C.P. No. 202
A.R.C. Technical Report
C.P. No. 202
$(16,201)$
ARC Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Investigation of High Length/Beam Ratio

 Seaplane Hulls with High Beam LoadingsHydrodynamic Stability Part 2
The Effect of Changes in the Mass, Moment of Inertia and Radius of Gyration on Longitudinał Stability Limits

By

.J. K. Friswell, B.Sc.,
A. Kurn, Grad.R.Ae.S., and
D. M. Ridiand, G.l Mech.E.

INVESTGATION OF IIGH TIMGTE/BRM RATIO SEAELANE
 HULS IIITA HIGF BESI IOLDINGS

HYDRODYNMIC $\Im T A B I L T T Y$ PIRT 2

THE BFPTCT OF CDNGES IN THS WS, MOMDT OF INERTI AND
TUDIUS OF GYRUTON ON LONGITUDII STABTLITY LINITS

by"
J. K, Friswell, BoSc.
A. Kurn, Graduretecs.
D. H . Ridlend, GeIrech E

SUMRARY

Tests have beon porformel to ascertain the effects of varying load, moment of inertia, and radius of gyration on the stabiluty limuts of a high longth-to-bearmatio dynamic model. The tests wore carried out at hagh beam leadings, with C_{Δ} in the range $2.00-3.00=$ is theorotical analysis has becn made of the ralation between the affects of the various porametors, and the results of the annlysis compared with exporinontal rosults. The eftect on the limits of a chango from a velocity to a draught baso has alco boon considered.

It has been found taat the load is the most critucal factor, and that providod tho load is kept constant ircrasing the moment of inertia has littlo offoct on the limats. Cood agroement has been found botweon tho theoroicol troatmont and cxporiment.

LIST OF CONTWIS

1. Introduction
2. Provious Investigations
3. Description of Experinents
4. Experimontal Results
5. Theoretical inalysis
6. Relation of Theory to Experiment
7. Conclusions

List of Symbols
List of References

Table I - Models for Hydrodynamac Stabality Tests.

-3-	
IIST OE FIGURES	
	Figure No.
Hull Lines	1
Photocraphs of Model ${ }^{\text {P }}$	2
Schonatic Diagran of wrangemont for Varying Dass and ifoment of Incrtaa	3
Comparison of Undisturboal Stability Lurnts at Constant Monant of Inertia	4
Comparison of Disturbed Stabilaty Limits at Constant nonont of Inortia	5
Comparison of Undisturbod Stability Limits at Constant liass	6
Comparison of Disturbed stabllety Limete at Constant ilass	7
Comparison of Undesturbod Stability Lirints at Constant Radius of Gyration	8
Comparison of Disturbod Stability Limits at Constant Radius of Gyration	9
Porpozsing smpla tudes and Stability Lizits (I)	10
Porpoising Amplitudes and Stability Limits (2)	11.
Porpoising Amplitudes and Staibility Iimits (3)	12
Porpoising Amplitudes and Stabiluty Limits (4)	13
Porpoising Amplitudes and Stability Limits (5)	14
Porpoising Ampiitudes and Stability Limits (6)	15
Porpoisung Amplitukes and Stabillty Limits (7)	16
Porpoising Amplitades and Staoility dinits (8)	17
Comparison of Undisturbed Lowor Lungutudinal Stability Limits on Draught Basc: (1) Constant aforwnt of Inurtaa	$\text { a. } 18$
Comparison of Undisturbod Lower Longitudinal Stability Limits on praught Basc: (2) Constantiass	$\text { a } 19$
Comparison of Undisturuca Lowor Longitudinal Stability Limuts on Drought Base: (3) Constant Radius of Gyration	a 20

1 。
 INTRODUCTTON

Such cvidencc on was avallable when this investagation ${ }^{1,2}$ was planned indicated that changes in the pitching moment of inortia of a flying boat model dad not in thonsclves, whon unaccompanicd by changes in caas, have any appreciable effect on the longitudinal hylrodyname stability limits. For this reason, no particular moment of inertia was ainod at in the construction of models an the sorios (Table I) nor was any attompt made to vary the moment of inentia acorarg to any particular rule whice bringing the mass of each nodel to the various values at thich it was considerod desirable to test stability, Bxtra moights vore norely faxed to a bar through the contre of gravity, thus keeping the moment of inertia ofrcotively constont.

