i y ERARY - yeagp C.P. NO. 171
RALUNAL A TR ES1ABLISHMENT (15,177)
| TV iHY A.R.C. Technlcal Report

MINISTRY OF SUPPLY

* AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

The Application of Camber
and Twist to Swept Wings
in Incompressible Flow

By

G. G. Brebner, M.A.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1954
_ Price 3s. 6d. net






C.P.Ne.171

U.D.C. Yo. 53%,691.91.011.3:533.691.14.04.3.2:
533,69, 048,1/2:533,6.013.442

Report Vo, Aerc 2458

March, 1952

ROYALL ATRCRAFT ESTABLISHMENT

The Application of Camber and Twist to
Swept Wings in Incompressible Flow

1)
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SUMMARY

A gertain type of chordwise vorticity distribution, applicable to a
thin wing of any sweep in incompressible flow, is combined with the
general equation for the downvash induced at any sparwise position on a
swept wing by the gparwise vortices., By applying the “"streamline
condition" that there 1s no velocity component perpendicular to the wing
surface, and integrating over the chord, the equation of a camber Iine is
obteinsd. The initial vorticaity distribution contains ¥wo parameters
which are related to the amount of camber and the chordwise pesition of
the maximum ordinate, and thus define a doubly infinite family of camber
lines. FExpressions are found for the effect of these cember lines on the
zero 1ift angle, 1ift distribution and centre of pressure at all sparmwise
positions. Simple charts are provided from vhich may be read the equava-
lent incidence and patching moment =2t zero 1ift of any camber line of the
family at any sperwize position on a wing of any sweep.

A detailed description 1s given of the method of calculating the
loading on a given cambered swept wing. Also, the design of wings
incorporating camber and twist to produce required chordwise and spanwise
loadings is treated in detail, and it 1s shown that at any spanwise posi-
tion only one particular combinaticn of camber and incidence will give a
required chordwise loading., The correct matching of camber and twist
over the whole wing is thus of fundamental importance. One particular
camber line of the series, denoted by m = 0.5, is found to be exactly that
required to eliminate the centre and tip effects on the chordwise loading
of swept wings.

Brief mention is made of the effect of wing thickness on the 1ift
distributions. ~The local lift coefficients are increased by about the
same approximate factor as a symmetrical aerofeil section, namely

(? N 0.8 x t/c

cos @ > . Formulae are given'for the pressuré distribution on.a

thick cambered aerofoil at any spanwise position.
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1 Introduction

In recent years symmetrical mercfoil sections have been more popular
than cambered ones for use on wings of high-speed aircraft; while tests
on unswept wings indicated that their high-speed aerodynamic characteris-
tics at moderate Cf, were at least as good as those of cambered sections,
they were simpler to calculate and construct. Durang this period the use
of sweepback to delay the drag rise with Mach number has become very
common. The loading and pressure distribution on sweptback wings with e
uniform aerofoirl section everywhere are different from those on the corres-
pondaing unswept wings, and may requirc to be modified af the full benefit
of sweepback 1s to bc realised, or if some unwelcome penalties (e.g.
unsatisfactory stalling characteristics) are to be aveided. IFf, as 1s
usually the case, both the chordwise and spanwise loadangs need modzfying,
thizs can only be done - if at all - by an appropriate corbination of camber
and twist, although ainitially the basic section wmay bc uncambered. Th-g
is true not only throughout the subsonic speea range but also at super-
sonic speeds (e.g, Ref.1). Thus a simplc me*hod of calculating *he load-
ing of cambered swept wings, accurate enough for praciical purpcses, 1s
required.

This report provades a method of caleuiating the elr'ect of a certain
type of camber on the chordwise and spanwisc loadings of any wang, swept
or unswept, in incompressiblc potential flow., The Prandtl-Glauert rulc
{or onc of 1ts refinements) may be used to apply the mothod to high subsonic
Mach numbers. It is an extension of Ref.2, vhich dealt with the calcula-
tion of the laft distrzbution on thin wings of symmetrical scetion such
that low aspect ratio effeccts could be negleeted, The methods and assump-
tiong used there form the basis of the prescnl report. They arc to be more
fully explained in a later note and no detarled justafaications wall be
given here.

4s far as the spanwise loading is concerned, reglacing a symmetrical
aerofoil by a cambered one can always be interpreted as applying to the
symmetrical section a certain twist or change of incidence, equal to the
zero 1ift anglc of the cambered section. But whercas uniforn camber on
an unswept wing imparts the same equivalent change of incidence (the
zoro 1lift angle of the two—dimensional scction} at all spanwise positions,
this 1s not so for a swept wing. Again, the chordwise loading of a thin
symretrical wing 1s usually assumed not te vary with the span 1f the wing
is unswept {except for small aspect ratic), but it does so vary 1f the
wing 15 swept. The effect of adding a uniform camber also varies along the
span if the wing 1s swept. Thus the calculation of both the basic incad-
ernce term and the camber term an the chordwise loading 1$ more complicated
for a swept wing.

It is uniikely that an arbaitrary camber line will lead to an equa-
tion for the circulation from which the usual quantities can be calculated,
(c.g. lift, pitching moment, zero 1aft angle). It was therefore decided
to start wath a chordwise distribution of vorticity from which the aero-
dynamic characteristics could be deduced, and which would contain para-
meters determining the geometry of a family of casber lines., This vortex
drstribution, (which 1s placed on & straight line and not or the camber
line, the usual assumptions of linearised theory being made,) 1s inserted
in the characteristic downwash equation for swept wings,” and the resulting
streamline througn the leading or trailing edge detcrmines the shape of
a thin aerofoil, ' This shape is the camber line associated with the chord-
wise vortex distrabution originally assumed: 1t contains the same parameters
as the vortex distribution and thus a family of camber lines is cbtained.
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The family of camber lines used here gives chordwise lcadings ranging, on
a two-dimensional wing, from a constant value along the chord to a "flat-
plate" type of distribution, thus covering the whole range of practical
interest,

The calculation method described here applies to this famly of
camber lines, If the effect of camber on the spanwisc loading only is
required (i.e. the equivalent change of incidence) the method can probably
be applicd to any camber line of non-reflex shape. However the chordwise
loadings and pitching momcnts apply only to camber lines of the prescnt
family and closc approximations to them, With this proviso, the methed
may be applied to the caleculation of the loadings of given fanite cambered
wings, the procedure of Ref. 2 being adapted for this purpose. Camber
and twist may be used on swept wings to modify the chordwise and spanwise
loadirgs so that they comply with requircments for high Mach numbers,
high 1ift, ctc. The method of this report may be used to design a wing
with the appropriatc amounts of camber and twist to achieve a desired
locading.

In the text, the mean line between the upper and lower surfaces of
a thick cambered aerofoil will be called the "camber line". The maximun
ordinate of the camber line, referred to the local chord, will be called
the "camber", and the chordwise position of the maximum ordinate will be
called the "positaon of camber",

The following terms will be used to identify the various quantitaies
associated with an aerofoil section on a wing. The term "two-~dimensional
will refer to the acrofoil characteristics of an infinite unswept wing,

aC
"Sectional" (é.g.sectlonal 11t slope,5;§i> will refer to the serofoil
e

characteristics a2t any spanwise position arising only from the bound
vortices* on the wing. Sectional characteristics include effects of plan-
form (c.g. sweep, spanwise position), and, camber, but not the effect of
the trailing vortices. The temm "local"?}.g. local 1lift slope,

a0y,
7;;) will refer to the aerofoil characteristics at any spanwise position

arisaing from both the bound and trailing vertices, The effect of plan-
form is again included, For example the local Cjp at a spanwise posi-
tion y = ¥y is thot given by the spanwise loading curve at that
position.

The report falls into two parts. The first part (section 2)
contains the mathematical foundation of the calculation method, and may
be omitted by any reader who is interested only in applying the results,
The second part of the report consists of Sections 3, 4 and 5. In
Section 3 the main rcesults of Section 2 are swmmarised and discussed wvath
a view to practical application, Section L describes in detail the caleou-
lation of the chordwise and spanwise loadings of a given wing, and the
design of a wing incorporating camber and twist to have a required loading.
In Section 5, the method of Ref,3 is adapted to calculate the pressure
distributzon over a thick cambered aerofoil,

Although the formulae may appear complicated at first sight, the
practical application of the results is straightforward and easy, since
tables and diagrams are provaded from which most of the required informa-
tion may be obtained, eather directly or by interpolatzon. Tables I and
II give the shapes of some members of the family of camber lines, all

¥ The conception of bound and trailing vortices on a swept wing will be
discussed 1n a subsequent report,
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calculated to give Cp, = 1.0 on a two-dimensional wing at zero incidence.
These camber lines and their chordwise loadings are shovn in Figs.. and 5.
Figs 6 to 8 show the equivalent change of incidence and the pitching
moment at zero lift plotted against a function given by the planform,
They can be easily applied to any spanwise position on a swept wing.

2 Mathematical basis of the method

2.1 Derivation of the camber line eguations

2.11 Preliminary remarks

The loading on a cambered aerofoil may be divided into two parts,
cne arising from the incidence of the aerofoil and the other from the
camber. The camber effect may be eXpressed as an equivalent change of
wncidence Aa , i.e. the inciadence which would have to be added to the
uncambered aerofoil to cause the same lift increment as the camber. On
an unaswept wing having uniform camber along the span, A2 is to all intents
and purposes the same at all spanwise positions, and 1s of course the

aCr,

same at all incidences: the basic laft slope due to incidence, So. is
: e

also the same at all spanwise positions. On a swept wing Aa at any span-
wise position is still independent of incidence,% but both Az and the
basic ineldence term are functions of the spanwise position,

Since sweep affects even the basic incidence term, consider fairst a
thin wing of symmetrical section swept at an angle ¢ , For tapered wangs
we assume the angle of sweep to be that of the mid-chord line.* The
restriction to thin wings means that only first order effects are considered,
The chordwisc distribution of vorticity at the centre of such a wing may
be assumed to be of the form :

1, (x) = 2V, cos .0 (1"‘)%6_&;—2), (1)

X

where the x-axis is the chordline, =x- is made dimensionless with the local
chord, and the vorticity is distributed along the chordline. &g s the
effective incidence, i.e. &, = ¢ - total induced incidence from trailing
vortices. The corresponding distribution for an infinite sheared wing is
of the form

. x

T(x) = 2Vo % (“")15 (2)

At any intermediate section between the centre and mid-semaspan
(where the distribution is of the sheared wing type), the term containing

1 =~ x\n

X in the vortex daistribution is of the form where n lies

X

* In the calculation method of Ref.2 the sweep angle is defined as that
of the mid-chord line near the centre and tip and as that of the quarter-
chord line near mid-semi-span. This is an unnecessary refinement when
calculating the effcet of camber, Throughout this report, ¢ means the
sweep of the mid-chord line,
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between 4 and & [1=—0)\ : i.e.
*/2

-~

m%y>=%p-uw.g%}, (3)

where y 1is the spanwise coordinate, dimensionless with the local chord.

