

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Theoretical Interference Velocity on the Axis of a Two-dimensional Wind Tunnel with Slotted Walls

$$
\mathrm{Br}
$$

R . C . Tomlinson, M.A., D.I.C., of the Aerodynamics Division, N.P.L.

The Theoretical Interference Velocity on the Axis of a
Two-dimensional Wind Tunnel with Slotted Walls.
- By
R. C. Tomlinson, M.A., D.I.C.,
of the Aerodynamios Division, N.P.I.

Abstract

22nd August, 1950 Summary A caloulation is made of the interference volocity on the axis In the flow of an incompressible fluid past a line doublet in a two-dimensional slotted41 tunnel ioe. arrotangular tunnel whose shorter sides are slotted in the direction of the flow. The method of analysis is basically the same as that used for oylindrioal tunnels by Wright and - ธa. - Numerical solutions are obtained which show that if the width of (slot t slat) is one twelfth of the tunnel height (e.g. 6 slots in the shorter side of a 2×1 tunnel), the interference volocity is little different from the aorresponding open-jet value-i.e. no slats. for all slot/slat ratios greater than 1740 . Further calculations are not proposed as the labour involved would be very groat, and also it appears likely that all oases which give conditions uniform across the oentro plane of the tunnel will also give an interference velocity which is close to the open Jet figure.

Introduotion
The idea of reduoing wind tunnol interference, or eliminating it, by use of a tunnel whose boundaries consist partly of solid walls and partly of free jet surfaoes is not a new one. The problem has been treated by a number of writers in various countries $2,3,4,5,6$, though until reoently interest lay mainly with lifting surfaoes. Moro rooently Wright and Ward ${ }^{1}$ applied the methods of Fourier analysis to obtain a numorioal solution to the interferenco velocity on the axis of a oylindrical tunnel with slottod walls and exporimental work was carried out which, in part, verified their conclusions. The present paper applies the some technique to the oorresponding twomdimensional case.

Notation

$2 d$	slat width
$2 b$	(slat t slot) wlath
$\mathbf{2 h}$	tunnel height
\mathbf{u}	longitudinal velocity component due to doublet
\mathbf{u}^{x}	longitudinal interferonoe vclooity componont
$\mathbf{x , y , z}$	running co-ordinates
\varnothing	doublet potential

Publishod with permission of the Dirootor, Naticenal Ingsismh Iaboratory.

Notation (contd.)

ϕ^{x}	interference potential
$\boldsymbol{\xi}, \eta$	non-dimensional cc-ordinates $\mathrm{x} / \mathrm{h}, \mathrm{y} / \mathrm{h}$
θ	non-dimensional co-ordınate $\pi z / b$
ω	$\pi \mathrm{~d} / \mathrm{b}$

Theory of Slotted Tunnel in Incompressible Potential Flow

Fig. 1

Conslder the flow when a line doublet $00^{\text {t }}$ is placed on the centre line of the tunnel (Fig. I). From reasons of symmetry it is only necessary to consider the flow in the region between two planes parallel to the flow and normal to the line doublet, and which bisect adjacent slats. Thke axes of reference so that the line doublet occupzes the z-axis, the undisturbed flow is in the x-direction, and these two adjacent planes are $\mathbf{z}=0$ and $\mathbf{z}=2 \mathrm{~b}$ respectively.

It will be convenzent to work in non-dumensional quantities referred either to b or h, the tunnel semz-height, and we take the new co-ordinates (ξ, η, θ) given by

$$
\xi=\mathrm{x} / \mathrm{h}, \quad \eta=\mathrm{y} / \mathrm{h}, \theta=\pi \mathrm{z} / \mathrm{b} .
$$

We also write $\omega=\pi d / b \leqslant \pi$.
It is evident that the interferenoe potential, with all its derivatives, must be periodic functions of θ with period 2π.

