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The Applrcation of Camber and Twist to 
Swept Tings m Incompressible Flow 

G.G. Brebner, K-4. 

A certain type of chordvise vortlcity tistributlon, applicable to a 
thin wing of any sweep In incompressible flow, is combined with the 
general equation for the dovnvash Induced at any spanwise position on a 
swept vang by the sparwlse vortxces. By applying the "streamline 
condition" that there 1s no veloczty component perpendicular to the wing 
surface, and integrating over the chord, the equation of a camber line is 
obtained. The initial vorticlty distribution contains two parameters 
which are related to the amount of camber and the chordwise position of 
the maximum ordinate, and thus define a doubly infinite family of camber 
lines. Expressions are found for the effect of these camber lines on the 
zero lift angle, lift distribution and centre of pressure at all spanwxe 
positions. Simple charts are provided from which may be read the equxva- 
lent incidence and pltchmg. moment at zero lift of any camber line of the 
family at any spanwse position on a wing of any sweep. 

A detailed description 1s given of the method of calculating the 
loading on a given cambered swept wing. Also, the design of wings 
incorporating camber and twist to produce required chordvise and spanwise 
loadings is treated in detail, and it IS shown that at any spanwise posi- 
tion only one particular combination of camber and incidence will give a 
required chordwise loading. The correct matching of camber and tv&st 
over the whole wing is thus of fundamental importance. One particular 
camber line of the series, denoted b7 m = 0.5, is found to be exactly that 
requ$red to eliminate the centre and tip effects on the chordwise loading 
of swept wings. 

Brief m@xon is made of the effect of wing thickness on the lift 
distributions. '-The local ltit coefficients are increased by about the 
same approximatti~ factor as a symmetrical aerofoil sectlon, namely 

+ 0.8 y t/0\ 
CQs 'p /.':~ 

Formulae are given'for the pressure distribution onra 

thick cambered aerofoil at any spanwise position. 
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1 Introduction 

In recent years symmetrical aercfoil secLions haire been more popular 
than cambered ones for use on v~ngs of high-speed aircraft; while tests 
on unswept bungs xnd-rcated that their high-speed aerodynamic characteris- 
tics at moderate CL were at least as good as those of cambered sections, 
they were simpler to calculate and construct. DurlAg this period the use 
of sweepback to delay the drag rise with Mach number has become very 
comnlon . The loading and pressure distribution on sweptback wings nth a 
uniform aerofoil section everywhere are different from those on the corres- 
ponding unswept w*ngs, and may require to be modified if the full benefit 
of sweepback is to bc realised, or if some unwelcome penalties (e.g. 
unsatisfactory stalling characterrstacs) are to bc avoided. If, as 1s 
usually the case, both the chordwise and spanwise loadings need modzfysng, 
this can only be done - if at all - by ah appropriate combination of camber 
and twist, although initially the basic section may be uncambered. 'ph~s 
is true not only throughout the subsonic speea rango but also at super- 
sonic speeds (e.g. Ref.1). Thus a simple me$hod of calculating the load- 
ing of cambered swept wings, accurate enough for practical purposes, is 
required. 

This report provides a method of calculating the effect of a certain 
type of camber on the chordwise and spar&se loadings of a.ly x~ng, swept 
or unsweijt, in incompressible potential flow. 'The Prandtl-Glauert rule 
(or one of its refinements) may be used to apply the m&hod to high subsonic 
Mach numbers. It is an extension of Ref.2, vhich dealt with the calcula- 
tion of the lift distribution on thin wings of oymnetncal scctiou such 
that low aspect ratio effects could bc neglected. The methods and assump- 
tions used there form the basis of the present report. They are to be "lore 
fully explained 111 a later note and no detailed justifications v,o.ll be 
given here. 

As far as the spanwise loading is concerned, rep!acmg a symmetrical 
aerofoil by a cambered one can always be interpreted as applying to the 
symmetrical section a certain twist or change of incidence, equal to the 
zero lift angle of the cambered section. But vrhercas Ilnifom. camber on 
an unswept wing imparts the same equivalent change of incidence (the 
scro lift angle of the two-dimcnsi.onal soctionj at all spanwise positions, 
this IS not so for a swept wing. Again, the chordwise Loading of a thin 
synrnetrical w~.ng is usually a ssmed nnt to vary srlth the span if the wing 
is unswept (except for small aspect ratio), but it does so vary if the 
mng 1s swept. The effect of adding a uniform camber also varies along the 
span if the wing is swept. Thus the calculation of both the basic incid- 
ence term and the camber term in the chordrnse loading IS more complicated 
for a swept -iring. 

It is unlikely that an arbitrary camber line will lead to an equa- 
tion for the circulation from which the usual quantities can be calculated, 
(e.g. lift, RLtching moment, zero lift angle). It was therefore decided 
to start with a chordwise distribution of vorticity from-which the aero- 
dynamic characteristics could be deduced, and which mould contain para- 
meters determining the geometry of a family of camber lines. This vortex 
distribution, (which is placed on a straight line and not on the camber 
line, the usual assumptions of linearised theory being m?de,) is inserted 
in the characteristic downwash equation for swept wings, and the resulting 
streaKline througn the leading or trailing edge determines the shape of 
a thin aerofoil. This shape is the camber line associated with the chord- 
v&se vortex distribution originally assumed: it contains the same parameters 
as the vortex distribution and thus a family of camber lines is obtained. 
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The family of camber lines used here gives chordwise loadings ranging, on 
a two-dimensional wxng, from a constant value along the chord to a "flat- 
plate" type of distzxbutlon, thus covering the whole range of practiodl 
interest. 

The calculation method described here applxs to this farmly of 
camber lines. If the effect of camber on the spanwuc loading only is 
required (i.e. the equivalent change of Incidence) the method can probably 
be appllcd to any camber line of non-reflex shape. However the chordwise 
loadings and pitching moments apply only to camber lines of the present 
family and close approximations to them. With this provuo, the method 
may bc applied to the calculation of the loadings of given finite cafnbered 
wings, the procedure of Ref. 2 being adapted for this purpose. Camber 
and twut may be used on swept wings to modify the chordwise and spanwlse 
loadings so that they comply with rcqurcmenta for high Mach numbers, 
high lift, etc. The method of this report may be used to design a wing 
v&th the approprlatc amounts of camber and twist to achieve a desired 
loading. 

In the text, the mean line between the upper and lower surfaces of 
a thick csmbcred aerofoil will be called the "camber line". The mximum 
ordinate of the camber line, referred to the local chord, will be called 
the "camber" and the chordwise position of the maximum ordinate xi.11 be 
called the "iositlon of camber". 

The following terms will be used to identify the various quantities 
associated with an aerofoil section on a wing. The term "two-dimensIonal" 
will refer to the aerofoil characteristics of an lnfinxte unswept wing. 

"Sectional" 
( 

acL e.g.sectlonal 123Y, slope, G 
> 

will refer to the aerofoil 

characteristics at any spanwx.e position arising only from the bound 
vortices* on the mng. Sectional characterlstlcs Include effects of plan- 
form (e.g. sweep, spanwise positlon), an cnmber, but not the effect of 
the trailing vortices. The term "local" 

"( 
e.g. local lift slope, 

a% 
aa > 

will refer to the aerofoll characteristics at any spanwxe position 

arislng from both the bound and trailing vortxes. The effect of plan- 
form is again included. For example the local CL at a spanwise posx- 
tion y = y, is tkt given by the epanwxse loading curve at that 
position. 

The report falls into two parts. The fu-st part (section 2) 
contains the mathematical foundation of the calculation method, and may 
be omitted by any reader who is Interested only in applying the results. 
The second part of the report consxts of Sections 3, 4 and 5. In 
Section 3 the main results of Section 2 are summarised and discussed vnth 
a vievj to practical application. Section 4 describes In detail the calcu- 
lation of the chordkse and spanwxe loadings of a given wing, and the 
desip of a wing incorporating camber and twist to have a required loading. 
In SectIon 5, the method of Ref.3 is adapted to calculate the pressure 
distributxon over a thick cambered aerofoil. 

Although the formulae m3y appear complxated at first sight, the 
practical application of the results is stralghtfoxward and easy, since 
tables and diagrams are provldcd from which most of the required info-- 
tlon may be obtalncd, either directly or by interpolation. Tables I and 
II give the shapes of some members of the family of camber lines, all 

* The conception of bound and trallmg vortices on a swept wing will be 
discussed In a subsequent report. 
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calculated to give CD = 1.0 on a two-dimensional. wing at sero incidence. 
These camber lines and their chordwise loadings are shown in Figs.4 and 5. 
Figs 6 to 8 show the equivalent change of incidence and the pitching 
moment at aerc lift plotted against a function given by the planform. 
They can be easily applied to any spanvvlse position on a swept wing. 

2 Mathematical basis of the method 

2.1 Derivation bf the camber line equations - 

2.11 Preliminary remarks 

The loading on a cambered aerofoil may be divided into two parts, 
one arising from the incidence of the aerofoil and the other from the 
camber. The camber effect may be expressed as an equivalent change of 
incidence ha , i.e. the incidence which would have to be added to the 
uncambered aerofoil to cause the same lift increment as the camber. On 
an unswept wing having uniform camber along the span, As is to all intents 
and purposes the same at all spanwise positions, and is of course the 

same at all incidences. the basic lift slope due to incidence acL - , is 
.' aa, 

also the same at all spanwise positions. On a swept wing Aa at any span- 
wise position is still independent of incidence,4 but both Aa and the 
basic incidence term are functions of the spanwise position.' 

