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In order to estmate the destab.bllxmg effect of the waves likely 
to be encountered on wmg surfaces whwh wxllbe used with boundary layer 
suction, calculations have been made of the effect of small sxwoldal 
surface waves on the stablllty of the asymptotic suction proflle. Curves 
are presented of the percentage increases m local suction flow 2 
necegsary to mamtain the stablllty of the boundary layer at the Le s 
level as on a completely flat surface, for varwus values of the variables 
Vs F , helght:wavelength ratm L and Reynolds number based on wavelength, 

UL 
7’ These should provide quantltatlve estimates for more general cases. 
It 1s found, as might have been expected, that the lower "$ or the 
larger h , 
espeolal y for low u . 4 

the larger the necessary percentage mcrease 111 % , 
ULI 10 per cent 1s a typical magm.tude for the 

necessary increase at a hq$Reynolds nmber. 
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1 Introduction 

The minimum suction quentlties required to preserve lennnar flow 
in the boundary layer on an aerofoil are calculated from stability theory 
m. which It is assumed that the surface is aerodynamically clean. HoWever 
it has not yet been possible to obtain a porous surface entirely satisfying 
this conation, and it seems probable that under production end flight 
conditions the presence of shallow longitudinal waves and of smell 
excrescences mill be unavoidable. Such surface imperfections are known 
to have a destabilising effect on -the boundary layer, and it is important 
to have some estimate of the penalty in increased suction which is likely 
to be associated with them. 

The effect of protuberances is discussed in a paper pesented to 
the E&mdary Layer Control Conunittee by P.R. C&en and X!ss Klsnfer', and 
the present paper contains calculations of the effect of surface waviness. 
To avoid mathematical complexity we consider the hypothetical case of 
flow over a sinusoidal surface of height y = h cos L , with suction 27tx 

conditions asymptotic in the sense that the boundary layer thickness and 
shape is the same at corresponding points in successive waves. If the 

height : wavelength ratio g were large enough such conditions would be 

impossible, but for practical values of r , of the order of 10 , a h -3 

linearised solution may be obtained by excluding squares of L . The 
0 
1? 

pIX!CeSS is thus justifiable a posteriori. The method and results are 
outlined in the man part of the paper, the mathematical details being 
given in the Appendices. 

A possible objection to the applicability of the results is that 
aAqmptoti2 conditions are not to be expected on a wing because less 
suction is required for stability than is necessary to produce them, and 
because the boundary layer increases in thickness under the influence of 
pressure gradients. However the calculations have been designed to show 
the peroentage increase in suction necess‘zry when waves are present to 
preserve the stability of the worst profile which occurs at the same 
level as for an aerodynemxcally flat surface; and it may be conjectured 
that this percentage is relatively independent of the basic profile shape. 
In general different relative increases in suction will be necessary at 
different chordwise points, since the increase required depends on the 
amount already used, which follows a definite chordwise distribution 
(increasing considerably when the adverse pressure gradient is reached). 

2 Stability theory for parallel flows 

The mathematical theory of stability as developed by Lin* and others 
relates to parallel flows with non-dimensional velocity profiles 2 u (Y), a-d 
considers the variation in the x-direction of the energy of disturbances 
with wave nwibers e [= 2&avelength]. For eaoh profile there is a neutral 
stability curve in the (a, Rh,) plane. Disturbances whose coordinates lie 
within the curve till be amplified and lead eve~tudly to transition; all 
others will be damped. The curve is typically of the shape shown in Fig.1. 
The lower branch tends asymptoticelly to a = 0 as R& -tm;the upper may 
tend to 0 or to a Sinite value, depending on the profile shape. 

The m&mum Reynolds number below which all disturbances are aamped 
iskncwnas (R6~~)critxal* A measure of the instability of a particular 
Profile shape at a given Reynolds number is provided by the area included 
between its neutral stability cwve and the ordinate IJI question - e.g. by 
the shaded area in the diagram 
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Parallel flow 1s of course never achieved with a solid boundary, 
but It 1s customary to calculate the neutral stablllty curve of a profIle 
as the curve It would have m parallel flow, ~wce the rate of growth or 
decay of a dxturbance 1s consx3erably larger t.han that of the boundary 
layer. Sunllarly the influences of pressure gradlent. and suctron on 
stablllty are calculated purely 1x1 terms of their effect on profile shape. 

