

Shadowgraphs of Model Projectiles Fired at High Mach Numbers and near $M=1$ in the N.P.L. Ballistic Range

By

W F. Cope, M.A, A F.R.Ae S.
of the Aerodynamics Division, NPL

Shadowgraphs of Model Projecuiles Fired at High Mech Numbers and near $M=1$ in the N.P.L. Ballistic Rance - By -
W. F. Cope, M.A., A.H.R.Ae.S. of the Aerodynamics Division, N.P.I.

2nd July, 1954.

SUMMARY

Shadowgraphs of 20 mm projectiles fired in the iv.P.I. Ballistic Range at Mach mubers (mainly) above 3 are shown, and the important features discussed.

Shadowgraphs of three rounds whose Mach numbers passed through $M=1$ in their passage down the range are also shown. In all three cases the drag and in one all the Aerodynamic Forec Coefficients rerc determincd. The effect of the retardation is discussed and it is concluded that the effect is probably small enough to be negligible except perhaps on the drag.

These rounds were stablo, the unstable region for projectilc is at a
 rounds is included.

Introdurtiom

Before the Rallistic Range of the former Engincering Division, N.P.I. was transferre to Λ erodynamics Division, N.P.I. and closed down, several spin stabilizcd projectiles weise fired rith muzzle velocities such that the projectile dropned through the volocity of sound in its passage dow the range. The mouncis were firca to obtain information of value to External Ballisticians. But because of the interest in phenomena in the Transonic Region shewn by Acrodynamicintsthis report has been communicatod in case it has anything of value to thom.

A selection of the prints from shadongraphs of projectiles at relatively high lach numbers (about $3 \frac{1}{2}$) have been includod in this report because relatively few seen to have been publishcd. Prints of the transonic rounds are also included since these have an interest in their own right. But the emphasis in the case of the lattor is rather different becausc the several acrodynamic force coefficionts wore determined from the ascertained motion. This involvos consideration of both the stability of the motion and of the question of the effect of the accelcration terms. Some transonic rounds fired much earlier have also been included in this section.

TABTE/

TABLE

Calibre of Projectiles
Rifling of Gun
$*$

XIX CDR. II.
Calibre Radius Head

20 mm .
1 turn in 513.4 mm (1.685 ft), nominal 1 in 25.
Rounds with appreciable yaw. The plane of the yaw is approximately parallel to the plane of the shadowgraph.

Moans a head of length appropriate to a
tangential (or true) ogive of X calibres, the radius of the ogive being Y calibres. A tangential ogive head X / X C.R.H. is usually written X C.R.H. and a conical hoad X / ∞ C.R.H. is often specified by its angle.

Is calculated with the length (1) of the projectile as the representative length. $R=400 \times$ length in calibres $\times \mathrm{Uft} / \mathrm{sec}$.

The velocity for F .117 , F .119 and F .121 was measured on a 3 ft base embracing the frame of the shadowgraph. The distance was known to 0.001 ft and the time to $1 \mu \mathrm{~s}$, the velocity is therefore accurate to about 1 part in 3,000. For all the other projectiles the velocity given is the mean value between the first and last frames (about 110 ft). The difference between the velocities at these two frames is between $50 \mathrm{ft} / \mathrm{sec}$ and $100 \mathrm{ft} / \mathrm{sec}$ dopending of course on the retardation.

Shadowgraphs

The Table and its accompanying notes gives the essential information about the rounds fired. The comments which follow will be confined to unusual or striking features revealed and for this reason a number of the shadovgraphs are not explicitly mentioned in the toxt. As a general comment the boundary layer is ciearly defined and it is obvious that it is turbulent towards the base, but it is not possible to say precisely where transition occurs.

The thickening of the boundary layer on the leeward side of the projectile when there is appreciable yaw is well show in Figs. 4, 11, 14, 16 and 28. The peripheral velocity of the projectile is over $400 \mathrm{f} . \mathrm{s}$. at the highest velocities and the polar diagram of boundary layer thickness cannot be determined f'ron two shadowgraphs at right anglos. Therefore it is not known for certain whother the planes of mazimum yaw and of maximum thickness coincide. The rifling of the gun is right handed so that the circumferential motion at the top is towards the reader when the nose of the projectile is to his right. In Fig. 27 the thickness of the boundary layer near the shoulder differs markedly on the two sides though there is no yaw in the plane of the shadowgraph and only 5° (at most) in the pane at right angles to it. This is the only case of its kind discovered in about 1,000 shadowgraphs and it is just possible that it is avidence of a phase difference between maximum yaw and maximum boundary thickness. But it scems much more likely that the cause is a slightybent or eccentric point to the cone.

In Fig. 18 wvelets can be seen on the windvard side winch appear to originate from the surface noar the nose and to be reflected from the head shock so that finelly they are almost parallel to the body of the projectile.

