. C. Topps | "Thermodynamic Properties of inr and Combustion Products of Hydrocarbon Fuels: Part I". N.G.T.E. Report R. 74. 1950. A.R.C. 13,672. July, 1950. |

## LPPPENDX I

```
10.0 List of symbols
A = Mrea
a = Variable area ducting friction Index
\beta= Half-angles of conic and pyramadal frusta
r}=\mp@subsup{K}{p}{}/\mp@subsup{K}{v}{
D = Diameter
\varepsilon = Prpe Function
f = Friction Coefficient
h = Hydraulic mean depth
J = Mechanical equivalent of heat
K
K
L = Length of ducting
IN = Mach number
P = Pressure
p = Pressure ratio
Q = 㑊s flow
q = Fuel-air ratzo
R = Gas constant
r = Radius
P = Densyty
S = Perumeter
T = Temperature
V = VelocIty
v := Specyfic volume
\varnothing = Entropy
    10.1. List of subscripts
    A = Amrcraft
    c = Crıtical
    m = Mean
```

-13-

List of subscripts (cont'd)
$t=$ Total head
1 = Initial plane of reference
2 = Final plane of reference

## APPENDIX II

11.0 The value of $\gamma$
$\gamma$ is obtained fundamentally from $K_{p}$ using the fact that $R$ is constant at 96 ft . lb . p. $\mathrm{lb} .-{ }^{\circ} \mathrm{C} .$, i.e. $\mathrm{K}_{\mathrm{p}}-\mathrm{K}_{\mathrm{V}}$ 2 s constant at 0.0686 C.H.U. p. lb. $-{ }^{\circ} \mathrm{C}$. for air and combustion products of hydrocarbon fuels. In turn $K_{p}$ is dependent upon $T$. However, frequently the range of an expansion or compression is indicated primarily by the pressure ratio. Making use of data given in Reference 3 dealing wath the thermodynamic properties of air and combustion products Fig. 4 has been prepared to read directly the temperature range corresponding to any pressure ratio (and efficiency of process) so that, knowing the initial temperature of the change, the final temperature can be read with sufficient accuracy to make a satisfactory estimate of the mean $K_{p}$ for the change.

Further, instead of obtaining the mean $K_{p}$ over the temperature range so given, $I t$ is suggested that the true $K_{p}$ at the arithemetical mean temperature be used. Not only is this a much easier operation than that of obtaining the mean $K_{p}$ but for low pressure ratios (less then 2) it gives a more accurate answer since the random error to which the mean $\mathrm{K}_{\mathrm{p}}$ method is subject exceeds the systematic error present in the suggested method.

Thus Fig. 4 covers five parameters, $p$ (pressure ratio), $\eta_{\infty}$ (polytropic efficiency), $q$ (fuel-air ratio), $T_{1}$ and $T_{2}$ (initial and final temperatures) and is used to obtain $T_{m}=\frac{1}{2}\left(T_{1}+T_{2}\right), T_{1}$ being known. $K_{p}$ is then read from the curves of Reference 3 .

The presence of $\eta_{\infty}$ is unnecessary for the particular application to flow in ducts where an assumption of 100 per cent will introduce very little error into the prelminary calculation for mean temperature but has the advantage of rendering the graph of general application to compression and expansion in compressors and turbines of gas turbine plant.

For calculations involving the relationship between total head and static conditions (as in Section 2.0 of the text) the true value of $\gamma$ at $T_{m}=\frac{1}{2}\left(T_{t}+T\right)$ would be used.

For other calculations the true value of $\gamma$ at $T_{m}=\frac{1}{2}\left(T_{t}+T\right)$ would be used, $T$ being the statac temperature at the end of the expansion or beginnang of the compression.