Since provious anvestigations of tiris mattor did not cover the same ranges of values of tho various parametors involved as are used in this programe, howover, it mas folt advisable to corry out limated tosts on one model of tho sorios to vurify that no particular attention noedod to be paid to the valuo of the noment of inertia. irodel B was usal as it permitted a more adequate range of values to be covcrod than othor models avalable.

For completeness three soparate tosts wero performed, in each of which one of the three parametors, lass (m), moment of anertia (I), and radius of cyration (k), was held constant at somo appropriato value, and the other two parameters variol over a fairly large range, longtudinal hydrodynaric stability linits boang obtaina for each combination of values. Mass changes were, homover, only considered to shom their interaction win changes in the otior prometcrs, aonont or incrtia and rodius of gyration being the factors of direot interest.

Since I, m and k aro relatod by $I=r a{ }^{2}$, the erfects on the limits of changes in them are not independent. They can be relatod analytically by considering oritical trin (i.e. trie trin at whach longitudinal instability sets in) as a function I, m, k and volocity and taking into account the iaplicit rolata ons between the parsucters. Dotails of this treatmont are givon and comparisons mado of anolytical and expormental results.

It has been suezestoa that linits plottod on a araught baso would show smallor sonsitivity to mass and inortin changes than those on a velocity base. Grophs showing tho offocts of this change of base are thorefore included, and the thcoretical analysis has been extendel to indicate the relation botween the two sets of linits.

The contre of gravity has boen taken to bo fixed througnout the theoretical troatment to correspond with the conditions of the model tests. 3

In adaition to the limits thumselves, figures have been ancludod showing the arplitudes of porpoisirs in the unstable regions. These enable the violonce (or othermso) of the anstability to bo judged, and comparison of then shows the effect of changes in mass etc. on behaviour in these rogions.

2. PREVIOUS INVISTIGITIONS

The mass of a dynmic model is determined directly by the value of $C_{\text {s }}$ at which it is to be testoch. The behaviour of the lodol at different valuos of C..o is govemed by a number of dosign factors, not all of which are being investigated at present. 111 nodols in the progrmme will be tested at at least two values of C. 0 , and referenco inll be made at a later stage to previous work relevant to the bohaviour of the models at various loads in the approprlate tost conditions. Direct consideration will thereforc only bc given here to provious inventagations into the effocts of
varying the pitching moment of inortia and radius of cyration, though it should bo noted that n change of mass mall automaticolly imply a change eithor in monent of inertia or rodius of cyration.

Ithe effoct oin roment of inertio on the stability of a seaplane was furst consianered theoretically by Perring and Glauertl, who by treating the planmy surfaces as flat plates show that in the single step case too swall a moment of inertia would proluce instability at an otherwise stable point while in the two-stop case too large a moment of inertia would have this offoct. Their general conclusion was that in model tosts the ratio mass/momont of anertia was tho most critical factor, 1.e. that the radius of gration should bo given ats correct scale value, and that if the molel ras then stable an mercase in the radius of cyratzon from thas value would produce instabality in the tro-stop case while a docrease rould produce anstablitity in the one-step case. No specific consideration was, howaver, given to which, if any, of I, m and k were to bo kept constant lurine the changes montronal for the conclusions to be valud.

Richards and rintchinson ${ }^{5}$ also considereal radius of cyration to be the factor which would have most effoct on stability, and montioned that changes in rass while rotaining the radius of eyration at its scalo value (by altering the moment of inortia) still resultod in a movement of the stability limits. The latter point was investigatod by moans of the Routh discriminant, and led to the conciusion that both mass and radius of cyration should be gaven correct scale values in nodel tosts. The size of the eftect reforrol to in this roport was illustratod in Reference 6 for one particular model, the mass beind increased by 15% and the moment of incrtia by 100\%; the movement of the stability limit here was very slucht, being approximately one-fifth of the change produced by a 30% change or mass at constant moment of inertia.