In several of the shadowgraphs and in particular in Fig. 21, which is the best example, wavelcts can be seon in the region betroen the head and tail shocks. These wavelets are neariy at right angles to the main flow and their origin is unlnowm.

In Rigs. 4 and 5 the nearly straight shocks at the base of the projectile may be duc to gun blast.

In Fig. 27 the total angle of the head shock is about $4_{4} 6^{\circ}$ and agrees roasonably well with the preductions of the Maccoll-Taylor theory.

The shadowgraphs were taken by spark, its total duration was about 1μ s but the intensaty-time curve has a very sharp peak and the effective time is about $0.1 \mu \mathrm{~s}$. The source is 1 mm dia. about $4_{4} 2^{\prime \prime}$ from the projectile, the angle of divergence of the beam therefore is about $1: 100$ each side the mean.

Transonic Rounds

(a) Stability

Three projectilcs were fired; in one case (F .117) shadowgraphs of the projectile were taken and the drag only determined, in the second (F.121) the course of the head shock at speods below that of sound was studied as well, and in the third the motion vas fully analyzed and all the aerodymmic force coefficients determined. The definitions and the method of anolysis will be found in Chapter XIII of Modern Devolopments, High Speed Flow (1953). The results obtained are as follows:-

Aerodynamic Force Coefficients

Round Number	Average Mach No. $\overline{\mathcal{M}}$	Average Yaw	$\begin{gathered} \text { Drag, } \\ f^{\prime} P_{W_{2}^{2}}^{2} \\ R / \mathrm{U}^{2} r^{2} \end{gathered}$	$\begin{gathered} \operatorname{Lift}, \\ I / P U^{2} r^{2} \sin \delta \end{gathered}$	$\begin{gathered} \text { Moment, } \\ f_{M} / \rho U^{2} r^{3} \sin \delta \end{gathered}$	Yowing Moment f_{H} $\mathrm{H} / \mathrm{p} \mathrm{U} \omega \mathrm{r}^{4}$	$\begin{aligned} & \text { Magnus } \\ & \text { Couple } \\ & f^{f} J \\ & J / \text { ONr }^{4} \sin \delta \end{aligned}$
F. 117	0.998	-	0.74 .6				
F. 119	0.996	12.4	0.986	3.67	$1 / 2.26$	82.6	-1.33
F. 121	C.925	-	0.681				

wherein, in addition to the symbols already defined:-
$P \equiv$ density, $r \equiv$ radius of projectile, $\delta \equiv$ yaw, ω resultant
transverse angular velocity of body, $N \equiv$ spin and R, L, M, H and J are
respectively the forces or moments (about the C.G. of the projectile)
involved in the scveral definitions.

In all cases the velocity of the projectile drops through that of sound in its passage dow the range but, as Figs. 29, 30 and 32 show, there is no discontinuity in the slope of the velocity time curve. The mean yar of round F. 117 may be greater thei that of $F .121$ but there is no way of knowing. The largest yaw visible (in Fig. 5 F .117) is about 8° in the plane of the shadowgraph, in Figs. 3 and 4 (F.117) the yaw is about 5° and in Figs. 1 and 2 (F.117) quite small. The yaw in ligg. 6 (F .121) is not more than 3°. The standard ballistic formula $f_{\mathrm{R} \delta}=f_{\text {Ro }}\left(1+\frac{\delta^{2}}{200}\right)$ gives 7.9° and 6.5° for the mean yaws of projectiles F. 117 and F .121 respectively and a value of 0.57 for f^{\prime} Ro. But the accuracy of this formula in this rogion is quite unknowm and this result only indicates reliably that $f_{\text {Ro }}$ is in the region of 0.6 .

It should be noted that in Figs. 29, 30 and 32 the plotted points arc not velocities at a measuring frame but at points approximately midray between. The accuracy (as given in the notes to the Table) is such that the velocity is known to better than 1 f.s.

The distance of the head shock from the nose up to the point where it passes of f the plate is plotted as Fig. 31. The distance is calculated on the assumption that the shock is axisymmetrical and that the tangent lines to it, from the spark source, aro tangential at points not far from the trajectory. The discrepancy between the Horizontal and Vertical plates in frames 8, 9, 10 and 11 may bo duc to a breakdown of these assumptions. Tho and sometimes more head shocks appear in Figs. 7-10, presumably those nearer to the nose and weaker are reflected shocks from the walls of the range or from tables, cupboards in it. Pig. 31 shews that these shocks do not uniteuntil the projectile is travelling at a speed considerably below that of sound.