For an unswept wing, ¢ = N° and np,y) = & at all spanwase position.

My) is a function of the spanwise coordinate y such that

il
-

at the centre section

»y)

A(y)
0<n(y) <« 1 at intermediate positions.

1
(@]

at the "sheared part"

Fig.1 (which 1s reproduced from Fig.? of Ref.2) 1s a curve bascd on experi-
mental data which shows how N(y) varies with y. A{y) may bc obtained
directly from Fig.! for any spanwise stataion,

The general eguation for the vortex daustrabution at any section
between the centre and the sheared part of the wing may be wraitten

It}

v (x) = 2V, sin%n.o (1;"){‘ (4)

where

e

SECEA

=
0

a known function of © and y . Thas gives the assumed dastributions at
the centre and sheared part of the wing, viz.

1 2
: 1-x\2 6‘7(2)
n:%('l-ﬂ/—%). Yx(x)zzvo cosnp.ae< " ) /

at the centre,

at the sheared part, and equation (L) 1s an interpolation formula for
spanwise positions between these limits,

Equations (3} and (4) apply also to any section between the sheared
part and the tip, a(y) then being negatave,



I

AMy) = =1 at the tap,
Ay} = 0 at the shearcd part,

0>nMy) » -1 at intermediate positions.
Fig.?1 may still be used to find the magnaitude of AMy), ¥y in this case
being measured inwards from the tip. Thus the vortex distrabutions at

all spanwise stations of a swepl waing of symmetrical aerocfoil scction
may be found from equation (4).

2,12 The camber linec cguations

Congider now a thin cambered scetion at incidence. The vortex
distribution may be rcsolved inte a basic incidence term given by equation
(1) ard a term due only to camber at zero inecidencc. The latter is assumed
to be of the type .

/ m
Yx(x) = 2V, sin®n. 4, (l—x) , (5)

X

where A, and m are paramcters depending on the shape of the camber
line. This 1s no more then a conveniently chosen family of functions
which will be developed to give a family of camber lines.

The incidence zero could reasonably be taken as the position at
which the stagnation point 1s at the lcading edge, or as the position
of zero 1ift. However 1t 1s convenient to define 1t as the incidence
at which the chordline Ox 1s parallel to the resultant wind direction
Ve (see Fig.2)., This will not, 1n general, coincide with either of the
other two definitions, and so 1t 1s to be expected that even at zero
1neidence there will be an "aincidence term" in the expression for the
chordwisc vortex distribution.

The following typc of chordwise vortex distribution along the x-axis
is therefore taken for a thin cambered sectaon on a swept wing:-

Y. (x) = 2V, sin%n [A1 (1;x>n+A2 <1 ;xjn] (6)

The right-hand side may be resolved into

. P -x VW
2V, s:m'fcn.o:e( n ) s

the basic incidence term, and

2V, sin nn {(A1 - &) (1 ;x>n + Ag (L;Eﬁj“] ;

the term due to the camber at zero incidence,

For a wing of given planform, n 1is known for any spanwise position
since it 1s a function of ¢ and y only, Equation (3) shows that
C & ns & between the centre and the sheared part of sweptback wings (ani
between the sheared part and tip of sweptforward wings); % < n < 1 between
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the sheared part and tip of sweptback wings (and between th. centre and
sheared part of sweptforward wings). n is essentially a parameter associe-
ted with the basic incadence term. A4, Ao and m on the other hand, are
those constants, as yet unknown, which are essentially connected with the
shape of the camber iine, However m may already be restricted to the
range O<m < 1 : 0< m is necessary an order to have zero vorticity at
the trailing edge with the flow leaving the trailing edge targentially
(Joukowski's hypothesis); m < 1 is necessary to avoid an infinite valuc
of local 1if't coefficient when Yk(x) is integrated over the chord; m = 1
appears to give such an infinite 1lift coeffacaent, but 1% wall be seen
that 4, then becomes zero and m = 1 1s 2 permissible value of the
exponent .

Equation (4) fulfils the requarement mentioned in Section 1 that
the vortex distribution may be manipulated to give aerodynamic properties
such as 1ift, pitching moment and zero 11t angle.

Fig.2 shows the axes used. The x-axas lies along the cnordline
which, following NACA convention, joins the ends of the camber line, and
mekes an angle a wath the true wind direction, With the sign convention
of Fig.2 the following expression for the downwash due to the bound
vortices at any spanwise position on a swept wing 1s used® (see equation (7)
in Appendix I of Ref.2):-

1

g . 1 () _axt %
= {O/Ygx ) Yx(x)} (7)
Now y
1-x'\P .,  ax! 1 -x\P
f( = ) —5 = K(p) -k (p)( x) (8)
o
for 0 p g 1
where o
a j[ ds A
¥(p) = p ! ;:T;T75 T 8sinm®yp (5)
and
1 ds n
K :"/ = ?O
Z(P) 1Y 5 1= 51/13 tan 7tP ( )

* This equation, which forms the basis of the present method has been
derived in Ref.2 for the centre and sheared part of a swept wang, and
will be further discussed in a later note, It has been checked by an
experiment designed for that purpose, A certain distribution of Y, (x)
was chosen for the centre of a swept wing, and Va/V_, evaluated from
equation (7), was used to define the meen line at the centre, Pressure
measurements showed that the chosen Yy(x) had been obtained (Ref.h).
Here, equation (7) is also used to interpclate between centre and sheared
part.
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Therefore, from (6) and (7)

Yz . s:unﬂ'l‘:t“'1 Ay [Iq (n) —(Kz(n)— ta:ﬂﬂ)( ;x>nJ
+ By [Iq(m) - (Kz(m) - tag " n> (1 ;xjn (1)
= Smﬂﬁn [AT sinﬂ'itn Th2 [51: 'Jtm_<ta:”‘m ) tanﬂ"m> <1 ;XYIA-B

(12)

0

from equations (9) and (10)

. _ N\
:A1+A2-gﬁﬂﬁ-summq(mtﬂm—mﬁnn) 1-x (13)
s1n Tm X

v
From the streamline condition, gﬂ = %i , for the flow past a thin
X

cambered aerofoil,

Vg b Vyq - Vo sing _dz , (1&)

VO cos o dx

where v;3 13 the downwash induced by the trailing vortices and =z is
made non~dimensional with the local chord. If a is not large,

1

sana = a

cos o

VZ B

Also, ?}' = 4, assumed to be constant over the chord (see Ref.2),
O

Therefore, -

1.6% (15)
- R '
Combaning~equations (13) &nd (15),
dz _ sin nt n . 1-x \®
a, + o= Ay + Ay oo, ~ h2 sinmn (cot mm= cot mn) ( ~ ) (16)
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Integrating with respect to =x, and noting that z = O when x = 0O

= Sin ®n . 1-x'\B
Z = (—ae +A1+A2 . ﬁm>x - 4, sin ®n (cotqcm—cotﬂn)](x‘ ) dx

(17)

3

m
o ot
f((;tx ) dx' 15 a function of x and m for which we have no
o

explicit expression in general.

. 1- xt\" 12\
Putting 8! = oy , S = - ,
1~ x! mdx, _ / ds! ox -X mn
x! & 1+gtV/m x

Tt may be noted that, when x = 1

b

f<1 ;le)m dx' = / d811 . - m-K‘I(m) = si?;l?tm (18)
s}

/ _as' has been evaluated graphically in the caleulations for
1+ gt 1/m

this report, and is denoted by B(x,m): 1.e.

Lo

B(x,m) x/ ds' , (19)

5 1+ 511;11:1

where &' and s are ag defined above,

Equation (17) now becomes

m
1 -
Sin xn
z= (-ae+A1+A2 smwm)X‘EE sin 7n {cot xm-cot mn}|{B{x,m) +x ( " )

From Fig.2, z = 0 at x = 1,

. i . m
ie, 0 =(=a +hs+4, 2in 7n -4, sinnn (cot mm~cot mn) —L
& sin mm sin ®m
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Sinntn

= A + A
1e % 1 2 sin ®m

{1-7%m (cot mm-cot®n)} (20)

Equation (20)enables 4, to be eluiminated from equation (6), and leads to 2

m
z = Ay sinmn (cot mm - cot mn) L—-—ﬂ—m-—- x - B(x,m) - x (1;}{)] (21)

sin m

Thas 1s the equation of the family of camber lines, the parameters
beang n (associated with the planform and basic incidence term), and As
and m (assoalated with the camber) The next step 1s to determine m
and A, 1n terms of the geometry of the camber lines

2 13 Relation of Ao and m to the camber and position of camber

From cquations (16), (20) and (21),

xm_ (1 -x
dz = gin Tm X

a —am E
* ~0_ x ~B(x,m) —~X<1 x)
Sln mm X

(22)

For certain values of m and n 1% 18 not possible to evaluate =z

and %xé from equations (21) and (22) in a straightforward manner Tor

instance when m = 0, cot®m =~ and when m =n, cot mm=-cot "n = 0
Such special cases are dealt wath in Sectaon 2 3

%" 18 the slope of the camber line, and at the position of camber

where 2z 1s a maximum g:% = 0 Therefore, by equation (22),
A m - (‘l —x\m ,
sin wm X /
i1gnorang triviaal solutions of %—dfc =0
1e xp = L 77 (23)
1+/ mm m
81n Tm

where X, 15 the coordanate of the position of camber Thus m deter-
mines, or 1s determined by, =xp, dependaing on which 1s gaven 1matially

From equation {21), :

Boax = ~ho sin mn (cot am -cot mn) B(xg, m) (24)

max

- 12 =



\ ‘

where z,,y 1is the camber and

[+

B(xp,m) = f L—Z—%;; (25)

xm

8in 7m o ‘I-Xfm_ qm
. £ ( xf> sinmm |+

B(x.f,m) is a function of m only, since Xp is a function of m only.
B(xf,m) - as m ~» 1, To obtain a function which is finite everywhere
in the range 0 ¢ m ¢ 1, write

C(m) _ 1 '. v 'ﬂ‘tm
T 453 B(xp,m)

1 Tm
i.e. B(xp,m) = — -
£ 455  G(m)

-|
B(xp,m) was obtained by graphical integration. C(m) varies between O
and 1, and is plotted against m in Fig,3, along with xp,

It should be noted that, using the cocrdinate system of Fig.2, a
positive camber line in the usual sense corresponds to negative values of
z. This accounts for the minus sign in equation (24), which may be
rewritten:~

A, sin?n . (cotmm-cotxn) .zwm

f = (26)
4.53 C(m)

4,53 C(m), f
.t " A =
o€ 2 sginmn (cot xm-cotmn) .@m (27)

Thus it is now possible to write the vortex distribution of equation (6)
as a function of n, a,, m and fi-

X

%.53 C(m) ., f (1 _x>m
+ X

. 1-x\
r(x) = 2V sinmn ae( ) sinxn ”

!

