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C.P. NO. 165 

A theoretical note on effusion cmoled gas turbme blade3 

- by.- 

R. Stamforth 

Solutions of both dynamc and therm1 bmm3ary layer equatmns have 
been obtcmcd for tw di.mxs~onsl m&her&l inompresolble lazmnsr flow 
over sem-mflmte wedges for a range of w&e angles lnLi mJectlon qmmtl- 
ties. These solutlonn arc epplled to the cstmatwn of coolmg Cvr mJec- 
tlon velocity required by an cffusmn-xmled turbine blade, usmg an 

2y;:;:3 3 
thod end also a r&hod silnlar to that dascrlbea by Eokerd') 

tu be appllea Eo 
Proposals are @vcn enabling c-alculated isotherml results 
non-isotherml flow. 

In the turbulent rcgire, a workmg b,ypr&hesis 1s given enablmg the 
heat transfer coefficients ena required ovcling sir veluczty to be cdcu- 
late& though the method rust be regarded as tcntatlve. 

Detnlls of the application of the theory are g~vcn in the rain text 
whilst the full mthemdloal theory e.i-d wthods of sdutlon of the result- 
mg equations are given 111 the Appendxes. 

The above troatrrent 1s applies t,: the &xi@ of two effusion cooled 
nozzle gude vanes for a h@ temperature gas turbine. In these designs, 
the "msulatlng" effect of the mJccte:cl cooling tir is such as to reduce 
the coeffxxent of heat trnnsfer by abwt one-third as cumpareil with the 
internally 020iOa case. The designs ohvw the neer3 for a great varwtion 
of cooling 81~ inJcctlon vzloclty wth chwdwxse posltiDn, if -form cool- 
mg IS to be achieved. Tho theory given Ln this mr;xsndum cannot yet be 
checked by corr;paxlson with experxxnt, experxcntnl data not being avcul- 
able. 

hn abrdged version of this 
Dx.cuss~on on Heat Transfer (Lon&n 

*"Effusion cooling" has been tentdxvely &pted at N.G.T.E. for cooling by 
injection of gas through a permable wall: "sweat coolmg" is being 
restricteato the lnjcctlon of liquid through a permeable wall anil "lnjec- 
tion cooling" is being used es the generx term. 
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i .o Introduction 

Cecausa of the complex nature of the equatwns governing the boundary 
layer, it is impossible with our present knowledge to obtain a m&hem&i- 
tally exact solution to the aerodynarnc design problems of effusion cooled 
blades. Me are therefore obliged to seek an apprcnumate method or en 
empirical nothod. As no accurate experimental date. concerning this problem 
have been published, the latter course cannot be explored. 

It has been shown(&) that exact solutions of the isothermal bounw 
layer equations can be obtaned for flw over serm-infirmte wedges and 
flow through oertain k.~nds of channels without fluid injection. As fluid 
injection and abstraction alter s in no way the mathematical reasoning lead- 
ing to the above conclusion, we CNI obtain a range of corresponding solu- 
tions with inJection and abstraction, a special ease of which, with no 
injection, being the solution usually quoted. 

It is proposed to apply these solutions to a body of more complex 
shape such as a turbine blade by approximating the velocity distribution 
over its surface to either a single wedge or a scrios of wedges. 

2.0 Theory of two &mensional, incompressible, isotheri"dl le.m~nar - 
flow over serm-infinite wed,ges vnth gas inJection 

For flow over a sema-x&x&e wedge, leyer equations 
resolve to a non-linen totel EtLfferential equation 

f"' (v) + f (VI) f" (1) =P { f' (?I)* - 1) . . . . . . (1) 

Fnth boundary oonditions 

n = 0, f' (?;j = 0, f(n) = c 

rl + 00, f' (11) = 1 

and where ri is the non-dimensional distance normal to the surface and f' 
(v) is the dimensronless velocity parallel to the surface (see Appendix I 
for list of syllbols). 

For oompletcness a development of this equation from the boundary 
layer equations IS given in 
equation have been published, 
were calculated by the method outlined by I. Fox 

The temperature boundary layer solution can be conputed from the 
following equations knowing the values of f(n). 

e=Jv 4 J(n) = 
s 

" e-F('l) ilq, F(V) = Pr 
T -T,, 

J(m ' 
JO 

f(n) an, e = - (2) 
0 

Tg-Tb " 

Appendix IV shows the derivation of the above solution. Further 
mathematical manipulation required to convert the solutions into a more 
practicable form is also inclu&d in this Appendix. 