In Reforence 7, the results of fairly extensive tests on the offects of radius of gyration and moment of incrtaa changes wore given both on critical trim and amplitudes of porpoising; the planing surface used represented the forcboly cniy of a flying boat hull, so that the treatment was concerned with the lower limit. The tosts covered a range of values of $G A$ from 0 to 2, or C_{V} from 3 to 7 und of radzus of gyration from 0.5 to 1.3 Beams. An incressc in radius of gyration at constant lood was found to lower the critical trim, while an increase in load at constan radius of gyration raised it. Both these effects were fanrly lace, being of the onler of 2 degrees for 100% change in the former casc and I degree for a change from $0,0=0.27$ to 0.40 in the lattera porpoising omplitudos wore found to moreaso markedly with decrease in radzus of cyratzon at constant load. Further tests with a dynamio model showod that these amplituates also increased whth nonent of inertan at constant rajius of eyration. An analysis in this report of conventional flying boats shonod them to have radii of gyration of at most 1.55 beams, associated with a $\mathrm{C}_{\text {c. }}$ off the order of 1 .

Further Inmital data on the subject fiere givon by OIson and Land ${ }^{8}$. LIttile significant ohange was found to result from znoreasing the moment of inertia of a dynamic rodel by 25% at constant load ($C_{A}=0.72$) . Similar results were quoted by Davidson for 100% change in moment of inertia at constant $C_{S_{0}}$ of 0.89 in Refercnce 9 .

The general conclusions of the various reports mentioned are substantisted in other sources but no quantitative dataare given.

It will be scen that the experimental data mentioned all relates to fourly low values of $\mathrm{C}_{\triangle} 0^{\circ}$ However, tho gencraz theoretical and experimental conclusions may bo cypected to extend to higher values of CAO

3. DESCRIPTION OF EXPIRTMENTS

As alroady stated, the testswere carried out on liodel B of the series described in Part I of this account 3 . Full detanls are given there of the considerations affecting the design of the models, but at may be mentioned here that hodel B has a length to beam ratio of 11 (the forebody being 6 beams in leng th and the afterbody 5 beams), 4° forobody warp per beam, an afterbody to forebody keel angle of 6° and a straight transverse step with a step depth of 0.15 beams. Figure 1 gives the hull lines of the model and Figure 2 photographs of at.

Longitudinal stability tests werc maie by towing tho model from the wing tips on the lateral axis through the centre of gravity, the mozel being frec in pitch and nouve. Valucs of C_{Δ}, moment of anertia, radius of gyration and elcvetor setting rere selected before cach run, and the model towad at constant speed. The angle of trim was notod in the steady condition, and if the model proved strible at the speed selected it was given nose down disturbancos to determine whether anstability could be induced, the amount of asturbance nccessary to cause instability bcing in the range $0-10^{\circ}$. Stability limits were built up by these metiods, the dusturbed limits evidently reprosenting the worst possible case. When steody porpoising did occur, ef ther with or without distarbance, the amplituce was noted, amplitude for thas purpose being lefined as the differonce botween the maximum and manum trims attaned on the oscillation. Full letails of the tochniques usci are javen in Referonce 3 .

The minumum value of $\mathrm{C}_{\Delta} 0$ winich could be wokieved was 2.00 , and the manimum moment of incritia 21.3 Ib . $\mathrm{f} t^{2}$. A range of values of C_{40} Was covered at this munimum moment of incritia by adang lead mughts to a bar through the centre of gravity (Figure $3(a)$). The addition of these weIghts produced a change in the moment op incria of less than I\%, so that it can fairly be said that the moment of anurtia remaned constant. A second series of tests was performod at constant radius of cyration fith C_{a} varying between 2.00 ard 3.00 , thas constant value being choson as 1.2 ft since this was the only value whicn coull be obtainod at all the valuos of C_{4} o recuired. Finally, with CA_{0} fixcl at 2.50 , tho centre of the range, the moment of inertia was increasel by 40 , almost the maximum increase obtainable at this $C_{\text {c }}$ a and one which is likely to axceed any natural increase which arises in tho manufacture of the models; moreover, the range coverel was much water than would be likcly full-scale. In these last two cases the chosen moment of inerta was obtaned by slulung lead woights along a light bar runnang fore and aft inside the model; as show in Figure 3(b).

The stabality limits obtamed in these tests are shown in Figures 4-9, and the porpoising amplutudes mingures 10-17, the lamits also beine reproduced in these lattor figures for convenience.
4. EXPERTMGYYAL RESUTTS

The results of individual tosts are fiven in Figures 10-17, and the stability limits are comparod in Fleures 4-9.