The equation of potential flow

$$
\phi_{\mathrm{xx}}+\phi_{\mathrm{yy}}+\phi_{\mathrm{zz}}=0
$$

oan then be expressed in the form

$$
\phi_{\xi_{j}}+\phi_{r, ?}+\left(\begin{array}{c}
\pi h \tag{1}\\
-- \\
b
\end{array}\right)^{2} \phi_{0 \theta}=0
$$

We shall oonsider the interference on the flow past a doublet of strength $2 \pi h$. The potential \varnothing of the undisturbed flow is given by

$\mathbf{u}=\phi_{\mathbf{x}}=\phi_{\Sigma} / h=-\frac{\left(\xi^{2}-\eta^{2}\right)}{\left(\xi^{2}+\eta^{2}\right)^{2}}, \mathbf{v}=\phi_{\mathbf{y}}=\phi_{\eta} / h=\frac{-2 \xi \eta}{\left(\xi^{2}+\eta^{2}\right)^{2}}$
let $\phi^{\mathbf{x}}$ be the interference potential. Then me have for our boundary conditions

$$
\begin{array}{llrl}
\left(\phi+\phi^{x}\right)_{\eta=1}=0 & 2 \pi-\omega>\theta>\omega \\
\left(\phi_{\eta}+\phi_{\eta}^{x}\right)_{\eta=1}=0 & 0<\theta-\omega \tag{3}
\end{array}
$$

$\phi^{\mathbf{x}}$ mustalso satisfy the oquation (I), so that

$$
\begin{equation*}
\phi_{\xi \xi_{0}^{x}}^{x}+\phi_{\eta \eta^{+}}^{x}\left(\frac{\pi h}{b}\right)^{2} \phi_{\theta \theta}^{x}=0 . \tag{4}
\end{equation*}
$$

The periodio behaviour enforod on ϕ^{x} by the boundary
conditions suggests the use of a Fourier cosine sories in θ to represent ϕ^{x}, and we write

$$
\begin{equation*}
\phi^{\mathrm{x}}(\xi, \eta, \theta)=\frac{1}{\pi} \psi_{0}(\xi, \eta)+\frac{2 \infty}{\pi} \sum_{1}^{2} \psi_{s}(\xi, \eta) \cos s \theta \tag{5}
\end{equation*}
$$

where ψ_{S} is given by

$$
\begin{equation*}
\psi_{s}(\xi, \eta)=\int_{0}^{\pi} \phi^{x}(\xi, \eta, \theta) \cos s \theta d \theta \tag{6}
\end{equation*}
$$

Equation (4) may then be written in the form

$$
\begin{equation*}
\left(\psi_{s}\right)_{\xi \xi}+\left(\psi_{B}\right)_{\eta \eta}-\left(\frac{\mathrm{s} \pi h}{b}\right)^{2} \psi_{s}=0 \tag{7}
\end{equation*}
$$

with boundary conditions
$\psi_{s}(\xi, 1)=-\phi(\xi, 1)=\frac{\sin s \pi-\sin s \psi}{s}+\int_{U_{0}}^{\omega} \phi^{\mathrm{x}}(\xi, 1) \cos$ se d θ
$\left[\frac{\partial \Phi_{s}}{\partial \eta}\right]_{\eta=1}=-\left(\frac{\partial \phi}{\partial \eta}\right)_{\eta=1} \frac{\sin s \omega}{-\cdots}+\int_{\omega}^{j \pi}\left(\frac{\partial \phi^{x}}{\overline{\partial \eta}}\right)_{\eta=1} \cos s \theta d \theta$
Now, from (5),
$\int_{0}^{i \omega} \phi^{x} \cos s \theta d \theta=\frac{1}{\pi} \psi_{0} \underset{s}{\sin s \omega} \underset{\pi}{\pi} \underset{j}{-} \sum_{j}\left[\begin{array}{cc}\sin (j+s) \omega & \sin (j-8) \\ \hdashline j+s & j-8\end{array}\right]$
$\int_{\omega}^{\pi} \frac{\partial \phi^{x}}{\partial \eta} \cos$ se $d \theta=\frac{1}{\pi} \frac{\partial N_{0}}{\pi} \sin \sin -\sin s \omega$

$$
-\frac{1}{\pi} \sum_{j} \frac{\partial \psi_{j}}{\partial \eta}\left[\begin{array}{cc}
\sin (j+s)_{\omega} & \sin (j-s)_{\omega} \\
\hdashline+s & \sin (j-s) \pi \\
j-s & j-s
\end{array}\right]
$$

and where

$$
\begin{gathered}
\sin (j-s) \pi \\
\text { er }
\end{gathered}\left\{\begin{array}{l}
\pi, j=\omega \\
0, j \neq 3
\end{array}\right.
$$