Some known solutions of equation 1 are shown graphmally ~1 Figures 
I to 5 for a Prardtl nuder = 0.71. Other aharacteristics of the hoe 
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and 4, the mmntum thickness were cslculated and 

are plotted m Figures 6 and 7. From these graphs, the dependence of the 
boundary lsyer thickness and the heat transfer coefficient upon the pressure 
distribution and lnjeotion coefficient can be clearly seen. 

3.0 Application of theory to blades with gas injection 

Two n&hods of application of the above results to the solution of sny 
blade design problem may be used, the one chosen depending upon the accuracy 
desired. The sl&est is to replace the given velocity distribution over 
the blade surface by 8. singl.e curve correspontig to the flow over a semi- 
infznite weage. The chdioe of wedge angle rm be m%de by trial and error or 
by plotting the veloolty profile on 1ogarzthnLa axes and determining the 

average slope of the graph. TLS gives n = -k 2 p which 1s the parameter govern- 

mg the wedge sngle. If we require the boQ to be cooled to a uniformtet@za- 
turn, the injection psramder C is constant (because z.n Appendix IV equation 
10, J(w) is inclepcndent of x) and therefore me knovr inndJ.ately the velocity 
of injection at any point, and the local heat transfer coefficients. 

This approximation leads to the largest error at the lea&.ng edge 
although tk OM be reduced by calculating the exact heat transfer and 
inJectzon qusntzties at the nose &s in Section 7 and f&g in the curves 
to vlc1ud.e this point. 

A second and more accurate m&hod, suggested by several writers, is 
to split up the profile rnto a large nuder of sections snd fzt a wedgs 
velocity distribution to each piece. The sections sre joined together by 
assuming the continuity of a function of the bounw layer. A.s it 1s inws- 
sible for one paramder to describe fully all the ohwscterist~cs of a bounilary 
lsyer, there remains the choice of a parander which, as well as agreeing with 
other methods and experimnts, is slso oonvenlent to use. The psrsmsters 
usually adopted are the boundary lsyer thictiesses of vtich the following are 
the four most aomnon:- 

1. Displacerrent thickness S" 

2. hlomentum thiclmess A2 

3. Nominal thickness 

4. Temperature displacement thickness 6t* 

The first two fun tlons sre inconvenient to use for the sub'ect of this 
note as the relation Z* 2 tohW is saioiguous for high values of@ bQ 
are functions of the dynam~.c boundary leyer oorrespoding to Zt x2 

anah* 

the temperature.boud.sry lsyer). 
andAt* in 

The temperature cksplaoement thickness has been used belanr although no 
doubt the nondnal boundzy layer.Wss-muld be just 09 suitable. 
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In this analysis dencrlbea in more cletcll m Sdctl3n 7.1, we prowe& 
to draw a graph uf the d~rxxs~onless temperature displacenent thickwss 

y 6 against the cllstsnca x,ls frm the bl,de &u&nation pdnt, using 

the z.socl2ne netlld. Equations 8 znd 9, Appendix LV, are pzrtioularly suet- 
able for solution by thu isocllne method, as at nny point on the graph, i.e., 

knaving g &yaab~) we cnn calculate the function of AtH frx~~ 
S s 

Equzttlon 8, Appendix IV. Frona chart, descrlbedlater (Figure g), we CN~ 

5btIun the value of (1-p) Ztx2 a cI;t*/s GJ to be obt-ea enablmg - A 
6. (;c/s) 

(Equation 9, Appendix IV). Thus we ray plot a series of short lines through 

selected values of "" -y& at each x/s station (the positions of these 

should of course be carefully estlrrated), each llno berng at the slope pre- 
dicted. 

As the initial value of 6t" -y-i- at the stagndxon point (9 -1) is 

known fromEquatxm 8, Appendix IV, anal as tho slope there 1s knuvm to be 
zero, we can sketch the most probable path of the cuwe (see Flgurc 12, 
no mjcctlon, Figure 13 uath mjectlon). 

4.0 Descrlptlon of attached fwures 

The most convwucnt co-abates for obtanmg the funotlon (1-p) Zt"* 
are ?e sad %X2, the difference between the co-otinates being the deslrod 
function end the inverse slope being p. The calculated values of the above 
co-or&nates were plotted and grs.phed, the paranzeter bemg C (Figure 5). 
The rnJeotlon parsxetcr C is difficult to evaluate at any point except by 
trial end error because lt is a funotlon of x, the orlg~ of which 1s usually 
unknovm. The paramder is therefore changed usln[,Equation 10, Appenbx IV, 
and the graph re-plotted vnth the temperature ratlo as a p‘arameter (F'lsre 9). 
Other parameters could be employed but they suffer from a hsadvantage u 
that they have szngular points. 

