N.A.E. Xibloaty.
C.P. No. 5

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Note on the Interference on a Part-Wing Mounted Symmetrically on one Wall of a Wind-Tunnel of Octagonal Section

By
H. C. GARNER, B A

Crown Copyright Reserved

10,413		10,413
F.M.1076		
T.P. 194	ELUID MOTION SUB-COMMITMEE	F.M. 1076

iote on the Interiorence on i. Partirine Nounted
Symmetricaliy on che vall of a irnd-Tunnol of potargonil Sostion
-By-
H. C. Garnot, B.A.
of the ferodynarles Division, vil.P.I.

6th March, 1947

Summary

(a) Reason for Inquiry. - This problem has arisen in conrection whth tests in the N.P.L. $9^{4} \times 7^{\text {t }}$ tunnel on a part-wing with aileron, repostecil by Halluday and the presont author (1945).
(b) Range of Investigation.- This note shows quite generally the method of estimating the interference in the form of an upwash ancle at ajt pomt of the plan form of a part-wing due to the system of amages corresponding to any given distribution of lift. As an illustration the calculations for the $9^{\prime} \times 7^{\prime}$ octagonal tunnel have been tabulated. The upwash functions are given in Tables 5 (a), 5 (b), 5 (c); and the upwash angle may be obtained by substitutinc these functions and parametors determined by the distrabution of lift into equation (20) of 86.
(c) Conclusions.- It is discovered that an octagonal tunnel produces conslderakly more upwnsh than a rectangular tunncl noar the wall where the partwing is mounted, but that the difference is loss marked in the centre of the tunnel. It is concluded that the interference of corner fillets can be ignored as far as part-wang tusts on allerons aro concemed, but that it becomes apprcciable if tho conditions noar the root section of tho part-wing are under investigation.

It is found that the chordwase variation of upwash angle $\perp s$ practically lneear, and that for all purposes of interference correction linearity moy be assumed. The total upwash angle along any chord may thon, be represonted os a local unif'orm ancadunce togethor with a superposed curvaturc of filow, which facilitate an accurate estimation of the wind-tunnel interference.
(d) Furthor Devolopments.- This noto forms part of an investigation c. ${ }^{\text { }}$ the necessary procoss in order to detormino tunnel interforenco accurately. The method of application wall be publashed in a later report.

Summary of Contunts

1. Introduction
2. Notation.
3. Horseshoe vortex representation of a gaven dastribution of lift.
4. Upwash volocity along the bound vortex induced by an octagonal tunnel.
'B. 2' REPPORT
5. Chordwise variation of induced upwash velocity.
6. Method of calculation of total induced upwash angle.
7. Conclusions.
8. References.
9. Appendix :- Convergence of $X(S, T)$.
10. Tables.
11. Figures.

1. Introduction

Swanson and Toll ${ }^{2}$ (1943) have made a comprehensive investigation of methods of determining the interference on a half-wing mounted symmetrically on one wall of a rectangular tunnel. This is equivalent to the anterference on a complete wing placed symmetrically in a tunnel of the same height and twice the width. The fundamental problem concerning tunnel interference is to determine the upwash velocity induced by the restricting influence of the tunnel walls. For this purpose the disturbence to a uniform free stream due to a wing supporting a given distribution of lift may be replaced to any desared degree of accuracy by a combination of horseshoe vortices; each horseshoe vortex consists of two semi-infinite trailing vortices parallel to the stream, joincd by a bound vortex of equal strength perpendicular to them. At the walls of a closed rectangular tunnel the boundary condition of zero normal velocity may be satisfied identically by superposing for each horseshoe vortex a doubly infinite set of images. The upwash velocities due to each set of images may be calculated at any point of the plan form, The upwash velocity is usually considered in two parts, firstiy that induced at points along the line of the bound vortex, and secondly its variation in the direction of the undisturbed stream.

An octagonal tunnel is formed by adding four isosceles triangular fillets to the corners of a rectangular tunnel (Fig. 1). At infinity in the wake the boundary conditions along the fillets are satisfied approximately by the method of vortex squares, which was first used by Batchelor3 (1942). The complete system of images of a single horseshoe vortex in an octagonal tunnel, shown in Fig. 2, is used to caloulate the induced upwash velocity along the bound vortex.

The chordwise variation in upwash velocity can only be determined exactly for rectangular tunnels. The upwash induced at the bound vortex in an octagonal tunnel is obtained by adding a small correcting term due to the vortex squares to its value in the rectangular tunnel formed by removing the fillets. It is reasonable, therofore, to treat the chordwise variation of upwash velocity by introducing a similar correction in the same ratio.

2. Notation

b twice breadth of tunnel.
h height of tunnel.
a length of each isosceles fillet.
V velooity in undisturbed stream.
$0 \quad$ chord of wing, measured in the direction of V.

s	semi-span of wing.
x	distance along chord, measured from leading edge of centre section.
y,t	distance along wing span, measured from the centro section.
$\mathrm{x}=\mathrm{R}(\mathrm{y})$	equation of curve through mid-chord points.
r	distance along a fillet, measured from one end.
Γ	circulation round any wing section.
(K, σ)	strength of a horseshoe vortex of semi-span $t=\sigma \mathrm{b}$.
$w(\eta, r)$	upwash velocity at a distance $y=\eta^{b}$ from centre section and a distance ξ^{b} downstream of bound vortez.
w, (K, σ)	upwash velocity at bound vortex due to horseshoe vortex (K, σ) in a rectangular tunnel.
w_{2}	additional upwash veloçaty at bound vortex due to fililets.
${ }^{W} 3$	$w_{1}+w_{2}$: upwash velocity at bound vortex in an octagonal tunnel.
$w_{1}{ }^{\prime}(\xi)$	increment to w_{1} at a distance $b \underset{~ d o w n s t r e a m ~ o f ~}{\text { f }}$ bound vortex in a rectangular tunnel
$\left.w_{3}{ }^{(} \xi^{\prime}\right)$	ancrement to wi at a distance $b \xi$ downstream of bound vortex in an octagonal tunnel.

3. Horseshoe vortex reprosentation of a g2von distribution of lift.

Consider a systom of axes with origan at the leadang edge of the centre section of the wing, the x-axis being in the direction of the undisturbed flow and the y-axas along tho span. Let $x=R(y)$ represent a curve passing through all the madchord poants, then the chord $c(y)$ is sufficiont to define the plan form of the wing.

A givon distribution of lift as adoquately defined if the carculation $\Gamma^{\prime}(y)$ and the chordwise distance $1(y), c(y)$ from the leading edge to the centre of pressure are known at all soctions along the wing span - s $\leq y \leq s$. At comparatively large distances from the surface of tho wing, the disturbance to a uniform free stream due to the given distribution of luft is approximately equivalont to the flow arising from a $d \Gamma(t)$ distrabution of horseshoe vortacity of stronsth - --- per unit length, of somi-span t and with bound vorticity at the position

$$
x=R(t)+\left\{1(t)-\frac{1}{3}\right\} o(t) .
$$

If the same wing supports this given distribution of lift in a closed wand-tunnel, the flow arising from the horseshoo vortices would produce a flow of air across the walls of the tunnel, thus violating the boundary
conditions; and it remains to determine the change in the flow at the surface of the wing, that is necossary to restore the boundary conditions due to horseshoe vortices of different spans.

4. Upwash velocity along the bound vortox induced by an octagonal tunnel.

In a previous report ${ }^{4}$ (1943); the author has estimated the correction due ta triangular corner fillets to the mean upwash along the span of a wing placed symetrically in the $9^{\prime} \times 7^{\prime}$ tunnel. The corresponding problem here 15 to determine the distribution of upwash on a wing placed symmetrically in an $18^{\prime} \times 7^{\prime}$ tunnel with central fillets in addition to those at the corners (Fig. 1). The scalene fillets are again replaced by isosceles fillets of equal area.