## APPENDIX III

### 12.0 Example of a calculation for constant scetion ductang

12.1 Problem

Find the total hoad pressure drop in 10 ft . length of ducting of 15 in. $x 9$ in. rectangular internal section with $0=40 \mathrm{lb}$. p.sec., $q=0.0185$, $T_{t}=850^{\circ} \mathrm{K} ., P_{t I}=34.1$ p.s.i.a., $f=0.005$.
12.2 Solution
$\mathrm{h}=\frac{15 \times 9}{48 \times 12}=0.2345 \mathrm{ft}$.
$\frac{Q \sqrt{P_{t}}}{\Delta P_{t}}$ at entry $=\frac{40 / 850}{15 \times 9 \times 34.1}=0.2532$
Guess $\gamma=1.35$. Fig. 1 gives $h_{1}=0.443$.
Pig. 3 gaves $\delta \mathrm{T} / \mathrm{I}_{\mathrm{t}}=0.03365 \cdot . \delta \mathrm{T}=28.6 ; \mathrm{T}_{\mathrm{m}}=836$.
$K_{\mathrm{p}}=0.2718 ; \mathrm{K}_{\mathrm{v}}=0.2032 ; \gamma=1.337$
Fig. 1 gives $M_{1}=0.445$ (no need to repeat calculations for $\gamma$ )
Fig. 2 gaves $P_{t 1} / P_{1}=1.1385 \cdot P_{1}=29.95$
Guess $\gamma=1.337$ for the whole expansion through the pipe.
$\varepsilon_{c 1}-\varepsilon_{c 2}=\frac{0.005 \times 1.337 \times 10}{2 \times 0.2345}=0.1425$
Enter Fig. 7 at $M_{工}=0.445, \gamma=1.337$ and rend $\varepsilon_{\mathrm{cl}}=1.152$ and
$P_{1} / P_{c}=2.390$. Then $\varepsilon_{c} 2=1.152-0.1425=1.0095$
Enter Fig. 7 at $\varepsilon_{\mathrm{c} 2}=1.0095$ and $\gamma=1.337$ and read $M_{2}=0.462$ and $P_{2} / P_{c}=2.295$.
(N.B. $\gamma$ could now be recalculated from a new or 2 using Fig. 3 with $\mathrm{M}_{2}=0.462$ and $\gamma=1.337$. However in this case thas refinement is unncessary owing to the small degree of extra expansion in the pipe.)

Then $P_{1} / P_{2}=2.390 / 2.295=1.0414$
Hence $P_{2}=29.95 / 1.0414_{*:}=28.75$
Fig. 2 for $M_{2}=0.462$ aña $\gamma=1.337$ gives $P_{t 2} / P_{2}=1.1495$

ind $b P_{t}^{x}+P_{t 1}-P_{t 2}=34-10-33.02=1.08$ p.s.i.

## APPENDIX IV

### 13.0 The value of a

$$
\begin{equation*}
a=\frac{\gamma^{f}}{2} \frac{S d L}{d A} \tag{37}
\end{equation*}
$$

is repeated for reference.
13.1 Cases follow for which a remains constant over the whole length of the duct.

### 13.1.1 Right olrcular cone of radius $x$

```
Here S = 2\pir, A = \pir', dA = 2\pirdr.
```

Then $S ~ d L / \partial A=\partial L / \partial r$ which is constant and equal to $I / T a n \beta$ where $\beta$ is the half-angle at the cone apex Thus as quoted in the text, for this case (and for that below in 13.1.2)

$$
\begin{equation*}
a=\frac{\gamma \rho}{2 \operatorname{Tan} \beta} \tag{38}
\end{equation*}
$$

### 13.1.2 Raght square pyramid of side 2 a

Here $S=8 a, \Lambda=4 a^{2}, d A=8 a d a$.
Then $S \partial L / \partial A=\partial L / \partial a$ which is constant and equal to $1 / T a n \beta$ where $\beta$ is the half-angle at the pyramid apex i.e. $\operatorname{Tan} \beta=\frac{a_{2}-a_{1}}{L}$ where $2 a_{2}$ and $2 a_{1}$, are the frusta sides of the larger and smaller ends respectively and $I$ the length normal to the end planes. $a$ is then given in eqn. (38)

### 13.1.3 Right elliptical cone of semi-dianeters a and b

$A=$ Here $b / a \overline{2}$ constant, say c; $S=\pi(a+b)=\pi(1+c) a ;$ $=\pi a b=\pi a^{2} ;$ di $=2 \pi c a$ da.