(n-m)

1 _sinz®n 1 -0\ /=X
nm (cot =m - cot =n) ginmm \®m (cot nm —cot mn) )( X )
- (28)

where m and n are given by equations (23) and (3) respectively.
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Equations (21 and (22) become

p B30 £ { D B(x,m)- % (:x\ﬂ (29)

T m sin ®m

dx Tm san'mm X

dz _ .53 c(n), f{ xm_ (‘f —x)“‘] (30)

Fig.4 shows some camber lines designed to give a Cp = 1.0 ona
two-dimensional wing at zero incidence, and Fig.5 shows their chordwise
loadings,

2.2 lAerodynamic properties

The aerodynamic properties of the family of thin cambered aerofoils
given by equation (29) may be deduced from the vortex distribution of
equation (28).

2.21 Chordwaise loading

The streamlines over a swept wing are, in general, curved, and not
straight lines in the free stream direction as for an unswept wing of
infinite aspect ratio. This is because the velocity increments due to the
vortex distribution are in the direction perpendicular to the vortex
filaments Yx(x).dx. If V, 1is resolved into two components, one perpen-
dicular and the other parallel to the vortex filament at that point, the
velocity increments are added only to the former component. The latter
ig unchanged along a streamline, If the tangent to the vortex filament
at any point has a sweep angle ¢y, then the two components of the free
stream velocity are V, cos ¢y and VO gin ¢y. Increments are added
to V, cos 9Py to give the velocities perpendicular to the filaments on
the upper and lower surfaces.

o] is a function of y. At the centre section the streamline is
in the ¥ree stream direction and cos 9y = 1: at the sheared part the
filaments havec a sweep angle equal to ¢ and therefore cos ¢y = cos o .
i-e-:"

cos ¢y = cos ¢ at the sheared part and 1 at the centre. From Section

2,1,

s1n wn 1 at the sheared part and cos ¢ at the centre,

Hence sin zn X cos ¢y = cos¢ at the centre and at the sheared part. This
suggests that the formula may be a convenient interpolation for other
spanwise positions:

. _ _cos
i.c. oS ¢y = 3w

The vortex system consists not of straight lines wath a kink, but lines
curved to achieve a continuous tangent over the whole span,

In general, ¢y varies along the chord at any spanwise position.
The above relation 18 therefore only an approximation for a mean value

Of (P'Vo
— 1]+ -



If the X and Y axes are perpendicular and parallel respectively
to the vortex filament at any point, the velocity ancrements perpendicular
to the filament on the upper and lower surfaces are + YX(X)/S, the vorti-
city distribution per unit ares along the X-axis. The vorticity on an
elementary area surrounding the point must be the same when referred to
both sets of axes: i.e. Yx(x),dx,dy = Yyx(X).4X.dY. From the usual trans-
formation for rotation of &xes, the area dx.dy = the area dX.dY.

Therefore Y4(x) = Yx{(X) and the velocity increments perpendizular
to the vortex filament are + ¥, (x)/2.

The velocity compaonents perpendicular to the vortex filaments on
the upper and lower surfaces are therefore

s ¥, (%)

(v = V
Pe”P)U-S- © sinmn 2
cos @ Y (x)
(V) = V —
perp’L.S. © sin®n o

The velocity component parallel to the filaments is

2
. _ cos< ¢
(Vpa.r) = Vo sin ¢y =T¥o j1- sin®x n
on both upper and lower surfaces.
v
U.S.
Therefore (CP)U_S_(x) = 1-( V) )
cos ¢ Ty(x) 2 2 cos” ¢
Vo ) + Vg (1 - )
. sinzwn 2 sin® mn
= V02

Y (x) cos o (x) 2
B V0 ' sin7n 2Vo

. Y(x) cos @ (Yx(x))z

and (Cply,.5.(x) = Vo sin®n \ 2V,
Therefore ACP(X) = (Cp)U.S.(X) '(Cp)L.S.(X)
Yo(x) cos @
2 -l X, (31)
Vo 8in An

- 15 =



From (28) and (31),
1-x\* L.53 C £ 1=
ACP(X) = —)_|_ cos (p{ae ( - X) + }+ 5§in(£131 ( xxjp X

|: 1 _sin fn:n( 1 IRAYAED (n-m),
nm{cot wm ~cot =n} sin wm\;m{cot nm ~ cot wn) )( x > }
| (32)

2,22 Lift coefficient

The foregoing results are now used to determine some of the sectional
aerodynamic characteristics at any spanwise position on a cambered swept
wing.,

1

- J[ ACP(X).dx

0

CL

L]

oo ] 5 e [ (5 o

from equations (6) and (31)

il

t

L cosg [A1 AN . a, 2R (33)

821ln tn sin ycmj

13

il

cos Ggmn 4 4.53 C(m).f "
sin#xn sinmm (cot nm- cotxn)

m

E\:n (cotxm-cotmn) + 1 —--1:1-:]} ‘ (34)

The Cj, due to a thin symmetrical section 1s obtained by putting
f = 0in (34). Then

cos
= . [] 'Jt
CL1n01dence N sinnn et h (35)
only

which gives the well-lmown.expressions
i !

Cr, = 2% a,, on a two-dimensional wing (i.e.o= 0%, n = 3)

Ii

G, = 2mg, cOs¢ , on a sheared wing (i.es ¢#0° n = 4)

Cr,

2 ay ( -E}P'é)’ at the centre section-of a sweptback wing

(i.e. P * Oo, n= % ( -%))

- 16 -



Therefore the additional 1ift due to camber may be written:-

A .53 C 3 .
by, o8 9 4.53 C(m) \jm (oot "m= oot xn) + 1 - E‘-_J (36)

f sin®n sinxm {cot "m-cotwn) m

2,23 Angle of zero 1ift

Aeg is the amount by which the incidence of a thin symmetrical
section would have to be increased to gave the same lift increment as the
camber, Therefore the angle of zero lift of the cambered section s - Aa .

Aa is obtained from equation (36) by the relation

aCy,
ACy = 5—&'; - Ao
From equation (34),
o T X (37)
dag - sinfn
Therefore
pe ML
f £ 90,
- %.53 G(m)

B n
o sin mm (oot mm o et wn) Lm (cot mm - cot mm)+ 1 —a} (38)

2,2k Pitching moment and centre of pressure

The pitching moment about the quarter-chord point is given by:-
1

- [ 10,005 - ).

o}

]

G

2 2058 [y (x)(4-x).dx

Vo sin ®n
o)
= 4 cosg {:‘c Ay 2B (2n-1)+ A, ZI (2m—1)} (39)
gin ®n S1n Am
= COSglRg (n-1)+ 4o 2| (2m-1)+( 2n-1)f xn( cotmm~cotmn)~
sANTN sinfAm m

(40)
- 17 -
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)

Then there is no camber, A4, =0 and then

= -1 . nn
[:CH;}a (2n- 1) cosg. a, —L2

Therefore the change in pitching moment due to camber is given by

ACm _ 4.53 C(m) .cos ¢ Egm- 1) + (2n-1){7<n (cot ®m - cot Jtn)--:ﬂ:l (41)

f sin ®{n- m)

The local centre of pressure due to both incidence and camber effects
may be found from equations (33) and (39) which gave

_én- 1 _ 9,06.C(m).f.cos ¢.(m-n)
T L sin n{m- n) (42)
2n= 1

= 1+ CL + CmO N

where Cp, is the pitching moment coefficient at zero lift,
- C
Therafore Axc p. == C-—m =- -‘211—1—21-13 = }_‘ﬂ__m_q (43)
L. CL, L 1, 2% CL

The sectional centre of pressure due to the camber éffect only may
be found from equations (36) and (41):-

MG, 20~ m-n
[Agp], = ——=" -7 = ()
£ ACL b 2{mn {cot xm- cot ﬂn)+1—;n-}
- M m-n

2r  2¢n (cot mm~ cot mn) + 1- ﬁ-}

The effect of the trailing vortices arising from the camber 1if't
digtribution will be included in the incidence lift distribution for which
the C.P. position is given by

[axcp], = 7‘5‘% [cf. Ref.2, Appendix I.] (45)

Equations (44) and (45) may be combined to give the same result as
(42) if the separate lift coefficients due to camber amd incidence are

known.

- 18 -



2,5 Bpecial values of m

There are several values of m which are of special interest, or
at which the formulae of Sections 2.1 and 2.2 may require special treatment.
These will be dealt with in this paragraph.

2.31 The case m = 0

This is the case of camber at xp = 0,50 (see equation (23)). On
a two-dimensional wing the distribution of Yx(x) and AC (x) associated

with this camber line for a, = C is constant along the chord (Fig.5).

