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1 Theory of the Broad-Bladed Propeller 
-By- 

G. I. Ginzel 

The stsndard propeller theory iS that of the lifting llns and 
therefore strv?dy valid for nsrrov~ blades only. The present first step 
bmxrds a thsozy of the propeller blade as a lifW.ng surface considers 
besdes the downwash which induces sn molination of flow, the downwash 
derivatxve and the corresponding induoedcmber of the &reanUnesinthe 
speaial ease of shock f‘ree entry of flow at the leading edge. The result 
is given in the form of a correction factor to be applied to the osmber 
ratio of the section derzved by the lifting line theory. The fzrst pat% 
(seotlons 1 to 9) of the present paper presents again the theory of 
I.dmkg sndGi.nsefl butwithamodSiedmathematz.oal denvatlon. 

In the second psrt 'the influence on the camber correotion 
f'aotor of blade &ape, of nnn?%r of bl.a&s and of circulatxon distribution 
over the &us ~5 shown. The oordition of unjform minirmun pressure over 
the radius de$ermine s an adequate shapo of the blade which depends on the 
circulation distmbutxon. Unfortunately the sootion osmber ratio tends to 
infinity at the tip for these adequate blah shapes in particular for the 
SC-celled best distribution (tith the usual blade shapas). Therefore a 
modified circulation distrxbution but retaimng the previous blade shape 
is suggested and this case of constant dommash derivative yer the radius 
proves to be of speoial interest. 
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1. Introduction 

In high-speed flight the lift coefficient of the modern 
aerofoil is snail. The aim is a drag coefficient as low as possible. 
For this purpose so-calledlsminsz profiles have been developed. These 
profiles show for certain low lift coefficients a more or less constant 
pressure distribution over the chord and. by this means the flw remsins 
laminar over a large range of Reynolds rplmbers and the drag 1s accordingly 
1oW. 

Ship propellers running at a high number of revolutions .and 
producing a high foward speed are in the danger of oavitatmg. To 
avoid surface cavitatzon the pressure should bs distri?d.ed as unifondy 
as posable over the surface. Suction peaks xm.wt be avoided and the 
pressure distribution over the chord should be approximately constant. 
Therefore both in aerofoil and in propsller theory shock free entry of 
flow at the leading edge plays sn importantpwt. It hasbeen ,wggested 

that/ 



that lsdnar profiles should be Ased also for ship propellers and for 
turbine blades. Since for these profYil.eslcw drag is guaranteed only 
for a very small range of angles of incidence their application for 
propellers is rather doubtf'ulbecausethe acouraoy ofpropdlertheory 
is not 80 good as the accuracy of aerofoil theory. In partioular the 
usuel propeller theory of the lifting line rmst be'corrected before such 
refinements as ltuninez profiles can be introduced. 

Certaidy the presuppdsitions of the theory of the lifting line 
do not hold for the broad blade of the modern ship propeller. These 
presuppositions are high aspect ratxo that 2s amdl ratio of chord over 
span or chord over radius respectively so that the ootitions in a section 
pcrpendioular to the radius are nearly those of two dimensional flow. ' 
With small chord ratios the variation of the d ownwashvelooity along the 
chord my be neglected, the induced angle of incidence depends on the 
radius only sndthe fornmlae of two-dimensional flowcanbe used?zy 
iritroducing an effective angle of incidence (geometrical sngle of 
incidence reduoed by the induced angle of incidence). 

With large chord ratios the vaxiation of the dcwnwash velooiw 
along the ohord cannot be negleoted. In first approximation thisvanationis 
given by the d0vvnwash derivative and defines the ourvaw'of the stream- 1 
lilX3S. In curved flow the camber ratio of the profile is less effective 
than in straight flow, therefore the effective camber ratio is the 
geometrical camber ratio reduced by the induced camber ratio. The aim 
of the following investlgatlon is to detexdne. the effective osmber ratio 
for oi.rcul.~ erc camber line aerofoils and propellers in a flmf meeting 
the leading edge with shock free entry. Then the flow is symmetrical to 
the midpoint of the chord and the oemtir ratio of the flow rmrst be 
oe&xl.ated at thzs point. All aerofoil or propeller theories are based 
on the condition that the flow has to follow the surface of the profile. 
Prandtl's thecry of the lifting line introduces the correct direction of 
flW 