Then $S d L / d A=\frac{l+c}{2 c} \frac{d L}{d a}=\frac{a+b}{2 b} \frac{d J}{d a}$ which is constant.
$d L / d a=I / \operatorname{Tan} \beta$ where $\beta$ is the half-angle at tho apex in the plane of the major semi-diameter.
13.1.4) Thus as quoted in the text for this case (and for that below in 13.1.4)

$$
\begin{equation*}
a=\frac{\gamma f(a+b)}{4 b \operatorname{Tan} \beta} \tag{39}
\end{equation*}
$$

### 13.1.4 Right rectangular pyramad of sides $2 a$ and $2 b$

Here $b / a=$ constant, say $c ; S=4(a+b)=4(1+c) a ;$
$A=4 a b=4 c a^{2} ; d A=8 \mathrm{cada}$
Then $S d L / \partial A=\frac{1+c}{2 c} \frac{\partial L}{d a}=\frac{a+b}{2 b} \frac{d L}{d a}$ which is constant.
$d L / d a=1 / T a n \beta$ where $\beta$ is the half-angle at the apex to the bisector of the lesser side. a is gaven in eqn. (39).
13.2 For cases other than the foregoing it is unlikely that a will remain constant over the whole length of the duct. Then the duct length must be broken down into short lengths for each of which it must then be assuncd that a will remain constant.

Then for any one of these sections
where $S_{m}$ is the mean perimeter of the section
$\delta \mathrm{L}$ is the length of the short section
$\delta A$ is the change in cross-sectional area over the short sectinn considered.
13.3 In all cases $\delta \Lambda$ or $\alpha 1$, hence $\beta$ and Tan $\beta$, hence $\alpha$, will be negative for convergent ducts and positive for divergent ducts.

## APPPENDIX V

14.0 Example of a calculation for convergent-divergent ducting

### 14.1 Problem

Find the thrust given by a jet engine at its design point when fitted with a convergent-divergent nozzle: altitude $36,000 \mathrm{ft}$., filght Mach number 1.4. At entry to the nozzle the flow conditions are $\mathrm{T}_{\mathrm{t}}=$ $1087.5^{\circ} \mathrm{K} . \quad \mathrm{q}=0.02092 ; \mathrm{P}_{\mathrm{t}}=23.075 ; \mathrm{M}_{1}=0.45$. issume for the nozzle design conical ducting for both convergent and divergent portions of the nozzle, $\beta=-7^{1} / 2^{\circ}$ for the former and $+7^{1} / 2^{\circ}$ for the latter. $f=0.005$. i tmospheric pressure, $\mathrm{Pa}=$ 3.283. Aircraft Velocity, $\mathrm{v}_{\Lambda}=1355.6 . \mathrm{Q}=77.65$.

### 14.2 Solution

Using $\gamma$ roughly as 1.35 with $M_{I}=0.4 .5$, Fig. 3 gives for entry conditions $\delta T_{t I} / T_{t}=0.034$ 2.e. $\delta T=37 . T_{m}=1069 . \mathrm{K}_{\mathrm{p}}=0.2852$. $K_{V}=0.2166 r=1.317$.

Using $r=1.317$ and $M_{1}=0.45$, Fig. 1 gives $\frac{Q / T_{t}}{\Lambda P_{t 1}}=0.2665$ whence $\Lambda_{1}=2.892$. Fig. 2 gives $P_{t I} / P_{1}=1.1411$ whence $P_{I}=20.22$

4 value of $\gamma$ is now required to cover the whole expansion from total head inlet conditions to static conditions at exit from the divergent portion where $P_{a}=$ 3.283. The pressure ratio over the whole expansion is thus $23.075 / 3.283=7.03$. Using $\eta_{\infty}=100$ per cent and $T_{t}=1087.5$ Fig. 4 gives $\mathbb{T}_{2}=665$ approx.
(N.B. If desired an efficiency can be applied to thas calculation without much effect on the value of $\gamma$ obtained).
Then $T_{m}=\frac{1}{2}(1087.5+665)=876 . K_{p}=0.2752 . \mathrm{K}_{\mathrm{v}}=0.2066$ $r=1.333$.