As explained in Ref. 4 the wing and its jmage system for a rectangular tunnel would producc a flow of air across the fillets. For uniformly loaded wings of span not exceeding $7 / 8$ of the breadth of the Gquivalent 181×71 tunnel the distribution of velocity V_{1} into the tunnel normal to any corner fillet is almost linear with distance along the fillet. If a is the length of the fillet and r is the distance from one end of the fillet, by writing

$$
V_{1}=G\left(\begin{array}{ccc}
r & \prime \\
m & - & \frac{1}{2} \\
a &
\end{array}\right)
$$

where $*_{G}=2\left\{V_{1}\left(\right.\right.$ at $\left.r=\frac{3 a}{4}\right)-V_{1}\left(\right.$ at $\left.\left.r=\frac{a}{4}\right)\right\}, \ldots \ldots .(1)$
the greatest error in the values of V_{1} at the ends of the fillet is of the order 20\%.

The method used by Batchelor ${ }^{3}$ to cancel these normal components of veloczty and at the same time to maintain the rectangular boundaries as streamlines is to cuperpose on tho image system for tho rectangular tunnel. a distribution of vorticity k per unit length around the doubly infinite set of squares in Fig. 2. If k is given by

$$
k=K a(r-a)
$$

along each side of each square, and acts in the senses indicated in Fig. 2 , the vorticity produces an almost linear distribution of normal volocity V_{2} across each side. To calculate V_{2}, it is only necessary to consider the contribution of that square, to which the particular side belongs, as the additional components amount to a negligible 1% of that. Approxiratoly

$$
\nabla_{2}= \pm \frac{0.96 \mathrm{~K}}{\pi} a\left(r-\frac{1}{2} a\right)
$$

Hence by equating $\left(V_{1}+V_{2}\right)$ to zero.

$$
\begin{equation*}
\pi G \pm 0.96 \mathrm{Ka}^{2}=0 \tag{3}
\end{equation*}
$$

Consider the approximation implicit in (3) in the particular case of a uniformly loaded wing with circuilation Γ and of span $\frac{3 b}{4}$, where
$\mathrm{b} m$ the tunnel breadth $=18 \mathrm{f}^{\prime} t$. In Table 1 are tabulated the calculated

[^0]values of $-\frac{2 b V_{1} \sqrt{2}}{T}$ (from (4) and (5)) along the contral fillet $A B$ and the
corner fillet $C D$ (see Fig.1) From these values G is known from (1) and K is determined for each fillet from (3). From Table 2 of Ref. 3 the values of $2 \mathrm{bV}_{2} \sqrt{2}$
-mare obtained and are alse gaven in Table 1. In Fig. 3 the curves of Γ

taking $r=0$ at A and C. When it is taken into consideration that the additional upwashes due to the fillets aro usually less than 5% of the upwashes due to the image system for the rectangular tunnel, it will be accepted that the agreement in Fig. 3 justifies the use of (3).

A non-unaformlyloaded wang may be represented by a combination of horseshoe vortices of different spans. In Ref. 4 it was thought, that G was practically independent of the span of a horseshoe vortex; and throughout G was given its value for a small wing, However this assumption will apparently lead to serious crror, whenever the section of the tunnel is much different
from square $A=\frac{G \cdot b \sqrt{2}}{\Gamma}$ has been calculated (from (6)) for contra. 1 and
corner fillets of length $a=\sqrt{6} f^{\prime} t$. , in the 181×71 tunnel, and it is given in Tablo 2 for dufferent spans 2σ.

4. 1 Goneral Formulao

From ker. 3 p. 8 , assuming a uniform distribution of lift
(4)
where along the contral fillet $A B$ (using coordinates $0^{1} X Y$ in Fig. 2)

$$
\begin{aligned}
& m_{1}=\frac{x-s}{b}=\frac{Y+X-s \sqrt{2}}{b \sqrt{2}}=\frac{X+\frac{a}{2}-s \sqrt{2}}{b \sqrt{2}} \\
& m_{2}=\frac{x+s}{b}=\frac{Y+X+s \sqrt{2}}{b \sqrt{2}}=\frac{X+\frac{a}{2}+s \sqrt{2}}{b \sqrt{2}} \\
& n=\frac{y-2 h}{b}=\frac{Y-X-\left(2+\frac{1}{2}\right) h \sqrt{2}}{b_{1}} \sqrt{2}=\frac{a}{2}-X-\left(\imath+\frac{1}{2}\right) h_{\sqrt{2}}^{2} \\
& n \sqrt{2}
\end{aligned}
$$

where 2 is an integer.

It as simple to show that along the corner fillet $C D$ (using coordinates $0^{\prime \prime} X Y$)
$\nabla_{1}^{\prime}=\underset{2}{2} \underset{\sim}{\infty} \sum_{i}^{\infty}(-1)^{2}\left[\begin{array}{cc}\sin 2 \pi m_{1}+\sinh 2 \pi n \\ -\sin 2 \pi m_{2}+\sinh \pi n \\ \cos 2 \pi n+\cos 2 \pi m_{1} & \cosh \pi n+\cos 2 \pi m_{2}\end{array}\right]$

It follows that $V_{1}\left(s=s_{1}\right)=V_{1}^{\prime}\left(s=\frac{1}{2} b-s_{1}\right)$
Now if we usc the approximation that V_{1} is a Iinear fiunction of r and let
$A_{=}^{-}=\frac{G \cdot b \sqrt{2}}{\Gamma}=\frac{2 b \sqrt{2}}{\Gamma}\left\{V_{1}\left(a t x=\frac{3 a}{4}\right)-V_{i}\left(\right.\right.$ at $\left.\left.r=\frac{a}{4}\right)\right\}$
It follows from (1) that
$V_{1}=\frac{\Gamma}{b \sqrt{2}}\left(\frac{r}{a}-\frac{1}{2}\right)$
Sumplarly for comor fillets Λ is defined such that

$$
v_{1}^{\prime}=\frac{\Gamma}{b \sqrt{2}} V^{\prime}\left(\begin{array}{ll}
x & \\
- & -\frac{1}{2}
\end{array}\right)
$$

Honce by means of (2) and (3),

$$
\begin{align*}
K & = \pm \frac{-\pi \Gamma j}{0.96 a^{2} b \sqrt{2}} \\
\text { and } K^{\prime} & = \pm \frac{\pi \Gamma}{0.96 a^{2} b \sqrt{2}} \tag{7}
\end{align*}
$$

Wath a non-unaform distribution of lift, corresponding to a variable circulation Γ (\ddagger)
for contral fille $1, \mathrm{~s}= \pm \frac{\pi}{0.96 a^{2} b \sqrt{2}} \int_{0}^{\frac{S}{b}} \wedge\left(\begin{array}{c}\mathrm{d} \Gamma \\ --\infty \\ \mathrm{a} \sigma\end{array}\right) d \sigma$
for corner fillets $K^{\prime}= \pm \frac{\pi}{0.96 a^{2} b \sqrt{2}} \int_{0}^{\frac{s}{b}} \Lambda^{1}\left(\begin{array}{c}\left.-\frac{d \Gamma}{d \sigma}\right) d \sigma\end{array}\right)$
where $t=\sigma b$ is used instead of s in the expressions for m_{1} and m_{2}, so that Λ, A and $\binom{-\frac{d}{}}{\overline{d \sigma}}$ the horseshoe vortex atrength per unit length, lepend on σ.