"geom q aeff +%i . ..(I) 

where a is the angle of incidence and the fxffiocsmesngeometrical, 
effective and induced respectively. The new theory ensures that both 
the direction and the camber of flow are oorrect, so besides (1) another 
equation (2) has&o be fUfillcd 

siem feff ' *1 --se = -w-e + I 
0 0 c 

. ..(2) 

$vhere f is the camber and 0 the ohord of the profile. 

2. The Lifting Surface at the Condition of ShookFreeEntzy 

The tangent of theistreamline element ds relativetothe 
influivis the ratio of the duwnwash velociQ wa and the inflow 
velocity V~ 

% 
ten a = -- 

V 

Hence/ 

. ..(3) 
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t&Me the raaius % Of its ou?nature is given by 

&a 
--, 

1 I as 
-- = - ----------- 

Ro v --- 3 

ii, ( 
“a a I+ - 

V > 

or tith mall w&I, 

l *.(4) 

instead of using the E&US of curvature the camber ratio - oan be 
0 

introduced in accordance with Figure 1 

00 (3 = f (2R, - f) 
2. 

fP 
or for mall - 0 0 

. ..(5) 
f lo o dwd - = -- ;i -w-B 

' 0 a% .av as 

. * 

The oamber ratio of the stmdine with chord 'c is from (5) given w 
the downstream derivative at the midpoint of the oholdproduoedby both 
the lifting vortioes and the traiJing vortices of the whole riystea. 
A,ooording to (2) the expreasi0r-J (5) aetelmine s the gecmnetrioal camber of 
the profile .- 

: 
fgeom o *cl 
----- L = - --- . ..(6) 

0 a-v as 

In the Tntrodnction it was stated that the opt5m.m prd'ile 
frcm oavitationpointof tiewwouldbe the profilewithoonstant 
oimulation distribution over chord but'that it would be difYi.dt to 
inoorporate this feature in a propeller. The usual mpeller section 
is the bioircular em profile. Forthisequatmn (6 P gives immediately 
the oamber ratlo of thd skeleton line. The oonditmn of shook fzxx~ 
entry is defined for the oiroular am scotion as 



which means that the lift is produced by the camber ratio on&y; 

2fgeom 
k ----- 

0 .I 
lx 

+.~;(8) 

The factor k is called camber correction factor and gxves the reduction 
of lift aaused by the curvature of the streamline 

L..(Y) 

The circulation distnbutmn over tke chord for the circular 
,s& section at shock free entry is not rectangular but etiptio. Hcmever, 
for the subsequent oonsideratlons this elliptic distribution is replaced 
by a reatangular one whxhgivesthe same dmnwash derivative at the md- 
pointandhasthe ssme rntegral value as the elliptic one. Since the aim 
of the theory is to detem& the dowmash derivative at-the midpoint or 
the curvature of the flow there and not the exact downwa sh distribution 
over the ohord this simpli@ing assumption regarding the circulation 
distribution over the chord seems reasonable. Furthermore it seems 
sufficient that the downwash derivative for both the elliptio and. the 

'z%plaome; reotangdsr distribution should agree in twc-dimensiondl flav 
(see Fzipre 2). 

The ahord of the elliptic distribution & is o; the ohord 
of the~irc$edng rectangular distribution g, -is o. They have the ssme ' 
integral value if 

071 I. * 

- - g,(o) = ‘og&o) . ..(lO) 
22 

where ~~(0) and g,(O) are the corresponding values at the midpoint. 
These distributions provide the same downwash derivative in two- 

!d%ensions.l flav if 

i3 

. . 
g,(o) g,(o) ; 
--e-e = -m-B -m----e 

0 7x i3a 

(9 
- x= 

2 

. ..(n) 
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From (10) and (11) for x = 0 

B 
- = diz = 0.707 . ..(12) 
0 

The blade with cirzulsr sm sections end chord distrdmtion a 
is thus replaced by a reduced blade with chord distribution U and 
having c.onstsnt circulation bstribution over the chord (see Figure 3); 