The chain dashed line in Tig. 31 indicates the distance separating the projectile and a point moving with constant velocity equal to that of the projectile at time $0 . \quad(M \approx 1.007, U(1,128 \mathrm{ft} / \mathrm{sec})$. It suggests that the observed head shock distances are dependent upon the retardation of the projectile even before $\mathcal{M}=1$. It is of course obvious that the ballistic range and the wind tunnel techniques are not measuring the same quantities because in the former case the body under observation is being retaried. There is a mass of ovidence that at Mach numhers far from unity the difference is of no practical importance. The point of Fig. 31 is that it shows that the difference may be appreciable at Mach numbers very noar to unity.

The value of f_{R} may be affected both by the finite size of the range and because the measurements were made with accelerations present. It seems very unlikely that the former is important except almost literally at $M=1$ becauss the arca ratio range/projectile exceeds 104 .

The yawing and C.G. motion of round F .119 are plotted as Ifigs. 34 and 35 respectively and it can be scen that the round is stable though the damping is not large. The process of analysis revealed that there was no perceptible change in the damping factors as the velocity dropped through that of sound. Figs. 36 and 37 are from the analysis of a round fired before the war when both the measuring appliance and the methods of analysis were oruder. The accuracy of dotermination of velocity is to about 1 in 500. The shape and calibre of the projectile was different (6 U.R.H. instead of 7.5) and $1^{\prime \prime}$ instcad of 20 mm but it is unlikely that the differences vitiate the comparison. It will bo seen that the motion (for M nas 1.01) is very similar. The remaining figures ($38-45$) of the same pre-war vintage tell a totally different story. Over the range covered ($0.75<\mathcal{M}<0.9$) the motion is unstable. The basic or processional component of the yaw inereases considerably, the subsidiary or nutational component is constant or slightly danped.

The result that spin stabilized bodies of revolution (at any rate of projectile form) are unstable in the lower end of the transonic region is one that has been found in all firings carried out in the N.P.I. Ballistic Range. A detailed analytical quantitative explanation cannot be given at present but a qualitativo explanation which is at least plausible can be given on the following lines. It is based on the fact that the "lift" of a projectile is provided by the heed only and is small anyway.

The shock stall or lower critical Mach number for a projectile head is a function of its shape and yaw, typical values are $M_{C}=0.85$ for no yow aropping to 0.75 for $10^{\circ} \mathrm{y}$ aw, so that a projectile in relative motion to an air stream at these Wheh numbers and a little above would experience, if it were yawing, violent prossure oscillations in the neighbourhood of its hoad. At somewhat higher Mach numbers (say 0.95 and above) the shocks have moved on to the parallel portion where they are relatively harmless since the pressuro distribution here is symmetrical and boundary layer breakaway is fixod at tho tail and is mlikely to move forward at these angles of yow.

Fin stabilized bodies have never been fired in the range and it is therefore impossible to make any estimates of body-fin interaction in the transonic region, nor of the effect of fins in altering the range of the region of instability.

The oscillatory motion of the projectile is of course relative to its centre of gravity which is about two thirds of its length from the nose. Therefore insofar as comparison with aerofoils is valid the results corrospona to an aerofoil oscillating about a pivot line about $2 / 3$ chord from the nose.
(b) The Unsteady State

With regard to the unsteady state (Gardner and Ludloff 1950) stato that acccleration terms are only important when

$$
\mathcal{M}<1+\left(2 \ddot{x} l / N^{2}\right)^{1 / 2}
$$

where \ddot{x} is the deceleration.
In this case $X^{\prime \prime}=300, l \approx 1 / 3, \mathrm{U}^{2} \cong 1,000$ and the offect is only inportant for $M_{<} 1.01$. Phythian (1952) states a criterion in the form "the proportional change, while the body trevels its owm length, in linear or angular velocity must be small if the adatitional aerodynamic force coefficients induced by the change are to be small also". This criterion is satisfied in these firings. Unfortunately both these criteria are based on linearized theory and their accuracy near $\mathcal{M}=1$ is, at least, open to question.

The diroct analytical attack on the problem leads via von Kármán's transonic approximation to an equation which can be written

$$
\mathrm{F}_{\eta \eta}+\frac{1}{\eta} \mathrm{~F}_{\eta}=2 \mathrm{~F}_{\xi} \mathrm{F}_{\xi \xi}+\mathrm{A}
$$

with appropriate boundary conditions. A represents the acceleration terms which are constant in this case since the retardation is constant. This equation is non-linear in a very awward way changing from hyperbolic to elliptic within the region to be considered. Enquiries of Mathematios Division, N.P.I. and elserthere have revealed that the analytical theory of such equations is for practical purposes non-existant and that numerical solution would be very laborious and difficult. It does however seem likely that the presence of ohe A term would not appreciably increase the difficulties.