5.0 Appllcatlon to non-z3othermal flow 

There are two methods m general use for co-relating non-isotherm1 
and isothermal heat transfer cocfficrents. One method is to choose the 
tenpratures at whxh the physxal data arc taken such that the relattlon- 

ship G 
-6 

can be xxlependent of the blade-gas absolute temperature ratro. 

AlternatIvely, tho relation Is 
diii 

can be calculated using free stream con&- 

tlons and a correction fmtor introduced which 1s a function of the blade- 
gas e.bsoluta temperature ratio. 
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If the first method were used, the relevant values of the physical 
data used for the calculation of the injection parameter C would be the sub- 
pot of pure speculation. Rather than adopt this practice, it was decided 
to adopt the second process, first determining the heat transfer coefficient 
for isothermdl flow at the main stream temperature, correcting only for the 
change in Cp of the cooling fluid and then applying this heat transfer 
coefficient to the non-isothermal case with a suitable correction for the 
absolute temperature ratio. 

This procedure leads us to a modified value for the temperature psra- 
meter 

(‘pi, - T$ cp ‘3.c. Pr 

=(‘& - Tb) cpg 

. . 
. . . . . . . . (3) 

Heat transfer coefficients and cooling au mass flows are modified bjj a 

factor depending on the ratio 2 
Tg' 

the value of this function being taken as 

f(i#z O.,+ 0.j (4 . . . . . . . . . . . . (4: 

Tb for 0.5~~~1. This equation lmst be considered approximate as it is 
6 

deduced from only one set of experimental data (11). 

6.0 Turbulent boundary layers with gas injection 

At present, nothing is knox-n regarding the behaviour of an undeveloped 
turbulent boundary lsyer when a gas is injected at the wall wxth regard to 
modification of its velocity profile, thiokness, and heat transfer, although 
a little information is available on the he t ransfer to the wall of a 
porous tube with undeveloped turbulent fd. floe It appears that the Nusselt 
number is reduced only a small amount by air injection. We oould therefore 
expect that the heat transfer in the turbulent regime of the blade would be 
somewhat less than that calculated for no injection; the actual fraction 
depends on the amount of injected air. It is suggested that the coefficients 
should be calculated on a b s s t at there is no injection in the turbulent 
region using Young's 6-f d. n&hod 3 3 This is probably an over-estimate of 
the coolant required for vanour, reasons and shouldbe motifled. as experi- 
mental data becomes available, 

It should be noted that Young's r&hod postulates sudden transition to 
turbulence whereas in praotice it is found that transition takes a finite 
tistanoe to oomplete. 

7.0 Procedure for caloulating the heat flow and required injection 
velocity oonslstent wxth mnintainng a constant blade temperature 

In order to calculate the boundary layer thickness and heat transfer 
coefficients, it is first essential to obtain accurately the potential velocity 
distribution over the blade surface by either experiment, oalculation or 



electrical snalogy . Frond&a3 .IsI,s U/u0 and tzy" a-e tabulated at 
s 

close regular intervals. 

At the nose ',$' 1s csloulated from the nose curvature using the 
s 

followmg equation derived from elementeJ potential flow theory: 

a. u/u, s u li l 
r2-- . . . . . . . . . . 

a ys 
(5) 

R U out 

the rat.tlo ' L= -bang calculates from the blade angles <asswkng ~noompres- 
u out 

able flow. 

7.4 Proccaure 

(1) Given Tb, T,, and Tg c,dculatc the 

ratio (Tb -'cl 'Pb, c Pr 
(Tg - Tb) Cp 

g 

(2) At the stagnation pokt where p = 1, we 
can obtaxn the function ht* usxng Flgurc 9 
ana the terrperature ratlo calculated above. 

This enables us to deterane y,& at this point by the use of 

Equation 8, Appenda IV. We then proceed to complete the curve as 
described at the end of Section 3.0 (using the method of ~socllnes) over 
the whole of the ooncave surface and up to the point of w.xxxum velocity 
(or ~~lnlrmm pressure) on the convex surface. 