The upwash arising from the mage systems for a rectangular tunnel of dimensions $b \times h$ may be calculated as in Ref. 5, p.3. At a point $y=\eta b$ along the bound vortex the upwash due to a single horseshoe vortex of, strength K is

$$
\left.-\left\{\begin{array}{cc}
1 & 1 \\
-\eta+\sigma & -\eta-\sigma
\end{array}\right\}\right\}
$$

$$
\text { Define } \Omega(p)=\frac{1}{p}+\frac{\pi b}{h} \sum_{m=-\infty}^{\infty} \operatorname{cosec} h \underset{h}{-\infty} \quad(m-p)
$$

$$
\begin{equation*}
\text { then } \quad \frac{4 \pi b w_{1}}{K}=\Omega(\sigma+\eta)+\Omega(\sigma-\eta) \tag{9}
\end{equation*}
$$

As in Ref. 4, p.5, for a single horseshoe vortex, the upwash due to the fillets may be calculated from the series

$$
w_{2}=\sum_{i} \frac{a^{2} K_{i}}{8 \pi} \not \chi\left(S_{2}, T_{i}\right)
$$

where $x_{0}\left(S_{i}, T_{i}\right)=-\frac{2}{15}\left(\begin{array}{c}\pi a \\ -- \\ h\end{array}\right)^{3}\left(2 S_{i}^{3}-S_{i}\right)$
$+\sqrt{2}\left(\begin{array}{c}\pi a \\ 15 \\ -m\end{array}\right)^{4} \quad\left(-6 S_{i}^{3}+S_{i}\right) T_{i}$
$+\frac{1}{30}\left(\begin{array}{c}\pi a \\ -- \\ h\end{array}\right)^{5}\left(24 S_{i}^{5}-20 s_{1}^{3}+s_{i}\right)$
$-\frac{\sqrt{2}}{180}\left(\frac{\pi a}{h}\right)^{6}\left(-120 S_{i}^{5}+60 S_{i}^{3}-S_{i}\right) T_{i}$
$-\frac{8}{5670}\left(-\binom{\pi a}{h}^{7}\left(720 s_{i}^{7}-840 s_{i}^{5}+182 s_{i}^{3}-s_{i}\right)\right.$
$+\frac{17 \sqrt{2}}{113400}\binom{\pi a}{-2}^{8}\left(-5040 S_{i}^{7}+4200 S_{i}^{5}-54653+S_{i}\right) T_{i}$
$+\ldots$.
where/

$$
\begin{aligned}
& w_{1}=-\frac{K}{4 \pi b}\binom{\sum_{i} \Sigma}{-)^{\prime}}^{\prime}\left[(-1)^{n}\left\{\begin{array}{c}
m-\eta+\sigma \\
(m-\eta+\sigma)^{2}+\frac{(n h)^{2}}{b}-\frac{\eta-\sigma}{(m-\eta-\sigma)^{2}+\left(\frac{n h}{b}\right)^{2}}
\end{array}\right\}\right]
\end{aligned}
$$

where

$$
\left.\begin{array}{rl}
S_{\mathbf{i}} & =\operatorname{soch} \theta_{\mathbf{i}} \\
\cdot T_{\mathbf{i}} & =\tanh \theta_{i}
\end{array}\right\}
$$

Each term in the summation includes the contribution of one column of squares.

Let $i=0$ represent the central column of squares (contaming $18,5,2,11$ etc in Fig. 2) and $i= \pm 1$ represent the comer columns of squares (containing $19,6,1,10$ etc. and $17,5,3,12$ etc. respectively) and so on.

When i is even (for central fillets) K_{i} is of opposite sign to K and when i is odd (for corner fillets) K_{i} is of the same sign as K.

$$
\begin{aligned}
& \text { So, from (11.) and the relations } \\
& \left.\begin{array}{rl}
\mathrm{K}_{i} & =-\frac{\pi K / \Lambda}{0.96 \mathrm{a}^{2} \mathrm{~b} \sqrt{2}} \text { when } i \text { is oven, } \\
& =+\frac{\pi k / i}{0.96 \mathrm{a}^{2} \mathrm{~b} \sqrt{2}} \text { when } i \text { is odd }
\end{array}\right\} \\
& \frac{\text { bw }_{2}}{0.092 K}=\sum_{i=-0}^{\infty}(-1)^{i-1} \Lambda_{I} \chi \quad\left(S_{i}, T_{i}\right)
\end{aligned}
$$

There

$$
\begin{aligned}
\Lambda_{i} & =\bigwedge_{\text {when }} i \text { is even } \\
& =\Lambda_{\text {when }} \text { i is odd }
\end{aligned}
$$

Thon the upwash at a position $y=b \eta$ on the bound vortex induced Dy an octagonal turnel due to a sangle horseshoe vortex of strength K and seri-span $t=b c$, is $w_{1}+w_{2}$, where w_{1} and w_{2} are given by (10) and (12) rospectuvely:

$$
\text { i.e. } \begin{align*}
& w_{3}= w_{1}+w_{2}= \\
& \frac{k}{b}\left[\begin{array}{l}
1 \\
4 \pi
\end{array} \Omega(\sigma+\eta)+\Omega(\sigma-\eta)\right\} \tag{13}\\
&\left.+0.092 \quad \sum_{i}^{\infty}=-\left\{(-1)^{i-1} \lambda_{i} \quad x\left(S_{i}, T_{i}\right)\right\}\right]
\end{align*}
$$

where Ω, and χ are defined in (9), (6) and (11) respectively.
Since the series (11) does not converge rapidly, when $I=0$ and η is small or whon $i=-1$ and η is nearly $\frac{1}{3}$, it was found necessary to examine the convergence of the expression for $\gamma_{0}(S, T)$ by means of the alternative series considered in the Appendix.

4.2 Results for N.P.L. $9^{\prime} \times 71$ tunnel.

Fion the $9^{1} \times 71$ tunnol it 15 nocessary to substitute the values
 (13) are gaven an Toble 4(b) ior aiforent valuos of σ and η. ihose lay be comparod with corresponaing values oi $\frac{W_{1}}{-}$ in table 4(a) iron (10), in whach the effect of the fillets is not included. Although ohe lillets are ois secondacy importance, at is necesiajy to anclude thear efsect in orcier to calculate accuraiely the wind-tunncl interfercuco.

Tor convenienco of applicetion the values of $\frac{W_{3}}{K}$ are also fiven
in Table $\left(\right.$ (a) sor ontegral values of $36 \sigma^{\circ}$ and 36η, at exact mulizples on half a foot thon the tumel walls.
j. Chofurize variation of incuced upwash.

In ordor to obtoin a ceneral exnression for the uncrease in upwash velocaty maduced at points downstreal of the bound vortex, the method and aotation 0^{\prime} Brown (1939) wall be used. The additional upwash velocity at (x, y, z), a usianco x downsuream of the bound vortex, due to a horseshoe vortex of strenebik and span 2 s wath als oentre at $\left(0, y_{1}, z_{1}\right)$ is

$$
\begin{aligned}
& \Delta w_{1}^{1}=-\frac{K x}{4 \pi}\left[\left(\begin{array}{c}
1 \\
\left.-\frac{1}{x^{2}+\left(z-z_{1}\right)^{2}}+\frac{y-y_{1}+s}{\left(y-y_{1}+s\right)^{2}+\left(z-z_{1}\right)^{2}}\right)
\end{array} \frac{y}{\left.x^{2}+\left(y-y_{1}+s\right)^{2}+\left(z-z_{1}\right)^{2}\right\}^{\frac{1}{2}}}\right.\right. \\
& -\left(\frac{1}{\frac{1}{x^{2}+\left(z-z_{1}\right)^{2}}+\left(y-y_{1}-s\right)^{2}+\left(z-z_{1}\right)^{2}}\right)\left[\begin{array}{c}
1 \\
{\left[x^{2}+\left(y-y_{1}-s\right)^{2}+\left(z-z_{1}\right)^{2}\right]^{\frac{1}{2}}}
\end{array}\right]
\end{aligned}
$$

Inaeino a wane ploced symnetracally in a cunnel of breadth b and neqgit h, and put $x=b \zeta, y=b \eta, z=b \zeta s=b \sigma$ and $\lambda=\frac{211}{b}$ thon tho aneroment wo the upwash velocity cue to the mages of the
given horseshoo vortea an a rectangulas tunnel of dunensions $b \times h$ is

$$
w_{1}^{\prime}=\left(\begin{array}{c}
\sim \\
\sum \sum \\
-\omega
\end{array}\right)^{\prime}(-1)^{n} \Delta w^{\prime}
$$

where y_{1} takes the values of $y_{1}+m b=b\left(\eta_{1}+m\right)$
z_{1} takes tho values $z_{1}+n h=b\left(\zeta_{1}+\frac{n \lambda}{2}\right)$
11 and n ane positive or negative integers ancluding

pates of values encepi (0,0).
Dutiong $\zeta=\zeta_{1}=\eta_{1}=0$, it follows that in the plane of a horseshoe vortex placed spmuetrically an the tunnel,
$w_{1}^{\prime}=-\frac{K \zeta}{4 \pi b}\left(\begin{array}{c}\infty \\ \Sigma \Sigma_{0} \\ -c^{\prime}\end{array}\right)^{\prime}(-1)^{n}\left\{G_{n}(\eta-m+\sigma)-G_{n}(\eta-m-\sigma)\right\}$
where/