Hence the boundary conditions (8) become, on $\eta=1$,

$\frac{\partial \psi_{\mathrm{B}}}{\partial \eta}=-\frac{\partial \phi \sin \sin 1}{\partial \eta}-\frac{\sin s \pi \cdot \sin \mathrm{~s} \omega}{\pi} \psi_{0} \frac{\sin }{\pi}$

$$
-\frac{1}{\pi} \sum_{j=1}^{0} \frac{\partial \psi_{j}}{\hat{u} \eta}\left[\frac{\sin (J+s) \omega}{j+a}+\frac{\sin (j-s)_{j}}{j-s} \frac{\sin (j-s) \pi}{j-s}\right]
$$

or

where

$$
a_{j s}=\frac{\sin (j+s) \omega}{J+s}+\frac{\sin (J-s) \omega}{j-s}
$$

Assuming the variables in ψ_{S} to be separable, so that

$$
\psi_{S} a X_{S}(\xi) Y_{S}(\eta)
$$

then from (7) we get

$$
\frac{1 \partial^{2} X_{s}}{\overline{X_{S}} \partial \xi^{2}}+\frac{1 \partial^{2} Y_{s}}{Y_{s}}-\frac{\partial r_{r}^{2}}{}-\left(\begin{array}{c}
s \pi h \\
-- \\
b
\end{array}\right)^{2}=0
$$

whence

$$
\frac{\partial^{2} x_{s}}{\partial \xi^{2}}=-\lambda^{2} x \quad \text { ie. } \quad X_{s}=A s \sin \lambda \xi
$$

and

$$
\left.\frac{\partial^{2} Y_{s}}{\partial \eta^{2}}=\left\{\lambda^{2}+\binom{s \pi h}{--\infty}^{2}\right\} Y_{s .} \text { i.e. } \quad Y_{s}=B_{s} \quad \cosh \eta \sqrt{\lambda^{2}+\left(\frac{s \pi h}{--}\right.}\right)^{2} .
$$

The particular solutions have been chosen to give the correct
behaviour for ψ with respect to ξ and η.
We can thus write po

$$
\psi_{s}=\int_{0}^{\infty} h K_{\lambda_{s}} \sin \lambda \xi \cdot \cosh \eta \sqrt{\lambda^{2}+\left(\begin{array}{c}
s \pi h \tag{11}\\
-- \\
b
\end{array}\right)^{2}} \cdot d \lambda
$$

Substituting (11) in (10) we get, at $\eta=1$,

$$
\int_{0}^{\infty} h K_{\lambda_{s}} \sin \lambda \xi \cdot \cosh \sqrt{\lambda^{2}+\binom{\Delta \pi h}{-\infty}^{2}} \cdot d \lambda=-\emptyset \frac{\sin s \pi \cdots \sin S W}{8}+
$$

$$
+\frac{\sin s \omega}{-\cdots \pi} \int_{0}^{\infty} h K_{\lambda_{0}} \sin \lambda \xi \cdot \cosh \lambda \cdot d \lambda
$$

$$
+\sum_{\pi}^{1} \sum_{j} a_{j \xi} \int_{0}^{\infty} h K_{\lambda j} \sin \lambda \xi \cdot \cosh \sqrt{\lambda^{2}+\left(\begin{array}{c}
s \pi h \\
-- \\
b
\end{array}\right)^{2}} \cdot d \lambda
$$