It is a convenient camber line for practical application, as will be shown
in Section 4. Putting m = C in the equations of Sections 2.1 and 2.2
introduces infinities and zeros. It is best to derive the equations
afresh.

Equations (6) and (11) become respectively,

2V sinz®n {4 1o x n+A
o] 1 X 2
1 1
n
V; _ sinmn A 1-x' A A . z
W_I-(; = 1 x! X - x' 2 X~ x' 2 tanmn
o 0

7, (%)

1i

+\A2 cos TN

n

1
A1 +A2 Slnﬂ f
Q

Ay _Azﬁn_“ll log (1;x>+A2 cos = n

dz
W a
dx * e

it

Following the procedure of Section 2.1 the corresponding equation to (21)
is

2 = Ay BEEER (1 155 x4 (1-x) Log (1- %)) (46)

Also Ay =a,-A, cosmn, and Ay & 425 (putting x = 0.5 in.(46))
sin ®n
Therefore
z =£‘=%tii fx log x+ (1-x) log (1-x} (47)

-19 -

¥

-



R

and YX(X) = 2V, sain ®n iy (1 = x)n e L 1-cos mn (1 - x)n:| (28)

x sin nn X

The aerodynamic characteristics follow as an Section 2,2 and are:-

EL_ = 18,12 €252 (1 _qn cot mn) (49)
f 8in 1n

do = ke3d (4 Lmn oot nn) (50)
f nn

ACn _ 4.53 —S22%. 14 (2n-1) xn,cot mn] (51)
IS sinzmn

2,52 The caze m =1

This case is the opposite extreme to m = 0, It will be shown that
it represents a straight line (i.e. a flat plate) at incidence, Again
direct substitution in the equations of Sections 2.1 and 2.2 does not give
the shape of the camber line and the aerodynamic properties, so a fresh
start is made.

Equation (6) becomes

Yx(x) = 2V, sin mn [A1 (1;3{)" + 45 (1 ;X)}
1 1

_ 2 cos ¢
- /ACP(X).dx =T Sinan fo(x)dx
o o

1
T-x 1-x
A adx + A dx
l{ucoscpa,f(x)n 2/(3{)
o 0
~
X -
- X
But /( )dx.m as X - 1.
X
0

Therefore, if the sectional Or, is to be finite, A, = 0, and

n
(%) = 2, sinmn.by (1 ;X)

I

L

1l

This is the distrabution for a "flat-plate" section on a swept wang, and
it gives a"camber line"

z = (Ay-a )x + const,

~ 20 -



Previously, z =0 at x= 1. ie, z = (Ay-o)(x-1),

1]

and A 0 at x = O:

i.e, Ay = & and =z =0 for all x, Thus the camber line has degcne-
rated into a straight line, the vortex distribution being

Yx(x) = 2V, sin "n.ag ( ;X)l

However, by considering a family of camber lines having the same
it is seen that the limit as m » 1 is a flat plate at an incidence
(ae + o:f), the 1ift which was formerly due to camber being now obtained
from the additional incidence ap, (Fig.h). Equation (23) shows that xp=0
and therefore 2z = -f at x = 0, 1nstead of 2z = 0 ag used above to
eliminate A4,

The equation of the camber line defined by m = 1 ias therefore

z = (x-1).f, ‘ (52)
a flat plate at incidence ap = f radians. Therefore
Y. (x) = 2V, sinnn (g +f) {2=X) (53)
x ) e x
Wh _ 4 Aa® .
en m=1, T~ = 57.3 for all values of ¢ , Ax being in degrees and

f as before beiné dimensionless with the chord. The equations for the
1if't and pitching moment coefficients follow a2s before:-

AC
--f—;’-:h.costp. e (54)
sin xn
8Cn . (2n ~1) cosp —2& (55)
f 81n R

2,33 The case m=n

Since 0« mg 1 and 0< nsg 1, 1t 18 possible for a certain
combination of camber, sweep and spanwise position to make m = n. When
this happens, the equations of Sections 2,1 and 2.2 may become indeter-
minate and will have to be solved by 1' Hépital's rule, viz:-

If f(x) = g(x) =0 when x = x;, then

- 21 -
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a

)

provided f'(x) and g'(x) are not both zero at x=2x . For instance

when m=n = 0.5, —’51-19'5 becomes indeterminate., Applying the above rule

to equation (38) gives

2
(Aa) 3, (numerator) 153 C(m)
—f_ = o ——
=n 4, (&denominator) s
am m=n
_ san mm 4,53 C{m)
#xm . B(x,,m) Sin mm

453 C(m) {,I _(M>2]

S1n mm A m

For example, let m=n = 0.5. Then

I

2
b33 Om) ) 53 % 0,614, o (M>  Ou405 .

gin mm Tm

C
Therefore é_i%.. = 95,

)

This process may be used to evaluate other functions of m and n
which become indetermnate. For exasmple, the vortex distribution becomes

“fx(x) = 2V, sin®nm <1 ;xj“ %

2
ae - L.53 Ccm)é £, s1n mm [(" 0T M - _._E_...IE_.- % 1OE(_1‘:{"E> (56)

X m s,:i.n2 I

| |

-

By ordinary substitution A, appears to become infinite.

3 Interpretation of the formulae

3.1 Ths famly of camber lines

In Section 2, squation {29) defines a famly of camber lines
characterised by two parameters only. These parameters ares:-

(i)  the camber, f ;

(i1) the position of camber, %p .

- 2D o



Any menber of this family has a chordwise vortex dast¥ibution of the
type gaven by equation {6) in which the index m is a function of
only, This functional relationship is stated in equation {23):-

Xp = 3 (23)

and i1llustrated in Fig.3. In the equations of the camber lines and
their aerodynamic properties, m 15 used as the psrameter of the
position of camber instead of the more cumbersome zp. O<sm<i means
that 0.5> x%p»> 0. The calculation method 1s not applicable to negative

values of m {i.e. 0.5¢ xp< 1) since the Joukowsks condition that the
flow leaves the trailing edge smoothly would not be complied with,

BEquation (29) gives the shapes of the famaly of camber lines:-

m
g o 453 0(m). £ { mm x_B(x,m)_xC;x)} (29)

7T m sinwm

It will be seen that the chordwise variation of =z depends only on

m(xi-) . Pig.4 shows a number of camber lines derived from equation (29)

by inserting different values of m. The camber, £, uin each case is
chosen to give a laf't coefficient ACp = 1.0 at zero incidence on a
two-dimensional wing. The extreme case of m=1 represents a flat

plate at an incidence of f radrans. The other extreme, m=0, gives

a constent-load carber line. The co-ordinates of these camber lines

and the values of f and xp are given in Teble I. For any other
requared value of ACp on a twe-dimensional wing, sey ACry, the ordinatus

of the camber lines in Table I should be multzplaed by ACLy/1.0 .

Similarly, for any other required value of £, the ordinates should be
multaiplied in proporition.

The corresponding valuss o

f g—i are given in Table II, having

been calculated from equation (30). These values are required when the
calculation method 15 extended to cover thick profiles (Section 5).

It may be noted that % 13 infarite at the leading edge for all members
of the famly of camber lines,

3.2 Bectional aerodynamic characterwstics

The flow over a given cambered aerofoirl section on a swept wing
varies with the spamwaiss posifron., Therefore, in addition to £ and
m, the geometrical parameters ¢ and y occur in the cquations of the
sectional aerodyuamio.characteristics, The parameter y i1s incorporated
an the index n from the original vortex distribution:

n::l(;-?\..i.) .
2 ﬁ/g

o

where A = A{y), & function of the spanwise position. n is ‘therefore
a function of Ap .
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0 € M <1 near the centre of a sweptback wing;
02> A>-1 near the tip of a sweptback wing.
My) may be read directly from Faig.i.

3.21 Chordwise loading

The chordwise distributions of vorticity and lift arising from a
cambered aeroforl section at an effective incadence a, are given by
equations (28) and (32) respectively:-

Te({x) = 2V, sanmn (ag (l;";_x.)n 4 bed3 O(m) . £ (1—x>m y

[

sl Tn X

1 _ sinxn 1 N\ /1=x (n-m,
Am (cot ®m-cot zn) sinam (ﬂm (cot mm-cot nn) 1) x )

vo.r.(28)

n
L dex 4.53 C(m). £ [1-x\"
AGP(]C) = L cos ¢ 1[[6 (-—;) + S e ( = ) b4

1 . sinwn 1 " 1 =% (n_m)
nm (cot xm-cotwn) sinzwm (w;m (cot mm-~cot nn) )( x

<o (32)

The terms due to %the camber only are functions of f, xp, ¢ and Ny),
@ usually occurring an conjunction with 3 in the parameter n.

By puttang ¢ =0, the distrabutions on a two-dimensional wing are
obtained. Some of these are shown in Fig.5. The dastrabutions range
from a constant value when m=0 to a "flat-plate'" type of distribution
when m=1. On a swept wing the distraibutions must be calculated from
equations (28) and (32) usang the appropriate values of A and ¢ .

It 28 anteresting to compare the series of camber lines of the
present report with the series of NADA mean lines a=0 to a=1.,00.
Both series contain a camber line which gives a constant chordwise
distribution of ACy(x) , and in fact the two camber lines are identical.
They are characterised by parameters m=0 in the present series and
a=1.0 1n the NACA series. Other camber lines of the two series do not
correspond to each other since they are derilved from dafferent types of
chordwise loading. In order to obtain a linear loading at the rear of
the sections the NACA camber lines have an inflexion near the trailing
edge. Elimination of these inflexions introduces a steeper pressure
gradient at the peint wherc the loading chenges sharply. In the present
series of camber lines there are no inflexions.



3.22 Angle of zero lift

The change in the zero 1ift angle brought about by the camber
1s denoted by Aa . ZEquation (38) shows that 2t conteans f as a
factor and that it is also a function of x¢ and of M :-

Aa ko535 C(m)
f

- j _ _n
" nn sanmm (cot mm - cot wn) {ﬁn (cot mm - cot mn) + 1 mJ (38)

In Figs.6 and 7 &f{i 13 plotted against M for various values of xp .

Therefore for any sparwise position on a swept wing the change in zero
1lift angle due to camber may be read or interpolated from Figs.6 and 7:
no calculation i1s nocessary.