3. The Vortex Surface of the Aerofoil withConstant Chordwise Circulation 
Distribution 

The vortex surface of ths aerofoil with ciroulation distribution 
r(Y) is covered by vortex filaments in both spen end chord &motions 
mJJ.ed. gy and g, vortices. If the ciroulation distribution 0vBr the 
chord 5 is assumed constant then the intensity of the e, vortioes is 

. ..(13) 

Sin6e vertex filaments can only be ' 
of solid surfaces (sero divergence 

endendatinf'inity inthe absence 

ag, ‘a d r D-m = - -- /Y = -;;; ; 0 aX 
. ..(W 

For the sem reason the vortex component normal to the aerofoil outline 
in the pl.sm of the surface must vanish over the leading edge while over 
the trailing edge the component of the bound vortioesnmmalto the out- 
line must equsl the aomponent of the treilkg vortices nonml to ths 
outline. The cimulation of this vortex filamnt along the aarofoil 
outline is (seeFigure 4) 

r -5’ 
f --- %Y 

E2 
. ..(15) 

and it varieswith y. The dash 
Thisisthe initial value of the 
edge. At the trailing edge their due sums up to 

denotes a derivative with respect to y. 
g, vortices Nhich start at the lea&mg 

. ..(16) 

tith/ 
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with the second term contr?buted by the vortex along the leading edge 
(equation 15) and the thud tern by that along the trailing edge. Thus 

end this is the value of the trailing vortices. 

4. The Vortex Surface of the Propeller vnth Constant Chcrtisa 
Czrculation Ixstmbution ' 

The surface of the propeller blade is part of a screw surface. 
The ah&Is are arcs of helioes and along their continuation behind the 

,blade lie the trsiling vortices. These helxes are given by their pItoh 
angle 

V .a 5 
tan p = -- x - 

rw x 
9.417) 

Where v is the forward speed, r the radius, w the sngular velocity, 
r 

h the advance ratio, and x q - the dimensionless radius. Aoccrdin@; 
R 

to Fran&t1 the pltch angle of the trailing vortices is in second 
approximation arctan hi/xi where hi is.the induced advance rati.3. 
Therefore throughout the following investigatzon 7r might be.replaoed 
by hi.' 

' .These heliaal lines fcrm one set of ccmponents of vorticity. 
The 7ther ones are vertices which oo~ncde with the radii of the Screw 
surface. The vortex surface of the aorofoil is built up by rectangles 
(see Figure 4), characterised by the cticulatxon and the chord at 
section y. The vortex &ace of the propeller blade is built up by 
oylxndxxal screw surfaces. These are sectors of a circle in the &so 
plane (see Figure 5). These elements of the liftmg surface are 
characterised by the oimulatxon at radius r and the angle T of 
the dxz plane at r&us r. 
c(y) of the aerofoil. 

This functxon T(r) replaces the function 
The chord of the blade at section 

r 
x = - is related to r(r) by 

:R 

RCT --  

0 = -m---- - - - -  = RT&?--+ ha 
a 

co9 arctan - 
X 

. ..(18) 

The reduced chord lengt" F lntroduoed m section 2 gives a redu#I 
angle 7. figure 6 shows the propeller blade budt up by cylxd.rxa13 
screw elemegts. Z'or constant clqculation distribution over the chord 
the stre:gth of the gr vortices 15 
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r(r) r (4 
gr = --- = -- 

T(r) T(x) 
. ..(lV) 

and that Of the q vortices ($ being thf3 6ugul.a co-~~~te) is 

or co~sponding to (16) by integration 

The element of are of the chord is 

. ..(20) 

. ..(21) 

. ..(22) 

5. First Part of the Downwash .&rivative 

The aim of the investigation is to find the dowriwash derivative 
in chord direotion aW&+ atapoint $ = #*,x = Xx producedby 
tk surface of vorticity represented by the ~FU%.& vortex gystem gr 
(equation IV) and the helical vortex wstem 4 (emtion 21). The 
induced velocity uf these vortioes is given by the law of Biot-Savsrt in 
the generelfGrm(seehgure 7) 