Since sweep affects even the basic incidence term, consider first a 
thin wing of symmetrical section swept at an angle 'p . For tapered wings 
we assume the angle of sweep to be that of the mid-chord line.* The 
restriction to thin wings means tnat only first order effects are considered. 
The chordwise distribution of vorticity at the centre of such a wing may 
be assumed to be of the form 

l-x 2 
Y,(x) = 2Vc ccs q.a, - ( > L1-% ( > x 

where the x-axis is the chcrdline, x- is trade dimensionless 1vlt.h the local 
chord, and the vorticity is distributed along the chcrdline. ae 1s the 
effective incidence, i.e. a, = a - total induced incidence from trailing 
vortices. The corresponding distribution for an infinite sheared wing is 
of the form 

( > 

1 
?T,(x) = 2vo ae l-xF 

. x 

At any intermediate section between the centre and mid-semispan 
(where the distribution is of the sheared wing type), the term containing 

x in the vortex distribution is of the form l-x n 
( > 

where n lies 
x 

* In the calculation method of Ref.2 the sweep angle is defined as that 
of the mid-chord line near the centre and tip and as that of the quarter- 
chord line near mid-semi-span. This is an unnecessary refinement when 
calculating the effect of camber. Throughout this report, 'p means the 
sweep of the mid-chord line. 

-6- 



cp between 6 and & l-- 
.( > v2 

: i.e. 

&,Y) =$ 
i 

l-h(Y).& 
I 

9 (3) 

where y is the spanwlse coordinate, dimensionless wth the local chord. 
For an unswept wing, 9 = OO and n(v, y) = + at all spanmse positlon. 

h(Y) is a function of the spanwlse coordinate y such that 

h(Y) = ’ at the centre se&Ion 

h(Y) = 0 at the "sheared part" 

O<h(y) < 1 at intermediate positions. 

Fig.1 (which 1s reproduced from Fig.1 of Ref.2) IS a curve based on expcri- 
mental data which shows how X(y) wrles alth y. h(y) may bc obtained 
directly from Flg.1 for any spanvlse station. 

The general equation for the vortex Cllstrlbutlon at any section 
between the centre and the sheared part of the wing may be written 

l-x y,(x) = 2Vo sinxn.a, - ( 7 x (4) 

where 
r 

n = + 
1 

l-h(Y).+ 
3 

) 

a known fundlon of 9 and y . Thx gives the assumed dutnbutlons at 
the centre and sheared part of the wing, viz. 

‘p 
n = + 1-e : Yx(X) = 2v, ( ) 

1 --x 
$. ,..--- 

72 
/ 

co3 v.ae - 
( > 

( > 
x 

at the centre, 

*=;: ,,-xs 
Y,(X) = 2V, ae - ( > x 

at the sheared part, and equatron (L) is an interpolation formula for 
spanmse positions between these limits. 

Equations (3) and (4) apply also to any section between the sheared 
part and the tip, h(y) then being negative. 
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the sheared part and tip of sweptback wings (and between th<. centre and 
sheared part of sweptforward wmgs). n is essentially a parameter assccla- 
ted with the basic lncv?lence term, Al, A2 and m on the other hand, are 
those constants, as yet unknown, whxh are essentially connected with the 
shape of the camber line. However m may already be restrlcted to the 
range 0 s m < 1 : 0 c m is necessary in order to have zero vorticity at 
the trailing edge with the flow leaving the trhlling edge tarlgentlally 
(Joukcvski's hypothesis); m < 1 is necessary to avou3 an infinlte value 
of local lift coefflclent when y,(x) is integrated cvcr the chord; m = 1 
appears to give such an infinite llf't coeffuzlent, but It w-111 be seen 
that A2 then bcmmes eerc and m z 1 is a permissible value of the 
exponent. 

Equation (4) fulfils the requwanant mentioned in SectIon : that 
the vortex dxtribution may be manlpulated to give aerodynarmc properties 
such ds lift, pitchxng moment and zerc ilft .uvQe. 

Fig.2 shows the axes used. Tho x-axis lies along the chordline 
which, following NACA conventwn, joins the ends of the camber lme, and 
&es an angle a rnth the true v&nd direction. With the sign convention 
of Fig.2 the follcwmg expressxcn for the dcvmwash due to the bound 
vortices at any spanwxse position on a swept vulng 1s used* (see equation (7) 
in Appendix I of Ref.2):- 

Now 

where 

and 

1 
vz 1 -=- 
VC 2xvc cs 

YJX ) 
0 

& ) + taLl y+) 3 

K,(P) -rc, (P) (*) 

ca 

q(P) =; s c&= n sinnp 

co 

K2(P) =; i 
as n 

o l-s’/p 
= 

tannp 

(7) 

(8) 

(9) 

(10) 

* This equation, which forms the basu of the present method has been 
derived in Ref.2 for the centre and sheared part cf a swept w.ng, and 
will be further discussed m a later note. It has been checked by an 
experiment designed for that purpose. A certain distribution of Y,(x) 
was chosen for the centre of a swept wing, and vZ/Vc, evaluated from 
equation (7), was used to define the mean lrne at the centre. Pressure 
measurements showed that the chosen Y,(X) had been cbtalned (Ref.!+). 
Here, equatxon (7) is also used to interpolate between centre and sheared 
part. 
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Therefore, from (6) and (7), 

sin 7cn 7l x *7c * = i[ Al sin T[n +A2 i -( sm xm tan*m-tanxn 

(12) 

from equations (9) and. (IO) 

=A,+A2 slnnn-slnxn (cotxm-cotnn) 
sin m (13) 

V 
From the streamline condltlon, $ = g , for the flow past a thx 

x 
cambered aerofod, 

Where Vzi 1s the downwash induced by the trailing vortxes and z is 
made non-dmensmmal with the local chord. If a is not large, 

cos a ; 1 
sl.na*a, ' 

V.zl 
Also, r = 

0 
u.~, assumed to be,Tonstant over the chord (see Ref.2). 

Therefore, 



lntegratlng with respect to X, and noting tb3t e = 0 when x .= 0, 

z = +A,+A2 smnn 
sm mn x -A2 sinnn (cotxm-cotxn) 

dx' IS a function of x and m for which we have no 

expllclt expression in general. 

Putting ST =(&q, s;(l!$)y 

It my be noted that, when x = 1, 

m 

i 
ds’ 

,+s:'/m 
has been evaluated graphically i,z the calculations for 

s 
this report, and is denoted by B(x,m): 2.e. 

where 5’ and s are as defined above. 

Equation (17) now becomes 

(19) 

Z= sm*n 
Smx.m x-A2 smxn (cotnm-cotnn) 

From Fig.2, z = 0 at x = 1. 

i.e. 0 = sinew 
> 

-A 2 sin 7c.n (cotnm-cot nn) n m 
sin 7tm sin nm 
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s1n7cn I. e ae = A, + A2 slnnm 

Equatzon (20)enables A, to be 

iI-ml (cot7cm-cotnn)] 
(2.0) 

e'l&mlnated from equatxon (6), and leads to -' 

a = A2 smxn (cotxm-cotxn) I SX-B(x,m)-x I-xm ( )I x (27) 

This IS the equatxon of the family of camber lmes, the parameters 
being n (assocl&ted with the planform and basx uwldence term), and A2 
and m (assoczated wth the camber) The next step 1s to determlne m 
and A2 m terms of the geometry of the camber lines 

2 13 Relation of A2 and m to the camber and posrtlon of camber 

From cquatlons (16), (20) and (21), 

For certain values of m and n It 1s not possible to evaluate z 

and 2 from equations (21) and (22) In a straightforward manner For 

uxtance when m = 0, cotxm = m and when m = n, cotxm-cot*n = 0 
Such special cayes are dealt vnth m Lectson 2 3 

de 
z 1s the slope of the camber lme, and at the posltlon of camber 

where z 
de 1s a mscL*Llm - = 9 d..c Therefore, by equation (22), 

7Lrn = 1-x)" 
sm xm ( --Ty/ ) 

qnormg tmm.al solutions of $ = 0 

1 le Xf = 
' nm 

(23) 
I+ - l/m 

t > sin 7zm 

where 3 1s the coordznate of' the posltlon of camber Thus m deter- 
ones , or 1s determined by, x.f, depending on tilch IS g~.vcn rnltlally 

From equation (21), 

z nax = -A2 sm m (cot nm-cot xn) B(xf, m) (24) 
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where zmax is the camber and 

co 

J&,d = 
i 

ds' 
, +s'vm . 

71311 
31n Km 

(25) 

B(q,d is a functior) of m only, since xf i&a function of m only. 
B(+,d + - as m-tl. To obtain a function whxh is finite everyPihere 
in the range 0 < m < 1, write 

' 

C(m) = A * 
xxm 

4.53 B(xf,m) 

i.e. 
I 

B(xf,m) = - * -%L 
4.53 C(m) 

B(xf,d was obtain& by graphical integration. C(m) vazles between 0 
and 1, and is plotted against m in Fig.3, along with xf. 

It should beznoted. that, usxng the coordinate system of Fig.2, a 
positive camber line ~TI the usual sense corresponds to negative values of 
e. This accounts for the mu-us sign XI equation (UC), which may be 
rewritten:- 

A2 sinnn .(cot7tm-cotxn) .7tm 
f= 

: 4.53 C(m) 

i.e. A2 = 4.53 C(m). f 
sin7tn (cotxm-cot?in) .7tm 

(26) 

Thus it is now possible to write the vortex distribution of equation (6) 
as a function of n, oLe, m and f:- 

Y,(x) = 2vo sin7cn a, 
l-x n 

I( ) 

+ 4.53 C(m) . f l-x mx 
x sin *n ( > x 

[ 

1 _ sinxn I ,- x b-d 
-1 - 

xm (cot ,xm-cot Kin) sinnm ( xm (cotxm-cotxn) 
)( ) 

x 
' _. (28) 

11 

where m and n are given by equations (23) and (3) respectively. 
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Equatxons (21 and (22) become 

e = 4.53 C(m) .f Em c x-B&n)- x 
7Cm sin nm 

dz _ 4.53 c(m). f -- dx *In [sz;m - (%y] 
Fig.4 shows some camber lines designed to give a C, = 1.0 on a 

two-dimensional wing at zero incidence, and Fig.5 shows their chordwise 
loadings. 