Suction quantltxs for malntalnlng lamuar flow are calculated from 
the condltlon tkt R8* shmld be not greater than (RS&)orlt at any 
pout. Thx condltron IS sufficient, but by no n!eans necessary, since 
even rf It 15 not fulfilled no dxtwbances In the wave number range 
capable of ampllfxatlon maybe present in the boundary layer. A 
convenient measure of the extent to whxh the requirement 1s met 13 

provtied by tkx? ratlo I&; = P (say). T!le present calculations have 

been designed to find out how much the local suction flow 1: must be 
rncreased when the surface contau% waves of a given hex&t and mavelength, 
in order to malntaln fi at tk same value (2 I) as It would have If there 
were no waves present. These results should be quantltatlvely comparable 
to those ,nihlch wxld be obtamed lr It were posslbk to deal with flow 
under more general condltlons than the asymptotx. 

3 out11ne of calculations 

The effect of waves xn the surface 1s to produce a perlodrc varlatxn 
of the same wavelength in the velocity at the edge of the boundary layer 
and 1x1 the velocity proflle shape. In general there 1s found tc be a 
phase shxft ln the proflle shape, different at different dlstanoes from 
the wall. The basic velocity profz~le IS tk asymptotx proflle 

u=U(l-e -V,Y/V 
1 (1) 

or, wrltlng y' for F and u' for G , the non-dlmenslonal profile 

The effect of waves 1s to alter the profile shape in a way &uch may be 
represented by the equatlcn 

u’=l-e -y' + k A F(y')e 2.x1X/L 
(2) 

Here the (complex) functxon F(y) represents a perturbation to the velocity 
proflle, which vanishes at y = 0, m . Usmg the equations of mctron and 
continuity, and the boundary layer momentum equation, F(y) may be calculated 
in the form 

E' = es' (1 + zy+ 2 $+ . ..) 

vrhsre Y = cry ) u' bexng an arbxtrary constant chosen to gl& rapid 
convergence. The ooefflclents in the resulting serle.s depend only on 
tk non-dlmensuxal varmble 

& UL 
u r- - = h (say) 

\ 2w (4) 
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The analysis 1s carried out ln detail m Appendix I. It is shown there 
that the ma@itude of the perturbation function F increases as A. 
decreases, so that in general the shorter the wavelength or the lower 
the suction velocity for a f'lxed i , the more a wave on the surface 
disturbs the profile shape. 

The displace!wnt and momentur! thicknesses 6' and 0 and the 
form parameter H =‘$ maybe calculated from the vel&ty profile (2), 
and are periodic about the mean vaLucs I, $ and 2 respectively. In 
Fig.2 examples are shown of the velocity profiles at different points on 
a wavelength, together with the variation of H,B and the (non-dunensional) 
velocity U, at tbz edge of the boundary layer, for the values *X = 1, 
h = 0.125 and h = 10~-3/2 = 0.03162. [The valu3 of ao = Z$? has been 
chosen in each case to give an appreciable variation in profile shape; 
for h = I this requires a0 = 0.1, which is much larger than the 
practical values anticipated.] 

Ths profile with lowest (R6+)orit in a wavelength IS that for 
which H is greatest. (Rg+)crlt corresponding to this profile has been 
calculated as a function of h and !? , using the fact that (R ) S* cr 
for a range of profile shapes invest&ted by several authors has been 
found3 to be a single function of H. Tbxs applicability of this result 
for a profile of the present family has been tested and found satisfactory. 
[Append= II]. 

l?or the profiles consIdered R 6u has to the first order its value 

for the asymptotic profile, namely u. 
ys 

Thus 

For the asymptotic profile (RS*)crlt = 4 x I&. Thus the condition of 
keeping fi the same #hsn there are'waves in the surface of length L and 
height h as when the surface is devoid of waves and the suction velocity 
is vs 0 ' may be written 

the range 6 x IO3 - 106, 

, and thus,for fixed $ and F , ' 
valueof $. corresponding 

against +Q, for four values of y in 
(6). The re&lts, 

In the curves shown $-a- as 
Vs t vs 
o,+O. The value of - is 

0 u v% 
however rather meaningless under these conditions; vs itself still has 
a small finite value. If vs were plotted agaznst vs , the result would 
be a series of 1~~s of slope approximately 1, with mn?ercepts on the vs 
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ans determined by h, and tending to 1 as h tends to 0. The c-s 

for +3 x 105 drkl III thu my are shownLFlg.3(e). 