Fig.9 shows the variation of éz-f'fl with position of camber on a

two-dimensaonal wing. The greatest lift increment 1s obbarned when
m=0 (xp=0,5). This lift aincrement is nearly 50% greater than that
obtained from a circular arc cember line (for which xp also = 0.5).
Thas is because the circuwlar arc has an elliptical chordwise loading
whereas the camber line of the preseni series has a constant loading.

In practice, however, much of the extra lift of the constant-load camber
line 1s lost through viscosity effects (sece Section Le11). The camber
effoct on lift 1s a minimum when m=1, (% =0; sec Section 2.32).

The sectional 1lift coefficrent due to camber, ACp,, is equal to
9 . ac :
Aa x —G-E . =% 315 given by equation (37):-
&g dag
aCL cos ©
n.
da sinmn

(37)

Hence ACr may be obtained from 4a . AC; does not include the induced

effects arising from the trailing vortices of the spamwise lift dastribu-
tion due to camber. For an aeroforl of fimate span AC; may be added to
the incaidence term conly if the latter includes these induced effects,

3.23 Pibching moment and centre of pressure

The sectional pitching moment coefficient due to the camber, ACq ,
is given by equatzon (41):-

é_(g_m ' 4.53 ¢(m) cos ¢ . [(Zm-‘l) +(2n-1){1tn(oot xm- cot n) - %}J (41)

sin % (n-m)

The local centre of pressure position depends on the relatlw;e amount of
1lift contributed by the ilncidence and camber effects. If the lecal
lift coefficient Cp, 1s known, the C.P. position i1s given by equation (43):-

i O C
A:{-C.P.:: —M——.n_l_q M—-—In—o.

L, T o (43)



Equation (42) shows that f cos ¢ 2s a factor of Cpm, ond in Fig.8
Cn ' ' |
f cos o

Cmo may be read or ainterpolated from Fig,8 and very little calculatzon
i1s required to,find Ay p, -

1s plotted against N for various positions of camber. Thus

F1g.10 shows the variation of the local C.P. position wath position
of camber on a two-dimensional wing at zero incidence, Xc.p, varies
from 0.5 for . xp = 0.5 (m=0) to 0.25 for x =0 (m=1). For s
cambered section at inciadence the 1lift force dus to incidence acts at
0.25¢ and so the C.P., positzon on a two-dimensional wing varies with
incidence in the range 0.25 < xg p, § 0.5.

4 Practical application to than swept wings of finite aspect ratio

It 2s now pessible to set about the caleculation of the chofdwise
and spanwise loadings of swept wings havaing thin canbered zectioas of
the type derived in Section 2. Camber lines which ale not members of
this famly must be approximated by the member of the family having
the same value of the parameters f and xg,

Also 1t 1s now possible to design wings incorperating ocamber and
twist to have a requured chordwise and spanwise loading., The spanwise
loading at a given geometric incidence may be gaven any desired shape
by the use of twist alone or camber alone or by an infinite number of
combinations of both (provided the flow does not break down anywhere
over the aerofoil)., However, if tne chordwise loadings are also
required to be of a defanmarte form, then an general only one of thas
infanity of combinations of camber, twist and basic incidence wall gave
the required Joad distrabution. Therefore 1f the complete lcading and
pressure field over the wang are of interest the camber and twist must
be combined in a definite manner and should be matched to sach other
throughout the span to give the most acceptable dastribution. This
will usually mean that camber, as well as twast, will vary with the
sparwise position and mey change {rom nsgative cambser in onc part to
positive camber in another, This important point has not been observed
in the past, and 1t 2g therefore not surprising that up to now cambered
wings have not shown the desired benefit when checked experaimentally.

It may be pointed out that aerofoil sections expressly designed
to have a certain chordwise pressure distribution, e.g, to give a
high critical Mach number, should not be applied to swept wangs on the
basis of their two-dimensional characteristics without examining the
effect of the planform on these characteristics, since the impzcvement
i Meyyt might not be maintained waithout further modification to
carber, twist or thaickness distribution,

4.1 Calculation of the loading of a given wing

In the case of a given wang, everything ls known about its geometry.
The planform is specified whacth means that ¢, A and n are known
everywherc, The geometric incidence w , the camber £, and the position
of camber Xxp , are also specifiled everywhere,

L.11 Spanwise loczding: general mcthod

The spamwise loading 1s most conveniently calculated by the method
of Ref.2 because the same basic approach 1s used here as in that method.
The descraption which follows 1s applicable to wings of absut aspect
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ratio 3 or greater, provided that the camber and twist do not change
rapidly within one chord of the centre-section. If the camber and
twist do vary rapidly in this region, the modifications described in
Section 4.12 may be applied. The calculation is essentially the same
in all cases, however,

In Ref',2 the integral equation of Prandtl is wraitten

+1
- &b . _ 4 dy(n') an'
. am = e 2"[ et L

(equation (18) of Ref.2),

where 7 = Y .%%;l , & non-dimensionsl spanwise co-ordinate,
2

y{(n)

the total non-dimensional vorticity at spamwise
position m,

(]

E.(ﬂ)_ = CL (T]).G(ZE)

b 7,

3

a{m)
c(m)
b

a(n)

The antegrel on the raght-hand side 1s then replaced by a finite series
in the manner of Multhopp® und equation (57) becomes o set of samual-

taneous equations in Y, i~

v (b + 2 = o, +
Y vy a, C, v

It

sectional 1ift slope,

local chord,

I

wing-span,

i

geometric incidence.

m
L b+ Y (58)
=

(equation (20) of Ref. 2)

m o, m
where j{; means ZEJ b n -5, Y,

n= n=1
and v is a suffix indicating the pivotal spanwise position.
The coefficients b,, and b,, are given in Ref.2 for the case in
which the downwash at the wing is assumed to be half that at infinaty.
Cases when this assumption is not true are dealt with in Section 4.12.
b and ¢ are functions of the planform and the only other gquantities
which remain to be inserted are the sectional 1lift slope a, and
incidence @, . As in any other linearised theory it is assumed here

that camber and twist do not affect the scctionel 1ift slope whach is
therefore obtained from the formula
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b= w12 (59)

sin ’n v'vt/g

(see equation (35)), ¢ being the sweep of the mid-chord line. The
incidence @, 1is the total geometric incidence and must include the
"equivalent incadence' of the cember at m, , 1.¢. Aa of equation (38).
It will be noted that equation (38) docs not take account of the effect
of trailing vortices (1.¢. Amn 15 a "sectional characteristic") and so
Aa  does correspond to a geomctric incidence and not an effectave inci-
dence, Therefore a, is, according to our assumptions, the sum of the
geometric incidence and Aa at M, -

The values of Y, are now the only unknowns in (58) and this set
of simultaneous equations can be quickly solved by iteration as shown
1n Ref.2. Thus, from the relation

Y:OL-—-V-, (60)

the local 1ift coefficient may be found at the pavotal sparwise
positions. The induced incidence at these positions may also be found
from the relations

a = O, = & = o, = —L (61)

since @, O, and a arc now all known at n, -

The sparwise loading thus found will only be true at the particular
ancidence chosen. The loading at any other incidence must be calculated
afresh, Aa wi1ll be the same, sancc the camber effect is andependent of
wncadence, but the geometric ineidence wall change by a constant amount
over the whole wing. If 1t is expected that the loading at more than
one incidencc will be requared, a2t will be much quicker to calculate
geparately the loading due to the basic incadence, and that due to
camber and twist, and then to find the total leading by superposiiion
of these solutions.

For the contraibution due tc the basic incadence, equation (58)
may be divaided by @, which 1s constant for all v :-

i
Y Zh o Y
V
a2 = 62
%y (;V” *ay cu) T ; / ®yn (62)

n=1

5l

Equation (62) 1s solved for g~ in exactly the same maaner as equation
(58). By multiplying by the appropriate value of @, , Y, is obtained
at the pavotal points for any basic incrdence, and thus Cp, may be
found from the relation v

6, = gD
L, T & v .
v y
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The loading due to camber and twist 1s constant for all incidences.
In this case the incidence inserted in equation (58) for each v will
be the sum of the twist and Aa due to the camber at that spanwise
position, viz: Aap 7, + If AY, represents the local circulation due
to camber and twist, cquation {58} becoues

I8

b
AY, (bw + = cy) = bagy + bon - AT, (63)

i

and the local 1lift coefficient due to camber and twist xs guven by

Zb
AC‘L‘Q = A‘)’v-"c—;

The totel 11ft coefficicnt at n, may then be found at any incidence
by adding the solution of equation (62) for the basic incidence term
to the solution of equation {(63) for the camber and twist term.

Most of the dimensions and guanlities needsd to caloculate the

1ift coefficients are obtainable by inspection of the geometry of the
wing., Only A, a, and Aw, 8r¢ not cbtainable in this way. A, 28
the value of ',\(y) at m, , and 1s needed in order to find n,, a, and
e, . A, may be read directly from Fig.! where it 2s plotted against y
(y is non-dimensional with the local chord). n ond &, may then be
obtained from equations (3) and (59). In practice, however, the more
crude interpolation gaven in Ref.2 1s usually adequate:-

a(y) = ag - w(ag-ag)

where a5 and a. are the laft slopes at the shearced part and centre
section of the wing respectively, Dafferences between this value and
that given by equation 559) lie within the limts of accuracy of the
curve of Fig.1, which 1s an average from experimental data on several
sweptback wings. As explained in Ssction 3.22, Aq, way be read directly

from Figs.6 and 7.

It 1s important to note that equation (36), (Section 2.22) 1s a
formula for the "sectional® 1aft coefficient due to camber, This cannct
be used directly to give the spanwise loadang due to camber, since 1t
takes no account of the effect of the trailing vortices. The "local
11t coefficient must be calculated as above.