With the mass held constant and the moment of incritia and radius of gyration varicd (Figures 6 am 7 7) almost no change in the undisturbod limits results; whit dufforonce there is can be attributal to exporimental. error* The listurbod limits are ratien more wilely separated, but the amount is still not signoficant. The fact that the lamets are not in onior hore tenls to confirm tins viare

Finally, Ficuros 8 and 9 show that whth roulus of gyration held constant thc variation of the limuts with load is of the some ordor as in the case of constant monent of inurtia, though here there aro no cases of curves being positionca out of orior. The variation here can also of courso be considerel as a moment of inertia effoct.

It is intores ting to note that in all cases the separations of the undisturbed lower limits are of the same ordor as the changes in hump trims from load to load and that at the hagher speods instibility occurs at about the same olovaton settings in all cases. Figures showing tram curves have not been ancludad in thas report sance it is wath the limats themsclves that it is concumoj, but these figures will be given in the data report on ModeI B.

Consluering the three sets of limits as a whole, it seems that over the ranges of values consadered the value of $G: 0$ is the most critical factor, and that neither changes in the radius of gyration nor an the moment of inertia rill nave any significant effect unless accompaniod by changes in $\mathrm{C}_{\triangle} \mathrm{O}^{\circ}$

The effects of the various chonges on the amplitulas of porpoising (Figures 10-17) are in general less marked, thourh in all cases there is a large difference between the amplitudes at corresponing points in the undisturbed and disturbal cases. With moment of inerta constont, an ancrease in load and decrease in radius of gyration produces a small change in the amplitudes in the disturbed case and no discemible change in the undisturbed case. it constant load there is a small increase with increasing radius of (yration and moment of incritia in the disturbel casc, and a most maried incroase in the undisturbed case. In the remaining case, with raluus of gyration constant, thero $2 s$ no evilence of cange in cither direction.

It is intoresting to compare these results inth those quoted in Section 2 as relevant to lower values of $C_{A} 0^{\circ}$ Thlle the Eneral, qualitative, conclusions of those roferences are confamed, the radus of ayration has not been founl to hove the importance it possessed at lower loals; as already mentioncd, $C_{l, 0}$ seems the only critioal factor. of course, if, as is common in model tosts, the moment of inurtia is held appreciably constant thile tho loal is increased, than a change in C_{A} is accompanied by a change in radius of gyration, so that in this sonse the value of the radius of ayration can be said to be critical. Homevor, the results quotad in Section 2 referred to limit changes resulting from changes in raduus of gyration at constant load; thas effect is not noticeable in the prosent onse, though it $2 s$ possible, but unlikely, that it exists at other values of C_{A} in the range $2.00-3.00$. It may bo notel that the value of radius of syration in the present tests ranges bet eon 2.17 and 2.82 beans, somewhat hisher values than those relevant to Reference 7; sunce the ratius of gyratzon of a full-scale version of the desizn now testol would bo about 2.2 beams, however, this range of volues is a realistic one.

5. TISORETCAL NUSISIS

Let V denote velocity

a_{k}	keel attiture
d	araught
m	nass
I	roment of inertia
k	rodus of gyration
c	critical trim (ise, the trim at which longituainal

Then the stability limits plotted against V and α_{k} (as in Figures 4-9; C_{V} is merely a constant multipic of V) can wo regardod as graphs of C as a function of V and two of I, m, and k; in Fizuros 4 and 5 C is representod as a function of V, m and I, or V, k and I in frigures 6 and 7 of V , I and m , or V, k and m ; and in Fíures 8 and 9 of V , I and k , or V , m and k .

Bocause of the implicit rolationship $I=m k^{2}$ the separations of tho critical trim lines on these various graphs are not all independent. Theso separaticns can be represented amalytically by partial derivatives of the type $\left(\frac{)_{C}}{\partial I}\right)$, where the suffices indicate the variables taken as JI) V, k
the independent variables other than the one with respect to whach difforentation is being offectod. For corverizence this derivativo will bo written C_{I}^{V}, \mathbb{A}, and others written simiarly. The complete set of thesederivatives in the $\left(\alpha_{1}, y\right)$ plane is

$$
\begin{array}{ll}
C_{V}^{m, I}, & C_{m}^{V, I}, \\
C_{I}^{V, M} \\
C_{V}^{m, k}, & C_{m}^{V, k}, \\
C_{V}^{I, k}, & C_{k}^{V, m}, \\
C_{V}^{V, k}, & C_{k}^{V, I}
\end{array}
$$