We then tEbbulat.ta the wlues of y& at the chosen pomts, ana 

proceed to calculake E and i& as in Table I:- 
-m 
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The pomt of trsnsltmn to turbulence on the convex surface 1s 
or minimm pressure. We can assuxd to be the pomt of maxmum velcclty 

then calculate the momentum thxdness of the ltinar boundary lsyer at thx 
point as follows:- 

: Re, 
s 

=~~~~ ,. . . . . . . . . (6) 

A2 being read from graph 7. The heat transfer coefflclents in the turbu- 
lent region are now calculated as in References 13 and. 14. 

As before 

;Tb-Tc) %'b,. 

Tg-T,) Cpg 

. . . . . . (7) 

Tb The value of the function f, ;I;- 1s unknown. It is therefore assund that 

0 g 
thus function 1s the S~IX as ‘that used III the lsnnner flow case. 

8.0 Desxp?l of an effusion cooled nozzle -de vane for 
a hip! temperature pas turbine 

As the blade under consderatzon 1s subject to turbulent flow as 
well as larmner, it 1s tifflcult to rrnlntiun a constant blade temperature 
under all operating Reynolds numbers. 

The blade nrust be desxgned at the worst estxmted con&tlons so that 
under other IIUXX favourable conditions, the blade ~~11 be over oooled. 
The potential velocity distribution over the surface of the W2/700 nozzle 
guide vane cascede, the first exanrple taken,together with relevant physlcd 
dilnenslons, are given in Figure 11. 

As further design data 1s unavallsble concerning the example given, 
It has been assumed that the deszgn con&.t.tlon is Re = 2 x 105. 

The pressure tistrlbutlon round the blade was obtaned assurmng the 
flow to be Incompressible. The outstsnting design figures are tabulated 
belcw- 

Equxvalent gas temperature at exit (Tg + 0.86 EL,) 1,ooo~c. 

Total I, II ,, II 1,012%. 

Stat10 'I t, II ,I 927'C. 

Coolant temperature 60%. 

Mexxmmblade temperature 600%. 
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Static pressure at exit 25 IbJsq. in. gauge 

Cooling sir pressure 40 lb./sq. m. gauge 

Exit gas velocity 1,465 f.p.s. 

Tenrperature parameter 0.86 

The requlred solution of the botiary Layer equations has already been 
obtsined(F~gure 13). 

If the blade material is of constant permeablllty snd if the pressure 
distribution, mternal pressure and the injeotlon velocltl profile are known, 
the relative wall thloknesses can readdy be calculated (Figure 16). 

The scale of thus graph 1s dependent upon the perrreabillty of the 
blade materxd. 

With a permeability of 5 x 10-'0in.2, the rcqulred thxkness at the 
stagnation point 1s approxllrately 0.004 m. gxvlng a mzx~m.ux blade thickness 
of 0.077 in. It mqq bc neccssargr to increase the wall thxkness at the nose 
to ease stressing and manufacturmg ddfloultics. This msy be aohievcd by 
using a larger blade nose m&us, a higher ooolsnt pressure, or by allowing 
the nose temperature to rise above that in the speolfxation. 

Alternatively, the wall ccn be made of a m&erKL of variable perme- 
abdity using a constant blade vail thickness. 

The percentage ooollng air required IS dependent upon the Reynolds 
number, the oaloulated flgurcs being 1.22 per cent at Re = 5 x 105 and 
1.71 per oent nt Re = 2 x 105. 

These figures are higher than would be usual in gas turbine practice 
because of the close spacing of the blades. 

thiokn%!lFy 
ooess was repeated for n similar type of blade of nnxh grcatcr 
ns it was conadered that the first blade, which was designed 

for M uncooled turbxw, was unslutable for this n&hod of ooolmg. 

The relevant design data is as follows:- 

Design Reynolds number 2 x 105 

Equivalent gas temperature at exit (Tg + 0.86 ev) 1,200°c. 

Total " II II I, 1,207OC. 

stat10 " 0 0 II 1,15Y%. 

Coolsnt temperature 60%. 

Mxci~rn blade temperature 600%. 

Static pressure at exit 28.4 lb./sq. In. gauge 

Coolmg sir pressure 54 lb./sq. in. gage 

Temperature parameter 0.555 

The corresponding figures sre Figures 17, 18 and 19. 
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The cooling am qusntlty required to effusmn cool the bide 1s 
1.12 per cent and the quantity of am to mdx-eotly cool the blade at 100 
per cent ooolmg effxlency 1s 1.56 per oent. In Figure 19, the units of 
wall thickness are 0.004 in., for a mterml of the sam permabll~ty as 
mentioned previously. 