1 Gsinp 
aQ = -- ----- ds 

ti a= 
. ..(23) 

G is the circulation of the vortex line with element of src ds at the 
Point 8, a is the distanoe from the pivotal point P to the poinc Q, 
p is the angle between the element ds and FQ. The 5nduoedveloC~is 
perpendiculsrtottk2 plane giventsy ds srd P. To de&amine the i.n&md 
sngle andinducedcamber only the componentperpandiod.artoths screw 
surface at point P is needed. Therefore introduce the angle 0 between 
the nod to the screw surface at point P and the direction of the 
induoed velocity at this point. 

For the purpose of calculation it is convenient to consider the 
dowmash W,J asmade up of three parts. The firstisthatprockcedby ths 
g, v&Aces and the 4 vortices of strength given by the second telm 
in (21). The second by ths downwa sh prduced by the & vortices of 
strength given by the first term in (21). And the third part is that 
associated with vortices of the other blades. 



-Y- 

Firstly then the radial vortices (equation 19) are oonsidered 
which produce the dimensionless downwash component 

1 

1 

r sin !f* 
me --- 
4?rv r a= 

co9 eias* 

where s, is the radial co-ordinate. Secondly part of the helical 
vortices are considered (see eauation 21) producing the downwash 
cmponent 

1 r+ sin qa 
- e-m - ---- 

4m 1 23 aa 

where sp is the heJ.ioal co-ordinate. 

00s 8,&s, . ..(25) 

Now aonsider the vortices dsi and d.sa at the arbitrary 
point e (x, #) (see Figure 8). The angle @i is the angle between 
Kl tithe mdLusthrough Q. Enagine a system of orthogonal oo- 
ordinates with radius OP as first axis, propeller axis as third axis 
snd the seoond axis perpendicdar to thesa two. The radius NQ in this 
system has direotion oosines 

. ous u, = CO8 (P - $1 

00s vi = sin(4*-5q 

co9 71 = 0 

and FQ has direction cosines 

xcos ($*- $b) -x* 
cos 4 = ---e--b-- 

a 

and a itself is given by 

a' 
- = x' + f' - 
R1 

2xX* 008 ($ - 6) + Aa ($7 - qi))' 

. ..(26) 

. ..(27) 

. ..(28) 
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The direction cosines of the non& to a plane containing the two 
directions I.., v , ri and y, va, ra which form the angle q1 
between them are 
PP. 22, 39) 

t see Bell "Co-ordmate Geometry of three Dimensions", 

CO8 vi 00s Ta - 00s va 00s ri h w - 6) sin (P” - $1 00s & = ------------_---_------------ = ---__-----__--------- 
sin ** a .a h 

00s ri co9 y - 00s ra co9 y -A (#” - $5) 00s MY - 6) 
00s v4 = --__----_--------------- = ------------------ . ..(29) 

s5-n ei a sin Q, 

00s y cos v, - 00s b 00s Vi 2 sin (a* - $5) 
CO8 T4 = -----------------_------_ = ---_----------- 

sin *‘1 a s3.n Pi 

The normal to tk propeller surface at P has direotion oosines 

00s rg = 0 

h 
CO8 va = -sinp* = - ------- ~ ~~a- -t-.~~ . ..(30) 

x 

with fix" = arctan - , 
XX 

pitoh angle at P. Therefore 

008 8, = cos pa *OS /.14 * co9 va co9 v4 + 00s T3 00s r* 

ha (qP - $4) CO8 ($P - $5) + x*a siz ($* - $b) 
= ------------------------------------------- -_ 

a sinpi JX” +ha 

From (24) with ds, = Rdx the whole system of radial. vortxes gives 
the dcwriwash component 

1 
ii 

r sin Pi --- 
41N 

- ------ CO8 8,ds,d$ 
T a' . 
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r 
ye- . ..(32) 

VJJ / 

TIIe advantage or' this derivation is that the term m.n v oaloels. 