For relations between them we proceed as follows;
let $C=f(V, r n, I)$
then $a C=\frac{\partial_{f}}{j V} d V+\frac{\partial_{f}}{j m} d m+\frac{j f}{d I} d I$
and sunce $I=m k^{2}=\not \varnothing(m, x)$ say,

$$
\begin{aligned}
d I & =\frac{\partial \phi}{d m} d m+\frac{3 \phi}{\partial k} d z \\
& =1 m^{2} d m+2 m a d m
\end{aligned}
$$

To find $C_{h}^{i, j}$ where h, i and j are the three variablos chosen as independent variables, do must fisst be expressed in terms of dh, ai and dj only.
$\mathrm{C}_{\mathrm{h}}^{i, j}$ is then the coefficient of dh in this cxpression.

$$
\begin{aligned}
& \text { e.S. } C_{V}^{m, I}=\frac{\partial f}{\partial V}, C_{I}^{V m}=\frac{\partial f}{\partial I}, \quad C_{m}^{V I}=\frac{\partial f}{\partial m}, \text { and since } \\
& C C=\frac{\partial f}{\partial V} d V+\frac{\partial f}{\partial m} \quad d m+\frac{\partial f}{\partial I}\left(m^{2} d m+2 m k i k\right), \\
& C_{m}^{V, k}=\frac{\partial f}{\partial m}+k^{2} \frac{\partial f}{\partial I}=C_{m}^{V I} \quad+k^{2} C_{I}^{V, m} \quad \text { etc. Other ralations }
\end{aligned}
$$

are obtainody eliminating dm inston of dI.

The set of relations of this kind is

$$
\begin{align*}
& G_{V}^{m, I}=G_{V}^{m, k}=G_{V}^{I, k} \tag{1}\\
& C_{m}^{V, k}=C_{m}^{V, I}+k_{i}^{2} C_{I}^{V, m} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& C_{I}^{\mathrm{k}, \mathrm{~V}}=C_{I}^{V, m}+\frac{1}{k^{2}} C_{\mathrm{m}}^{V, I} \tag{4}\\
& C_{k}^{I, V}=-\frac{2 m}{k} \quad C_{m}^{V, I}
\end{align*}
$$

f simiar set of relations holds with the drought d replocing V throughout, viz,

$$
\begin{align*}
& C_{d}^{m, I}=C_{C_{d}}^{m, k} \quad=C_{d}^{I, k} \quad \cdots \cdots \cdot(6) \\
& C_{m}^{d, k}=C_{m}^{d, I}+k^{2} \sigma_{I}^{a, n} \quad \cdots \cdot \cdot(7) \\
& c_{k}^{d, m}=2 \mathrm{mkC}_{I}^{\mathrm{C}, \mathrm{ma}} \tag{8}\\
& C_{I}^{k, C I}=C_{I}^{d, m}+\frac{1}{k^{2}} C_{m}^{d, I} \tag{9}\\
& \mathrm{C}_{\mathrm{k}}^{\mathrm{I}, \mathrm{~d}}=-\frac{2 \mathrm{~m}}{\mathrm{E}} \mathrm{C}_{\mathrm{m}}^{\mathrm{a}, \mathrm{I}} \tag{10}
\end{align*}
$$

The two scts can bclinked as follows :-
In gencral $d=d(V, n, \eta)$ nd the tram curves givo $\eta=\eta\left(a_{k}, V, m\right)$ so that $d=d\left(V, m, a_{k}\right)$. In tive transformation of stabal2ty limits from a velocity to a draught base honever 111 the pounts considered aro points on critical trim linos so that $a_{1-}=C$ and $a=d(V, m, C)$. Since C is already known is $f(V, m, I)$ thas can ber eauced to $d=d(V, m, I)$. Then wo huvo

$$
\left.\begin{array}{l}
c=f(V, m, I) \\
I=m k^{2} \\
d=V(V, m, I)
\end{array}\right\}
$$

and a similar treatment to that already employed gives relations linking the various derivatives. Te obtain

$$
\begin{align*}
& \mathrm{C}_{\mathrm{m}}^{\mathrm{a}, \mathrm{I}}=\mathrm{C}_{\mathrm{m}}^{\mathrm{V}, \mathrm{I}} \tag{II}\\
& -\frac{d_{m}^{I}, V}{d_{V}^{m, I}} \quad C_{V}^{m, I} \\
& O_{I}^{m, d}=C_{I}^{(1, V}-\frac{d_{I}^{m, V}}{d_{V}^{m, I}} 0_{V}^{m, I} \tag{12}\\
& \text { and } \quad c_{d}^{I, m}=\frac{c_{V}^{m, I}}{a_{V}^{m, I}} \tag{13}
\end{align*}
$$