9.0 Cements on practmabdlty of effusion coolmg 

It cm be seen by reference to Figure 16 that it would be ddficult 
to mmufacture such a blade mth thm sections as are required at the lead- 
ing and trailing edges. 

A great deal could be done in ,dlevlatmg the design problem in a 
high tmperature turbine blade, tireotly coole& or smat cooled, by investl- 
gatlon into unorthodox blades of relatlveljr large thickness with a vie= to 
their use m smdur cleslgns to the above. 

In ooolmg a blade dzrectly by mjcctmg ooolmg am through the 
blade walls, the heat transferred from the gas to the b1ad.e walls 1s only 
about 2/3 of that transferred to a blsdcir: at the ssm tenperatura but 
mternally cooled. The saving of ooolmg eu: woulil probably be greatcr 
than l/j because of the ddficulty m obtszmmg nuf'fxlant heat trvlsfer 
m the blade usmg mctirect mthods to enable the coolmg air to be 
efficiently used. 

Provding cam is taken m flltermg the cooling air, trouble due to 
overheating of the blade arlsmg fronblcckmg of the pores of the mtal 
vnth foreign mtter shoul(l not cause ana diffxulty. 

10.0 Conclusions 

A process has been outlined for the thermal design of an effusion 
cooled gas turbme blade such as vioulii bc employed m a high temperature 
gas turbmc. 

To Xxs Id. G. Kennard for the caloulatlons of the solutions of 
Equation 6, Appendix II, on which tlvs work IS based. 
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APPENDIX1 

SJmbols 

c 

c 

f(n) 

Fbd 

J( *rl) 

x 

m 

NU 

P 

Pr 

9 

Q 

R 

Re 

s 

Dimensions 

Blade chord ft. 

Injection parawter defined in Equation 9, 
Appendix II. Dimensionless 

Speclflo heat at constant pressure cm lb.-' oc.-' 

Heat trsnsfer correction fz temperature ratlo 
in a l-sr boundary layer defzned. in Equa- 
tlon 13, Appen&x IV. Dimensionless 

Heat transfer correction for temperature ratlo 
111 n turbulent boundary layer defined mEqua- 
tion 7, main text. Dimensionless 

Funct+on of q defined by Equation 7, Appendix Il. Dimensionless 

Function of Q defined by Equation 3, Appendix IV. Dimensionless 

Function of q defined by Equation 3, Appen&ix IV. D1menslonless 

Constant in Equations 4 and 5, Appenillx II. 

Wedge parameter = L 
2-p 

Nusselt number y 

Dependent vanable inEquation 2, Appendix III 
= f' (a). 

Prsndtl number 9 

Coolant mass flow per unit area per sec. q VP 

Mainstream mass flow per unit area per sec. at 

blade exit q Uop i.e. Up at exit 
[ 1 

Blade nose radius 

Reynolds number 3 
P 

Dlstanoe from stagnation point to trailing edge 
m%sured along curved surface, or sn arbitrary 
standard length in the case of awedge. 

Temperature (absolute). 

Dimensionless 

Dzmensionless 

Dimensionless 

ft. sec.-' 

Dimensionless 

lb. f't.-2 sec.-' 

lb. ft,-2 sec. -1 

ft. 

D~mens~K~ess 

ft. 

OK. 
-1 

Velocities parallel to surface in boundary layer. ft. sec. 

Velocity parallel to surface at edge of bounw 
layer. ft. sec.-' 



- 15 - 

APFmDIX I (Co&'&) 

Y 

v 

x 

Y 

2tW 

a 

P 

Y 

6t* 

*2 

E 

A 

?bt" 

P 

8 

CI 

11 

* 

v 

Syubols 

DlmeIlSlOnS 

Velocity norml. to surface m boundary layer. ft. sec.-' 

Vclomty n0rm.l to surface at wall. ft. sec. -1 

Distance masured along the surfem ft. 

Distance measured nom&L to the surface ft. 

Dimensionless temperature boundary lwer Muck- 
ness defined. by Equation 6, Appenhx IV. 

Heat transfer coefflcmnt 

r 
ncluded wedge angle 

h 1 
Constant in Equation 4, Appenbx II 

Temperature bowdary layer thlotiess 

Dmzmsionless momntumthiclmess 

Dmenslonless 

cm ft.-2 oc.-' sec. -1 

Dimensionless 

Constant inEquatlon 5, A~pend5.x II 

Thermal concluctivlty 

Form parsmeter defined by Xquatlon 8, 
Appendix IV. 