2.2 Aeroavnamic properties 

The aerodynamic propertles of the family of thin cambered aerofoils 
given by equation (29) may be deduced from the vortex dutributlon of 
equation (28). 

2.21 Chordwrse loading 

The streamlines over a swept vrlng are, in general, curved, and not 
straight lines XI the free stream direction as for an unswept wing of 
infmite aspect ratio. This is because the velocity increments due to the 
vortex distribution are in the direction perpendicular to the vortex 
filaments Y,(x).dx. If V. is resolved into two mmponents, one perpen- 
dicular and the other parallel to the vortex filament at that point, the 
velocity increments are added only to the former component. The latter 
is unchanged along a streamline. If the tangent to the vortex filament 
at any point has a sweep angle 'PV, then the two components of the free 
stream velocity are V. cos 'pV and v. sul 'Iv. Increments are added 
to V, cos 'PV to give the velooitles perpendicular to the filaments on 
the upper and lower surfaces. 

2 
is a function of y. At the centre section the streamline is 

in the ree stream direction and cos 'pV = 1: at the sheared part the 
filaments have a sweep angle equal to 9 and therefore cos 'pv = cos 9 , 
i.e.:- 

cos 'pv = cos 'p at the sheared part and 1 at the centre. From Section 
2.1, 

slnn7tn = 1 at the sheared part and cos 'p at the centre. 

Hence si.nxn x cos yv = cos y at the centre and at the sheared part. Thu 
suggests that the formula may be a convenient interpolation for other 
spanwise positions: 

i.e. 
cosy 

cos ‘pv = slnnn 

The vortex system consists not of straxght lines with a kink, but lines 
curved to achieve a oont~nuous tangent over the whole span. 

In general, 'pV varies along the chord at any spanwzse position. 
The above relation 1.9 therefore only an approximation for a mean value 
of YV. 
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If the X and Y axes are perpendicular and parallel respectively 
to the vortex filament at any point, the velocity xxx-ements 
to the filament on the upper and lower surfaces are + YX(X) P 

erpendicular 
2, the vorti- 

city distribution per unit area along the X-axis. The vortlclty on an 
elementary area surrounding the point must be the same when referred to 
both sets of axes: i.e. y (x),dx,dy = Yx(X).d.X.dY. From the usual trans- 
formation for rotation of &es, the area dx.dy = the area dX.dY. 

Therefore Y,(x) = YX(X) and the velocity increments perpendixitar 
to the vortex filament are + Yx(x)/2. 

The velocity components perpendicular to the vortex filaments on 
the upper and lower surfaces are therefore 

cos $3 y 64 
(Vperp)U.S. = 'o sinxn+* 

009 $3 *T,(x) 
(Vperp)L.S. = Vo stinn-2 

The velocity component parallel to the fiiaments is 

(VP,,) = V. sin % = V. JX 

on both upper and lower surfaces. 

2 
Therefore (Cp)u,s.(x) = I- 

w4 cos ‘p (4 2 = --. -- . 
VO C-V sinxn 2V, 

and 

Therefore 

TX(X) 
(c-p),.s.W = + 7 - 

co9 ‘p q(x) 2 - - 
0 ( > sin7Cn 2V, 

AC+) = (c,),.,.(x) -(c,)L.&) 

Yx(x) co9 ‘p 
z -2.-. 

VO 
sm nn 
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From (28) and (31), 

AC (x) = -4 cos 'p P 

I 1 -sin 7tn 

( 

: 
ndcot nm-cot 7tn) sinnm &cot ?cm-Cota 

-py=-'"'l] 

(32) 

2.22 Lift c0efY1c1ent 

The foregoing results are now used to determine some of the sectional 
aerodynamic characterxd.lcs at any spanwxse position on a cambered swept 
ving . 

from equations (6) and (31) 

= 4 oosq 
l 

A, ?C"+A 7c.m -I 
sm 2T.n 2 sin7tc-j 

=4.+%x 4.53 C(m).f x 
sln7tn sm'irm (cotirm- cotxn) 

(33) 

(wtxm-wtnn) + 1 -z 
13 

f = 0 Tze(3E7. Then 
due to a thin symmetrical section 1s obtained by putting 

cr, mcxlence 
= 4% .a,.m (35) 

O&Y 

which gives the well-known.expresslons 

CL = 2xa,, on a &o-dimensional wing (i.e.(p= Co, n = 6) 

CL = 2xa, CoSq, on a sheared wing (i.e. 'pj:O", n = $-) 

at the centre section-of a sweptback mng 

- 16 - 



Therefore the addition&t lift due to camber may be wrItten:- 

“CL co9 ‘p 4.53 C(m) -= 4 
f sinnn ' sinnm (cotxm-ootxn) 

--ml (cotmn- cot m-3) + 1 - i (36) 
i 1 

2.23 Angle of zero lift ._ 

Aa is the amount by which the incidence of a thin symmetrical 
section would have to be ucreased to @-re the same lift increment as the 
camber. Therefore the angle of zero lift of the cambered section 1s - Aa , 

Aa is obtained from equation (36) by the relation 

acL 
ACL =aa,* Aa 

From equation (34), 

8CL 
G =J+?rne (37) 

Therefore 

$LAL. ’ 
f aCL/a a, 

= Cm 4*5;ot(n~-cot nn 701 (cot ml-cot ml)+1 -z m sin *m )L 3 
(38) 

2.24 Pitching moment and centre of pressure 

The pitching moment about the quarter-chord point is given by:- 
1 

c;, = - 
s 

ACp(x).(& - x).dx 

0 

1 
=L.scfi 

VO 
sin 7rn s 

Y,(x) (& A) .5x 
0 

= 4 cosq ?rn 
sin *n 

@n-l)+ $ A2 
3 

(39) 

= COST a, 

c 

-EL- (B-I)+ A2 +-- 
smnn suvun 



Vhen there is no camber, A2 = 0 and then 

rqa = ( 2n- 1) coscp.a, nn 
sin m 

Therefore the change In pitching moment due to camber is given by 

*Cm -= 4’53 C(m)‘cos’ 
f oinK(n- m) 

I)+ (2n-I) 7(n 
c 

(cotxm- cot (41) 

The local centre of pressure due to both incidence and camber effects 
may be found from equations (33) and (39) which give 

=yc,+c,, 
where '.&,o is the pitching moment coefficient at zero l&t. 

Therefore Cm 
42.P. =-E 

2n-1 Cm hrp cQ =-4..cL =-&-c, 

(42) 

The sectional centre of pr,essure due to the camber effect only may 
be found from equations (36) and (41):- 

AC, 2n-1 m-n 
[%.P.lf = - z =--- 4 2{~(~otrrm-c~3t~)+~-~ 

(44) 

= kk- m-n 

2n 2 nn (cot7un-cot7cn)+l-~j7 
C 

The effect of the trailing vortices arising from the camber lift 
listributzon will be included in the incidence lift distribution for which 
the C.P. position is given by 

[Axc.P~, = k [cf. Ref.2, Appendix I.] (45) 

Equations (44) and (45) may be combined to give the same result as 
(42) if the separate lift coefficients due to camber and incidence are 
known. 
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2.3 Special values of m 

There are several values of m which are of special interest, or 
at which the formulae of Sections 2.1 and. 2.2 my require special treatment. 
These will be dealt with in thu paragraph. ; 

2.31 The case m = 0 

This is the case of camber at xf = 0.50 (see equation (23)). On * 
a two-dimensxmil wing the distribution of Y,(x) and ACp(x) associated 
with this camber line for a, = 0 is constant along the chord (Fig.5). 
It is a convenient camber lme for practical application, as will be shown 
in Section 4. Putting m = 0 in the equations of Sections 2.1 and 2.2 
introduces infinities and zeros. It is best to derive the equations 
afresh. 

Equations (6) and (11) become respectively, 

Yx(X) = 2vc sinxn b, (i$+A2] 

= Ai +A2 
sinnn - "' +A 

x X-X’ 
\ 2 cos xn 

0 

= Al _ A2 sbx’n log + A2 ccs xn 

Following the procedure of Section 2.1 the corresponding equation to (21) 
is 

e = A2 sbxxn Ix log x+ (l-x) log (I-x)j (46) 

Also A, = ae-A2 cos?rn, and A2 .= m (putting x = 0.5 in-(&)) ' 
sin 7t.n 

Therefore 

s=~~xlcgx+(1-.)log(l-x)j (47) 
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The aerodynamic characteristics follow as in Section 2.2 and are:- 

“% -= 
f 

18.12 - (1 -XII cot xn) 
sin nn 

ia = idQ (1 -ml cot m) 
f nn 

A% - -- - 
f 

4.53 E [I + (2n - 1) xn.cot ml] 

2.32 The case m = 1 

This case is the opposite extreme to m = 0. It till be shown that 
it represents a straight line (i.e. a flat plate) at Incidence. Agaln 
direct substitution in the equations of Sectlons 2.1 and 2.2 does not give 
the shape of the camber line and the aeroclynamic properties, so a fresh 
start is made. 

Equation (6) becomes 

Yx(x) = 2Vo sin nn fiq (57 + A2 (+)I 

But 

k = - /A$(&& = $ . e 1 y,(x)dx 
0 

[ /(yp+*2!(-:&]. = 4 coscp A, 

i 
x . 

I-X 

i( > 
- clx+c.a as x-t 1. 

x 
0 

Therefore, if the sectional CL is to be finite, A2 = 0, and 
n 

y,(x) = 2V, sin?rn.A1 +$ 
( > 

This is the distribution for a "flat-plate" section on a swept w.ng, and 
it gives a"camber line" 

z = (A,-a,)x + const. 
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previously, e = o at x = 1. i.e. 2 = (A,- ae)(x-l), 

\ 
and z=o atx=o: 

i.e. A,= Ue and e = 0 for all x. Thus the camber l~~ne nas degcne- 
rated into a straight line, the vortex dlstrlbution being 

YJx) = 2Vo sinnn,ae l-x 
0 x 

However, by considering a family of camber lines having the same 
it is seen that the limit as m + 1 

%, + af) 
is a flat plate at an incidence 

, the lift which was formerly due to camber being now obtained 
from the additional incidence af, (Fxg.4). Equation (23) shows that xf=O 

and therefore z = -f at x = 0, instead of .a = 0 as wed above to 
eliminate AI. 