For the convergent portion $a=-\frac{1.333 \times 0.005}{2 \times 0.1317}=-0.0253$
Use of a pair of subsonic graphs (for $\gamma=1.30$ and 1.35) gives the following table using III $=0.45$ and $a=-0.0253$ :

| Fig. | 5 | 6 | Diff. |  | Diff. |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $\gamma$ | 1.30 | 1.35 | 0.05 | 1.333 | 0.033 |
| $\Lambda_{1} / \Lambda_{C}$ | 1.454 | 1.448 | -0.006 | 1.450 | -0.004 |
| $P_{1} / P_{0}$ | 1.614 | 1.634 | 0.020 | 1.627 | 0.013 |
| Then $A_{C}=$ | $2.892 / 1.450=1.995$ |  |  |  |  |
| $P_{C}=$ | $20.22 / 1.627=12.43$ |  |  |  |  |

### 14.2.2 Design of the divergent portion

The pressure. ratio over this portion 1 si $\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{2}=12.43 / 3.283=$
3.785. $a=+0.025 \overline{3}$ with $\gamma$ remining at 1.333 and again use a pair of supersonic graphs (for $\gamma=1.30$ and 1.35 ) gaves the following Table using $\mathrm{P}_{\mathrm{c}} / \mathrm{F}_{2}$ and $a$ :

| Fig. | 12 | 13 | Diff. |  | Diff. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\gamma$ | 1.30 | 1.35 | 0.05 | 1.333 | 0.033 |
| $M_{2}$ | 1.918 | 1.918 | 0 | 1.918 | 0 |
| $\mathrm{~A}_{2} / \mathrm{A}_{c}$ | 1.697 | 1.668 | -0.029 | 1.678 | -0.019 |

Then $M_{2}=1.918$ and $A_{2}=1.995 \times 1.678=3.345$
Fig. 3 gives $\delta T_{2} / \Gamma_{t}=0.379$ i.e. $\delta T_{2}=412$
$\mathrm{V}_{2}{ }^{2}=2 \mathrm{gJ} \times 0.2752 \times 412=10.23 \times 10^{6} \cdot \mathrm{~V}_{2}=3200$
14.2.3 Thrust of the nozzle

Net thrust $=\frac{77.65}{6}(3200-1355.6)=4450 \mathrm{lb}$.

## ATPENDIX VI

### 15.0 The lach number of flow in the throat for maximum mass flow

If the known conditions of the flow at entry are suffixed "l", and those at any subsequent section carry no suffix, the changes in condition are covered by the following equations:

Combination of eqns. (34) and (43) gives

$$
\begin{equation*}
\frac{P}{P_{1}}=\left(\frac{1-a M^{2}}{1-a i_{1}^{2}}\right)^{\frac{1-a}{\gamma-1+2 a}}\left\{\frac{2+(\gamma-1) M_{1}^{2}}{2+(\gamma-1) M^{2}}\right\}^{\frac{\gamma+a}{\gamma-1+2 a}} \text {. } \tag{46}
\end{equation*}
$$