4 N~rlcal example 

Curva'cxe gauge readings obtained by D. Johnson on the wing of a 
production Vampire, and by Dr. Lachmann4 on the wxnd t-lmodel of the 
sleeve for the Handley Page experments suggest ttit -the xreduclble 
minimum of h 1s approximately 10m3. The surfaces In both cases are by 
no means pu& smuso~dal, although such a shape might well be produced 
by stringers at regular chordwIse Intervals. A harmcnx analysis of tk 
surface shape would strictly be necessary to find the wavelengths and 
then heights ln the form assumed In the analysis. 

As an example, conzlder an axrcraft orusing at 350 knots at 
$f,OOO feet, and a part of the VW where the local suction flow 
0 = 0.0014. The Reynolds nwnber per inch is Id. For a wave 3 inches 
lkg and 3/~000 xnch high + = 3 x 16, 2 = IO-', and the requxed 
mcrease - “S 1.3 1.07, 1.e. 7$ more suction is requrred to marntaln 

vSO 
the saxe stabxllty at tix worst point In the profile as m the absence 
of waves. With thus lncnase, tine profile ~~11 actually be more stable 
than before at all other points. On the other hand, for a wave IO xi&es 

long and '/lo0 Inch high, - = IO6 whhlle 2 UL 1s St111 10-3, but less than 
1% Increase In suction 1s Gcessary. Thus the longer thz wave, the 
smaller the necessary mncrease. 

Conversely If TJ "so 
xs smaller, a larger percentage increase 1s 

needed for waves of the same length and height. Thus with the above data, 

suppose vQg= 0.0007. For waves 3 lnohes long $- = 1.15, and for waves 
u 

3 = 1.07. 0 

IO Inches long 
"SC 

5 Dlscusslop 

The results should provide an upper llmlt for tiE percentage 
increase m suction necessary to preserve stability over a wavy surface. 
In fact with the calculated Increase In suctron the proflle wxll actually 
by conslderably more stable than for the flat surface at all pornts in a 
wavelength except the most unfavourable. A typIca value for the lllcrease 
would be of the order of IO per cent. However the llmlt depends on the 
partxxxlar level of stablllty chosen in cnlculatmg the suction necesssxy 
wltho ut surface waves, as well as on the variables already mentioned. It 
might be expected that rather smaller Increases In suction than ths lunlt 
would be sufflcler3 to counteract the effect of waves, sUce regions of 
rxlng and falling pressure alternate along the surface. When the pressure 
is falling a disturbance wlllbe damped conslderably more than at the most 
"unfavourable" point In a wavelength, for which the calculations have been 
made. Attentxon might be drawn to Pretsch's5 interesting explanation, for 
boundary layers wIthout suction, of the fact tMt Increase of Reynolds 
number can lead to transItloon suddenly ~umplng forward a whole wave length. 
Disturbances In the wavelength ahoad of that In which transztlon took place 
at the lower Reynolds number, crhlcn were lnsufflclently amplrfied for 
transltlon m the adverse gradlent, and subsequently damped In the favcur- 
able gradlent, are at a higher Reynolds number sufflclently smplifled in 
the adverse gradlent. This could also apply to flow with mnsufficient 
suotlon to preserve a stable proflle at all points 1.n a wavelength. 

\ 
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The fact that waves on the sirface, by disturbing the velocity 
profile in a periodic manner, themselves provxle a potential instability, 
has not been considered in these calculations, since It is assumed that 
sufficient suction ~111 be applied to damp out all oscillations whatever 
their source. Thus the results obtalned are fundamentally different from 
those of Fage6, which express the m~ax~mum permissible wave height in 
terms of the length of lamlnar fXoTTr before transition, and Reynolds number, 
on an aerofoll without suction. in Fag?' s case the waves themselves are 
responsible for the Instability. 

v 
The behaviour of the boundary layer in the limit when $ = 0 is 

not given by these calculations, since asymptotic conditions cannot then 
occur. In fact Quick and Schroder7 have shown that separationwlll occur 
fairly rapidly for vraves of sufficient 'size' k . 