The equation of the camber line defued by m = 1 is therefore 

z = (x-l).f, (52) 

a flat plate at incidence af = f radians. Therefore 

Yx(x) = 2V, sinnn (ae +f) * 
n 

( > 

When m=l, $. = 57.3 for all values of 'p , Aa being in degrees and 

f as before being dimensionless wz.th the ckiord. The equations for the 
lift and pitching moment coefficients follow as before:- 

A% _ nn -- 
f 

(2n - 1) co.39 
*u-i 7[n 

2.33 The case m = n 

Since 0 6 m 6 1 and 0 c n c 1, It 1s possible for a certain 
combination of camber, sweep and spanwise posItIon to make m = n. When 
this happens, the equations of Se&Ions 2.1 and 2.2 may become uldeter- 
minate and till have to be solved by 1' HGpltal's rule, viz:- 

If f(x) = g(x) = 0 when x = '4, then 
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Provldea f'(x) ad g'(X) are not both zero at x=x, . For 1nstanc-e 

when m=n=0.5, y 

to equatzon (38) gives 

becomes udeterrmnate. APPlyugthe abuw rule 

0 

& 
f 

e 

nkn 

'a 
ygy (numerator) 

! 

$ 4.53 c(m) 

& (denominator) sm nm 
ltkn 

s1n 7Lln 
zz - 

%m. B(xf,m) 
-c 4.53 c(ml 

s3l.n 7[ln 

For example, let m = n = 0.5. Then 

4.53 c(m) = 4.53 x 0.614, and 
( > 

sm xiu 2 
sin nm 

I: 0.405 . 
*in 

Therefore $ = 95. 
I 

!lk.s process may be used to evaluate other functions of m and n 
whwh become lndeterrmnate. For example, the vortex distribution becomes 

a - 4.53 c(m) - f. sin nm e x2 m --A 10 
I_ 

By ord..uary substztutun A2 appears to become u?fuite. 

3 Interpretation of the formulae 

3.1 Ths farmly of camber lines 

In Sectmn 2, equation (29) dofmes a farmly of camber Lnes 
charaoterzsed by two parameters only. These parameters are:- 

(4 the oamber, f ; 

(ii) the posltzon of camber, xf . 
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Any member of thus farmly hzs a chordwrse vortex dutnbutlon of the 
type given by equation (6) in whxh the udex m is a functzon of xf 
only. This functlond re1at1onslup 1s statea ln equatuxl (23):- 

(23) 

and iilustrated in Fig.3. In the equations of the oamber 1x1~s and 
their aeroQnauuo properties, m 1s used as the parameter of the 
position of comber udead of the 170~ cumbersome xf . 06rn61 means 
that 0.5axf>o. The calculatun methsd 1s not applicable to negative 
values of m (i.e. 0.5s -61) SUX.C the Joukowslu conhtron that the 
flow leaves the trailuxg edge smoothly would not be ccmpl~ed with. 

Equation (29) gives the shapes of the fariuly of camber lmes:- 

It ~~11 be seen that the chcrdwue va.rutun of .z depends only on 
&f) * Wg.4 shows a number of camber lines derived from equation (29) 
by znsertlng different values of m. Tlie camber, f, m each case is 
chosen to give a lift coefflclent A% = 1.0 at zero ~ncdence on a 
two-&mensuxal wing. The extreme case of m=l represents a flat 
plate at an rncidence of f raduns. The other extreme, m= 0, gives 
a constant-load camber lme. The co-or&n&es of these camber lines 
and the values of f and xf are given in Table I. For any other 
requred value of ACL on n two-duensunal wing, say ACL,, the ordinatti:r, 
of the cember lines in Table I should be multrplz+d by AQ,/l.O . 
Similarly, for any other raqured value of f , the or&n&es shodd be 
nziitlplied in proportion. 

The corresponding values of 2 are given zn Table II, hav;Lng 

been calculated from equntlon (30). These values are requred when the 
calculation method 1s extended to cover tluck prcfdes (Sectron 5). 

It may be noted that z 1s mfz.ste at the lea&ng edge for all members 

of the fanuly of camber lu-~es. 

3.2 Sectlond aerodynanuc characterxstlcs 

The flow over a given cambered aerofoll se&son on a swept wing 
varies with the spanwxse posltxm. Therti'ore, .Ln nadltlon to f and 
m, the geometrical parameters W and y cccw sn the equatxons of the 
sectional iiero~~~~armo~chacacterlstlcs. The parameter y is incorporated 
m the index n from the onguxl vortex &strlbutlon: 

where h = h(y), a function of the spanw~se posltlon. n is therefore 
a fLLnctlon of Ql . 
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0 G h c 1 near the centre of a sweptback wing; 

0 > ha-1 near the tip of a sweptback wing. 

h(y) msy be read directly from Fig.1. , 

3.21 Chordwise loa& 

The chordwise distributions of vorticity and lift arising from a 
cambered aerofoil section at en effective ~-~cidenoe a, 
equations (28) and (32) respectively:- 

are given by 

y,(x) = 2Vo sin xn 
r 

l-x a, - + 
( 7 

4.55 o(m). f & In x 
x s3.n 7(n ( > x 

L 

I 

1 _ smnn 

( 

1 ,-x (n-d 
7tm (cotxm-cot 7~x1) sinxm Gm (cotxm-cotxd- X 

3( ) I] 

. . . ..(28) 

Acp(x) = 4.53 c(m). f 
s2.n nn 

The terms due to the camber only are functions of f, xf, $I and h(y), 
'p usually occurr+ng In ConJunctlon with h in the parameter n. 

By putting o-0, the distributions on a two-dimensional wing are 
obtaured. Some of these are shown in Fig.5. The distributions range 
from a constat velue when m=O to a "flat-plate" type of distribution 
when m=l . On a swept wing the distributions must be calculated from 
equations (28) and (32) using the appropriate values of h and 'p . 

It is interesting to compare the series of camber lines of the 
present report with the series of NACA mean lines a=0 to aZf.05. 
Both series contain a camber line which gives a constant chordwise 
distribution of ACp(x) , and in fact the two camber lines are identical. 
They are charactera.sed by parameters m=O in the present series end 
az1.0 in the NACA series. Other camber lines of the two series do not 
correspond to each other since they are derived from dxfferent types of 
chordwise loading. In order to obtan a linear loading at the rear of 
the sections the NACA camber lines have an inflexlon near the trailing 
edge. Elimination of these inflexlons introduoes a steeper pressure 
gradient at the point where the loading changes sharply. In the present 
series of camber lines there are no inflexlons. 
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3.22 h&e of zero lift 

The change in the eero lift angle brought about by the camber 
1s denoted by ha. Equation (38) shows that lt contaxx f as a 
factor and that it is also a function of xf and of $ :- 

ii!& 4.53 c(m) 
f = ?in sinzm (cot7cm-cotxn) i- ( xn cot7Un-cotnn)+l -z ] (38) 

In Figs.6 and 7 9 IS plotted against )Lq for various values of xf . 

Therefore for any spanwise posrtion on a swept wing the change in zero 
lift angle due to camber may be read or Lnterpolated from Figs.6 and 7: 
no calculation is necessary. 

Fig.9 shows the variation of "$ with positron of camber on a 

two-dimensumal wing. The greatest lift increment is obtarnsd when 
m=O (xf=o.5). This lift increment IS nearly 50% greater than that 
obtained from a circular arc camber line (for which xf also = 0.5). 
Tks is because the circular arc has an ell~pticel chordwise loading 
whereas the camber line of the present series has a constant loading. 
In practice, however, much of the extra lift of the constant-load camber 
line is lost through viscosity effects (see Section 4.11). The camber 
effect on lift 1s a minimum when m=l , (q=o; see Section 2.32). 

The sectional lift coeffxient due to camber, ACL, is equal to 

A,xaG: % 
3% 

is given by equation (37):- 
e 

aCL -= 
a =e 

4?rn . ws'p 
sinxn (37) 

Hence ACL may be obtszned from Au . ACL does not include the induced 
effects arxing from the trting vortices of the spanwzse lift kstribu- 
tion due to camber. For an aerofoL1 of finzte span ACL may be added to 
the incidence term only if the latter includes these induced effects. 

3.23 Pitching moment and centre of pressure 

The sectional pitching moment coefficient due to the camber, Acm, 
is given by equatron (41):- 

AC, . 
4'53 c(m) co' -iL 

f sm 7x n-m) (41) 

The local centre of pressure position depends on the relatz$e amount of 
lift contributed by the incidence and camber effects. If the local. 
lift coeffxient C& is known, the C.P. position is given by equation (43):- 

'2n-I -c,o ~ 
Axc.P. = - 4 

CL 
@i! 

CL 



Equation (42) shows that f cos q IS a factor of Crib and m "q,.G 
. 

c% 
f 00s 'p 

. 1s plottea aganst %$ for various positions of camber. Thus 

Cm0 may be read or interpolated from Flg.8 and very lattle calculatron 
IS required to,flnd AqXCP, . 

Flg.10 shows the variation of the local C.P. posltlon with posltlon 
of camber on a two-dunenslonal wing at zero incidence. q P YarXS 
from 0.5 for. xf I 0.5 (mzo) to 0.25 for xf = 0 (m=l) "- 'For a 
cambered section at lnczdence the lzft force ?LLE to lncldence acts at 
0.25~ and so the C.P. posltron on a two-dunenslonal wing varies with 
incidence in the range 0.25 C qG.P. 6 0.5. 