Density 

Xmensionless temperature m boundary leyer 
dofined in Appendix III. 

Viscosity 

Dimnsionless distame perpendicular to sur- 
i'sae defined by Equation 7, Appetix II. 

Stream function, see Equation 7, Appendix II. 

Dynado vlsoosity 

ihmAnsmnless 

ft. 

Dimensionless 

Dimnslonless 

CHU ft.-' oc.-' sec. -1 

Dimensionless 

lb. ft.-3 

Dimensionless 

lb. ft.-) sec. -1 

Dimensionless 

ft.2 sec. -1 

ft.2 sec." 
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s 

1 

2 

Refers to gas or flud 

Refers to blade or body 

Refers t> coolant 

Refers to blade exit 

Refers to value at point x, e.g. Nux = 7 Rex = 7 

Refers to value at pout s, e.g. Nu, I: 0-s Res = o- u SP 
A u / 

Refers to the convex blade surface 

Refers to the concave blade surface 
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zWl?EXiDIX II 

Solution of the &xuxio b cnmdary lcqer ectuations 

The boundary lsyer equations for two dxnens~onal lncompresnible, 
isothermal lwinar flu# are: 

au + av=o 
a~ ay . . . . . . . . . . -* (2) 

rnth the baunw condxtxons 

y = 0, u = 0, v = v 

y,ca u=u . . . . . . . . . . . , (3) 

It has been shown that m order that "sidlsr" solutions of the 
above equations w be obtained, the velocity &stribution over the surfaoe 
consuiemd rust be of the form 

u = Kj 
C 

(2y -p) $ 1 T-5 . . . . . . (4) 

or, in the special case whore 2y -B = 0 

U= K2e g$ (Reference 4) . . ., . . (5) 

If Y = I in Equation 4, we obtain the velocity distribution as over a send- 
xdk-iite wedge of included anglepn. Although solutions have been obtaxxd 
for other values 02 Y, the only vslue of xnterest in this report is Y = 1, 
and prengmg from 0.1986 to 1 .oooo. 

Equation 4, re-wmtten with Y = 1 gives us 

UZK g 0 &-J .- . . . ^. . . (6) 

Equations I, 2, may be readily oonverted into a non-linear total 
differential equation by ohsnging the variables from u, v, x, y, to 11 and 
f(n), the latter f'unotions being defined by: 

Q "J2-p J=f(rl) . . . . . . . . (7) 
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l%Yl?PENDIx II (Cont'd.) 

Hera + = f' (q) 

and 
uv 

v =J&y 7 f (17) + (p - J-i I) w (d) 

and equatmns 1, 2, resolve to 

*' t I (rl) + f (4 f" (4 = P {f' (I$ - I} 

m.th boundary oondztmns 

q = 0, f' (q) = 0, f (7-J = -,Jcyi ; J- 
+ = c 

q-+co f' (?l) = 1 

...... (8) 

...... (9) 

This Equation my be solved by a relaxation process (see Appendix III). 



- 23 - 

Note on the method of coxnputm~ smnlar solutions 

of the boundary layer equations 

It has been previously shown that the xotherml dynarmc b0un-J 
layer equat.tlons may be transformed to the non-lmcar total dlfferentisl 
equuntlon(see Appendix II). 

f”’ (Tl) + f Cd f" (d = P{f' ($2 -1j . . ., .. (1) 

As equations of odd orders arc dif'flcult to solve by relaxatmn pro- 
cesses, equatum (1) is Integrated to g&ve the second or&r equatmn 

ptl+pl~o,+~pd?+ {p?l)=o . . . . . . (2) 

where f' (v), the dependent varmble, 1s replaced by p. 

The quantxty is squared brackets (Squatlon 2) at <any pomnt ri is 
replacedby the sy&ol gll to smpllQ later fomulae. 

We can replace Equatmn 2, by a fmite difference equatmn ('@ the 
equattlon becomng 

pi + h(1 + 5 hgrl) t 19 - h(1 - & hg,,) - 2prl -@h* (p>,* -1) + A = 0 . . (3) 

where A, the difference correction = - i?t2 63 
6 

-164 
o 12 

and the uterval 1s h. 

Xquatlon (3) is solved by successive approxmatlons; the left hand 
side bemg called the resldusl R, and the relaxation process bemg to 
reduce this resuB&.. to zero. The relsxatmn equatmn or the equation 
conncctmg the change in resGLua.1 with the change m p is obtamad from 
this equation neglectmg the effect of a chmge in p on the &f'ference 
correctmns. 