For the two static pressures there are two total head pressures to correspond, $P_{t l}$ and $P_{t}$ rospectavely, related to $P_{1}$ and $P$ by eqn. (2) whence
$\frac{P_{t}}{P_{t 1}}=\left(\frac{1-a M^{2}}{1-a M_{1}^{2}}\right)^{\frac{1-\alpha}{\gamma-1+2 a}}\left\{\frac{2+(\gamma-1) M_{2}^{2}}{2+(\gamma-1) M_{1}^{2}}\right\}^{\frac{a(\gamma+1)}{(\gamma-1)(\gamma-1+2 a)}}$
The mass flow eqn. (1) then becomes
$\frac{Q}{A P_{t I}} \sqrt{\frac{\mathrm{RI}_{t}}{g r}}=\frac{\mathrm{P}_{t}}{\mathrm{P}_{\mathrm{tI}}} \frac{Q}{A P_{t}} \sqrt{\frac{\mathrm{RT}_{t}}{\mathrm{gr}}}$
$=M\left(\frac{1-a M^{2}}{1-a M_{1}^{2}}\right)^{\frac{1-a}{\gamma-1+2 \alpha}}\left\{\frac{2+(\gamma-1) M^{2}}{2+(\gamma-1) M_{1}^{2}}\right\}^{\frac{a(\gamma+1)}{(\gamma-1)(\gamma-1+2 a)}}\left\{\frac{2}{2+(\gamma-1) M^{2}}\right\}^{\frac{\gamma+1}{2(\gamma-1)}}$
or, collecting all the constant quantities with $Q / \Lambda$ on the left-hand side

$$
\begin{aligned}
& \left(1-a M_{1}^{2}\right)^{\frac{1-a}{\gamma-1+2 a}}\left\{2+(\gamma-1) M_{1}^{2}\right\}^{\frac{a(\gamma+1)}{(\gamma-1)(\gamma-1+2 a)}-\frac{\gamma+1}{2(\gamma-1)}} 2^{\frac{Q}{\overline{A P}}+\sqrt{\frac{R T t}{g \gamma}}} \\
& =\frac{M\left(1-a M^{2}\right)^{\frac{1-\alpha}{\gamma^{-1+2 a}}}}{\left\{2+(\gamma-1) M^{2}\right\}^{\left.\frac{\gamma+1}{2(\gamma-1+2 a}\right)}}
\end{aligned}
$$

Then for a given mass flow ?, the duct area A becomes a minumum when $Q / A$ is a maximum i.e. when the right-hand side of eqn. (45) is a maximum, i.e. when

$$
\frac{d}{d M} \frac{M\left(1-\alpha M^{2}\right)^{\frac{1-\alpha}{\gamma-1+2 \alpha}}}{\left\{2+(\gamma-1) M^{2}\right\}^{\left.\frac{\gamma+1}{2(\gamma-1+2 a}\right)}}=0
$$

$$
\text { 2.e. } \frac{d}{d u} \frac{u v}{w}=0
$$

or in its most convenient. form

$$
\begin{gather*}
\frac{v}{w}\left(1+\frac{u}{v} \frac{d v}{d u}-\frac{u}{w} \frac{d v}{d u}\right)=0 \\
\text { or } 1+\frac{u}{v} \frac{d v}{d u}-\frac{u}{w} \frac{d w}{d u}=0 \\
\text { i.e. } 1-\frac{2 a(1-a) M^{2}}{(1-a N M)(\gamma-1+2 a)}-\frac{(\gamma-1)(\gamma+1) M^{2}}{(r-1+2 a)\{2+(r-1) M\}}=0
\end{gather*}
$$

the solution of which is $M=1$.

## FPFFNDIX VII

### 15.0 The temperature-entropy diagram for duct flow

The basic equation for the friction work is

$$
\begin{equation*}
d F=g J T a \emptyset \text { in absolute units } \tag{50}
\end{equation*}
$$

Written in the same units eqn. (8) of section 4.0 becomes

$$
\begin{equation*}
d F=\frac{f V^{2} d L}{2 h}=-V d V-g v d P \tag{51}
\end{equation*}
$$

### 15.1 Constant area ducting

Using eqns. (12), (16), (20), and (10), with (50) and (51)

$$
\begin{equation*}
d \varnothing=K_{V} \frac{\partial T}{T}-\frac{K_{p}-K_{V}}{2} \frac{d T}{T_{t}-T} \tag{52}
\end{equation*}
$$

which may be rewritten

$$
\begin{equation*}
\frac{\partial T}{\partial \emptyset}=\frac{T}{K_{V}} \frac{I-T / T_{t}}{1-T / T_{C}} \tag{53}
\end{equation*}
$$