4 Practical application to thu7 swept wings 9f flute aspect rat10 

It 1s now pcosible to set about the co.lcu.lat~on of the choxYlwux 
and spsnwzse loadings of swept wings having thn csmbered sectloLls of 
the type derived In Sectron 2. Caniber lines whuh ,ue no: members of 
tlu.s fannly must be approxunated by the member of the family hdvug 
the same value of the parameters f and xi', 

Also It 1s now posszblc to des.Lgn vrugs incorporating aamber and 
twist to have a requred chordwxc an< spanwue load;Lng. The spanwxe 
1oaClz~ng at a given geometric uwulence may be green any desired shape 
by the use of twut alone or camber alone or by m mnfzrute nuniber of 
comblnatlons of both (provided the flow does not break down -here 
over the aerofoll). However, If tne chordwxse loa&ngs are also 
requred to be of a defmte form, then In general only one of this 
infinity of oomblnations of camber, twist and basu uxxidence will gave 
the requred load distnbutlon. Therefore of the complete lca?lng and 
pressure field over the wng are of Interest the camber and twxst must 
be oombuxd In a definite manner and should be matched to each other 
throughout the span to give the most acceptable dutribution. This 
will usually mean that camber, as well as twzst, will.l vary with the 
spanwise posltlon and may change from negative oambor In one part to 
posltlve canbw zn another. Thu unportant point has not been observed 
in the past, and it 1s therefore not surprlslng that up to now cambered 
wings have not shown the desired benefit when checked expermentally. 

It may be pourted out that aerofoll sections expressly designed 
to have a oertarn chordwise pressure dlstnbut~on, e-g. to give a 
high orltlcal Mach number, should not be applied to swept wxngs on the 
basu of their two-dunenslonsl characterxtlcs without examunng the 
effect of the planform on these oharacterlstxcs, sxnce the lnxprovement 
ln Morlt rught not be maintaned without further motiicatlon to 
camber, twist or thxkness dxtnbutxon. 

4.1 Calculation of the loadulg of a given wing 

1'1 the case of a grven wxng, everythIng is known about its geometry. 
The planforni i~..spedLfled wh+?,h moans That 'p , h and n are known 
everywhere. The geometric uxidence u , the camber f, and the posrtlon 
of czmber xf , ai-e also speclfled aver~~here. 

4.11 Spanwlse los.d;Lng: general n&hod 

The sparwise loading 1s most conve~ently calculated by the method 
of Ref.2 because the same basic approach IS used here as In that niethod. 
The descrlptlon which follows 1s applicable to wings of ab.b-ut aspect 



ratio 3 or greater, provzded that the camber end twist do not change 
rapidly within one chord of the centre-section. If the camber and 
twist do vary rapdly in this region, the modificatzons descrd~ed m 
Section 4.12 may be applied. The celculation is essentuilly the same 
2.n all cases, however. 

In Ref.2 the utegral equation of Prandtl is written 

(equation (18) of Ref.2), 

C(V) xhere q = y . -- 
bki- ' 

a non-dimensionsl spanwise co-ordznate, 

Y(V) = 

a(q) = 

c(v) = 

b = 

a(d = 

the total non-bunensiond vortxity at spanwxe 
posltion ^rl, 

sectlord lift slope, 

local chord, 

wmg-span, 

geometric uxidence. 

The udzegrel on the rlght;hand side is then replaced by a fud.tc serzes 
in the maMer of Multhopp anil equation (57) becomes ;L se+, of suxii- 
tsneous equaikns in Y,, :- 

where 

and Y is a suffix 

(equation (20) of Ref. 2) 

m, 

z 
b vn *"n-b,,Yv, 

=I 

uduzating the plvotel spanwise posltlon. 

The coeffxients b,, and b,, are given III Ref.2 for the case in 
which the downwash at the wug is 8. ssumed to be half that at mnfiruty. 
Cases when thu assumption ZLS not true are dealt with in Section 4.12. 
b and o are functzons of the planform and the only other quantities 
which remaxn to be inserted are the sectional kft slope ay and 
incidence a, . As in any other lvlearised theory It is assumed here 
that oambar and twist do not affect the sectional. lift slope whuh is 
therefore obtaued from the formula 
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(59) 

(see equation (35)), 9 bemg the sweep of the md-chord line. The 
mcu%ence a, is the total geometric lnc~3encu and must lncluae the 
"equvslent uxldence!' of the camber at T" ) l.e. Aa of equation (38). 
It ~11 be noted that equation (38) does not take account of the effect 
of trailing vortlcas (l.c. An 1s a "sectional characteristic") and so 
Aa does correspond to a geomctrw uxu3ence and not an effeotrvc incl- 
dencd . Therefore a, 1s) accordug to our assumptions, the sum of the 
geometric lncidcnce and Aa at q, . 

The values of Y, are now the only unknowns In (58) and thu set 
of suniltaneous equations can be quxkly solved by iteration as shown 
In Reef.2. Thus, from the relation 

the local. lift ooefficlent may be found at the pivotal spanwue 
posltlons. The uduced uxdence at these posltzons may also be found 
from the relations 

CL 
a 1” = % - %v = % -2, 

% 
(61) 

sinoe a, CL and a are now all known at n, . 

The spanwise losting thus found vd.l only be true at the particular 
lncdence chosen. The lodug at any other lnodence must be cdoulated 

afresh. ha wzll be the same, slncc the camber effect IS independent of 
mcdence, but the geometno uxidance ~111 change by a constant amount 
over the whole wing. If It is expected that the lodug at more than 
one incidence ~111 be requred, It will be much quicker to calculate 
separately the loabng due to the basx lncdence, and that due to 
camber and twist, and then to find the total loadzng by superposztron 
of these solutions. 

For the contrlbutLon due tc the basw inordence, equation (58) 
may be &vlded by fly which 1s oonstant for all !J :- 

Y 
-!L 
(Iv !Jv (62) 

Y 
Equation (62) IS solved for & zn exactly the same manner as equation 
(58). By multiplying by the a$propriate vdue of aY 
at the p1vots.l points for any basx uxxdence, 2nd thd 

Y, is obtauxed 
CL may be 

found from the rdatlon Y 

Y 
CL, = -$.a,.2 . 

v 5 
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The loahng due to csmber and twist 1s constant for all lncldences. 
In tlus ease the incidence inserted in equation (58) for each Y will 
be the sum of the twist and Aa due to the camber at that spsnwise 
position, vie: AafTy . If AY, represents the local cxoulatzon clue 
to camber and twist, aquatlon (58) becomes 

end the local lift coeffxxnt due to camber and twist IS gxven by 

The total lift coeffxlont at 11 my then be found at ark ~~d.ence 
by adding the solution of equatdn (62) for the basxc cadence term 
to the solutzon of equation (63) for the camber and twxt term. 

Most of the dxens~ons ard quantltles needed to calculate the 
lift coefflolents are obtainable by lnspectlon of the geometry of the 
wing. Only 1, a,, and Aa 
the value of 1 y) l 

are not cbtsdxble in this way. h" 1s 
at q, ,"e.nd 1s needed m mder to i'md nv, a, end 

Aa, . X, may be read &redly from Fig.1 where it IS plotted ag,arnst y 
(y is non-dunenslonal with the local chord). n and s may then be 
obtanea from equations (3) and (59). In practxe, however, the more 
crude lnterpolatlon given III Ref.2 1s usually adequate:- 

a(Y) y as - ?-.(a, -4 

where as and ao are the lzft slopes at the sheared part and centre 
section of the wing res 

P 
ectively. Dlfforences between this value and 

that given by equation 59) lie wittin the llrmts of accuracy of the 
mrve of Fig.1, which 2s an avcragi: from experLmentsl data on several 
sweptback wings. As explained in Sactlon 3.22, Aa, may be read dUCctly 
from Figs.6 and 7. 

It IS important to note that equation (36), (Se&Ion 2.22) IS a 
formula for the "sectional" Id% coef'f'z.clent due to camber. ThlS cannot 
be used directly to give the spanwise lo&ng due to camber, since It 
takes no account of the effect of the trad!*ng vortxces. The ~T0ca1~~ 
lift coeffxxent must be calculated as above. 

On an aernfoll which has a steep adverse pressure gratient near 
the triullng edge the boundary layer become:! very thick and may separate. 
The loss of Lft due to vlscosxty effects I.S therefore greater than on 
aerofods with a more graauai pressure rise. In the present famly of 
camber lines the worst cask IS the corxtant-load camber lrne when m=O 
beceuse the theoretxxd slope of the chordwiise loa&ng curve 1s lnflru.te 
at the trarllng edge. This csmbur ilne IS ifYentxcal vrlth the NACA mean 
tine with az1.0 (see Section 3.21), and -the actud. zero l&t angle 
of the latter is only 74% of the theoretical vald. As the prexure 
gratient becomes less steep, t>ns percentage rapidly increases, Thus, 
when cdlculatlng aerofods with a camber lx~ gz.ven by m nearly = 0, 
due allowance should be made for vlscoslty when estlmatlng Aa: when 
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m = 0 the theoretkl value should be decreased by one-quarter to give 
the actual Aa. 

+ is plotted agamst hv in Figs.6 and. 7. in cases where the 

centre and tip effects overlap, two values of Xq my be obtain& at 
pivotal pamts near rind-semspanm A mean value should be taken in 
such asses so that a smooth curve of h agamst y LS obtamcd over 

, 

the whole span. This also applies to the lift slope, a. 

Flg.11 shows a comparison between expermentd results and the 
spsnmse loadmg calculated by tl ia above method for a wing of moderate 
sweepback mcorporatrng csmber and twi.st8. Expermant xr.ii cslculnt~on 
show good agreement. 

The two-dunenslonal lift slope used m the calculatmn was 
oorrectea for aerofoil thickness sn& bourdary layer effects, the: former 

by a factor 
c 
I,.+ 0.8 x t/c 

cos v-- 1 
and the latter by a faclor 0.92 (Ref.9) to 

the thm wmg value 2x. Thx gave 3 resultant lift slope 
a, = 1.08 x 2~. 