Wherv $G_{n}(\eta)=\left(-\frac{1}{\xi^{2}+\left(\frac{n \lambda}{2}\right)^{2}+\cdots \eta^{2}+\left(\frac{n \lambda}{2}\right)^{2}}\left\{\xi^{-2}+\eta^{2}+\left(\frac{n \lambda}{2}\right)^{2}\right\}^{\frac{1}{2}}\right.$
If either $|m|$ or $|n|$ is large enough $|m|>\mathrm{Mi}$ or $|n|>N$, say,
it is accurate enough to put

$$
G_{n}(\eta-m+\sigma)-G_{n}(\eta-m-\sigma)=2 \sigma\left\{G_{n}\left(\eta-m+\frac{1}{2}\right)-G_{n}\left(\eta-m-\frac{1}{2}\right)\right.
$$

In practice M and N may be taken as small integers
(e.g. $M=1, N=2$) and wi may be evaluated conveniently by means of the approximation
$W_{1}^{\prime \prime}=-\frac{K \xi^{\prime}}{4 \pi b}\left(\begin{array}{cc}M & N \\ \sum_{m=-M n=-N} & \sum^{\prime}\end{array}\right)^{\prime}(-1)^{n}\left\{G_{n}(\eta-m+\sigma)-G_{n}(\eta-m-\sigma)\right\}+P_{M N}$(14)
where $R_{N N N}=-\frac{K \stackrel{\rightharpoonup}{s}}{4 \pi b}\left(\sum_{-\infty}^{\infty} \Sigma^{\prime \prime}\right)^{\prime \prime} \quad(-1)^{n} 2_{\sigma}\left\{G_{n}\left(\eta-m+\frac{1}{2}\right)-G_{n}\left(\eta-m-\frac{1}{2}\right)\right\}$ and $\left(\sum_{\infty}^{\infty} \Sigma\right)^{\prime}$ indicates that pairs (m, n) such that $|m| \leqslant M$ and $|n| \leqslant N$ are omitted.

As $\eta \rightarrow \pm \infty, G_{n}(\eta) \rightarrow \pm \frac{1}{\xi^{2}+\left(\frac{n \lambda}{2}\right)^{2}}$
Hence it is easily shown that

$\left.=-\frac{K \sigma \xi}{\cdot \pi b}\left[\begin{array}{ccc}2 \pi & 2 \pi \xi & N \\ -\lambda \xi & \operatorname{cosec} h \frac{(-1)^{n}}{\lambda} & -\sum_{n=-N} \\ -2\end{array} G_{n}\left(M+\frac{1}{2}+\eta\right)+G_{n}\left(M+\frac{1}{2}-\eta\right)\right\}\right]$

Throughout the computations for the $9^{1} \times 7^{\prime}$ tunnel, it was found that the extreme variation of $\pi \mathrm{bRMN}$ with ξ and η was only 2%. So if the $K \sigma \xi$
upwash increment is required to no greater accuracy than 0.2%, it is quite sufficient to put $\xi=\eta=0$ inside the brackets in (15) and to take
$\frac{\pi b R_{M N}}{K \sigma \zeta}=\frac{2 \pi^{2}}{3 \lambda^{2}}+\frac{2}{(2 M+1)^{2}}+8(2 M+1) \sum_{n=1}^{N}(-1)^{n}-\frac{2 n^{2} \lambda^{2}+(2 M+1)^{2}}{n^{2} \lambda^{2}\left\{n^{2} \lambda^{2}+(2 M+1)^{2}\right\}^{\frac{1}{2}}}$

For a rectangular tunnel, therefore, the upwash velocity at any point on the plan form of the wing due to a single horseshoo vortex of strength \& and semi-span b_{σ} is

$$
w_{1}+w_{1}^{1}
$$

where w_{f} is defined in (10), wh in (14) and $R_{M \mathbb{N}}$ is given by either (15) or (16)
Tho chordwise variation in upwash velocıty can only be determined oxactly for rectangular tunnels. The upwash velocity w_{3} induced at the bound vortex in an octogonal tunnel 2 s obtajned in (13) by adding the small quantity w_{2} to the value w_{1} for the roctangular tunnel formed by removang the fillets. it is reasonable to take the chordwase variation in upwash velocity for an octagonal tunnel to bo

$$
w_{3}^{r}=w_{1}^{\prime}+w_{2}^{\prime},
$$

whero $\begin{aligned} & w_{2}^{\prime} \\ &\left.=\begin{array}{l}w_{2} \\ w_{1}^{\prime}\end{array}=-\begin{array}{l}w_{1}\end{array}\right]\end{aligned}$
Thus the upwash velocity at a spanwise position $y=b \eta$ and at
a distance bs downstream of the bound vortex becomes

$$
\left.w=-11+\begin{array}{l}
w_{1}^{\prime} \tag{17}\\
w_{1}
\end{array}\right)
$$

where w_{1}, w_{3} and w_{1}^{\prime} are given in (10), (13) and (14) respectavely.

5.1 Recults for N.P.L. $9^{\prime} \times 7^{\prime}$ tunnel.

For the $9^{\prime} \times 7^{\prime}$ tunnél it is necessary to substitute $b=18 f^{\prime} t$. and $\lambda=\frac{7}{9}$ in (14) in order to determine w_{1}^{\prime}. Values of $\underset{K}{w_{1}^{\prime}}$ (of dimensions $(f t .)^{-1}$) are given in Tablo $5(b)$ for different values of σ and η at points $1 f^{\prime} t$. and 2ft. downstream of the bound vortex. It wall be noted that $\frac{w_{1}}{K}$ is practically linear with $\bar{\xi}$, and that it as accurate enough to assume a linear r:ordwise variation of upwash. By estimating ${ }^{W_{3}}$ for the appropriate values of σ and η, approximate values of

$$
\frac{w_{3}^{\prime}}{K} \cdot \frac{1}{b \xi}\left(\text { of dimensions }\left(f^{\prime} t .\right)^{-2}\right)=\frac{w_{1}^{\prime}}{K} \cdot \frac{w_{3}}{w_{1}} \cdot \frac{1}{b \xi}
$$

have been tabulated in Table 5(c) and are convenient for uso in (17).