In contrast to the effect of surface ~otubersnces', which becomes 
more serious as suction is Increased, It I.S seen that the destabilising 
effect of surface 'rraves ~3 alleviated by Increased suctlon. Presumably 
for a surface not completely clean aerodynamically, and contaxnmng waves, 
a compromise must be found be+xrsen the ti,o requirements. There 1s also 
the psslbllity of a resonance effect between the perzodlcity of the 
pofile and of the surface itself, for 'iavc numbers near the crltxal. 
Some calclitations of the suction qwirtitws for irhlch this might occur are 
given in Appendix III. 
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APPJ3NDMI 

Calculation of Velocltg ProfIles on a 
Wavy Surface with As.ymptotlc SudiOn 

Consuler the boundary layer flow over a wavy surface, with free 
stream velocity U at infknty and U, at the edge of the boundary 

2F.x 
layer. The height of the surface 1s gIvenby y = h cos - , 
h. ( ) 

where 
L 

E 1s small and its square negllglble. 

The equations of motion and of momentum are respectively 

a au $+ (H+2) U, -&= + 
au 

0 
VS 

dy,-iiy' (2) 
Ul 

where H+ 

If non-dz.menslons.1 variables defined by 

u1 = u s 27cc VY ve 
u ) v'=vs, x'=y , Y - " l--H, ,t=s 

Y 

are mtmduced, the equations maybe wrl'cten 

u’ au’. 
2 

0 
2 UL auf _ au,’ 

“s UL ii& 

ax’ u =Qi-ui dx’+ 
(7 U zEdy'2 

(3) 

(4) 

0’ a;, 
s+ (H+2) - 

u1 
tm- -(g ~[-+(&y&q] (5) 

Dropping the primes, end introducing the non-dimensional parameter 

(6) 
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the equations are 

(7) 

z+ (H+ 2) (8) 

With boundary condltlons u = & = 0, v = -1, at y = 0, ws.ves on 

the surface vslll produce a fluotuatlon 1X-I the velocity at the edge of 
the boundary layer so that 

u, = I + +p = I + A, , say 

(We work throughout with complex quantities, of which only the real 
parts are relevant). 

where a0 
h 18 of the order of - . L 

A reasonable form for the velocity 
proflle is then 

!J = 1 - ,-y + a0 elx - e-’ (a0 + a,Y t a2 $ + . ..) elx 

=1-e Y2 -y+ & - .-y (A, + AIY + A2 z+ . ..). (11) 

where Y = ay and c 1s some suitably cbsen constant. A, = anelx and 
dA 
-$ aAn. Squares and products of the An 's wlllbe assumed negligible. 

This form may be made to satisfy any number of boundary condltlons at 
y = 0,b.e. at Y = 0), obtained by differentzating the equation of motion, 
and it automatically satlsfles the boundary layer equations at the outer 
edge. Thus by finding all the coefflclents of the infinite series, an 

yn -Y exact solution would be given, slnoe the functions -e 
n! 

form a complete 
set from 0 to=. 

F'racticalvalues of h maybe emall compared with 1, and with the 
obvious choice of c = 1, an 
x43 

It 1s found that the quantltres -increase as 
a0 

so that a very large nwlber of boundary conditions must be used 
to se;ure convergence of the series mbrackets. Apart from the numerical 
difficulties thus raised, bourdary conditions obtained by repeated 
differentlatlon with respect to y become inoreaslngly inaccurate because 
of the m&rent approximation in the boundary layer equataon. It 19, 
therefore, desirable to use as few terms as possible, and thus may best 
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be achreved by equatmg d to a negative power of h . The relatmn 

-'/3 a=?!. (12) 

has been chosen. 

Th? calculatmn ma proceeds as follows:- 

H-2 (1) The quantity T- 
I I 

1s calculated as a function of h by means 
Jw 

of the momentum equation and tk equatmn of mctlon. 

(11) J.~ u related to _h 
L 

by conslderlng the potential flow past a wavy 

wall. 

(~1) By means of the relationbetween H and (R a) found by Lm, 

%*)cr1t 1s calculated for a number of values of 
6 h cr&. 

described ~.n the main part of the report, 
(Section 34 1 -7 and 2 as 

(I) CQefflclents in velocity profIle 

For the profile (II), 

-Y q-u=" -'+ e [+ + A,Y+ . ..] 

m 

6 
*=L 

9 J 

(u, -  
u) dy = l-A/$ [A, + A1 + . ..] 