On an aernfoil which has = steep adverse pressure gradient near
the trailing edge the boundary layer becomes very thick and may separate.
The loss of 1l.ft due to viscosity effects 1s therefore greater than on
aerofoils with a more gradual pressurc rise., In the present family of
camber lines the worst casc is the constant-load camber line when m=0
beceuse the theoretical slope of the chordwlse loading curve 1s anfinite
at the trailing edge. This cember line is identical wath the NACA mean
line wath a=1.0 (see Section 3.21), and the actual zero laft angle
of the latter is only 74% of the theoretical velue/. As the precsure
gradient becomes less stecvp, thuis percentage rapidly increases, Thus,
when calculating aerofoxls with a camber line given by m nsarly = 0,
due allowance should be made for viscosity when estimating Aae: when
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m = 0 the theoretical value should be decreased by one—quarter to gave
the actual Aa,

is plotted against Mp in Figs.6 and 7. In cases where the

ng

cenbre and tip effects overlap, two values of M may be obtained at
pivotal poants near md-semispan. A mean value should be taken in
such cases 50 that a smooth curve of M against ¥y 1s obbtaincd over
the whole span., This also applies fto the lift slope, =a.

Fag.11 shows a comparison between sxperamental results and the
gpanwise loading calculated by the above method for a wing of moderate
sweepback incorporating camber and twistS, Sxperiment and calculation
show good egreement.

The two-dimensional 1if't slope used in the caloulabtion was
corrected for aerofoil thackness and boundary layer effects, the former

t
by a factor (; +.9:g€§_éﬁﬁ> and the latter by a faclor 0.32 (Ref.9) to
/

the thain wing wvalue 27, This gave a resultant laft slope .
%:1.08)(27(.

L.12 BSpamwise loading speclal case

An important example is the twisted and cambered wing of Ref.l.
This wing was design§d2’4 to have a twist and camber distribution such
that, at one fixed O the chordwise loadings at the centre and at the
sheared part were the same, with a constant sparwise loading in betwesn®.
Fi1g.12 shows the sections ot the centre and the sheared part.

In common with most wings designed for low Mach numbers and
incorperating camber and twast, the centre effect and thus thse section
modafications extend only over a comparatively short distance from
the centre. The spanwise variation of Adapp will be quite simlar for

any wing designed to have a constant spanwise loadang in that region.
The modification 1s zero at ¥y = 1.0 aud is only 10% of the full
modification at y = 0.5 (Fig.t4). This leads to two dafficulties:-

(i) If the usual number of pavotal poants 1s used 1n the calcula-
tion of ACp (m = 15, see Ref.2) only two points lae within the cambered
and twisted part of the wing and the calculation of ACp 1s thus
inaccurate.

(1i) bapp changes rapidly in the spanwise direction, which
affects the downwash calculation.

To overcome {2) o larger number of pivotal points is required.
A ternatively the calculation of AC; can be made for an infinite swept
wing; 1.e. the iip 1s assumed to have no influence in the central region
of the wing where the ceamber and twist occur (Ref.2, Appendix I1).

Condition (i1) 2s simlar to a rapidly changing twist near the
centre section due to rotation effects in the slipstream, or to an
upwash from the flow around a body. This problem 1s dealt with in Ref.10,

* That these aims were fully realised has already been reported in
Ref . L.
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where 1t was found that a good approxmation was obtained by taking the
dowrwash at the wang equal tc the downwash at infiraty, instezd of half
that value as 1s more usual¥, o

Fig.15 shows the resulfs for the wing being considered. Curve (a)
shows the spanwise variation of ACp, calculsted by the ordinary methed
of Ref,2 wath 15 points. Curve (b) 15 the caloulation for an infinvte
swept wing, the downwash being assumed to be helf that at infimty,

This as a straxghtforward application of Appendix II, 4 of Ref.2 with
the points spaced at equal distances of Zc apart. A simlar result
would have been obtained by using the ordinary method but increasing
the nunber of points. OCurve (c) was calculated by the same procediuse
as {b) but wath the downwash equal to that at infimty. This merely
anvolves multiplying by 2 the coefficients b, and b, of Ref.2,

By comparison with the experimental valuce of ACy, 1% 15 scen that
this last method 1s the most accurate, The dificrence between curve (b)
and the experimental poaints could not be accounted {or by thickness o-
boundary layer cffects: the thickness affects the results by less than
1%, and the boundary layer would necd to be considerably greater at the
centre than at the sheared part, whicn 1s contrary to cxperimental
evidence.

Accordingly, for wings on whach the camber and twist vary fairly
rapidly within one chord of the centre section, 1t 15 recommended that
the spanwise loading dus to camber and twist be calculated as follows:-

(a) Por aspect ratios greater than about 4, such that the tip
has ho effect in the centre, calculate AC], as for an infimite swept
wing using the full value of the dowrwash at anfanity.

(b) For aspect ratios between 3 and & such that less than half
the pivotel pointe (m = 45} ize wathin the cambered and iwisted reglon,
calculate ACy by the ordinary method of Ref.2 waith m=31%*, using
the full downwash at infin:ty.

(c) For aspect ratios less than 3, calculate ACy, by the
ordanary method of Ref.2 with m =15, usaing the rull downwash ab
infinity. The basic incidence term cannot be calculated directly
from Ref.2. An aspect ratio correction is regquared which will be
described in a later note.

The coefficients b,, and b,y used ain methods {a), (b) and (c)
mist be twice those quoted in Refs.2 and 6 in ordexr to give the full
dowrwash effect.

It should be noted that for cascs in which the camber and twist
are applied to give a constant sparwise loading near the centre the
sparwise variation of Aapp wall be like that of Fig.14 and the result
shown in Fi1g.15 may be applied directly after multiplying by the ratio
of Aapp at the centre sections,

Wt

# This 1s, of course, only a crude way of taking account of the fact
that that pert of the wing which experiences the 1ift due to the twist
has éffectively o small aspect ratio. A more detailed discussion of this
effect and those connected with small aspect ratio ain general will be
given in a later note.

Hoa The coefficients by, and b, for m=31 and half the downwash
at infinity are given in Ref.6.

-3 -



As Mach number increases, the centre effect decreases more slewly,
in a spanwise direction, and the crdinary calculation methed should be
adequate for wings designed for high M.,

L3 Chordwise loading

To find the chordwise lift dastrabution it 1s necessary to know
the effective ancidence at the particular spanwise position,
e = o, = (ayy+Aeg,), in order to calculate the distrabution from
equation (32). ®, and Aa;, may be found easily from the spanwise
loading calculations already done. All the other pasrameters arc known.
It may be convenient to duvide AGP(x) into s component which changes
with incidence,

~ I
[ACp(x)]a = -4 oos p (my-a,,) (1—;-?5)

and a component due to canmber whaich is independent of incrdence,

[ay(x)], = = b cos g [. bay <1—x>“ , k53 0(m). £ (1_x>m )

x sin Tn X

i 9 sin xn 1 1- ]
7m (cotm mmcot®n) s1n nm \Tm (cot mm-cot mn) =

In most cases 1t will not be necessary to caloculate the chordwise
distrabution at each of thec spanwise prvotal points since the dastribu-
tiong at the sheared part, centre and tip will probably be extremes
withan which the others lie. This may not be so af' the wing i1s twisted
in which case a more thorough calculation might be worthwhile.

Tne local centre of pressure position may easily be found from
equation (43) and Fig.8, once the local laft coefficient is known.
Gmo may be read or interpolated from Fig.8 and lattle calculation is

involved. Fig.13 shows the varaation of the local C.P, position with
C1, at the centre section of the wing of Section 4.12. The calculated
curve was obtained by the sbove methods, using the value x5 p, = Ce2h
for a two—damensional sheared wing of symmetrical, 12% thick sechion,
and addaing Axg,p, bo that value.

4.2 The design of a wing with camber and twist

L.21 General procedure

This is the inverse problem %o that dealt wath in Section 4.1
and on the whole it 1s a more important application of the calculatien
method. Camber and twist are fto be applied to a wing of given planform
so that 1t wall have a certain requared lcading, For instance, it 1s
possible within the accuracy ef the method to design a swept wing having
the same chordwise loading everywhere and a constent spanwisc loading at
a certain EL. Consequently, ignoring thickness sffects, the iscbars are
straight up to the centre section and some benefit will be derived at
high Mach numbers from this prolongation of the sweep effect. Agaan, a
swept wing may be designed for which the centre and tip effects are
elimnated at a certain Cp , and the load distribution becomes that of
the correspondang unswept wing. Thus the stalling characteristics of
the swept wing will be simlar to those for the unswept wing, with
beneficial results in most cases.
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The wing planform being given, there are only three variables,
the twist, camber and position of canber applied to the basic
symmetrical section, u.e. dap, £ and m. The acrodynamc charac-
teristics to be chosen are the spanwise loading, the ccntre of pressure
position and the chordwise loading and when these three conditions are
specified the three variebles are unaquely determined. If fewer than
three conditions are specified, then not all the varisbles are uniquely
determined.

Since the required loadings can be obtained at only one 5L s
thas should be specified initially, The spanwise loading may then be
chosen {e.g. elliptic) so that the local lift coeffzcient (QLaq-AGL)
is known at all spanwise positions, The equations of Ref.2 for the
spanwise loading are now

m,

2b ~
(Yva + AYv)<bw+ ™" °v> = [a, + bapn ] + Z by (Yna+ AYy,)
N=

where @, is the geometric incidence of the basic section. The only
unknown in this equation is [ay 4 AafTv] which can therefore be
determined at the spanwise pavotal pointa¥*.

The required spanwise loading can be achieved entiirely by camber
or entirely by twist or by a combination of both, none of the variables
bap, m or f being umquely determined. The only stipulation is
that Ao + [a + AaT] = the requared [q + Aapp] 2t any spanwise position.

[a + AzT] 18 the new geometric incidence. For any m and f, Aac may
be read or interpolated from Figs.6 and 7,

Fig.16 shows as an 1llustration the sparnwise loading of a tapered
wing of 35° sweep, for which Y, _+AY,_  was chosen tc be the same as
on the corresponding unswept wing at Cr = 1.0. Curve (a) of Fag.17
shows the amount of twist alone necessary to achieve this loading**.
Fig.16 elso shows the modafied sparwise distrabutions at other values
Of CL -

If 1n addation to the spanwise loading the centre of pressure
position 1s specified,a further relationship between the camber and
twist is introduced. Equations (42) and (43) give

006.0 .f- . =,
pxg . = o . 1.9 (m) cos 9. (m-n)

2n Oy, san % (m-n)

(6L)

Hence for a particular velue of Cp, the requred Ax; p  establishes
a connectiorn between m and £, BEither m or f 158 a free choice.
There are stild an infinite mumber of combinations of m and f, each
combination giving rise to a certaun Aa (obtaunable from Figs.6 and 7)
and therefore determining [ + ap] .