Which with the other tro sets of relations are sufficiont to determine all other possiblo relations.

6. RELATICN OR THEORY TO EXP GRTIMNT

is already notal, the soparations of the various Inmets plotted for comparison purposes in Fifures $4-9$ can be relatal to the yartial derivativos emumerated in tino previous soction, as can tho slopos of tnoso limits. This is equally true of both Insturbed ani undisturbed lumits, but consideration will only be civen hore to the lattor. -

For example, consider figuce 4. The slopos of the curvos are givon by C_{V}^{T}, m, and thoir soparations normil to the velocity axis by $\mathrm{C}_{\mathrm{m}}^{\mathrm{V}} \mathrm{I}$ (it is immatorial that tho non-dirunsional parametors C_{V} and $O_{0} o_{0}$ have been used in amotatin, the iiguro itsolf rather than V and m - the effoct la merely to chance the units of measurement). That the slopes and separations are difforent in different sections of the diagran merely indicates that the dorivatives are not constants but are themsolves functions of V, I, m and k.

In a similar mannor $C_{V}^{I, m}$ and $C_{T}^{V, m}$ give slopes and separations on Figure 6 and $C_{V}^{k, m}$ and C_{m}^{V} on Fhuurc 8 . It should porhaps $b=$ notod that in all the cases so far mentioned thore is an alternative choice of indepondent variablos; e.g. G_{T}^{I}, ${ }^{2}$ (Figure 4) could oqually woll have been $\mathrm{C}_{\mathrm{V}}^{\mathrm{I}, \mathrm{k}}$, and $\mathrm{C}_{\mathrm{m}}^{\mathrm{V}, \mathrm{I}}$ have becn $\mathrm{C}_{\mathrm{V}}^{\mathrm{V}}, \mathrm{IV}$. The fact that the existence of this ohoice does not affect the slopes of the lamits is expressud by Equation (I) of section 5; this equation also takus account of the fact that the various sets of limats consist in part of tho sonc lurits collected together in different combinations.

Equations (2) to (5) Elve the theoretical relations betweon the vertical soparations of the limits in Figures 4,6 and 8 . If it is assumed that the movorinnt of the limits in Figure 6 as nogligible, being only of the order of possible experimental error, thon we have $C=m=0$ and $C_{k}^{V, m}=0$ (this is sclfmconsistent: see Iquation (3)). Equations (2) and (4) then roduce to

$$
\mathrm{C}_{\mathrm{m}}^{\mathrm{V}, \mathrm{k}}=\mathrm{C}_{\mathrm{t} 2}^{\mathrm{V}, I}
$$

and $k^{2} C_{I}^{k, V}=C_{m}^{V, I}$
respectively. The finst of thesc equations is in durect accord whe the cvidence of Figures 4 and 8, the vortical separation of the limits for $C_{A}=2.00$ and for $C .0=3.00$ being the same in both cases, inthan about 10\%: all of this discrepancy could be attributed to experimental error. Vorification of the sccond rulation is not duroctly possible without exprossing the varıous dorivatives is functions of I, m, k and V, but a bricf calculation reaijly shors it to give results of the correct order of magnitude. Equation (5) is self-evident.
romember that d in these oquations donotes draught at points on critical trim linca only). No experimental readings of draught were obtained during the tests, but the requisito information can be obtained by a direct comporison of Figures 4,6 and 8 with $18-20$; this only involves the assumption that the difference botveon the draught of the forebody and that of the corrosponaing vecke shape is mall. Those figures show that $a^{V}, I \quad$ is positive and $d_{V}^{\mathrm{m}, I}$ negativo, and both will be less than I in the units chosen. Equation (13) gives the relation botween the slopes of the limits on the two basus, and because of the facts just mentionea shows that they will be of opposito sign and that the slope on the draught base will be greater than that or the velocity basc. Thas is confurmod by all of Figures 18 - 20. (roto that in these figures drought inoreases from right to left so that slopos are reversen).