4.12 Spanw~se loadmg special case 

An important exmple IS the tmsted and cambered wmg of Ref.4. 
This wmg was designed2,4 to have a twst snd camber dxtnbutlon such 
that, at one fixed & the chorawlse loadmgs at the centre and at the 
sheared part were the same, wdh a oonstsnt spmwise loading m betwcw*. 
Flg.12 shows the sections at the centre and the sheared part. 

In commonmth most wmgs aeslgned for low Mach numbem and 
moorporatmg csmber and test, the centre effect and thus the section 
mddicatlons extend only over a comparatively short &stance from 
the centre. The spsnwzse vsrm.t.tlon of AafT mll be quote smnlsr for 
any mng d.eslgnea to have a constant spanwise loadmg in that region. 
The moddioatlon 1s zero at y = 1.0 arid is only 10% of the full 
modification at y = 0.5 (E'q.14). This leads to two ddficu.ltles:- 

(i) If the usual number of pivotal pomts 1s use6 m the calcula- 
tion of ACL (m = 15, see Ref.2) only tw pomts lie mthm the cambered 
and twisted part of the wing and tile cslculatlon of ACL 1s thus 
inaccurate. 

(1j.J AafT changes raplaLy m the spsnwise direotlon, which 
affects the downwash calculation. 

To overcome (1) s larger number o$ plvotdl points is required. 
AlternatLvely the calculation of AC, cm be made for an lnflnite swept 
wmng; I.e. the tip IS assumeii to have no xnfluenoe In the central region 
of the wkng where the camber and twrst oocu; (Ref.2, Appendix II). 

Condition (iz) IS sirm1a.r to a rapidly chsnglng twist near the 
centre section due to rotation effects ~11 the slipstream, or to C?JI 
upwash from the flow around a body. This problem 1~ dealt with m Ref.10, 

* That these urns were fully reallscd has already been reported in 
Ref.4. 
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where rt was found that a good apprommz.tmn was obtaned by taking the 
dowm+ at the my equal tc the downwash at itilrx.ty, instead of h&f 
that value as is more usual*. 

Flg.15 shows the results for the wing being considered. Curve (a) 
shows the spanwise variation of ACL 
of Ref.2 with 15 points. 

c~alculated by the ortinary method 
Curve (b) 1s the calculation for an infinite 

swept wing, the downwash being assumed to be half that at irtfinity. 
This -is a straightforwrd application of Appendix II, i of Ref.2 with 
the-points spaced at equal distances of $c apart. k srml1a.r result 
would have been obtained by using the ordinary method but increasing 
the number of points. Curve (c) was calculated by the same procedwa 
as (b) but with the downwash equal to that at infirdty. ThLs merely 
involves multiplying by 2 the coefficients b,, and bvn of Ref.2. 
By compar~.son with the experimental vJluaf of AC& it 1s seen that 
thrs last method is the most accurate. The d.~E~rence between curve (b) 
and the experimental points could not be accounted for by thickness o- 
boundary layer affects: the thickness affects the results by less than 
I%, and the boundary l,ayer would nacd to be considerably greater at the 
centre than at the sheared part, ~#hicn is contrary to cxporimentel 
evidence. * 

Accordingly, for wings onwhich the comber and twist vary fairly 
rapidly within one chord of the centre section, it is recommended that 
the spenwise loading due to camber and twist be calculated as follo,ws:- 

(4 For aspect ratios greater than about 4, such that the tip 
has ho effect m the centre, calculate ACh as for an infinite swept 
wmng usmg the full value of the downwash at w&ni,ty. 

(b) For aspect ratios between 3 snd L such that less than half 
the pivotal points (m = 15)~ IC within the wmbered and twisted region, 
calculate ACL by the ordinary method of Ref.2 with m=Jl**, using 
the full downwash at infinity. 

(4 For aspect ratios less than 3, cs.lcuLjrte ACI by the 
ardmary method of Ref.2 with m=15, using the full downwash at 
1nfUlity. The basic incidence term cannot be calculated directly 
from Ref.2. An aspect ratio correction is required vhioh will be 
described in a later note. 

The coefficients b,, and b, used .in methods (a), (b) and (c) 
nawt be twice those quoted in Refs.2 and 6 in order to give the full 
downwash effect. 

It should be noted that for cases in which the comber and twist 
are applied to gave a constant spanwi&a loading near the centre the 
spanwise variation of AmfI will be like that af Fig.14 and the result 
shown in Fig.15 may be applied directly after multiplying by the ratio 
of AafT at the centre sections. %/ 

.- 
* This LY, of course, only a crude way of taking account of thz fact 
that that part of the wing which experiences the lift due, to the twist 
has effectively a small aspect ratio. A more detailed discussion of ths 
effect and those connected with small aspect ratio in general will be 
given in a later note. 

44 The coefficients b,, and b,,,, for m ~51 and half the downwaah 
at mnf'inity are given in Ref.6. 
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\As Mach number mcreases, the centre effect decreases more slcwly, 
m a spanwise brectlon, and the m&.nsry cs.lculat~on mth& should be 
adequate for mngs designed for tigh N, 

4.13 Chorawlse loaamg 

To f'md the ohordmse ldt tistnbutlon it 1s necessary to know 
the effective mcidence at the partlcula~ spsnmse positlon, 
"e;;;,;,,~ S3$lY + A %Y ) ) in order to calculate the tistrlbutzon from 

. % and da, may be found easdy from the spanwise 
lasting calculatums already done. All the other parameters are knmn. 
It my be convenient to dz.vu%? ACp(x) into a component whmh changes 
mth mcidence, 

[AC,(x)]. = - 4 00s 'P (a"- sly 1 (gn 

and a component due to camber whrch is mdepsndent of ~nculence, 

[AC,(x)], = - 4 cos 'P 

I sm7c.n I 
(cot, m-cot*:) 

-- 
smxm (cotta-cot in) 

In most cases It will not be necessary to calculate the chordwlse 
distrlbut~on at each of the spsnwlse pivotal points since the ddcribu- 
tlons at the sheered part, ocnt~o and tip ~111 probably be extremes 
wlth-Ln whuzh the others-lie, This ms.y not be so If the wing LS twisted 
in which case a more thorough calculation rmght be wortlnvhile. 

Tne local centre of pressure posltdon nay easdy be found from 
equation (43) and P~g.f?, once the local lift ooefflclent IS known. 
&o msy be read or interpolated from F1g.8 and little calculation xs 
l.nvolved. Fig.13 shows the varlatlon of the local C.P. posltlonwlth 
& at the centre section of the WL~ of Section 4.72. The calculated 
curve was obtnlnefi by the above methods, using the value % P = 0.24 
for a two-&menszonsl sheared wing cf symmetruzsl, 12% ttick's&tlon, 
and addug Aq.P. to that value. 

4.2 The design of a wing with camber and twut 

4.21 General procedure 

l'krs is the uverse problem to that dealt with In Section 4.1 
and on the whole it IS a more Important application of the oaloulatlon 
method. Csmber snd twist are to be appl@ to a wug of given planform 
so that It ~1.11 have a certau requred lo&ng. For ustanoe, It LS 
possible within the aocuraoy ?f the method to design a swept wing having 
the same ch@wlse loading everywhere and a constant spanwisr: loading at 
a certa2.n CL. Consequently, ignoring thdcness effects, the isobars are 
strught up to the centre section and some benefit villl be derived at 
bgh Maoh numbers from this prolongation of the sweep effect. Again, a 
swept wing may be doslgned for which the centre and tip effects are 
elunnated at a certain C, , and the load tistrlbutron becomes that of 
the corresponding unswept wrng. Thus the stallug characteristics of 
the swept wing will be sundar to those for the unswept wing, with 
benef~cml resdts 1x1 most Cases. 
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The Wang planform being given, there are only three variables, 
the twist, camber and posltzon of camber applied to the basx 
spnetncal sectlon, x.e. "9, f and m. The aerodynarmc charac- 
teristlos to be chosen are the spenwzse loadxg, the centre of pressure 
position and the chordwxe loa&ng and when these three oonditlons are 
specified the three variables sre unlquoly deterrmned. If fewer than 
three contitlons are specified, then not sll the var~ablcs are uryquely 
deterrmned. 

Smce the requrred load~ys osn be obtained at only one 5~ , 
this should be specxfred mnitis.lly. The spsnw~se loa&ng msy then be 
chosen (e.g. elllptx) so that the local lift coefficient (CLatACL) 
is known at all spanwise positrons. The equations of Ref.2 for the 
spsnwise lo&ng are now 

(Y,,t AY,)(b,,+&) = [ay tAafTV] + 

where a, is the geometrx incidence of the basic section. The only 
unknown m this equation 1s [a, + Ao.~T"] whxh can therefore be 
deternunad at the spanwlse pzvotal points". 

The requrred spsnwxe loading can be achieved entirely by camber 
or entirely by twist or by a comblnatlon of both, none of the vculables 
AaT ' m or f being unzquely deternnned. The only stipulation 1s 
that Aa + [a + AaT] LI the reqwed [a t AafT] at sny spdse position. 
[a + Ad J.S the new geometrlo lncdence. For m m and f, Aa may 
be read or znterpolated from wgs.6 and 7. 

Flg.16 shows as an lllustratlon the spanwise loading of a tapered 
wrng of 35O sweep, for which Y, +A'&- was chosen to be the same as 
on the corresponhng unswept wir$ at CL = 1.0. Curve (a) of Flg.17 
shows the amount of twist alone necessary to ackieve this loa&ng**. 
Fig.16 also shows the motifled spanwise distrzbutlons at other values 
of CL. 

If m addition to the spanwxse loading the centre of pressure 
position 1s specdked,a further relationship between the camber and 
twist is mtroduced. Equatzons (42) and (43) give 

& I 9.06 .C(m). f. cos [p. (m-n) 
AXCJ?. = zn + K - 5li-l x m-n (64 

Henoe for a 
a oonneotio R 

srt~oular value of CL, the requxred AZ+.,. establishes 
between m and f. Either m or f IS a free ohoxe. 