0 

m ca 

i 

u(u1 -  u) dy = 
Ul 0 

,-Y (I -e-y) - 2emySY[Ac+A,Y+ . ..I 

0 0 

7 + e-y [A, + A,Y + . . . ],dy , 

(excludmg squares and products of the k's), 

I.e. iJ=;+; c (1 - 2~~') A, , 

n=O 

o- 
where z=-; and 

1 +c 

H=$2 - 2Ac - 5 
c. 

(1 - 4z”+‘) An 

n=o 

(13) 

(14) 

(15) 

- 11 - 



By differentmtmg (11) and puttug y = Y = 0 , we obtam 

= (-QPd (16) 

I-0 

Dtiferentlatmg the equation of motion (7) with respect to y 
twice we obtam, on putting y = 0 and insertmg the boundary conditions, 

0 = A2 [($). + (,,I , (17) 

(18) 

If ti-e series expansion in (11) 1s tenmnated after the term III Y4, 
equativns (7), (a), (17) and (18) form four lmear equations suffuxent 
to determine Ac: A, : A2 : A3 : A4. 

Makmg use of (I@, together mth the fact that 

a du 
0 ax aYo = -& [I + u (A0 - A,)] = 16 (k, - AI) , 

the momentum equation, the equations of motion and the tm remammg 
equations become respectively 

ii 
u (1 - 2rTH' )An + 2iA, = A2 [&, - A,) - A,] (19) 

n=O 

-IA 0 =I? [o(Ao - A,) - c-2 (A0 - 211, + A2)] (20) 

16 (A, - A,) = x2[c3(A,-3Aj + 382' A3) 

- &A, - 4f1,+6A2-4Aj+A&)+ d&-$)1 
(22) 

- 12 - 



We now solve these equatmns approxmately for small values of X . 
The curve of R agaux~t h for the solutmn so obtamed ~111 later be 
JOlned on to the value for h = d = 1 , for which the equations are 
easily solved. Puttmg X2 = us6, (12), and excludmg 6-4 and higher 
powers m comparison with 1, the cqnatums become 

- la, + (-A+ $)a, + 5 a2 

(1 - $) a0 + (- 3 + $)a, + (3 - $)a2 - a3 -0 

(23) 

With the same degree of approxmatlon, the solution of these equations IS 

a0 
: -2 (.i _ zT5) + $ (-IO + 2.r’ + L+T~ + 62 + 8~~) . 

I 
=a , : g (IO - 2T3 - 6,4 _ ,2T5) + 1 (-6 + 2~~) + -$ (1 - 2~~) + 2 I 

2 u J I 

= a2 (IO + 2T2 - h4 - 166~) 

=a 3 : 2 (1 - 275) - 5 (1 - 275) + 1(6r2+ 6~~- u4 122) 

, 

=a 4 
: $ (-4 + 2T3 + 6~~) + d- (I - 2~~) + $ (-18 +12.t2+16r3 +?2~~)>] 

.2 u 

Substltutmg these values mto (151, we obtam for small A, 

(25) 



For h = 1 , the equatmns (IT) to (22) become particularly smple, 
mth the solution 

a0 : (-49+i)= a, : (32 +701) = a2 : (31+ 211)=a3 :(30-28i)= a4:(-40+4x) 

‘ (26) 

The value of y for this case and that for h = 0.4 are plotted I I 
in Flg.5, together with the curve obtamed from (25) for smaller values 

of h. 

The varmtlon of H along the surface 1, given by H=2+\H-2)e1(X+E), 
say, where c 1s some phase angle. The stability is least for the profile 
mth greatest H , so that m calculating the maxmum Reynolds number for 
stablllty at all points m a wave-length, It 1s sufflclent to use the 
curve of Flg.6 vlth 

H=2+ IH-21. 

(ii) Velocity fluctuation at mfinitg 

In this se&Ion It 1s more convenient to work wzth dimensional 
quantltles. 

The fled over thz wavy surface wlthboundary layer present maybe 
represented by the potential flow, mth uniform velocity at mfmlty over 
a surface of height 

y=?J+ 6' 9 

where in = he 2*L and 

6” = 5 )I - A, + ;(A, + A1 + A2 + A3 + A411 from (13) 
S 

= k 11 + A,AI , say, where A = O(l), 

= v 11 + a$e 
2mi/L 

vs 
I. 