Equation (11) conneots Fimures 4 and 18. For the lower limits $\mathrm{C}_{\mathrm{V}}^{\mathrm{m}, \mathrm{I}}$ is no ;ativo, so that $\mathrm{C}_{\mathrm{m}}^{\mathrm{d}, \mathrm{I}}$ is prodicted to be loss than $\mathrm{C}_{\mathrm{m}}^{\mathrm{V}, I}$, which is in fact the cosc. It is intorestine, to note that this tendency for the limits to collapse in chonging to a draught base is only possible when the slopo of the limits is recative; if it wero positave the collapso mould occur in transferring from a draught to a veloozty base.

Equation (12) cannot be cheoked accurately with the figures avazlable; it was obsorval previously that the scatter of tho lines in Figure 6 could all be attributod to experimental arror, and ff the curves were corrcoted bofore transposing to a draught base, then there would be a complete collapse on both bases. a_{I}, V would be zoro under those circumstances, which since $C_{I}^{m, V} V_{I s}$ zero would imply that $C_{I}^{m, d}$ is also zero; this would be completely self-oonszstent.

In analysis can bo aade of fequations (6) to (10) in exactly tho same manner as was done with (1) to (5), and glves very similar results. Details will not thererore bo given hore.

It wall be scen that all the analytical productions have been verified, and that thorefore an coneral it would not be nocossary to cover a complete rançe of dil the parameters incrder to ascertain the effect of varyane them; this could be done by a lamited surlics of tests togethor with the results of scetzon 5. In a similam mannor the effects of any change of base could be predicted without actually carrying out the work.

7. CONOLUSIOTS

The experimental evidence obtained in this series of tests andicates that within tho range of values of poraneters coverod, only the load has an appreciable effoct on stabilaty limits. When the load is held constant, moment of inertia moreases of up to 40% have no apprecrable effect on the limets.

Incroase of the radius of gyration at constant mess has the effect of increasing the anplitude of porpoising particularly in the undisturbed case, whle the amplitudes ape not noticably affocted by changes of mass.

All the goncral prafictions of the theoretzoal analysis have been verifiod; thas inilates that to obtain complete information on the behaviour of a molol under variations of the various parameters involved, It is unnccessary to porform a large number of tosts, sance all the results can be forcoast fron a limeted number of oxperiments. In tho same way the offect of a change of baso on stabillty limits can be accurately prolictod analyticaily.

LIST OF SYMBOLS

b	beam
C	critical trim
C_{V}	velocity coefficient $=\mathrm{V} / \sqrt{\mathrm{gb}}$
C_{Δ}	load coefficicnt $=\Delta / \mathrm{mb}^{3}$
C^{Δ}	load coefficiont at $V=0$
$\mathrm{C}_{\mathrm{I}}^{\mathrm{V}, \mathrm{k}}$	etc. see section 5
a	draught
I	pitching moment of inertia
k	pitching radus of gyration
m	mass
\square	Water density
a_{k}	keel attitude
Δ	load on wator
η	elevator setting

LIST CF REFGRENCES

A. Reports directly related to M.i.E.E. Hull Design Investigation (Ref. 2).

No.
1 A. G. Smith
J. E. 11. en

2

3
D. M. Ridland
J. K. Friswell
A. Kurn

Title

Water and air performance of seaplane hulls as affected by farring and fineness ratio. R. \& M. 2896. August, 1950.

Notes on a detailed research procramo on aero and hydrodynemics of hulls with high fineness ratio and full step fairings. $F /$ Res $/ 221.1951$. s.R.C. 13,877. March, 1951.

Investigation of high length/beam ratio seaplane hulls wath high beam loadings. Fydrodynamic stabzlity Part I. Techniques and presentations of results. Curront Paper No. . September, 1953.

Stability on the water of a seaplane in the planing condition. R. \& M. 1493. 1932.

Some notes on the mathematical
investigation of porpoising. F/Res/72, 1934. 1.R.C. 1259.

The use of dynarically similar models for detemuning the porpoising characterzstics of seaplanes. R. \& II. 1718, 1936.