6. Method of calculation of total induced upwash angle

From $\$ 3$, a given distribution of lift is approximately equavalent to a distribution of horseshoe vorticity of strength - $\frac{d \Gamma^{\prime}(t)}{d t}$ per unit length, of semi-span t and with bound vorticity at the position

$$
\begin{aligned}
& x=R(t)+\left\{\begin{array}{ll}
\eta(t) & -\frac{1}{2}
\end{array}\right\} c(t) \\
& \text { From }
\end{aligned}
$$

From 84 , the upwash veloozty at the posation

$$
(x, y)=\left\{R+\left(2-\frac{1}{2}\right) c, y\right\}
$$

due to one element of horseshoe vorticity $-\frac{d \Gamma}{d t} \delta t$ is

$$
\begin{align*}
\delta_{w_{3}}=\frac{k}{b} & {\left[\frac{1}{4 \pi}\{\Omega(\sigma+\eta)+\Omega(\sigma-\eta)\}\right.} \\
& \left.+0.092 \sum_{i=-\infty}^{\infty}\left\{(-1)^{i-1} \Lambda_{i} \chi\left(s_{i}, T_{i}\right)\right\}\right] \tag{13}
\end{align*}
$$

where $K=-\frac{d \Gamma}{d t} \delta t$,

$$
\sigma=\frac{t}{\frac{t}{b}}, \quad \eta=\frac{y}{b}
$$

and Ω, Λ and $\%$ are defined in (9), (6) and (11) respectively.
From § 5, equation (17), the upwash velocity at any position (x, y) due to the element of horseshoe vorticity is
$\delta w=\delta w_{3}\left(1+\frac{w_{1}^{\prime}}{w_{1}}\right)=\delta w_{3}$
$\left[\begin{array}{c}-\xi\left(\begin{array}{cc}\sum_{m}^{M} & \sum \\ m=-M & n=-N\end{array}\right)^{\prime}(-1)^{n}\left\{G_{n}(\eta-m+\sigma)-G_{n}(\eta-m-\sigma)\right\}+\frac{4 \pi b R_{M N}}{K} \\ \Omega(\sigma+\eta)+\Omega(\sigma-\eta)\end{array}\right] \ldots \ldots(18)$
where δw_{3} is given in (13) above,

that (m, n) takes all possible pairs of integral values such that $|m| \leqslant M,|n| \leqslant N$ except $(0,0)$.
(e.g. $M=$ practice M and N may be taken as small integers
(e.g. $M=1, N=2$).

$$
\begin{align*}
& w=\int_{0}^{s}\binom{\delta W}{\delta t} d t \\
& \therefore \stackrel{W}{V}=\int_{0}^{s} \frac{W}{V}\left(\begin{array}{c}
d T^{n} \\
-\cdots \\
d t
\end{array}\right) d t \tag{19}
\end{align*}
$$

where $W=\frac{\pi 3}{K}\left(1+\frac{W_{1}^{\prime}}{-\frac{1}{w_{1}}}\right)$ from (18).
The total induced upwash angle is easily evaluated by dividing the range of integration into about 10 arbitrary intervals $0=t_{0} \leqslant t \leqslant t_{1}, t_{1} \leqslant t \leqslant t_{2}, \ldots ., t_{9} \leqslant t \leqslant t_{10}=s$, and by summing

$$
\bar{w} \bar{v}=\begin{gather*}
10 \tag{20}\\
\bar{v}=1
\end{gather*}\left[\frac{\Gamma(t)}{V}\right]_{r} W_{r}
$$

and W_{r} denotes a mean value of W in the integral $t_{r-1} \leqslant t \leqslant t_{r}$, for which It is usuinIy. good enough to substitute $t=\frac{1}{2}\left(t_{r-1}+t_{r}\right)$. However for the last interval $t_{9} \leqslant t \leqslant t_{10}=s, \Gamma(t)$ is of the form $k \sqrt{1} \cdots \frac{t^{2}}{s^{2}}$ and it is easily shown that it is preferable to substitute

$$
t=\frac{t_{9}+2 s}{3}
$$

in order to obtain the best mean value.

$$
\text { The process of evaluation of the integral (19) for } \begin{aligned}
& W \\
& V
\end{aligned} \text { is }
$$

(a) to tabulate the functions $\frac{w_{1}}{K}, \frac{w_{3}}{K}, \frac{w_{1}^{\prime}}{K}$ for suitable values of
$t=b \sigma, y=b \eta$. These quantities of dumensions $(f t)^{-1}$) for the N.P.L. $9^{\prime} \times 7^{\prime}$ tunnel are given in Tables 4 (a), (b) and 5 (a), (b):
(a) to choose $t_{1}, t_{2}, \ldots . t_{9}$ so that the mean values $\frac{1}{2}\left(t_{r-1}+t_{r}\right)$ for $1 \leqslant r \leqslant 9, \frac{1}{3}\left(t_{9}+2 s\right)$ correspond to the values of bo for which the functions have been tabulated,
(c) to evaluate (20) for suitable values of $y=b \eta$, remembering that $\frac{w_{1}^{\prime}}{K}$ depends on $b \xi=x-R(t)-\left\{2(t)-\frac{1}{2}\right\} \quad o(t)$ as in (18). For
the N.P.L. $9^{\prime} \times 7^{\prime}$ tunnel, W may be determined directly from Tables 5(a), $5(c)$.

7. Conclusions

It is discovered that an octagonal tunnel produces considerably more upwash than a rectangular tunnel near the wall, where the part-wing is mounted, but that the difference is less marked in the centre of the tunnel. Although the influence of the triangular fillets on the distribution of lift near the root of the part-wing is appreczable, the overall effect on the total rolling moment due to an aileron deflection is trivial. Thas has already been demonstrated in Ref. 1, Fig. 8. It is concluded that the interference of cormer fillets can be ignored as far as part-wing tests on ailerons are concerned, but that it becomes appreciable if the conditions near the root section are under investagation.

It is found that the chordwise variation of upwash angle is practically lineer, and that for all purposes of interference correction linearit: moy bo assumed. The total upwash angle along any chord may then bo represented as a local uniform incidence together wath a. superposed curvature of filow, which facilitate an accurate ostimation of the wind tunnel interference.

> Referencoes

No. Author

1. A. S. Halliday and H. C. Gamer.
2. R. S. Swanson and T. A. Toll.

Tatle

> "An Investigation of a Part-Wing Test on an Aileron and Methods of Computing Alleron Characterastics." - A.R.C. 8922
"Jet-Boundary Corrections for ReflectionPlane Models in Rectangular Wind-Tunnels.". A.R.C. 7136.

No.	Author	Trtie
3.	G. K. Batchelor.	"Interference in a Wind Tunnel of Octagonal Section." - Australian Council for Aeronautics. Report ACA -1 .
4.	H. C. Garner	"Note on Interference in a Wind-Tunnel of Octagonal Section." - A.R.C. 6659.
5.	W. S. Brown	"Wind-Tunnel Corrections on Ground Effect."R. \&: M. 1865.

APPEMDIX

Convergence of $\gamma(S, T)$

Since tho series (11) does not converge rapidly when $I=0$ and r_{1} is small or whin $i=-1$ and in is nearly $\frac{1}{2}$, it was considered nocessary to examine the convergence of the expression for $\chi(S, T)$ by means of an alternativo calculation.

In the notation of Fag. 6 of Ref. 3, the velocity due th the vorticity round square 4 is given by
$\underset{K}{4 \pi}(v+z u)=-4 a z_{0}+2 a^{2}(1+1)+z_{0}(1-1)\left(z_{0}-a-1 a\right) \log _{e}\left\{1-\frac{a(1+i)}{z_{0}}\right\}$

$$
\begin{equation*}
+(1+j)\left(z_{0}-a\right)\left(z_{0}-i a\right) \log _{e} \frac{z_{0}-1 a}{z_{0}-a} \tag{2:1}
\end{equation*}
$$

Conbine thas with the velocity due to squan 1, which is of opposite sign anci is given by a similar equation replacing z_{0} by $z_{1}=z_{0}+\frac{h}{\sqrt{2}}(i-1)$

At a point along the bound vortex
$z_{0}=p(1+i)+q(i-i)$
$z_{1}=p(1+1)-q(1-i)$
where
$p=\frac{1}{2 \sqrt{2}}(a \sqrt{2}+b-2 b \eta)$
$q=\frac{1}{2 \sqrt{2}}(h)$
It follows from (21) and a similar equation that due to squares
4 and 1,

$$
\begin{align*}
& 4 \pi \\
& K(v+i u)
\end{align*}=(1-i)\left[-8 a q-4\left\{p(p-a)-q^{2}\right\} \phi\right\}
$$

$$
\begin{align*}
& \text { - } 16 \text { - } \\
& \text { where tan } \dot{\phi}=\frac{a q}{p(p-a)+q^{2}} \\
& R=\frac{\left\{p(p-a)+q^{2}\right\}^{2}+(a q)^{2}}{\left(p^{2}+q^{2}\right)^{2}} \\
& \tan \psi=\frac{2 a p-a^{2}}{2\left\{p(\rho-a)+q^{2}\right\}} \\
& S=\frac{2 p^{2}-2 a p+2 q^{2}+a^{2}+2 a q}{2 p^{2}-2 a p+2 q^{2}+a^{2}-2 a q} \\
& \text { Then } \frac{4 \pi w \sqrt{2}}{K}=\frac{4 \pi}{K}(v-u)=(1+i) \frac{4 \pi}{K}(v+i u) \\
& =2\left[-8 a q-4\left\{p(p-a\}-q^{2}\right\} \phi-2(2 p q-a q) \text { loge } R\right. \\
& \left.+4(2 p q-a q) \psi-\left\{2 p(p-a)-2 q^{2}+a^{2}\right\} \log _{e} S\right]=2 B \text {, say. } \tag{23}
\end{align*}
$$