$$
\begin{aligned}
& +\int_{0}^{\infty} h K_{\lambda s} \sqrt{\lambda^{2}+\binom{s \pi h}{b}^{2}} \cdot \sin \lambda \xi \cdot \sinh \sqrt{\lambda^{2}+\binom{s \pi h}{b}^{2}} \cdot d \lambda \\
& +\frac{\sin s \pi-\sin s \omega}{3 \pi} \int_{0}^{\rho_{0}}-\lambda \operatorname{lin}_{\lambda 0} \sin \lambda \xi \cdot \sinh \lambda \cdot d \lambda \\
& -\frac{1}{\pi} \sum_{j s} \int_{0}^{\infty} h K_{\lambda j} \lambda^{2}+\binom{s \pi h}{b}^{2} \cdot \sin \lambda \xi \cdot \sinh \sqrt{\lambda^{2}+\binom{s \pi h}{b}^{2}} \cdot d \lambda \ldots(12)
\end{aligned}
$$ Furthermore we can write \varnothing and $\frac{\partial \emptyset}{\partial y}$ in a similar from

$$
\begin{align*}
& \phi=\frac{h \xi}{\xi^{2}+\eta^{2}}=h \int_{0}^{c \rho} e^{-\lambda \eta} \sin \lambda \xi \cdot d \lambda \\
& \partial \phi=-\frac{2 \xi \gamma h}{\xi^{2}+\eta^{2}}=-h \int_{0}^{\infty} \lambda e^{-\lambda \eta} \sin \lambda \xi \cdot d \lambda . \tag{13}
\end{align*}
$$

Substituting from (13) in (12) and equating terms in $\sin \lambda \xi$,
we get (putting $\mu_{J}=\lambda^{2}+\frac{5 \pi h}{---}{ }_{0}^{2}$).
For $8=0$
$K_{\lambda_{s}} \cosh \mu_{s}=e^{-A} \cdot \underset{s}{\sin s \omega}+\sin w_{s \pi} K_{\lambda_{0}} \cosh \lambda+\sum_{\pi}^{1} \sum_{j} a_{j s} K_{\lambda_{j}} \cosh \mu_{j}$
$\lambda K_{\lambda 3} \sinh \mu_{B}=\lambda e^{-\lambda} \cdot \omega+\frac{\pi-\omega}{\pi}-\frac{-\omega K_{\lambda_{0}}}{} \sinh \lambda=\frac{1}{\pi} \sum_{j} a_{j o} K_{\lambda_{j}} \sinh \mu_{j}$
For $\mathrm{s}>0$
$K_{\lambda_{s}} \cosh \mu_{s}=e^{-\lambda} \underset{s}{\sin s \omega} \sin S W K_{s \pi} K_{\lambda_{0}} \cosh \lambda+\sum_{\pi}^{1} \sum_{j} a_{j s} K_{\lambda_{j}} \cosh \mu_{j} \ldots \ldots(15 a)$

We thus have two infinite sets of simultaneous equations for the singly infinite set of variables $\Gamma_{\lambda_{s}}$. It is however apparent from the derivation of these equations, that neither set of equations is sufficient to determine the $K_{\lambda_{s}}$ uniquely, This can most easily be understood by considering a similar case of two sets of equations for in variables. Then the first set would only contain r independent equations, and the second (m - r) . A linear combination of the two would in general, contain m independent equations. We shall assume that the same is true of these infinite sets of equations, and shall combine the two sets.