To evaluate 

b (2.5) the dimotion 

a -mOdsa 

The direotJ.on oosines of Kd ape given by (27). Therefore 

that part 0Om5htOa by the heliosl vortlceS givmS 
x 

oosines of the helix with pitch angle erctan - at 
x 

-x sin (p’ - $3) 
OYS cq = - -------------- 

,’ +P +A= 

x cbs (6” - $4) 
0o.q Vi 3 ----------- 

LGF--x+h’ 

R 
00s Ti = --------- 

l/T-z? 

. ..(33) 

00s Vi 00s Ta - cds v, 00s ri 
00s & = --_---_----------- 

c3i.n v, 

hx (p* - 6) 00s (3* - $6) - Ax sin (6" - P) 
= -------------e - - ---------- 

aJxF++h' sin$, 

00s 7% 008 /+ - 009 Ta 008 cc, 
00s v4 = --------------------------p 

sin v. 
, . 

A(X COQ (P -14, - xi) + lx (P - @) sin (P - 6) 
= ------‘--or--“‘-------- --m-----m 

ad??? sm*y, 

008 y 008 v, - cos y co9 v* -2 + xx* COB ($3* - $5) 
008 74 = __________-__I_--- c --------_----- ’ 

sin V@ .a AFTP sin*, 

ma/. 
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00s 9, = COB /A3 O‘S /A4 + 00s v3 00s VA + 00s T3 00s T4 

-A~Xx cos(p - $3) - x* + x($3” - 4) sin($P - O)] - x’cdx - xx oos($’ - $13 
= ------_-------------_______________I____ __- --- 

a JP + Aa Jx!@-- + A= sin qa 

Ths element of at-o is 

Therefore the whole system (25) gives the d-ash component 

-hDcx oos(p - 6) - x* + x(+* - 0) sin(~* - @)I - XXTX - X* OOS(~* - fi)laoax 
x ____^____-______-I--______________I L_-___---_ -_------------ 

[9 +xw - 2x3 cos(p - $5) +??(Q" - @)'I" a f ,Jx*p + ?? 
. ..(34) 

Now ada (31) to (34). 

Fcr the dmash i%rivatxve in chordwise directxon the 
expression must be clxfferentiated with respect to $I*. Since 6 and #* 
000~~ in the combination #* - 
to $5' 

$ only the differentiation with respeot 
and the mtegratlon v&h respect to $ can be aocompllshed by 

5 f 
cmitt* the qi integral snd replacing $ by the limits 

Inpart~cular for #* = 0 the integrandis qyrmnetrical 
following is the expression for tkus part of the a-ash 

- ana --, 
2 2 

ana the 
derivative 

7 i i: 7’ 5 r r i: 

Aa - 
00s 

+ 
x 
*a - 

sin-+- 
-AD ( x- -x%+x - sin - 

*‘z 
- x* 00s - 2 2 2 2 2 2 - ) 2 ( x 2 ) 

1 

x -__-------------y---------------------------- --- -L dx- 
r Z =a1s/a 

/x-h> 12 + xm= 
L 

- 2xX* 00s 
..A351 . 

This.dawrwash derivative of the system of g vortices (19) 
and of the m0ma tern of the .q vortices (21) (whid is 2.naapOndsid 
of 0) was gained from the a0rrnna sh itselt by simply replao3ng the oo- 
m-din&e 0 Q- its lie&s ana dropping the intsgrsl. This shows that 
it osnbe explsinedas d~~shitself. The dcwrnvashderiv&ive is the 

effect/ 
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effect of the original vortex surface Mnus the effect of thas surface 
moved by the differential smounts &5 or ds in chord direction. The 
two surfaces overlap in their ma;Ln part and -8 the circulation 
distribution over the chord is constant the gr vortioes snd 4 
vort~~s oancel each other with the exception of those portions at the 
leading edge andat the trsiling edge (see Figures 3 and!+). The 
remaining parts of both systems fonn.one oont~nuous vortex which has the. 
shape of the (reduoed) blade outline. Tksisthe physiaalexplsnation 
for associating the oontrAutions from the gr vortices (equation 19) 
snd fhan the seoond part of the 
gives the &mm-ash at P(@‘, x*) 

vortloes (equation 21). Equation 05) 
k, the ciroumfemntial vortex of 

strength 3 (see Figure 9). Thisisthe first part ofthe downwash 

derrvative. Strass12 gave &other derivative of equation (35) starting 
fran the circumferential vortex but tlus delzvation is less simple than 
that given above sn equatxons $26) to (35). in the original report' a 
more geometrical method vms used whereas present equation (35) proved the 
more accurate and sas first used in Strassl's calculations. 