Thus the two relevant equations are:- 

p,rl+ hjl + $-hgV)+ pi - h(1 - & hgll) - 2 pq - ph2(pq2 -1) t A = R . . (5) 

Ap,+h(l+$hg7))+Apn-h(l-+hgr,)-2ApV-22:h2p$p+B ..(6) 

n 
The mtegral 

J 
pdn 1s evaluated in the later stages of the relaxa- 

0 
tion process using central bfference mtegratlon fcrmla. 
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APFENDIX III (G:nttd.) 

c 

JO 
p&,=h 'fo+o+~E3,- '91,5o+ 

XT,480 (7) 

‘fo, the first sum 1s adJusted so that the Integral at 77 = 0 is zero, 1.e. 

‘f, = 16’, 
12 

-11 63 
720 0 .-.** . . . . . . ., . . . . . . . . (8) 

g,, can easily be evaluated kn&ng the above integral, as the value of 
f(0) = C is known. 

Details of method of solution 

1. Vdues of p were guessed at mtemals h. The interval h was chosen 
as either 0.5 or 1.0, the larger intervals being chosen when the value of 11 
at vdmzh p approached unity was expected to be large. 

If other solutions are available mth values of P and f(0) n&r to 
that required, a close approxlmatlon to the values of p may be obtaned by 
mnterpolatlon or extrapolation. 

rl 
2. The integral 

J 
pd, in the first instance was obtolned using Simpson's 

0 

rule. The difference r&hod of xntegrtlon could not be used at ths stage 
because the difference table was unreliable. 

3. The residuals (1.e. the left hand side of Equation 4) were calculated 
at each pomt, the ddferenoe oorreot.xon being neglected at this stage. One 
more figure was kept in the res.xLmls than =n the values of p. 

4. The resdmls calculated in 3 were relaxed using Equation 6 to sln?ost 
zer3 negleotmg the dependence of the function g,- on p. 

5. Steps 2, 3 and 4 were repeated until the successive values of p, 
correct to two deoliral places, were very nearly equal. 

6. A differenoe tnblc was n&e of the function p up to the order at which 
the differences ceased to vary smoothly. It is necessary to estznde the 
dlffercnces at the begiang of the table by extrapolation. The process 
adopted was to plot a graph of the first order differences agslnst q and 
assuIT& the dlffarence zero at n = 0.25. 

Any central differences roqulred were obtained from the arlthr&ical 
rrerm of the s&acent forward and. baokw.rd differences. 

7. The integral I" 
Jo 

p+ was integrated using the oentral bfference formula 

(Equations 7, 8). One more figure was kept in the integral than in p. 

8. The residuals were agiun calculated (Equations 3, !+) inoorporatlng as 
many terms of the difference correctzon as necessary. 
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AFPENDIX III (Cont'd.) 

9. The resdmls ngan relaxed to nearly zero as =n 5 

IO. Steps 6, 7, 8 and 9 were repeated, mcreasmg the number of deciml 
places as the mouraoy of the solution moreases. 

Conmnts on solutions obtained 

For smll ad negat*tlvc values 0 f 0 the process took longer cs lLa-ge 
changes 1~ p were neocssaq to relax a smll residual. Also the resduals 
had. to be calculntcd to more deound places th,an would. be nee?teL If 0 were 
large. With negative values of fi the usual solutions could be obtau-d up 
to il crltlojl value of f(0) but the reversed flow solution ooul?i not be 
obtolncil unless the uutral estunate of p was ma& \nth very high accurnoy. 

Khen 6 = 0, the boundary lc.yer thickness lnoreased very rapdly as 
f(0) approached -0.8. No solutions were obtanod for f(O)< -0.8 because of 
the extremely large values of q ct whxh p+l. 
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Solution of the themd bounbv~ layer equstion 

When solving the differential equation controllmg the temperature 
field. for high speerl flow it 1s ususl to neglect those term conoernmg dx- 
sip&ion, dxslpatlon bang allowed for by consdering the effective tempera- 
ture of the movmg gas to be the static temperature plus 0.85 of its kinetic 
temperature at the edge of the boundmy lwer. 

Thus the equation we have to solve is: 

aT aT h a2T u-+v-=- -7j 
ax ay pep af 

. . . . .* . . . . (1) 

mth the boundary conrktlons 

y = 0, t = Tb 

y-rm t=Tg 

Substituting the vsrxables n and f(n) from Appendix II and replacmg 
T -TjJ 

T by 8, 0 bcmg Cefmed as T _ T , we transforn Equatlon$)into e simple 
8 b 

second degree, f-rrst order equatxon which can be resddy solved by sepsratmg 

the variables snd integraturg. 