Hence the upwash arising from the double infinity of squares is
given by

where $p=\frac{1}{2 \sqrt{2}}\{a \sqrt{2}-2 b \eta+(2 m-1) b\}$

$$
q=\frac{1}{2 \sqrt{2}}(2 n-1) h
$$

\therefore An alternative form for $\chi(S, T)$, when $\theta=\frac{\pi(k b+a \sqrt{2})}{2 h} \pm \frac{\pi b \eta}{h}$
is $\frac{2 \sqrt{2}}{a^{2}} \sum_{n=1}^{\infty}(-1)^{n-1} B \quad(\sec (11))$
where $p=\frac{-}{2 \sqrt{2}}(a \sqrt{2} \pm 2 b \eta+k b)$

$$
q=\frac{1}{2 \sqrt{2}}(2 n-1) h .
$$

For the contral fillets k is even and for the comer ones k is odd. Expanding (23) in powers of ${ }^{a}$,
$B=-\frac{a^{2}}{15}\left(\frac{a}{a}\right)^{3}+0\left(\begin{array}{l}a \\ - \\ a\end{array}\right)^{5} \approx-\frac{a^{2}}{15}\left(\frac{a}{n}\right)^{\frac{q}{(2 \sqrt{2})^{3}}} \frac{(2 n-1)^{3}}{(2 n}$ if n is large onough,

For the values of η for which the series (11) converges too slowly, it is accurate enough to take
$\chi(S, T)=\frac{2 \sqrt{2}}{a^{2}}{\underset{n}{n=1}}_{4}^{4}(-1)^{n-1} B-\frac{64}{15}\left(\frac{a}{n}\right)^{3} \sum_{n=5}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{3}}$.
Valuos of $\chi(S, T)$ when $b=18, h=7$; $a=\sqrt{6}$ oaloulated from (25) aro compared in Table 3(a) with the values obtained from (11). When $i=0$, approciable orrors will arise due to the slow convergence of (11), when $\eta \leqslant \frac{1}{8}$, and it is nocossary to uso the altertative formula (25). The final values of $\chi\left(S_{\dot{1}} r_{i}\right)$ are tabulated completelis in Table $3(b)$.

Tabio 1.
(1)

Central fillet $A B$

(b)

Cormor fillet G

	r a	$\xrightarrow{2 \mathrm{bv}} \mathrm{C}_{1} \sqrt{2}$	$\frac{2 \mathrm{bv}}{2} \frac{\sqrt{2}}{\Gamma}$
c	0	-2.225	0.883
	1/8		1.344
	1/4	-0.954	1.079
	3/8		0.583
	1/2	+0.149	0
	5/8		-0.583
	3/4	1.022	-1.079
	7/8		-1.344
D	1	1.659	-0.883

$3 \sigma_{\sigma}$	Central fillets	Comer fillets
	0.85922	0.07151
1	1.55687	0.14756
2	1.93392	0.23279
3	1.97585	0.33236
4	1.79843	0.45206
5	1.52868	0.59801
6	1.24774	0.77670
7	0.99320	0.99320
8	0.77670	1.24774
9	0.59801	1.52868
10	0.45206	1.79843
11	0.33236	1.97585
12	0.23279	1.93392
13	0.14756	1.55687
14	0.07151	0.85922
15		

Table 3(a)

32η	X from equation (11)	\therefore from equation (25)
0		-0.17983
1	-0.14717	-0.15171
2	-0.09573	-0.08758
3	-0.02968	-0.02353
4	+0.01801	+0.02018
5	+0.04167	+0.04181
6	+0.04836	+0.04799
7	+0.04603	+0.04570
8	+0.04005	+0.03978
9	+0.03321	+0.03306
10	+0.02681	+0.02672
11	+0.02131	+0.02125
12	+0.01678	+0.01672

Table 3(b)/

Table 3(b)
Values of $\chi\left(S_{i}, T_{i}\right)$

32η	$i=-2$	$i=-1$	$1=0$	$i=+1$	$i=+2$
0	0.00011	0.00622	-0.17983	0.00622	0.00011
1	0.00014	0.0799	-0.15171	0.00484	0.0009
2	0.00018	0.01025	-0.08758	0.00376	0.00007
3	0.00023	0.01314	-0.02353	0.00292	0.00005
4	0.0030	0.01675	+0.02018	0.00227	0.0004
5	0.00039	0.02125	0.04181	0.00176	0.00003
6	0.00050	0.02672	0.04799	0.00137	0.00002
7	0.00064	0.03306	0.04570	0.0106	0.0002
8	0.00083	0.03978	0.03978	0.00083	0.00001
9	0.00106	0.04570	0.03306	0.00064	0.00001
10	0.00127	0.0499	0.02672	0.00050	0.0001
11	0.00176	0.04181	0.02125	0.00039	0.00001
12	0.00227	+0.02018	0.01675	0.00030	0.00001
13	0.00292	-0.0353	0.01314	0.0023	0.0000
14	0.00376	-0.08758	0.01025	0.00018	0.00000
15	0.00484	-0.15171	0.00799	0.00014	0.00000

Table $4(3)$

Interference on a half'-wing in a crectangular $9^{\prime} \times 7^{\prime}$ tunnel (w/athout fallets)

					$\frac{W_{1}}{K}=0$	$0442 \div 0$	$\left(\frac{4 . \pi \cdot}{\pi} \frac{b \pi}{\pi}\right)$	(of 2	1 mensions	$\text { is } \left.t t^{-1}\right)$					
	$23=0$	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5	11	3/	13/1	7/8
$\begin{aligned} & 2 \sigma=0 \\ & 1 / 16 \end{aligned}$	0.00301	$\begin{aligned} & 0 \\ & 00294 \end{aligned}$	$\begin{gathered} 0 \\ 0.00276 \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ 0.00248 \end{gathered}\right.$	$\begin{gathered} 0 \\ 0.00213 \end{gathered}$	$\begin{aligned} & 0 \\ & 00175 \end{aligned}$	$\begin{gathered} 0 \\ 0.00138 \end{gathered}$	$\begin{gathered} 0 \\ 00103 \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ 0.00072 \end{gathered}\right.$	0	0.00027	0	0003	$\begin{gathered} 0 \\ -0.00001 \end{gathered}$	
$1 / 8$	0.00588	0.00576	0.00542	0.00489	0.00423	0.00351	0.00278	0,00210	0.00149	0.00099	0.00059	0.00030	0.00011	+0.00003	0.00006
$3 / 16$	0.00852	0.00836	0.00789	0.00717	0.00627	0.00526	0.00423	0.00325	0.00236	10.00161	0.00102	10.00058	10.00030	0.00018	0.00021
$1 / 4$	0.01084	0.01065	0.01011	0.00927	0.00820	10.00699	0.00572	0.00449	0.00337	0.00239	0.02461	10. 00102	10.00064	0.00048	0.00052
5/16	0.01278	0.01259	0.01203	0.01114	0.00999	0.00866	0. 00725	0.00584	10.03453	0.00336	0.002401	10.00167	1.20120	0.00099	0,00106
3/8	0.01435	0.01416	0.01362	0.01275	0. 21161	0.01026	0. 20879	0.00728	0.07584	10.00453	0.02342	10. 23257	10.002.21	0.02178	0.c0188
7/16	0.01554	0.01537	0.01488	- 014.08	$\therefore .013: 1$	0.01173	O. 21122	3.0 .878	0.00729	0.00590	0.00471	10.30377	0.00315	0.00290	0.03308
1/2	0.01640	0.01526	2. 01584	0.01514	0.01420	2.21334	0.01172	2.91029	0.00884	0.90746	3.00625	0.00528	0. 03466	0.00445	0.00474
9/16	0.01698	0.01686	0.01652	0.01596	2.01518	0.2142.	0.01305	2.01178	0.01247	0.00919	0.00834	0, '22714	0.20658	0.00653	0. 20699
5/8	0.01733	$0.0172{ }^{2}$	0.01698	0.01655	0.01595	?. 01518	0.01426	0. 01322	0.01213	-. 21105	0. 21988	O. 20934	0.30897	0.03912	0.00996
11/16	0.01751	0.01745	0.01727	0.01698	1. 01656	0.01671	0.01536	0.01469	0.c1333	0.01322	0.01235	0.01191	0.01188	0.01244	0.01384
$3 / 4$	0.01757	0.01754	0.01744	0.01728	0.01704	0.01673	0.31636	0.01593	C. 71550	0.01510	10. 21486	2.014.88	0.01538	0.01660	0.01891
13/16	0.01757	0.01756	0.01754	0.31751	0.01745	0.21739	0.01731	0.01725	0.01723	0.01733	0. 01764	0.01832	\|0.01060	0.02185	0.02564
7/8	0.01756	0.01757	2,01763	0.01772	0.01785	$\bigcirc 01803$	0.01828	0.11861	0.01939	3.01977	0.22083	0. 22236	10.32479	0.02865	0.03503