Dividing (14b) and (15b) by μ_{S}, and adding to (14a) and (15a) rospootively, we get
$\left(\begin{array}{c}\pi-\omega \\ -\cdots\end{array} \frac{w}{\pi} \tanh A\right) K_{\lambda_{0}} \cosh \lambda=e^{-\lambda(2 \omega-\pi)}$
$+\frac{1}{\pi} \sum_{j} a_{j 0} K_{\lambda j} \cosh \mu_{j}\left(1-\frac{\mu_{j} \tanh }{} \quad \lambda\right) \quad \ldots(16)$
$K_{\lambda_{s}}$ tosh $\mu_{s}=e^{-\lambda}\left(1+\frac{\lambda}{\mu_{s}}\right)^{\pi / j} \stackrel{j}{\sin \operatorname{sw}}$
$+\left(1 m-\frac{\lambda \tanh \lambda}{\mu_{s}}\right) K_{\lambda_{0}} \cosh \mu_{s} \frac{\sin \operatorname{sw} 1}{s \pi}+\frac{\sum_{j}}{\pi} a_{j s} K_{\lambda j} \cosh \mu_{j}\left(1-\frac{\mu_{j} \tanh \lambda}{\mu_{s}}\right)_{\ldots(17)}$
It is apparent that tho inclusion of oceffioients like cosh. μ_{j} which become large for quite small values of μ_{j} is going to complicate the numerical work and we substitute

$$
\begin{equation*}
h_{j}=K_{\lambda j} \cosh \mu_{j} \tag{18}
\end{equation*}
$$

whence

$l_{\lambda s}=e^{-\lambda}\left(1+\frac{\lambda}{\mu_{s}}\right) \underset{3}{\sin s w}+\ell_{\lambda_{0}}\left(1-\frac{\lambda \tanh \lambda}{\mu_{s}}\right) \frac{\sin \approx \omega}{s \pi}$

$$
\begin{equation*}
+\frac{1}{\pi} \sum_{j=1}^{\infty} a_{j s} \ell_{\lambda j}\left(1-\frac{\mu_{j} \tanh \mu_{j}}{\mu_{s}}\right), s \geqslant 1 \tag{20}
\end{equation*}
$$

where
and

$$
a_{j s}=-\frac{\sin (j+s) \omega}{(j+s)} \sin (j-s) \omega
$$

$$
\mu_{j}=\sqrt{\lambda^{2}+\left(\frac{j \pi h}{b}\right)^{2}}
$$

obtain $\phi^{\text {Once the }} \mathrm{K}_{\lambda j}$ using $(5)_{\text {and (11) }}$ have been found from (18), (19) and (20) we can

$$
\begin{aligned}
& \text { from which we obtain the axial interferenoe velocity } u^{\text {X }}
\end{aligned}
$$

Numerical Solution of the equations
No general method of solution of on infinite set of equations, suoh as (19) and (20), is know, and it remained to be seen if it was possible to obtain a good approximation by solving a finite number of them for the corresponding number of variables. This was done by the Mathematics Division, N.P.L. The equations were found to be highly convergent, the solutions obtained frnm 7,11 and 13 sets-of equations not being significantlydifferent. The finalcalculations wore done with 13 sets of equations The values of $K_{\lambda_{n}}$ obtained from (18), (19) and (20) are given in Table 1, for the case where $b / h=1 / 12$.

Table 1

A	($\omega=$	-K入o. $\left.{ }^{(\omega)} 7 \pi / 8\right)$
0	π	π
	2,328	2. 297
. 5	1. 616	1.566
	1. 064	1. 007
1.0	0.6376	0. 6228
	.4148	. 3744
1.5	. 2511	. 2210
	. 1503	. 1290
2. 0	. 0893	.0749
	. 0528	. 0434
2.5	.0312	. 0251
	.0185	. 0144
3.0	$.0109$. 00825
	.0064	. 00474
3.5	. 00375	. 00272
	. 0022	.00155
4.0	. 0013	- 00088
	. 0006	.00050
4.5	. 0003	r00015
	. 0001	.00008
5.0	. 0000	. 00004

$$
\begin{equation*}
u^{x}=\left.{\underset{U}{0}}_{1}^{-}\right|_{\lambda_{0}} ^{\infty} \cos \lambda \xi \cdot d \lambda \tag{23}
\end{equation*}
$$

The numerioal values of this integral for $\bar{\zeta}=1 / 2,1,3 / 2$ are given in Tnble 2 (on page 11).