» The considerations of Section 4.12 still apply, and a modified
loading equation should be used 1f necessary.

or The basic incidence was taken as that at the sheared part of the
wing.
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If now the chordwise loading is specified, a third equatiaon
connects the three varisbles Adpp, m and £, and they are uniquely
determined*., This equation 1s (32), 1n which &g , the effectave
incidence, 1s the dxfference between the geometric incidence (including
the thStj and the induced incidence based on the chosen spanwise loadang.
The chordwise loading is not a purely arbaitrary choice, since 1t must be
of a form which can be realised by & cambered section of the present
serics at incidence, Several camber lincs may be superamposed if
recessary, in which case

o + AuT + I ba = a4 Aopp,

L Mo E_9.06 c(m). ', cos ¢. (mn)

A o, etc-
*C.P. 2% 1, sin 7 (m~n) ’

Curves (b) and (c¢) of Fig.17 show the amount of camber and twist
necessary to give a "iwo-daimeasional flat-plate" type of chordwise
loadang throughout the spen at Cp = 1.0 wnd Cp = 0.2, while
malntaining the spamwise loading of Fig.16. In this case, m = 0.5.

Modification of an aerofoil section by camber and twist alone
will not generally be suffaicient bto give a specafied chordwise pressure
drstribution (as distinet from cherdwise 1ift distribution) on the
surface of a thick aerofoil, Modafications to the thickness daistribution
of the section are necessary11, and she calculation of thess is oulside
the scope of this report. Howcver the effect of thickncss in a given
cambered cersloirl 1s concidercd in Section 5.

4.22 Connection between the chordvise loadings at dafferent
sparri se positicns

Although the chordwise loadings at different sparwise positions
on an aerofoil-may be chosen independently of each other, it will
often be the case that a darect relationship 1s required between them.
In such a case the requared camber and twist may be found by using
this relationshiy in the appropriate formulae.

For example, consider a wing swept at an angle ¢ , the basic
section of which is taken to be that at the sheared part. Let the
required relaticnship be that the chordwise loadaing is the same at all
sparwise positions between the centre and the sheared part {(i.e. 0 SA<1),
If the basic section has a camber line with parameters mg and fg, at
an effective incldence [ae]s, then the chordwise loading ab the

sheared part is given by equations (31) and (6) as

(ACh(x)], = =4 coso [‘” (l:_-{ji + 42 (%)ms]

* If the chordwise loading 1s chosen after the spanwise loadang,
both m and f are determned sunultaneously and the centre of pressure
is then necessarily fixed.
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At any spa.wise position denoted by M = 7\1 s (n=n1),

<4

1

- -ég' . W . [AGP(X)]K

4 1

]

[Yx(x) ]7&1

<

0 1
= -5 . W. [*‘-‘-CP('K)]s

1

in accordarce with the required condition.

Substituting this value of [Tx(x)]?k in equations (7) and (15),
1

<

dz _ _z

dx
1
Y-
=A1. <08 {1 + cot m 1-x
costpv7L 1 x
1
m

s
s Ay, 080 .[.1 -(cotm—cotvﬂl)(j-ic-)}
2° {cos fpv] h-] sin mm s 1 x

<

[ae]K; +

Integrating with respect to x, and noting that =0 at =x=0 and =x=1,

_ __cos 1 LA = i) 2
[z].'\.] = TF‘P:,%A_[Z A, cot mn, {2 {(1=2x) = sin" ' (1-2x) + \]1-(1—2::) ]
1

s 1-x\ °
+ Az(cot am - cot 7m1) {m X - f (—};—) dx}]
0

and

Cos g
[me]?\,I - J!!t1 cos @ Iy (1 32 cot 'nzn1>
1

cos @ 1 - -
+ A, oos “’V]M ey [1 ms(cot am - cot 7tn1)] (65)

m
T p fox
But z, = A2 cot ., [mm—s x - j (—;—) dx] , from equation (21).
cos
Therefore [2]7\1 = Toos CRN . (1 - tan o cot 7m1) . Zg

1

: »
+ A1 2 tan m1 . [Cogozv?h {'275(1-23C) - 8sin (1-2]() + 1—(1-2::)2} (66)

1
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Applyang equations (20) and (22) at the sheared part, A, may be
eliminated from (65) and (66):-

[z] =—"‘99'§'—(£’“"-.('iwtanﬂm .c:otqr.n).z
AT [eos ‘Pv]h1 s 1 s
4'5-5 C(m )' [] f
+ ! , —S08 9 ) '-{[a ] - 2 2 (1-7m Co‘t?tms)}x
2 tan mn, [cos {ijh Ll ®'s  mm, . cos wm 3
1
7 ( ) .. =1 2
5 (1-2x) - sin (1-2x) + J1 - (1-2x) (67)

and

fa ] —"—"-——-‘&—(']+-—cot7tn).[ae]

A
M [cos ¢ ]7\ 2 8
1
b 23 C(ms) i fs 1 cos @ 1
+ . . .('Jtcotvtms+2—-£—)
cos 7, +2 tan 7tn1 [cos (pv]h s

“(68)

[z] and [a ] are the camber line and effsctive incidence reguired
?\ 7\

at tne spamwise pos:.tlon denoted by A = 7\1 for the chordwise loading there
Equation (67) shows that in

to be the same as that at the sheared part.
general the required camber line is a combination of that at the sheared

part and that defined by m = 0,5, The latter 1s of the form:-

constant xil:é- (1-2x) - sin”" (1-2x) + \J1 - (1—2}:)2]

The geometric twist at A = 7&1 is [ae + a1]7\1 - [ae + al]s,

Two particular cases may be noted:-

(a) If a 7 at-plate distribution is required at all sparwise positions,
= 1 at the sheared part (1.e. A2 = 0) and the vortex distribution is

1
1-x V¥ .
2 VO [ae] — (see Section 2.32),
s

v (x) = ~

[N.B., m = %, which appears to give a flat-plate dastrabution, is
the case mentioned in Section 2,33, 1.e. m=n.

Then =
- 1 cos ¢ = -1 2
(2], = o Tees T - [ae] 13 (1-2x) - san  (4-2x)+ I’i—(‘I—Zx) ‘
A 1 v 7\1 g L
and
_ cos s
[ae]l = Toos ¢ . <1 + 5 tan cp> . [ae] ,
1 v ?g] s
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from equations (67) and (68). [z]7L is positive, therefore the camber
1
1s negative (see Section 2.13).

Thus a symmetrical section at the sheared part requires a camber
line at other positions given by m = 0.5, plus a certain twist, in order
to obtain a "flat-plate" chordwise loading everywhere.

(b) If a constant chordwise loading 1s reguired at all spanwise
positions (1.e. © (x) = const.) then at the sheared part m = O.

Thus 4, = O, (i.e. [ae] = 0) and
3
Ix(x) = 2 Vo . A2

at the sheared part, with n = %.

At A = A, this gives a camber shape

1
[z] - Q0SS z
A * s
4 [cos q>v]7L
4
and
o 33 cos ¢ p

Lo, 1y .

tan 7o, Fcos Qv]h1

This means that no camber line of the shape defined by m = 0.5 is
required: the desired loading is obtained simply by reducing the amount
of the original camber at the sheared part and imparting a twist. This
should simplify the merging of the section shapes along the span.

5 Pressure distributions on thick cambered aerofoils

So far the treatment has teen confined to thin cambered and twisted
aerofoils, For thick wings this gives only a first approxamation to
ACP(x), and no information about the pressure distribution on the surface,

One object of incorperating camber and twist is to increase the critical
Mach number by reducing suction pesks or straightening isobars and to do
this the pressure distribution must be known. Again, on swept wings the
effect of thickness is more important than on unswept wings, since the
t/e

cos o

effective thickness-chord ratio is

The method of Ref.3, extended to cover all sparwise positions can
be used to calculate the pressure distribution over thick cambered
aerofoils. This gives the following results:-
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For the sheared part of the wing,

2
8n

2 1 (Bn = Dn)§

cos ¢

. Ay N\ Avy(x)
{cos &g, l:coscp('!wancosq))i 2 v,

X

Cp(x) = 1 - cos? a . sin? ¢ -

For the centre of a swept wing,

o

X
a‘n2 + (Bn'Dn)2

[cos g [‘1 - 92321-@ (4n + £{0). By) + A‘;x‘(fx)]

n(¢,0)
+sinae.coscp.(1—_—x>(’ (1+ G‘n)f
~ % cos ¢

For any intermediate position between the centre and sheared part,
or between sheared part and tip,

Cp(x) = 1 -

a 2
OP(X) = 1 - . - i ——— %
2, [ BB
S Neos [(1 - fu]) o]/
AY_(5
cos @, (1 - X cos 9. fn H. cos ¢. £(9). 0 4 cos Py x(%)
an an ~ 2V,
2
. 1-ax n(q),y) G’n
+ 8in 05 . 08 9y, sin mlp,y). - ) T == -
. An 8%y(x) "
+ [cos R [—- (4-0) sin ¢ . -é-n-_t S1n Py s 3 VoJ

¢,
2 stn g, sin oy sin (e, )- (2] (1, Y]
D, 2
1=1) tp]>

B -
+ (1= 1®) cos? oy sin? (p( 2
an cos [(

In the ebove-equations, the camber terms Oy and Cp of Ref.3 have
been replaced by &4y,(x), the chordwise vortex distribution due to camber s
i.e. the second term an equation (28). However Co and Op contain the
co~ordinates of the camber line and can be usced in the squations if desired.

=
The terms A,, etc., are the sums i Aoy 2 By, ete.
m=1
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It 15 usually good enough for the sweep angle, ¢, to have the
same value throughout, namely the sweep of the mid-chord laine. ag,
Y. (x), n(¢,y) and N have the -alues appropriate to the sparwise
position. The suffix n denotes the chordwise pivotal point.