There are sttil an mnflrute number of combinations of m and f, each 
combination givAng rise to a oertan Aa (obtiunable from Figs,6 and 7) 
and therefore dettxd~ng [a + aT] . 

+ The consGleratlons of SectIon 4.12 still apply, and a modified 
loading equation should be used If necessary. 

+* The basic incidence was taken as that at the sheared part, of the 
wing. 
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If'no~~ the ohordwise loading is specified, a thxd equation 
connects the three variables Aaf~, m ma f , and they are mquely 
aeterminRd.*. This equation 1s (32), z.n which 0, , the effective 
incidence 1s the dx?ference between the geometric U-&&XKZ (including 
the twist I and. the x~Iuced. lncxlence based on the chosen spanwise load.ang. 
The chordw?.se load~~ng is not a. purely arbrtrary choioe, sxxe It must be 
of a form whxh can be realx+3. by a cambered section of the present 
sex-us at mcldenoe. Several camber 1x1~s may be superimposed of 
peocssary, m wtioh case 

e.+AtiT+CAa E a +AafT, 

*%.P. = $+1 CL L‘- 
9.06 C(m). i'. cos cp. (m-n) , etc, 

sin n(m) 

Cwres (b) and (c) of F'lg.17 show the amount of camber and twxt 
nw2essa.r~ to gix-e a %ro-drmea3ional flat-plate" type of chordwise 
loadmg tkroughout !-he span at EL = 1.0 and CL = 0,2, Vkile 
meantaimng the spanw~e loading of R.g.16. In this case, m = 0.5. 

Motifxation of an aerofoll section by camber and twist alone 
will not generally be suffxS.ent to gLve a specrfled chordw~so pressure 
&str:Sbution (as dlsticot from chcrdxise lift dlatributlon) on the 
surface of a thxk aesofoil. Moddioatums to thti thxkness tistributlon 
of the section are necessary "1 aid xhe calculatxon of those 1s outside 
the scope of this report. Howvor the effect of thickness m a given 
cambered aers:oll IS conz3Ax-oa lli ScGtlon 5. 

1+.22 Connection between the chordxse loatiws at kfferent 
posl;rcns spanh se 

Although the ck~3~ise loadx@ at different spanwlse positrons 
on an aerofoti-may be chosen xdependently of each other, it ~111 
often be the case that a dxect relakonshzp IS reqLured between them. 
Ix such a case the raqLured camber and twist may be found by USlng 
thzs relationship in the approprzate ?ormulae. 

For example, consider a wing swept at an angle 'p , the basic 
section of which is taken to be that at the sheared part. Let the 
requwed relataonship be that the chordwxe loading. is the same at aXt 
spanwise positions between the centre and the sheared part (I.e. 0 <&<I). 
If the basic sec'aon has a camber ~UVZ with parameters ms and fs, at 
an effective incidence [a,],, then the ohordwse load+ at the 
sheared. part is given by equataons (31) m-ii (6) as 

[*C,(x)] s = - 4. cos v (A, (>’ + A2 (g=J 

0 If the chordwise load-~ng is chosen after the: spanw~e loe&.ng, 
both m and f are determzned smmltaneously and the centre of pressure 
is then necessarily fixed. 
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At any spa.tise posxtion denoted by h = h,, (n=n,), 

h&41h 
1 

= - ; . l&q- . 
v 1 

[ACpb) lh 
1 

v 
= -0 

2 * T&iJy ' [~p(+3 

in accordance with the required condition. 

Substituting this value of [Ye],, in equations (7) and. (15), 
1 

Integrating with respect to x, and noting that e=O at x=0 and x=1, 

[z]~, = e[: A, cot ?[n, [z (1-2x) - sin-' (1-2x) + ,!l-(j-2~)~] 

1 

+ A (cot Em - cot xn,) 
2 8 c 

0 

[aelk = A cos 'p 
1 1 -Los 'pvJh 

I 
( 

1 + ; cot "II, 
> 

cp 
+ 52 [co~o~]AI - 

1 
sin "rn, 

I - 7t+ot "rns - cot ml, ) 
3 

(65) 

But zs = A2 cot xm 
S c 

7[ms s x - [ (e)ms dx] , from equation (21). sin xm 
0 

Therefore [zJx, = I* . (1 - tan 7cms cot 7m,) . zs 
v 1 

+A 1 
12taIlxn, 

. ~v&-[-p-2r) - sln-'(1-2x) + //zq (66) 
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Applying equations (20) and (22) at the sheared part, A, n'ay be 
eliminated from (65) and (66) :- 

1 
+ cos ‘p 

2 tan ml, [cos ‘pJ^ 

f (1-2x) - sin-' (1-2x) + 

and 

+ 
4.53 CbQ . fs 1 cos 'p 

00s "nls (2 tan 7[n 
I'[ co9 ‘pvlh 

. (7t cot 7ms + 2 - '1 
.s 

1 
‘(68) 

[Zlh 2.d b,lh are the camber line and effective incidence required 
1 1 

at the spanwise position denoted by h = h , for the chordv&e loading there 

to be the same as that at the sheared part. Equation (67) shows that In 
general the required camber line is a combination of that at the sheared 
part and that defined by m = 0.5. The latter 1s of the form:- 

constant x[g (l-2) - sin-' (1-2x) + jj(14x)'] 

The geometric twist at A = X, is [ae + aLI1 - [ue + al] . 
1 s 

'&TO particular cases may be noted:- 

(a) If a flat-plate distribution is required at al1 spanwise positions, 
m = I at the sheared part (1.e. A2 = 0) and the vortex dlstrrbutlon is 

1-x 
Y,(X) = 2 v. [a,] - 

; 
( > x (see Section 2.32). 

s 

[N.B. m = 3, whhlch appears to give a flat-plate dxtnbution, is 
the case mentioned in Section 2.33, x..e. m=n.l 

Then 

M, = I 
cos 'p 

2 tannn, ' Tcos 'pvlh * 
1 

Ia,1 .[;( (1-2x) - sin-'(l-2 ) l-(1 2 )2 

1 
s !- 

x+~--F--j 

and 
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from equations (67) and (68). [z], is positive, therefore the camber 
1 

IS negatlv.2 (SW Section 2.13). 

Thus a symmetrical section at the sheared part requires a camber 
line at other positions given by m = 0.5, plus a certain tnist, in order 
to obtain a "flat-plate" chordwise loading everwhere. 

(b) If a constant chordwise loading IS requxoed at all spanwise 
positions (i.e. Cp(x) = const.) then at the sheared part m = 0. 
Thus A, = 0, (i.e. [a,] = 0) and 

S 

y,(x) = 2 Vc . A2 

at the sheared. part, with n = 6. 

At h = A, this gives a camber shape 

[Zlh = 00s cp . z 
1 [cos ‘pvlh 9 

1 

[a&& 
1 

= f& . =Os cp . fs. 
' , 

bos 'PJL 
1 

This means that no camber line of the shape defined by m = 0.5 is 
required: the desired loading is obtained simply by reducing the amount 
of the original camber at the sheared part and imparting a twist. This 
should simplify the merging of the section shapes along the span. 

5 F'ressure distributions on thick cambered aerofoils 

So far the treatment has been confined to thin cambered and twisted 
aerofoils. 
yJx), 

For thick wings this gives only a first approximation to 
and no information about the pressure distribution on the surface. 

One obJect of incorporating camber and twist is to increase the critical 
Mach number by reducing suction peaks or straightening isobars and to do 
this the pressure distribution must be known. Again, on swept wings the 
effect of thickness is more important than on unswept %nngs, since the 

t/c 3 effective thickness-chord ratio is - . cos ql 

The method of Ref.3, extended to Cover all spsnwise positions can 
be used to calculate the pressure distribution over thick cambered 
aerofcils. This gives the following results:- 
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For the sheared part of the wmg, 

c,(x) = 1 - cos 2 ae. sin2 'p - 

For the centre of a swept wing, 
2 

c,(x) = 1 - an 

s2 + (Q-Q2 
x 

1 - cos 
an 

+ sin ae . 00s 

For any intermediate posxtion bwhmen the centre and sheared part, 
or between sheared part and tip, 

cp(x, = 1 - -_._--* all2 ---.. --- x 

+ sin a,. co9 'pV. sm 

t (I - ~1~) cos2 a, sin' 'p Bn - %-I 

a, 00s [(l-d 
In the above-equations, the aamber terms Co and C, of Ref.3 have 

been replaced by by,(x), the oho.r&vue vortex distribution due to wmber, 
i.e. the second term m equation (28). However Co end I&, contain the 
co-ordmates of the camber lme and can bc used in the equstions if desrred. 

The terms &, etc., are the sums &. 2 etm, etc. 
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It 1s ususJ.ly good enough for the sweep sngle, 'p, to have the 
same value throughout, 
y,(x) > d9,Y) 

namely the sweep of the rmd-chord l.zne. % 9 and h have the -'alues appropriate to the spamvise 
position. The suffu n denotes the chordwise pivotal point. 

f(T), dy), ana IJ(Y1 are functxons of the planform: 

K(Y), P(Y)..,tre ana dY)tlp are plotted JX Frg.1 and may be read off 
alrectly. K = 1, except near the tip. 

an, &, &, h, &., are coefflclents wkrch are tabulated 
in Ref.3 along with the abscissae of the chordwlwlse pxvotal pomnts. 

Fig.18 shows the kind of aerofoll section which can be obtalnea 
In practice. Three 1% proflles were constructed by superunposug the 
thxkness dxxtrlbution of the RAE 104 profile on three camber lines of 
the fanuly with posxtlons of camber at xf= 0, 0.288 and 0.5, (1.e. 
m = 1.0, 0.5 and 0.) 