The flow 1s calculated try xapresentmng the surface by a source 
distrlbutzon of magnitude 

[h + v$- a,A]. 

The velocity m the x drect~on at a pornt (x,, y,) 1s then 

[ 
u 25x1 h + A a,A]; 7 

- (x1 - x)e2e~Ldx 

vS J ' Y,L + (x, - "Y -m 

(27) 

(28) 

(29) 
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. 

Wrltlng t = x - x, , thxs may be wrItten 

To evaluate the mtegra1 consider 

m 
I= 

J 

.wt dt 
2 - Yq +t2 

-m 

(30) 

(311 

Thx. may be integrated round a semi-czu-cle of large radius R in 
the upper half plane. The contrlbutlon from the curved part 1s o(h). 
The only pole UBAS the senu-cucle 1s at t = iy,, where the EsCiue 
1s escIy1/21Yl . 

. . (32) 

d1 
ziY= 

- ?ce-pyl 

m 

= ltevtdt 
' I 

t2 + Yl 
2 * (33) 

Thus, 
‘ 

m 
te2nlt/L 

dt = e-2n~,/L 
-m -t2+ y;2 , -L 

and tk velocity due to the source dlstrrbutlon 1s 

Now let us chqose -y, .sc that ' 

(34) 

(35) 

(36) 

- 15- 



From Flg.6, for thrs value of H (Rg*)or,t = 1.1 X fCJ!+. IA's eqmtlon 
has two roots, 

yc, 
z 0.064 and Y C2 

= 0.293 

For these 

+I = 0.0296 , uc = 0.2071 
2 

The former of these corresponds to (R8*)orlt = 3.26 x IQ~, the latter 
to (Rg*)crit = 1.36 x Id;. It seems reasonable to treat the lower of 
there 2s the relevant; value On this basrs (Rg*)crlt 1s estunated to 
within 2% of Its correct value and 
means more, to mthxx 23. 

log,O (Rg*)crlt , a quantity whch 
Hrgher accuracy m stabllxty tkmory would be 

quite fortUltoUS. 

The slope and curvature parameters 

e2 a2, n=- - 
U ( > aY2 FO 

for the proflle are respectively 0.512, -0.674.. The value 0.674 for -m 
IS much larger than those of profiles mvestlgated by other authors, and 
It night at first seem surprx~ng that such good agreement wth the 

@,*)cr > HI curve 1s aohleved m this case. However the prwf0e 

curvature could be arbltrarrly changed In the neighbourhood of the 
orrgln quite sufflclently to bring m into the range of values usually 
considered, mth negligible changes 1n the value of H , and without 
affecting the outer root of Lm's equation at all. 

- 18 - 
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A2?PExDIx III -. 

Surface kves as a Source of DisWcbance . 

As is @r&d out in section 5, regular ~mves on the surface, or 
indeed any disccntinuit~es with vrhlch a Tz:avelength can be associated., 
prcv~Je disturbances Txhich could. be amplified under critical ccn&tions. 
The suction quantities calculated. ia the report are large enough to 
prevent these ccndit~cns ever arising, 1.e. Rho < (R6.+)crit always, but 
it is mteresting to compare the length of the surface waves discussed 
with that of the crltxal disturbance. 

For the asymptotic pofile, exact computation is stated 2.n 
Reference 3, Figure 21, to give the critical vmve nwlber 

a 
cr = 0.17 

Here 

Thus 

2 7165 
a =- 

CT 4 cr 

4 2nv 1 .- 
,cr =y 0.17 

And if the surface wave 1s of critical rravelength, ecr = L, 

12.3 61.7 

The calculatuxxs 'have not taken into account the po&bility of a resonarr,e 
between profile- and surface-disturbance at this &elength, but it mm 
seeIns Fcssible that some such effect may play a part in the transition 
caused by surfau excrescences. 

Wt.2078.CP161.~3. i'nnted %n Great Qr,tcm. - 19 - 
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FIG .3 (cad). 

FIG.3 (cad). EXTRA SUCTION REQUIRED FOR 

STAB ILITY ON A WAVY SURFACE. 
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