Further, integration of eqn. (52) gives

$$
\begin{equation*}
\phi_{2}-\phi_{1}=K_{V}\left(\log _{e} \frac{T_{2}}{T_{1}}-\frac{\gamma-1}{2} \log _{e} \frac{T_{t}-T_{1}}{T_{t}-T_{2}}\right) \tag{54}
\end{equation*}
$$

for the entropy change.
It is to be noted that this reaches a maximum (from eqn. (53)) when $T=T_{C}$.

The interpretation of this result is that with subsonic fiow at the entry to a plpe, provided the pipe is of sufficient length, the leaving velocity will have a mach number of unity and this cannot be excecded. Also with supersonic flow at the entry to a pipe, again provided the pipe is of sufficlent length, the leaving velocity will again have a Mach number of unity and no further diffusion can take place.

Eqn. (53) shows that the $T \varnothing$ curve representing subsonic expansion in a pipe has negative slope at the start, this slope becoming steeper until at $T=T_{c}$ It is running vertically. Similarly the $T \varnothing$ curve representing supersonic diffusion in a pipe has positive slope at the start, this slope becoming steeper until at $T=T_{c}$ it is runnang vertically.
15.2 Convergent and divergent ducting

Using eqns. (12), (24), and (36) with (50) and (51)

$$
\begin{equation*}
d \varnothing=-\frac{4 K_{v a}(T t-T)\left(1-M^{2}\right) d M}{M\left(1-a M^{2}\right)\left\{2+(\gamma-1) M^{2}\right\}} \tag{55}
\end{equation*}
$$

But $\quad M_{2}=\frac{2\left(T_{t}-T\right)}{(\gamma-1) T}$ and $M a M=-\frac{T_{t} d T}{(Y-1) T^{2}}$
whence eqn. (55) becomes

$$
\begin{align*}
& \mathrm{d} \varnothing=\frac{\mathrm{K}_{\mathrm{v}} a\left\{(\gamma+1) T-2 T_{t}\right\} d T}{T\left\{(\gamma-1+2 a) T-2 a T_{t}\right\}}  \tag{56}\\
& \frac{d T}{d \ddot{\varphi}}=\frac{T}{K_{v} a} \frac{(\gamma-1+2 a) T-2 a T_{t}}{(\gamma+1) T-2 T_{t}} \tag{57}
\end{align*}
$$

Three cases may be examined

$$
\text { 15.2.1 When } T=T_{t} \text { (a purely hypothetical case) 1.e. at }
$$

the start of an expansion from, or at the end of a diffusion to total head conditions,

$$
\begin{equation*}
\frac{d T}{d \varnothing}=\frac{T_{t}}{\bar{K}_{v} a} \tag{58}
\end{equation*}
$$

Thus for a subsonic expansion in a convergent duct ( $a-$ we) the slope of the $T \varnothing$ curve would be - ve, whilst for a subsonic diffusion in a divergent duct ( $a+v e$ ) the slope would be + we.

Between this case and the next the slope would become steeper.

$$
\begin{array}{ll}
\text { 15.2.2 When } T=T_{C} \\
\frac{d T}{d \varnothing}=\infty & \cdots \cdots \tag{59}
\end{array}
$$

ie. for both expansion and diffusion the $\Gamma \varnothing$ curve would run vertically.
Between this case and the next the slope of the curve would become less steep accompanied of course by increasing entropy.
15.2.3 When $T=0$ (a purely hypothetical case) ie. at the end of an expansion to, or at the commencement of a diffusion from limiting conditions,

$$
\begin{equation*}
\frac{\partial T}{\partial D}=0 \tag{60}
\end{equation*}
$$

1.e. both curves run horizontally.
15.2.4 The entropy change between any two planes of flow 1 and 2 during expansion or diffusion is obtained by integration of eqn. (56) as
$\phi_{2}-\varnothing_{1}=K_{v}\left\{\log _{e} \frac{T_{2}}{T_{1}}-\frac{(1-\alpha)(\gamma-1)}{\gamma-1+2 a} \log _{e} \frac{(\gamma-1+2 a) T_{2}-2 a T_{t}}{(\gamma-1+2 a) T_{1}-2 a T_{t}}\right\}$