Fxgs.19 and 20 show the chordwxe pressure and lift dxstnbutz.ons 
calculated by the above method for three two-dunens~onal wugs having 
these aerofoil sectlons. From Fzg.19 It can be seen that the camber 
line defined by m=O does not In fact give a constant chordwise 
load;Lng when thickness effects are considered, but the tiference 1s 
not very great. The thwkness effect 1s s~rmlar for m=0.5. 

The various types of pressure distribution on the surface arc 
shown in Wg.20. The curves for m=O and. m=l.O (a symmetrical 
sectxon at uxldenca) are extremes wltlvn wkch the others ~~11 Le. 

Nomenclature 

a 

b 

b bvn VV) 

c 

f 

%.P. 

A%.P. 

m 

49 ,Y) 

t/c 

lift slope 

wing span 

coefficients, tabulated XI Ref.6 

chord 

Camber: 1.e. maximum s ordinate, dimensionless with chord 

chordwlse posltlon of centre of pressure 

change In centre of pressure position compared mth two- 
dimenslonsl wxng of symmetrical sectlon 

a function of the position of camber, xf 

a fun&Ion of the wvlng geometry 

thickness-chord rat10 
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Nomenclature (Contd ) 

VZ 

v X) VZ 

VO 

x Y,Z 

C(m) 

Aa 

A% 

AaT 

Av T 

y&4 

r 

Y 

AY 

downwash v4Oclty dt the aerofoll 

x- and z-components of valoclty V 

free strem vcloolty 

co-ordinates a, derlnul III P g 2 &.menszonless ath the 
loozl chord 

posltlon of camber &.menslonleOu with local chord 

coef’flclents U-I the chord~ist vortex dutnbution 

0 

m 

J 

a,’ 
2 

f/Ill ’ 
where s, -’ 

s I+ s’ 

= 4 53 B(xf,m) ' 
a function of m 

coefflclcnts g=ven Ln Fief 3 

co-ortinnte perpenf3azula.r to vortex fzlamcnt, 

geomttrlc ucldcncc 

lnduoed lnca?iencc 

eff ectlve mmdenct. 

= geometric mcmienoe - total mducad Incldenoc. 

equlvalcnt change of mcidenc6 due to camber 

znducbd maYk?nc~ arlslng from camber lift drrstlrbutlon 

tmst 

e Au+ A9 

dutnbutlon of vortlclty per unrt ar~.a along the chordkne 

total vortlaty per uut s+3 at any tiaanwue posltaon 

1‘ 
= =V,’ tot&l non-fLuaensi0na.l vort3.6lty per unit spa at 

any spanw~sc po.,ltlon 
total non-&menslonul vortlolty due to camber 

- IhO - 



Nomenclature (Contd.) 
rl spanwise co-or&mate, dxnensionless mth sent-span 

h(Y) a funotmn of the spanw~se posztlon 

CC9 ,Y) a function of the mng geometry 

'p a-&e of sweep 

'pv angle of sweep' of a vortex fz&unent 

f(cp) , K(Y) 
P(Y) centre, 

i 

functions of the mng geometry 

K(Y) x 14Yltip 

CL 

CL 

*CL 

cm 

cm, 

AGn 

Suffl.ces 

R 

e 

i 

f 

n 

Y 

Al 

s 

T 

x 

U.S. 

L.S. 

I .  

pressure coeffxient 
. 

&.fference between pressure coefficients on upper and lower 
surfaces 

sectiod] lift ooeffloiant local 

total lift weffxient of aerofoll 

sectional 
1 looel * lift coeffxzent due to camber 

sectiond 
1OCB.l 1 

pitching moment coefficient 

sectional 
lOCal I 

pltchmg moment coefficient due to camber 

due to mcidenoe 

effective 

Induced 

due to camber 

denotes chordwise pivotal points 

denotes spanwise pivotal points 

at a spanwise position where X = 1, 

at the sheared pert 

due to twist 

distributed on the x-axis 

upper surface 

lower surface 
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TABLE I 

Co-ordxmtes of camber lines whch give Ac~~l.0 on a 
two-dimens~ons.l unswept mng at a,=0 (Fq.4) 

0.01 0.0045 0.0065 0.0097 0.0144 0.0214 0.0314 
0.05 0.0158 0.0215 0.0291 0.0385 0.0494 0.0623 
0.10 o.w59 0.0338 0.0435 .0,0545 0.0665 0.0794 
0.20 0.0398 0.0498 0.0606 0!0718 0.0829 0.0938 
0.30 0.0486 0.0589 0.0693 0.0793 0.0885 0.0967 

0.40 0.0536 0.0631 0.0723 0.0806 0.0876 0.0933 
0.50 0.0552 0.0635 0.0709 0.0772 0.0820 0.0854 
0.60 0.0536 0.0603 O-0657 0.0699 0.0727 0.0740 
0.70 0.0486 0.0534 0.0567 O-0588 / 0.0598 0.0597 
0.80 0.0398 0.0423 0.0437 0.0442 / 0.0438 0.0427 
0.90 0.0259 0.0264 0.0262 0.0255 0.02& 0.0231 
I .oo 0 0 0 0 0 0 

' xr 0.500 0.459 / 0,417 0.375 0.332 0.288 

f 0.0552 0.0638 1 0.0723 / 0.0806 ; 0.0888 / 0.0968 

0.01 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.99 
I .oo 

0.5 

0.0314 
0.0623' 

0.0794 
0.0938 
0.0967 
0.0933 
0.0854 
0.0740 
0.0597 
0.0427 
0.0231 

0 

0,288 

T 

I 
1 -L 

e 

0.6 

0.0451 

0.0773 
0.0932 
0.1039 
0.1035 
0.0973 
0.0871 
0.0740 
0.0586 
0.0411 
0.0216 

0 

0.242 

0.1046 

0.7 0.8 0.9 

0.0635 0.0876 0.1187 

0.0943 0.1131 0.1327 
0.1072 0.1207 0.1333 
0.1128 0.1202 0.1254 
0.1086 0.1119 0.1131 
0.0995 0.1001 0.0989 
0.0873 0.0862 0.0837 
0.0729 0.0709 0.0678 
0.0568 0.0544 0.0514 
0.0392 0.0370 0.0346 
0.0202 0.0188 0.0174 

0 0 0 

0.193 0.140 0.079 

0.1128 0.1220 0.1337 
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- c 

I - 

1 .o 

0.1576 
0.1512 
0.1432 
0.1273 
0.1114 
0.0955 
0.0796 
0.0637 
0.0477 
0.0318 
0.0159 

0 

0 

0.1592 



!rAElLE II 

Slopes of the camber lmes in Table I and Fzg.4 
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FIG.1. 
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FIG.I.SPANWISE VARIATION OF h, K AND /he 

(SEE REF. 2, FIG.1.) 



FIG.2 & 3. 
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FIG. 2. CAMBER LINE AND REFERENCE AXES. 
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FlG.3. TWO FUNCTIONS OF m. 
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FIG .5. 

---t 6 

FIG. 5. SOME TYPICAL CHORDWISE LOADINGS. 

(TWO -DIMENSIONAL WING) 



FIG .6. 
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, FIG.6. EQUIVALENT CHANGE OF INCIDENCE 

, DUE TO CAMBER : -9O”d xcp c 9o”. 



FIG .7. 
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FIG.7. EQU-IVALENT CHANGE OF INCIDENCE 
DUE TO CAMBER : 0 4 x (/I L 909 



FIG .8. 
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FIG.8. PITCHING MOMENT AT ZERO LIFT. 



FIG.9 & IO. . 
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FIG.9. EQUIVALENT CHANGE OF INCIDENCE 
DUE TO CAMBER (TWO-DIMENSIONAL WING). 
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FIG.10. CENTRE OF PRESSURE POSITION. 
(TWO-DIMENSIONAL WING). 
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EXPERIMENT EXPERIMENT 
- CALCULATION - CALCULATION 
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0.6 y 0.8 
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FlG.ll. SPANWISE LOADING OF A WING WITH 
CAMBER AND TWIST (REF.@. 



FIG .I2 & 13. 

CENTRE SECTtON OF WIN4 WITH TWIST AND CAMBER 
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SECTION OF BASIC WING ; R.A.C. 101 SECTION 
VC = o-12 

FlG.12. AEROFOIL SECTIONS ON WING WITH 
CAMBER AND TWIST (WING c, REF.~). 
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FlG.13. CENTRE OF PRESSURE POSITION AT 
CENTRE SECTION, (WING C, REF. 4). 



FIG.14 & IS. 
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\ -TWIST OF WING, 

REDUCTION DUE TO NEGATIVE CAM0ER 
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0’3 VC I!0 

14. SPANWISE VARIATION OF TWIST 
(WING C, REF.4). 

b --- CALC, TAKING HALF THE 
DOWNWASH AT INFINITY 

(REF.2, APPENDIX II ,I) 

CALC , TAKING FULL DOWNWASH 
AT INFINITY 

EXP, DIFFERENCE 
BETWEEN CAMBERED 
AND UNCAMBERED 

FIG.lS.SPANWISE LOADING DUE TO TWIST AND 
CAMBER (WING C, REF.4). 



FIG -16. 

AND TIP EFFECTS AT 

FlG.16. SPANWISE LOADING OF TWISTED WING, 
A.R. = 3.2. 



FIG.17. 
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FlG.17. CAMBER AND TWIST TO GIVE VARIOUS 
LOADINGS ON A.R. 3*2 WING. 



FIG .I 8 & 19. 
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R.A.E.104 THICKNESS DISTR. 

FlG.18. SOME TYPICAL THICK PROFILES. 
t/c = 0-I. 
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FIG.19. CALCULATED CHORDWISE LOADINGS 
ON TWO-DIMENSIONAL CAMBERED WINGS. 
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DESIGN CL, Me =O 
m LINEAR THEORY t/C --O-I 

FIG.20. CALCULATED CHORDW ISE PRESSURE 
DISTRIBUTiONS ON TWO -DIMENSIONAL 
CAMBERid AEROFOILS , Cr = O* 3. 
(R.A.E. lo4 THICKNESS DISTRIBUTION). 
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