Iin, Reissner and Tsien (1948) have carried the discussion a little further and reach the conclusion that the problem is quasi steady if

$$
K \ll \delta^{z / 3}
$$

wherein $\delta \equiv$ thicknoss ratio
and $\quad K \equiv \omega \mathrm{~b} / \mathrm{J}$ (the frequency parameter).
Herc $\delta \approx 0.2$ since the projectiles are about 5 cals. Iong and

$$
K \approx \frac{2 \pi \times 40 \times 1 / 3}{1000} \approx 0.08 \ll \delta^{2 / 3}(=0.34)
$$

so that the problem is quasi stationary by their criterion.
Therefore though the correetion cannot be evalunted it seems reasonably certain that the oscillatory motion of the projectile has not offected the numerical results, but that the retardation may have had an effect tery near $M=1$.

Finally the first ton figures and Fig. 31 have a topica: interest in connection with sonic bangs and could with advantage be studied in conjunction with (for instance) the figures of Lilley et al (1953).

Acknowledgoments

The rounds were fired and the annlysis carried out by Messrs D. W. Bailey, D. A. Harding, E. G. Saunders and W. Watson, members of the Ballistic Range Team of the Gas Dymmics group of the eratwhile Enginecring Division, N.P.I.

REFTSRIENCES

№.

Author(s)

Gardner Ludioff

3 c. C. Lin
E. Roissner
H. S. Tsien

4 G. M. Iilley
R. Westley
A. H. Yates
J. R. Busing

5

Title, otc.
Influenco of accelerotion on aerodynamic characteristics of thin aorofoils in supersonic and transonic flight. Journ. Ac. Sci. 1950, 17, 47.

Some unsteady motions of a slender body through an inviscid gas. Q.Journ.Mech. \& App. Math. 1952, V. 301.

On tro dimensional non-steady motion of a slender body in a compressible fluid. Journ. Math. \& Phy. 1948, 27, 220.

Some aspects of noise from supersonic aircraft. Jounn. R.Ae.S. 1953, 57, 396.
lodern developments in fluid dynamics. Figh Speed Flow, Volume II. O.U.P. 1953.

JDK.

Fig. 1: Projectile F17. $1136 \mathrm{f} . \mathrm{s} . \mathrm{M}=1.009$

Fig. 2: Projectile F117, 1128f.s., $M=1.002$

Fig. 3: Projectile F17, 1124 f.s. $\quad=0.998$

Fig. 5: Projectile F117. 1113 f.s.g. $W=0.988$

Fhe. 6: Projectile F121, 1123 f.s.g $N=1,000$

Fig. 8: Projectile 121, 1119 f.s. M $=0.996$

F2g. 9: Projectile 121,1118 . 5% \% $=0.995$

Mig. 10. Projectile F121, $1118 \mathrm{f}$. . $M=0.095$

Fig. 11. Projectile F119, 1131 .s.s. $=1,005$

Fig. 13: Frojectile F102, 2100 P.s.g $M=1.86$

Fig. 14: Projectile F105, 2085 f.s. $\mathrm{M}=1.84$

W. . 15: Projectile R108, $3120 \mathrm{f} . \mathrm{s}, \quad=2.75$

Fig. 16: Projectile F112, 3115 f.s. $\quad W=2.76$

Fig. 17. Projectile $1104,3450 \mathrm{f.s.g} \quad M=3.08$

Fig. 19: Projectile E101, 3480 f.s. $M=3.10$

Fig. 20: Projectile E103, $3510 \mathrm{f} . \mathrm{s} \cdot, \mathrm{M}=3.12$

Fig. 22: Projectile 0103, 3510 f.s. $\quad W=312$

Fig. 24: Projectile 6n, 3500 t.s. \quad H $=3.10$

Fig. 26: Projectile $m 15, \quad 3510$ f.s. $\quad M=3.12$

Fig. 28: Projectile N102, 3575 f.s., $\quad M=3.19$

Fig. 29.

Fig. 30.

(b) Projectile F121

Fig. 31.

(c) FI2I Distance of head shock from nose

Round No. Fll9

\qquad
星

"98.0ा

Fig. 37.

Figs 38: 39.
Fig. 38.

Fic. 39.

Figs. 40 \& 41
Fig. 40.

180.

Fig. 42.

FIG. 43.

$$
\begin{aligned}
& M . V=982 \mathrm{ft} . \sec . \\
& \mathcal{N}=0.864
\end{aligned}
$$

Fios 44: 45.
Fic. 44.

Fig. 45.

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFLLE
To be purchased from
York House. Kingsway, london, w c 2423 Oxford Street, london w 1
PO Box 569 LONDON, SE1
13a Castle Street, edinburgh, 2109 St Mary Street, cardiff
39 King Street manchester 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham 380 Chichester Street, belfast
or from any Bookseller
1955
Price 5s Od net