£(9), (y), and u(y) are functions of the planform:

1~ s1n
2(¢) = - . log ——2
1 +s1n

k(¥), u(¥) gentre o0 u(¥)g,p are plotted an Fag.! and may be read off
directly. &k = 1, except near the tip.

an, Amm, B, Dmn, Gy are coefficients whaich are tabulated
in Ref'.? along with the abscigsae of the chordwise pivotal points,

Fig.18 shows the kand of aerofoil section which can be obtained
in practice, Three 10% profiles were constructed by superimposing the
thickness daistribution of the RAE 104 profile on three camber lines of
the famly with positions of camber at xp=0, 0.288 and 0.5, (x.e.
m = 1.0, 0,5 and C.)

Figs.19 and 20 show the chordwise pressure and 1ift dastribubions
calculated by the above method for three two-dimensional wings having
these aerofoil sections. From Fig.19 1t can be secn that the camber
line defined by m=0 does not in fact give a constant chordwise
loadang when thickness effects are considered, but the difference is
not very great. The thickness effect 1s similar for m=0.5,

The various types of pressure distrabution on the surface are
shown 1n Fig,20, The curves for m=0 and m=1.0 (a symmetrical
section at incidence) are extremes within which the others will lae.

Nomenclature

a 1lift slops

b wing span

b,,s b,y coefficients, tabulated in Ref.6

c chord

T Camber: 1.e, maximum 2z ordinate, dimensionless with chord

X3 .P. chordwiss position of centre of pressure

Axp p, change 1n centre of pressure position compared with two-
dimensional waing of symmetrical section

m a function of the positaion of camber, xe

n(o,y) a function of the wing geometry

/e thickness—chord ratio
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Nomenclature (Contd )

Vg downwash vilocaty ot the asrofoil

Vir x- and z~components of wvelocaty V

Vo Tree stream velocity

X ¥,z co-ordinates a. detaned an P g 2 dimensionless with the

loeql chord

Xp position of camber dimensionles. with local chord
A1 Ay coefficrents 1n the chordvise vortex distribution
X
N\
B(x,m) = IV ax - x(lx
x! X
0
) \ - m - lm
= j)___EEL__-., where s, o' = A=x s Aol
1/m x x!
s 1+ s!
7 I
¢(m) = , & function of mn
4 53 B(xp,m)
8py Ag
Bn, Cn coefficients given an Ref 3
Dns G
X co~ordinate perpendrculsr to vartex farlament.
& geometric ancidence
&, induced ancidence
g effectaive 1ncidence
= geomstric incadence = total induced incidence
Aa equivalent change of incidence due to camber
day anducued zneidence arasang from camber 1i1f% distrabutaon
Aayp twaist
dap = Ao+ Aap
Y, (%) distribution of vorticaty per umit arva along the chordline
f
T total vorticity per unit span at any opamwise positaon
v = b?; , total non-dimensional vorticity per unit span at
0 ony spanwlse powltion
AY total non-dimension.l vorticity due to camber

- L0 -



Nomenclature (Contd.)

M spanwise co-ordinate, dimensionless with semi-span
l(y) a function of the spanwise posation

G(w,y) a function of the wing geometry

o angle of sweep

Py angle of sweep of & vortex filament

£(9),x(y)

p‘(y)centre, - functions of the wing geometry

k(y) x u{y) tip

Cp(x) pressure coefficient

ACP(x) difference between pressure coefficients on upper and loﬁer
surfaces

Cr, fggiion&l} Jift coefficient

Or, total 1ift coefficient of aercfoil

ACy, iggﬁom}lift coeffacient duc to camber

Cn iggg&on&ll pitching moment coefficient‘

Cng, " " " " at zero 1afd

ACm iggﬁien&l} pitching moment coefficient due to camber

Suffices

4 due to incidence

e eff'ective

i 1nduced

f due to camber

n denotes chordwise pivotal points

v denotes spanwise pivotal points

Ay at a spanwise position where \ = h1

8 at the sheared part

T due to twist

x distrabuted on the x—~axis

U.S. upper surface

L.S. lower surface

-l -
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TABLE T

Co-ordinates of camber lines which give

ACT,= 1.0 on &

two~dimensional unswept wing at ag=0 (Fag.))

2

m |

x/0 0 0.1 0.2 0.3 0.4 0.5
0.01 0.0045 | 0.0065 | 0.0097 | 0.014h | 0.0214 | 0.031%
0.05 0.0158 | 0.,0215 | 0.0291 | 0,0385 | 0.0494 | 0.0623
0.10 0.,0259 | 0.0338 | o0.0435 | 0,0545 | 0,0665 | 0.0794
0.20 0.0398 | 0.0498 | 0.0606 | 0,0718 | 0,0829 | 0.0938
0.30 0.0486 | 0.,0589 | 0.0693 | 0,0795 | 0,0885 | 0.0967
0,40 0.,0536 0.0631 0.0723 0.0806 0.0876 0.0933
0.50 0.0552 | 0.0635 | 0.0709 | 0.0772 | o0.0820 | 0.085L
0.60 0.0536 | 0.0603 | 0.0657 | 0.0695 | 0.0727 | ©.0740
0,70 0.0486 | 0.0534 | 0.0567 | 0.0588 | 0.0598 | 0.0597
0.80 0.0398 | 0.0423 | 0.0437 | 0.0442 | 0.0438 | 0.0427
0.90 0.0259 | 0.026L | 0.0262 | 0.0255 | 0.02%% | 0.0231

1,00 0 0 0 0 0 0
Xp 0.500 | 0.459 0,417 0.375 0.332 0.288
r 0.0552 | 0.0638 | 0.0723 | 0.0806 ! 0.0888 | 0.0968

a

m 0.5 0.6 0.7 0.8 0.9 1.0

x/c [ ] - - » - L
0.04 0.0314% | 0.0451 | 0.0635 | 0,0876 | 0.1187 | 0.1576
0.05 0.0623' | 0.0773 | 0.0943 | 0.4131 | 0.1327 | 0.1512
0,10 0.0794 | 0.0932 | 0.1072 | 0.1207 | 0.1333 | 0.1432
0.20 0.0938 | 0.1039 | 0.1128 | 0.1202 | 0.1254 | 0.1273
0.30 0.0967 | 0.1035 | 0.1086 | 0.1419 | 0.1131 | 0 111k
0.40 0.0933 | 0.0973 | 0.0995 | ©0.4001 | 0.0989 | ©.0955
0.50 0.0854 | 0.0871 | 0.0873 | 0.0862 | 0.0857 | 0.0796
0.60 0.,0740 | 0.0740 | 0.0729 | 0.0709 | 0.0678 | 0.0637
0.70 0.0597 | 0.0586 | ©0.0568 | 0.054% | 0,054 | 0.0477
0.80 0.0427 | 0.0411 | 0.0392 | 0.0370 | 0.0346 | 0.0318
0.90 0.0231 | 0.0216 | 0.0202 | 0.0188 | 0.0174 | 0.0159

1,00 0 0 0 0 0 0

Xp 0,288 | 0.242 | 0.195 | 0,440 | 0.079 0
£ 0.0968 | 0.1046 | 0.1128 | 0.4220 | 0.1337 | 0.1592

_)4__3..



TABLE II

Slopes of the camber lanes in Tabie I and Fag.h
dz
ax
i
x/o 0 0.1 0.2 0.5 Oy 0.5
O - o - oo - o - ca ~ g - oo
0.01 ~0.366 -0.516 ~0,699 0,921 -1.172 -1.428
0|05 "Oo 2.36 "00296 _00356 —Oo1+1 2 ”00#55 —0'475
0.10 -0,175 -0.208 -0,235 —0,252 ~0.257 =0, 2k |
0.20 -0,110 -0,120 -0.122 -0.115 ~0,099 -0.073
0,30 -0.067 -0,065 -0,056 0,040 -0,079 +0,007
O.I-PO -00052 ""00022 ""0.00? +0.012 +O-031|- 0.059
0.50 0 +0.015 +0.033 0.054 0.076 0.097
0.60 +0.032 | 0.051 0.071 0,092 0.1114 0.129
0.70 0.067 | 0.089 0.109 0,128 Outhds 0.156
0,80 0.110 0.153 0,151 0,766 0.177 0.183
0.90 0.175 0,194 0,207 0213 0.2 0,211
1,00 w0 0.922 0.520 0.383 0.312 0,268
Xp 04500 0.459 0.417 0.375 0.332 0.288
£ 0.0552 | 0.0638 | 0.0723 j 0.0806 | 0.0888 | 0.0968
dz
ax
L[ ] L ] IO
/o 0.5 0.6 0.7 0.8 0.9 1
0 - - o - s - - % 40,159
0001 ""1 cll-28 ""'1 t6)+4'+ ""'1 -735 "1 t585 "'1 IO2|5 +o.159
0.05 -0.475 0,462 -0.401 -0.284 ~-0,096 0.159
0010 -Ocm _0'209 "01151 "'O¢069 +00057 01159
0.20 -0,073 ~0,038 +0.006 +0.056 0.109 0.159
0,30 +0.007 +0.038 0,071 0.104 04134 0.159
0.40 0.059 0.08L. 0.108 ‘ 0,130 0.148 0.159
0.50 0.097 0,117 0.134 | 0.147 0.156 0.159
0,60 0,129 Ga1l3 0.153 | 0.160 0.162 0,159
0.70 | 0.156 | 0,165 | 0.169 | 0.170 | 04167 | 0.159
0.80 0.183 0.185 0.183 0.178 0,170 04159
0.90 0.211 | 0.205 0,196 0,185 0,173 0.159
1.00 0,268 0,237 0,212 0193 0,176 0.159
Xp 0,288 0,242 0-193 | 04140 0.079 0
£ 0.0968 | 0,1046 | 0.1128| 0.1220] 0,1337 | 0.1592
- Ly -

¥t.2078.CF171,K3.
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FIG.2 & 3.
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FIG .12 & I3.

CENTRE SECTION OF WING WITH TWiST AND CAMBER
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FIG.I2. AEROFOIL SECTIONS ON WING WITH
CAMBER AND TWIST (WING C, REF.4).
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FI1G.13. CENTRE OF PRESSURE POSITION AT
CENTRE SECTION, (WING C, REF. 4).
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FIG.I8 &9,
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FIG.I8. SOME TYPICAL THICK PROFILES.
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