Equation (1) becomes 

i?fi + Pr f(v) -B 
aTI2 

=o . . . . . . . . . . . . . . (2) 
a 

mth the boundm,y conbtlons 

And the solution for 8 is 

e = 3; J(V) = 
rl 

J e -F(l7) dq ; F(7) = Pr 
0 
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AET?ixDIx Iv (Cont'd.) 

We cm nlso fmd that . . . . . . . . (4) 

It 1s impoptsnt to note that the abwe solution implies that Tb and Tg are 
constant. If one or both of these temperatures vary, mpxtant changes in 
the temperature profile an? heat transfer my occur. 

We defme the displacerent thic!mess of the temperature boundary 
lwers as: 

6P = r (I -0) (7y 
Jo 

= m /$(I - e) a11 . . . . (5) 

G 

or, on writing ZtW for 
J 

(1 - e) a17 
0 

it* = &F/F Zt,W 

where Zt* 33 a functmn of C, fi and Pr . . . . . . . . . . (6) 

As the origin of the boundsry layer 1s indetermnate, It 1s desir- 
able to elmnnate x from the above expresmon. Because the flow 1s that 
over a sem-lnfimte wedge we have 

Dlfferentiatmg we obtam z = - 13 vu, 
S 2-p d(U/Uo) *- *- ** 

a (V, 1 

Squsrmg Equation (6) end elminatmg x usmg (7) 

p zt 2 a. (VJO) = .# 
a (X/s, .’ I  

*. (7) 

I. (8) 

where ht* 1s a tictlon of C, 3 andPr only. 
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ApFmllIX Iv (Cont'd.) 

Dlfferentiatmg (6) mth respect to x, ZtW and P being constant we 
obtain 

Substituting for St* from (6) the above equation becomes 

d (at*/,) Ji&-= (1 - p) ztx2 
a (“/El) u/u, St*/, .JRy 

. . . . . . (9) 

In order that we my solve the boundary lsyer equations we still 
require a cotmectlon between G and Zt* or I-'. The expression for a constant 
surface temperature 1s obtained as follow:- 

The heat balance equation for the surface coolmg 1s 

V'3 CP (Tb - To) = a ( Tg - 'pb) 

Substituting for a from(4) we obtain the relatzonship 

. . . . . . (10) 

Note that the left hand side is a function of C, 13 andPr. 

The oonnectlon between C, Zt', St* and the functlon~.& for isothermal 

flew is obtamed by elmmating x between the two equations. 

2nd 

v u,s 
I- 

G zt’ 
- u v 

0 
-= - bt*/sfi . . . . . . (11) 



- 29 - 
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By a sindlar mans wa can shovthat:- 

Tb - To Pr v 
= Tg -Tb ;?F . . . . . . (12) 

If the fluw 1s non-isothermal, mtiications to the above equatums 
are necessary. 

The heat balance equatmn becorres: 

'pb 'Pb,c tTb - To) = a (Tg - Tb) 

Assuming that both the heat transfer coefficient and oooling sir mass 
flow are reduced in the same proporl5.on by the temperature ratlo, this 
equatmn my be resolved into a slmlar form to equation 10, 1.e. 

The values of j&m+%ayb e obteaned by mltrplymg the iso- 
Tb 

therm1 value @ven by Equations (11) and (12) by a function of F, tcnta- 

tlvely given by the equation: 
L~L3 

. . 

. . 

. . 

(13) 

(124 
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AEmNDM v 

Note on porosity. permabLLit.y and pressure drop in sintered mtenals 

A porous material has two characteristics, the porosity and the perm- 
ability, the former bemg the ratm 

Specific mavity of m&it - apparent specific qavltx 
Specdxc 8;ravlty of metal . . (1) 

and the latter being defined by 

hlnss flmr/unit area = permabillty e2 
CI c3.l *- l ’ ** 

(2) 

2 end. permeability has the uuts ft. . The permeability is constant only lf 
the flow is lamrner in the pores. As the temperature variatmn through the 
blade thickness is sm.11 the flow through the mtal m?ji be assumd to be 
isothermal. hence pressure drop 

= MESS flmr/tit area x 1 x !.I man 
permenbillty x p nesn . . . . . . (3) 
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