Interference on a Half wing in the if.P.I. $9^{\prime} \times 7^{\prime}$ Tunnel.

			$\frac{W 3}{K}=$	$\frac{w_{1}}{K}+\frac{w_{2}}{K}$	$\frac{2}{2}=0 .$	$04,4210$	$\left(\frac{4 \pi b r_{1}}{K}\right)$	$+0.005$	$5111\left(\begin{array}{l} 6 \\ 0.0 \end{array}\right.$	$\left.\frac{2}{92 \mathrm{~K}}\right)($	of aumen	nsions ft.		es of	
2σ	$22_{1}=0$	1/16	1/8	3/16	$1 /$	5/16	3/8	7/16	1	9/16	5/8	1:/16	3/4	13/16	7/8
1/16	. 00380	0.00361	0.00315	0.00259	0.00205	10.00158	0.00118	0.00084	0.00056	0.0003	10.00016	. 00004	-0.00004	-00009	9
	0.00732	C.00698	0.00612	0.00509	0.00408	0.00319	0.00242	0.00176	0.00120	0.00075	0.00040	0.00015	-0.00002	-0.00011	-0.00012
3/16	0.01031	0.00987	0.00877	0.00742	0.00609	10.00487	0.00378	0.00283	0.00201	0.00133	10.00080	0.00040	$+0.00014$	-0.00001	0.00003
	0.01267	0.01220	0.01102	0.00953'	, 0.00302	10.00560	C.00528	0.00408	0.00303	0.00213	0.00140	0.00086	0.0004	+0.00028	0.00023
5/16	0.01446	0.01401	0.01285	0.01139	0.00985	0.00833	0.00687	0.00550	0.00425	0.00315	0.00225	0.00156	0.00107	0.00079	0.00072
3/8	0.01579	0.01538	0.01434	0.01298	0.01150	0.01000	0.00849	0.00702	0.00564	10.00440	0.06335	0.00252	0.00193	0.00158	0.00150
7/16	0.01673	0.01639	0.01549	0.01429	0.01296	0.01155	0.01009	0.00862	0.00719	0.00587	0.00472	0.00379	0.00311	0.00271	0.00264
$1 / 2$	0.01737	0.04709	0.01635	0.C1534	C.01420	0.01295	0.01162	0.01023	0.00884	0.00753	0.00635	0.00538	0.00467	0.00425	0.00423
9/16	0.01777	0.01755	0.01696	0.01615	0.01522	0.01418	0.01304	0.01182	0.01057	0.00935	0.00824	0.00731	0.00664	0.00628 ,	0.00638
5/8	0.01797	0.01781	0.01736	0.01675	0.01604	0.01523	0.01433	0.01335	0.01232	0.01130	0.01037	0.00960	0.00908	0.00839	0.00924
11/16	0.01804	0.01792	0.01760	O.01718	0.01668	0.01613	0.01550	0.01481	0.01408	0.01337	0.01273	0.01225	0.01202	0.01219.	0.01301
: $3 / 4$	0.01800	0.01793	0.01773	0.01748	0.01720	0.01689	0.01656	0.01621	0.01584	0.01552	0.01530\|	0.01527	0.01556	0.01634	0.01800
; 13/16	0.01791	0.01787	10.01778	0.01769	0.01752	:0.01756	0.01753	0.01753	0.01759	0.01775	10.01599	0.01871	0.01978	0.02160	0.02476
7/8	0.01779	0.01779	10.01781	0.01786	0.01799'	'0.01818	0.01846	0.01885	0.04533	0.02012	\|0.02116	0.02268	0.02494	0.02845	0.03430

Interference at the Bound Vortex on a Half-wing in the N.P.L. $9^{\prime} \times 7^{\prime}$ Munnel.

Values of at exact multiples of hall a foot from the tunnel walls (Distance from the wall is 180 or $18 \mathrm{\eta ft}$.) K

$18 \sigma!18 \eta=0,0.5$	${ }^{4} .0$	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	$6.5 \quad 7.0$	7.5
0.50 .00339 .0 .00325	0.00291	0.00247	0.00203	0.00163	0.00127	0.00097	0.00071	0.00049	0.00031	0.00017	0.00006	-0.00001-0.	008
$1.0 \mid 0.0065810 .00633$	0.00568	0.00486	0.00403	0.00326	0.00258	10.00199	0.00148	0.00104	0.00068	0.00039	0.00018	+0.00002 - 0.00008	0.00012
1.510 .00938 0.00905	0.00819	0.00709	0.00596	0.00491	0.00396	0.00311	0.00236	0.00172	0.00117	0.00074	0.00046	$0.000151-0.00000$	0.00008
2.010 .0117010 .01133	0.01037	0.00912	0.00781	10.00656	0.00540	0.00434	0.00339	0.00255	0.00183	0.00123	0.00077	$0.00043+0.00021$	-0.00010
2.50 .013530 .01316	0.01219	0.01090	0.00953	0.00818	0.00690	0.00568	10.00456	0.00354	0.00266	0.00191	0.00132	0.00088 0.00058	0.00043
3.010 .014950 .01460	0.01368	0.01245	0.01110	0.00974	0.00839	0.00709	0.00584	0.00469	0.00366	0.00278	0.00207	$0.00153: 0.00116$	0.00097
.3.5,0.01603 0.01571	0.01488	0.01376	0.01250	0.01118	0.00985	0.00852	0.00721	0.00597	0.00484	0.00385	0.00304	0.0024010 .00197	0.00174
4.010 .016820 .01655	0.01583	0.01484	0.01370	0.01249	0.01123	0.00994	0.00863	0.00737	0.00618	0.00513	0.00424	0.0035410 .00305	0.00280
4.50 .0173710 .01715	0.01654	0.01570	0.01472	0.01365	0.01251	0.01131	0.01007	0.00884	0.00767	0.00559	0.00569	$0.00495: 0.00444$	0.00420
$5.0,0.0177310 .01755$	0.01706	0.01637	0.01555	0.014.65	0.01367	0.01261	0.01150	0.01037	10.00927	0.00825	0.00735	$0.00667,0.00619$	0.00600
5.510 .0179410 .01780	0.01741	0.01686	0.01624	0.01550	0.01470	0.01383	0.01289	0.01193	0.01097	0.01008	0.00931	$0.00871: 0.00834$	0.00828
. 6.010 .0180310 .01792	0.01763	0.01722	0.01675	0.01621	0.01561	0.01495	0.01424	0.01350	0.01276	0.01207	0.01150	$0.01110: 0.01093$	0.01113.
6.50 .018030 .01795	0.01775	0.01747	0.01715	0.01680	0.01642	0.01599	0.01553	0.01506	0.01460	0.01421	10.01394	$0.01385: 0.01405$	0.01468
7.00 .0179610 .01792	0.01780	0.01764	0.01748	0.01731	0.01713	0.01696	0.01677	0.01661	0.01650	10.01649	0.01663	$0.01702,0.01777$	0.01910
$7.510 .01787,0.01785$	0.01780	0.01776	0.01774	0.01775	0.01779	0.01786	0.01799	0.01818	10.01847	10.01893	0.01962	$0.02068,0.02226$	0.02475

Table 5(b)
Interference on a half wang an a rectangular $9^{\prime} \times 7^{\prime}$ Tunnel.
Values of $W_{1}^{\prime} / \mathrm{K}$ (of dimensions ft^{-1}) at points
11 and 21 downstream of bound vortex.