15:2.5 The generainshapes of the change lines on the tompurature-entropy diagram may etched from the information of eqns. (58), (59), and (60).

These curves are shown in Fig. 20, above for an expansion, and below for a diffusion.

In Fig $20 A$ a shockless expansion from subsonic conditions at 1 to supersonic conditions at 2 is shrwn on the general curve, the friction energy or heat of the two portions of this expansion, before and aftor the critical point $c$, being represented by the two areas $\phi_{1} l C \phi_{c}$ and $\varnothing_{c} C 2 \phi_{2}$ respectively. The general curve extends from the total head conditions at $t$, referred to in eqn. (58) and Section 15.2.1 above, to fully expanded conditions at 0 , referred to in eqn. (60) and Section 15.2.3 above, and passing through the critzcal point $C$ referred to in eqn. (59) and Section 15.2.2 above

In Fig. 20B a shockless diffusion from supersonic condrtions at 3 to subsonic conditions at 4 is shown on the general curve, the friction energy or heat of the two portions of thas dirfusion, before and after the critical point $c$, beang represented by the two areas $\phi_{3} 3 c \varnothing_{c}$ and $\phi_{c} C_{4} \phi_{4}$ respectively. The general curve extends from zero pressure conditions at 0 , referred to in eqn. (60) and Section 15.2 .3 above, to fully diffused total head conditions at $t$, referred to in eqn. (58) and section 15.2.1 above, and passing through the critical point $C$, referred to in eqn. (59) and Section 15.2.2 above.

FLOW IN PIPES : SWALLOWING CAPACITY ACAINST MACH NUMBER.
FIG.I.
$\begin{aligned} & A=\text { AREA OFCROSS SECTION }\left(A P_{ \pm}=\angle B .\right) \\ & R=J\left(C_{A}-C_{V}\right)=96 \quad M=M A C H \text { NO. }\end{aligned}$
$y=$ MEAN VALUE BETWEEN T\& AND 7 TO SIMPLIFY THE FORMULA.

Mach No. of FLOW: $M$



FLOW IN DUCTS : TEMPERATURE DROP AND MACH NUMBER.
$\delta T / T_{t}=1 /\left\{1+2 /\left(\overline{\delta-1} M^{2}\right)\right\} \quad \begin{aligned} & \text { ST : TEMPERATURE DROP FFOM } \\ & \text { T TOTAL }\end{aligned}$
$T_{t}=$ TOTAL HEAD TEMPERATURE TO
$=(\gamma-1) /(\gamma+1)$ AT $M=1 . \quad \begin{aligned} T & =\text { STATIC TEMPERATURE OF STREAM }\end{aligned}$
$M$
$Y$
$=$ MEAN VALUE BETWEEN $T_{t}$ AND $T$
$=$ TRUE VALUE AT $T_{m}=\frac{1}{2}\left(T_{t}+T\right)=T_{t}-\frac{1}{2} \delta T$, WITHOUT MUCH EARROR.


Mach No. : M.


 $M=M A C H$ NO. OF FLOW at SECTION CONSIDERED $Y=$ MEAN VALUE BETWEEN TA AND T TO SIMFLIFY THE FORMULAE



FLOW IN PIPES : LENGTH, MACH NO., AND PRESSURE RATIO.
Ind Enlargement. See formulae on Sk 2840



[^0]
## SUBSONIC FLOW IN CONVERGENT AND DIVERGENT DUCTS WITH FRICTION.