Open Jet Tunnel
If the upper and lower surfaoes of the tunnel are free jet surfaoesso that, in the above notation, $\boldsymbol{\omega}=0$, it is apparent from (14) and (15) that

$$
\begin{align*}
& K_{\lambda_{0}}=-\pi h e^{-\lambda} \text { sech } \lambda=\frac{-2 \pi h}{e^{2 \lambda}+1} \\
& K_{\lambda_{s}}=0 \\
& u^{x}=-2 \int_{0}^{e^{-\bar{\lambda} \lambda^{-N}}+1} d \lambda \tag{74}
\end{align*}
$$

To evaluate the above Integral, consider the integral of $\frac{e^{i \xi z}}{2 z}$ taken round the contour C of Fig. 2.

FIG 2

Then, provided the contour is suitably indented round the pole at $(0$, in /Z) , we have
1.f.

$$
\begin{equation*}
\frac{e^{\xi_{z}}}{2 z+--1} \text { at }(0, i \pi / 2) s \text { whence } \tag{25}
\end{equation*}
$$

where $R(0, i \pi / 2)$ is the residue of $\frac{--\ldots--}{e^{2 z}+1}$ at $(0, i \pi / 2)$ s hence $R \quad(0, \quad i \pi / 2)=-\frac{1}{2} e^{-\frac{1}{2} \xi}$.
Also $\quad 1+e^{2 i y}=1+\cos 2 y+i \sin 2 y$

$$
=2 \cos y_{\cdot} e^{i y}
$$

Substituting these in (25), we get
$\left(1-e^{-\pi \xi}\right) \int_{0}^{\infty} \frac{e^{i \xi x}}{e^{2 x}+1} d x=-\frac{i \pi}{2} e^{-\frac{1}{2} \pi \xi}+i \int_{0}^{\pi} \frac{e^{-\xi \eta}(\cos y-i \sin y)}{2 \cos y} d y$

Taking the imaginary part

$$
\begin{aligned}
\left(1-e^{i \pi \xi}\right) \int_{0}^{\infty} \frac{\sin x \xi}{e^{2 x}+1} d x & =-\frac{2}{2} e^{-\frac{1}{2} \pi \xi}+\frac{1}{2} \int_{0}^{\pi} e^{-\xi y} d y \\
& =-\frac{\pi}{2} e^{-\frac{1}{2} \pi \xi}+\frac{1-e^{-\pi \xi}}{2 \xi}
\end{aligned}
$$

Whence

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin x \xi}{e^{2 x}+1} d x=\frac{1}{2 \xi}-\frac{\pi}{4} \operatorname{cosech} \frac{1}{2} \pi \xi \tag{26}
\end{equation*}
$$

Finally, differentiating (26) W.r.t. S_{S}

$$
\begin{equation*}
\int_{0}^{\infty} e^{2 \cos x \xi^{\xi}} d x=-2 \xi^{2}+8 \pi^{2} \text { ooscoh } \frac{1}{3} \pi \xi \cdot \operatorname{coth} \frac{1}{2} \pi \xi \tag{?7}
\end{equation*}
$$

so that from (24)

$$
\begin{equation*}
u^{x}=\frac{1}{\zeta^{2}}-\frac{\pi^{2}}{4} \operatorname{cosech} \frac{1}{2} \pi \dot{\zeta} \cdot \operatorname{coth} \frac{1}{2} \pi \xi \tag{28}
\end{equation*}
$$

Closed Tunnel

For a closed tunnel $\omega=\pi$,

$$
\left.\begin{array}{l}
K_{\lambda_{0}}=\pi e^{-\lambda} \operatorname{cosech} \lambda=\frac{2 \pi}{e^{2 \lambda}-1} \\
K_{\lambda j}=0
\end{array}\right\}
$$

whenoe

$$
\begin{equation*}
u^{x}=2 \int_{0}^{\infty \nu} \frac{\lambda \cos \lambda \xi}{e^{2 \lambda}-1} d \lambda \tag{30}
\end{equation*}
$$

The integral in equation (30) can be evaluated by the same method as in the previous section to obtain the result

$$
\begin{equation*}
u^{x}=\frac{1}{\xi^{2}} \cdot \frac{\pi^{2}}{4} \operatorname{cosech}^{2} \frac{1}{2} \pi \xi \tag{31}
\end{equation*}
$$

The results of equations (28) and (31) are not new, having been obtained before by the method of images 7 , bout the analysis is given here since it does give an indication of the correotness of the method.