18σ	$1811=0$	$18 \eta=2.5$	ft. downstroem $18 \eta=4.5$	$18 n=6.0$	$18 \eta=7.0$
1.5	0.002345	0.001650	0.000797	0.000397	0.000266
2.5	0.003613	0.002705	0.001446	0.000782	0.000553
3.0	0.004124	0.003200	0.001818	0.001036	0.000756
3.5	0.004554	0.003662	0.002221	0.001340	0.001014
4.0	0.004905	0.004085	0.002651	0.001700	0.001337
5.0	-0.005412	0.004797	0.003555	0.002596	0.002222
6.0	0.005721	0.005336	0.004464	0.003731	0.003521
6.5	0.005826	0.005552	0.004908	0.004392	0.004376
7.0	0.005911	0.005742	0.005349	0.005126	0.005417
7.5.	0.005983	0.005915	0.005794	0.005956	0.006723
			ft. downstream		
1.5	0.004409	0.003112	0.001510	0.000753	0.000507
2.5	0.006799	0.005099	0.002734	0.001483	0.001053
3.0	0.007765	0.006031	0.0034 .36	0.001966	0.001441
3.5	0.008576	0.006900	0.004197	0.002542	0.001932
4.0	0.009242	0.007697	0.005005	0.003223	0.002545
5.0	0.010201	0.009041	0.006708	0.004919	$0.004,225$
6.0	0.010787	0.010060	0.008428	0.007064	0.006681
5.5	0.010987	0.010470	0.009265	0.00831 .8	0.008289
7.0	0.011148	0.010831	0.010101	0.009698	0.010237
7.5	0.011286	0.011164	0.010947	0.011261	0.012651

Table 5(c)/

Table 5(c)

Estimated chordwase variation of upwash velocity due to interference on a half-wing in the N.P.I. $9^{\prime \prime} \times 7^{\prime}$ Tunnel.

$$
\begin{aligned}
& \text { Valucs of } \left.\frac{w_{3}^{\prime}}{K} \cdot \frac{1}{b} \cdot \frac{\cdots}{5} \text { (of damensions (ft. }\right)^{-2} \text {) } \\
& =\frac{w_{3}}{w_{1}} \times \frac{w_{1}^{\prime}}{K} \cdot \frac{1}{w_{s}}
\end{aligned}
$$

where is: is the distance downstream of the bound vortex and $b=18 \mathrm{f}^{\prime} \mathrm{t}$.

18σ	$18 \eta=0$	$18 \eta=2.5$	$18 \eta=4.5$	$18 \eta=6.0$	$18 \eta=7.0$
0.5	0.001068	0.000514	0.000181	$(0.00012)^{*}$	$(-0.00008)^{*}$
1.0	0.002056	0.001048	0.000390	0.000171	$-0.00002)^{*}$
1.5	0.002933	0.001590	0.000643	0.000294	$(+0.00008)^{*}$
2.0	0.003658	0.002132	0.000962	0.000474	$(0.00023)^{*}$
2.5	0.004238	0.002668	0.001345	0.000711	0.000435
3.0	0.004709	0.003188	0.001762	0.001002	0.000681
3.5	0.005088	0.003677	0.002212	0.001350	0.000972
4.0	0.005380	0.004130	0.002688	0.001750	0.001319
4.5	0.005605	0.004512	0.003175	0.002200	0.001736
5.0	0.005780	0.004891	0.003676	0.002712	0.002237
5.5	0.005915	0.005193	0.004172	0.003283	0.002844^{*}
6.0	0.006028	0.005465	0.004659	0.003910	0.003581
6.5	0.006103	0.005597	0.005135	0.004595	0.004461
7.0	0.006158	0.005900	0.005586	0.005348	0.005532
7.5	0.006205	0.006074	0.006024	0.006185	0.006869

*The values in brackets were obtained by extrapolation, since the values of $\frac{w_{3}}{w_{1}}$ could not bo determined easily.

PI.

ADDENDUM

In presenting the followng note as an A.R.C. Current Paper it is necessary to explain that the basic method of treating the boundary conditions at the wall of an octagonal wand tunnel is due to Batchelor (Ref.3), and that Ref. 4 is a generalization of Ref. 3 used to compute the interference on complete wings placed symmetrically in the N.P.L. $9 \mathrm{ft} . \times 7 \mathrm{ft}$. and $13 \mathrm{ft} . \times 9 \mathrm{ft}$. wind tunnels.

The chordwise variation of upwash is not included in Ref. 4 and the mean corrections to incidence and drag based on an ellaptic distrabution of lift are given in the form

$$
\begin{gathered}
\delta(\Delta a)=\frac{\delta}{2} \bar{C} C_{L} \\
\left(\Delta C_{D}\right)=\frac{S}{2 \bar{C}} C_{L}^{2}
\end{gathered}
$$

where C is the sectional area of the tunnel and S as the area of the plan form of the wing.

To give an idea of the numerical sagnificance of corner fillets, Figs. 6 and 7 of Ref. 4 are reproduced here as Fig. 4 . For both tunnels δ is compared wath δ_{R} for the corresponding rectangular tunnel of arca $h b$ and with

C

$$
\Delta_{R} \delta_{R} \cdot \overline{h b},
$$

whore $C=h b-a^{2}$.
It is recommended that, for wings of moderato span $2 s<0.6 b$, it is accurate enough to take

$$
\frac{\delta}{\delta_{\mathrm{R}}}=\frac{\mathrm{hb}+\mathrm{C}}{2 \mathrm{hb}}
$$

and that the some ratio should be used for the chordwase variation of upwash.

The following note is an extension of the same basic method to the problem of a part-wing mounted symmetrically on one wall of an octagonal tunnel.

AB=central Fillet
$C D=$ cormer Fillat
Equivalene $18^{\prime} \times 7^{\prime}$ eunnel.

Fic, 2

Complater sysezm of imoges
"Inter-ferance on a Port - Wing with Alleron in a Wind Tunnel of Octagonal Section.

$18 \mathrm{ft.x} 7 \mathrm{ft}$. Octagomal tunnel with isosceles fillets of length $\sqrt{6} \mathrm{ft}$. Distribution of normal valocity for unirormly loaded wing of span 13.5 ft .

Fic. 4.

interference factors for N.P.L. $9^{\prime} \times 7^{\prime}$ tunnels and $13^{\prime} \times 9^{\prime}$ tunnel against wing span.
C.P. No. 5 (10413)
A.RC. Technical Report

LONDON PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE

To be purchased directly from HM STATIONERY OFFICE at the following addresses
York House, Kingsway, London, W.C.2, 13a Castle Street, Edinburgh, 2,
39 King Street, Manchester 2, 2 Edmund Street, Birmıngham, 3,
1 St. Andrew's Crescent, Cardıff, Tower Lane, Bristol, I,
80 Chichester Street, Belfast
. OR THROUGH ANY bOOKSELLER
1950
Price 2s 6d. net

[^0]: * This is a more convenicnt derinution than that used in ReP. 4