The porpoisung characterustics of a planing surface represonting the forcbody of a flying-boat hall. N.A.C.M. N.R.R. (VR. Im479). 1942.

Methods used in the N.A.C.ine tank for the investigation of the longitudinal stability characteristics of models of flying boats. Nos.C.in. Rep. 753. 1943.

Sone systonatic model experinents on the porponsing characteristios of flying boat hulls. N.H.C.A. H.R.R. 3F12, 1943.

Models for hydrodyname stability tests

Model	Forebody Torp	Afterbody length	AItcrbody-forebody keel angle	Stop form	To datermine offect of
	degrees por beam	beams	degroes		
A	0	5	6		Forebody warp
B	4	5	6		
c	8	5	6		
D	0	4	6		Aftcrbody length
\wedge	0	5	6		
\pm	0	7	6		
F	0	9	6		
G	0	5	4		irt orbody angle
\wedge	0	5	6		
H	0	5	8		

FIG. 1.

MODEL B.
HULL LINES.

FIG. 2.

PHOTOGRAPHS OF MODEL B

FIG. 3.

(A) MASS

(b) MOMENT OF INERTIA.

SCHEMATIC DIAGRAM OF ARRANGEMENTS
FOR VARYING MASS AND MOMENT OF INERTIA.

FIG. 5.
COMPARISON OF DISTURBED STABILITY LIMITS AT CONSTANT MOMENT OF INERTIA.

MODEL B. COMPARISON OF UNDISTURBED STABILITY LIMITS AT CONSTANT MASS.

FIG. 7

FIG. 8.

FIG. IO

UNDISTURBED CASE
(figures indicate amplitudes of porpoising in degrees)

MODEL B
PORPOISING AMPLITUDES
AND STABILITY LIMITS (I)

UNDISTURBED CASE
(FIGURES indicate AMPLITUDES OF PORPOISING IN DEGREES)

MODEL B
PORPOISING AMPLITUDES
AND STABILITY LIMITS (2)

MODEL B.

FIG. I3

UNDISTURBED CASE
(FIGURES INDICATE AMPLITUDES OF PORPOISING IN DEGREES)

MODEL B.
PORPOISING AMPLITUDES
AND STABILITY LIMITS (4)

FIG. 14

UNDISTURBED CASE
(FIGURES INDICATE AMPLITUDES OF PORPOISING IN DEGREES)

MODEL B.
PORPOISING AMPLITUDES
AND STABILITY LIMITS

FIG. 15

$$
\begin{aligned}
& \text { PORPOISING IN DEGREES }
\end{aligned}
$$

DISTURBED CASE
MODEL B.
PORPOISING AMPLITUDES
AND STABILITY LIMITS (6)

FIG. I6

UNDISTURBED CASE
FIGURES INDICATE
AMPLITUDES OF
PORPOISING IN DEGREES

DISTURBED CASE
MODEL B.
PORPOISING AMPLITUDES
AND STABILITY LIMITS (7)

FIG.I7.

UNDISTURBED CASE.
$\binom{$ FIGURES INDICATE AMPLITUDES OF }{ PORPOISING IN DEGREES }

MODEL B.
PORPOISING AMPLITUDES
AND STABILTY LIMITS (8)

FIG. I8

COMPARISON OF UNDISTURBED LOWER LONGITUDINAL STABILITY LIMITS ON A DRAUGHT BASE.
(I) CONSTANT MOMENT OF INERTIA.

FIG. 19

COMPARISON OF UNDISTURBED LOWER LONGITUDINAL STABILITY LIMITS ON A DRAUGHT BASE.
(2) CONSTANT MASS.

FIG 20.

MODEL B
COMPARISON OF UNDISTURBED LOWER LONGITUDINAL STABILITY LIMITS ON A

DRA UGHT BASE
(3) CONSTANT RADIUS OF GYRATION

Crown Copyright Reserved

printed and published ay her mafesty's stationery office

To be purchased from
York House, Kingsway, London, w č̌ 423 Oxford Street, London, w 1 PO Box 569 , LONDON, SE 1
13a Castle Street, EDinburgh, 2109 St Mary Street, cardifr
39 King Street, MANCHESTER, 2 Tower Lane, Bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast or from any Bookseller

Price 3s 6d net

S O. Code No. 23-9009-2
C.P. No. 202