Results

The numerical values of $\mathbf{u}^{\mathbf{x}}$, the axial interference velocity, for the oases discussed are given in Table 2, and plotted in Figs. 3 and 4.

Tablo 2

$$
\text { Values of } u \text { and } u^{x}
$$

It can be seon from Fig. 4 that there are insufficient values calculated to give any reliable values for ω at which the interference is zero, but this value is certainly greater than 0.975π. The inference from this is that the slot/slat ratio for zero interference must bo less than 1 : 40 and might easily be 1 : $\mathbf{1 0 0}$ or even less. The small slot waths arising from such a ratio would hardly be praotioable, and in such oases viscous effects would probably play such a large part near the wall that the potential flow calculations would not be valid. For slot/slat ratios greater than 1 : 40 the flow near the axis is, to all intents and purposes, the same as would be obtained in a free jet. It 18 also worth
noting that the slight reduction in interference that is evident near the body due to the slotted walls, is lost further from the body
$\left(\begin{array}{c}\text { at } x= \\ \mathbf{x h} \\ 2\end{array}\right)$. At this point, however, the interferenoe is 80 small
as to be insignificant*
Another important point is that the results are independent Of \mathbf{z}; i.e. there is no 'ripple', or variations in the interference potentials on the axis due to the mixed boundary* This arises from the fact that the $K_{\lambda_{s}}(s>0)$ are all zero. It wruld appear to be at least likely that whenever ω is small enough to produce smooth flow on the $\mathbf{a x} .9$ (independent of \mathbf{z}), then under suoh conditions the flow on the axis will always behave in a free jet,
5^{T} his result is in acoordnnoe with the results already obtained by Pistolesi 5,6 in the consideration of the interferenoe on a lifting surface i.e. due to the dipole trailing vortex system. (This paper is not available in this country, but the results are discussed in Ref. 6.) It wasfound that if the value of the slot/slat ratio was kept unaltered, the interference correction beoame more end more like the free jet correction as the number of slots was increased. Similar results are obtained with the flow of fluids through a grating, and also the behaviour of sound waves under similnr conditions 8 , it being found in both these cases that the effect of such gratings is far less than their solidity would suggest. The crude approximation that the interference is directly proportional to the slot/slat ratio, is quite useless and misleading,

It is worth noting that the effect of oomprcssibility, to the first order as oaloulated from Prandtl-Glquert theory, is to increase tho effective magnitude of the doublet, and hence of the interference velocity. To this first order, the solution is altered in magnitude but not in form, and the general conclusions reached in this paper should still apply.

It would be useful and interesting to calculate the axial inturfcrenoe velocity for different slot/slat ratios, with fewer slots but the labour involved is so great as to be out of proportion to the results. Thero is, cvery reason to believe from experiments that freo jet behaviour persists even whon there are just two or three slots. It would appear, therefore, that the ralue of a slotted wall tunnel so far as interference effeots are concerned lies not in produoing a tunnel with no interference, but rather in producing one whth free Jet interferenoe oharaoteristios, though with improved behaviour 9 .

KM.

FIG3.

Doublet and Interference velocities vs Distance Upstream
N.B Velocity in infinite stream $=4$.

Interference velocity for difference thickness of slats.

CROWN COPYRIGHT RESERVED
PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, LONDON, w Ca 423 Osford Street, london, w.t
PO Box 569 , LONDON, SEI.
r 3 a Castle Street, EDinburgh, 2 I St Andrew's Crescent, CARDIff
39 Kıng Street, Manchester, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, Birmingham, 3 80 Chichester Street, BelfaSt
or from any Bookseller
1954
Price 2s Od net
PRINTED IN GREAT BRITAIN