A, $P$, AND $M=A R E A$, PRESSURE (STATIC), AND MACH NO. AT THE SECTION UNDER CONSIDERATION
[ $S_{m}$ = MEAN PERIMETER $\alpha=y f / 2$ TAN $\beta$ WHERE $f=$ FRICTION COEFFICIENT AND TAN $\beta=\operatorname{dA} / \mathrm{S} d L=\delta_{A} / S_{m} \delta L$ WHERE SA AND KL = CHANGE IN AREA AND LENGTH AND $\ddagger$ OR, IN THE SPECIAL CASE OF A DUCT OF CIRCULAR CROSS -SECTION, $\beta=$ CONE HALF-ANGLE $\alpha$ IS +VEFOR DIVERGENTS AND -VF FOR CONVERGENTS.


USE EACH SET OF CURVES WITH its appropriate pair of scales.

SUBSONIC FLOW IN CONVERGENT AND DIVERGENT DUCTS WITH FRICTION.
A, P, AND M = AREA, PRESSURE (STATIC), AND MACH NO. AT THE SECTION UNDER CONSIDERATION
[ $S_{m}=$ MEAN PERIMETER $\alpha_{c}=y f / 2$ TAN $\beta$ WHERE $f=$ FRICTION COEFFICIENT AND TAN $\beta=d A / S d L$. SA/Sm SL WHERE SA AND SL = CHANGE IN AREA AND LENGTH AND OR IN THE SPECIAL CASE OF A DUCT OF CIRCULAR CROSS-SECTION B = CONE HALF-ANGLE $\alpha$ IS +VE FOR: DIVERGENTS AND -VE FOR CONVERGENTS.


USE EACH SET OF CURVES WITH ITS APPROPRLATE PAII OF SCALES.

## SUBSONIC FLOW IN CONVERGENT AND DIVERGENT DUCTS WITH FRICTION.

FOR EXPLANATION SEE 1ST. GRAPH. $\alpha$ IS +VE FOR DIVERGENTS AND -VE FOR CONVERGENTS.


SUBSONIC FLOW IN CONVERGENT AND DIVERGENT DUCTS WITH FRICTION. FIG.I2.
FOR EXPLANATION SEE IST.GRAPH. $\alpha$ IS +VE FOR DIVERGENTS AND|-VE FOR CONVERGENTS


USE EACH SET OF CURVES WITH ITS APPROPRIATE PAIR OF SCALES.

FOR EXPLANATION SEE IST GRAPH $\alpha$ IS +VE FOR DIVERGENTS AND -VE FOR CONVERGENTIS.


## SUPERSONIC FLOW IN CONVERGENT AND DIVERGENT DUCTS WIIH FRICIION.





FOR EXPLANATION SEE IST. GRAPH. $\alpha$ IS +VE FOR DIVERGENTS AND -VE FOR CONVERGENTS.



FOR EXPLANATION SEE IST GRAPH. $\alpha$ IS +VE FOR DIVERGENTS AND -VE FOR CONVERGENTS.

## $y=1 \cdot 40$




FIG 20.

FIG. ZOA: T $\varnothing$ DIAGRAM FOR AN EXPANSION (SHOCKLESS.)


FIG 2OB: $T \varnothing$ DIAGRAM FOR A DIFFUSION (SHOCKLESS.)

$$
\delta T_{v}=\frac{v^{2}}{2 g J C_{p}}
$$

NOT TO SCALE

TEMPERATURE - ENTROPY DIAGRAMS FOR FLOW IN DUCTING WITH FRICTION.

## CROWN COPYRIGHT RESERVED

## PRiNTED AND PUBLLSHED by her maresty's stationery offich

To be purchased from
York House, Kingsway, london, w.c. 2423 Oxford Street, london, w. 1
P O. Box 569, LONDON, s.E. 1
13a Castle Street, binaurgh, 2 - 1 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1954
Price 5 s od net
printed in orbat pritain


[^0]:    USE EACH SET OF CURVES WITH ITS APPROPRIATE PAIR OF SCALES.