. 

6. Seoond Part of the Dwswa sh Derivative 

The velocity drduoed at point P by the first teim in (21) of 
the heliaal vortices g+ 

d r 
- -- 

dx 
0 

r 7 
- -; 

6 --SOS- 
2 2 

oanbewrittenas 

. ’ 
Here’ 

is the induced velocity for such vortices of 
integration with respeot to 0 gives 

unit strength. Partial 

If the derivatlvs with-respect to 0" is taken the first tonnvsnishes 
for reasons of qvmmetry for' fi* = 0. The clcwnwa sh is the component 
of the induced velocity perpendicular to the screw surface, therefore as 
before a factor. oos 61 must be added. Then the second term gives the 
downwash 



Differentiation with respect to $" 
gives, when $* = 0, 

and integration with respect to 6 
by reason of symnetry, for the dovmvash derivative 

&$ hr ------ = 
ati 

3 = - ;I $ (i) K(E, XI x*) 008 e dx . ..(37) 

vdre K is the induced velocity for a vortex of unit strength along the 
helical l.me behveenleadmg sMtrsil.mg edge and, 0 is as before the 
angle between the veloolty induced by the vortex through Q and the 
nomal to the screw surface at the point P. Equation (37) shows that 
the second part of the dcnmwa sh darivative can be explained as downwash 
of a surface of helical vortices oomeoting the leading and the trd.ing 

edges and having the strength - - d@ (see I?Qm 9). 

The rest of t&s section isdevoted to the kernel K. The 
helical sras of length o = R? d? +A' appear in the diso plane as 
oiroular arcs P.S. These heliosJ.arosmybe replaced@ oww.lsrsms 
of angle ? and of radius 

. ..(38) 

Since this cimmlar sm. is to pass through the midpoint of the hdiod 
arc, its centre lies beyond the s+is a distance x - x. The position of 
the plvoted point P to the oiroulw are 1s therefore given by 

x*+2-x 

bj; c ---------- . ..(39) 
k 

if the radius of every oiroular arc is reduoed to unity. This reduction 
has to be mend& if and when the integral is taken (see equation 40). 

First the integration over the elementary circular src with 
(for this integratzon) constant circulation distribution 

Id Y 
Yi = - - -- 

0 
- w 

z&x 7’. 
- 

I. 

. ..o+o) 

hasto be considered. This oan be done in terms of elliptical integrals. 
The radius is reduced to 1, the plvotd pornt is bj;. For reasons of 

F 
symmetry integration over half the 05rcuJ.ar am - is*mfficient. In 

2 
accordance pnt,hFigum 10, Blot Savartls law (23) gins as'the corresponding ' 
inducedvelocity 

Y 2 
x I 
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&em 6' is the angle between OCP and O'Q 1% is the centre 
Of the oircliLsr am. Thx integrsl is (see [3j p?E) O. 

I 

1 - ex cos 0' 
-I------------------- 
(I + u*" - 

agt 
2 LEl 

= smw----- /-_ - 
(1 + u$" i-k" . 

. ..(w) 

with 

k’ = 
b-, 

c---w--, k’l = , _ ka = 

(1 + q) 

F' - E' 
D' = -m---m-, A = ,/I - k= shpi = 

k' ' 4 
. ..(42) 

F' is the oomplete elliptic&l integral. of first order 

E ' " " " " " " second n 

F is the iincmplete n I, " first " 

E II II I, I! I, a second " 

The tern oonsudng of complete integrals can be written 

F'-E' 
F' - m--w--- 

2 b ' k= E' F' 
-------- - --------- ------------ = --a-- 
(I - ugE' 

+ ---em 
(1 +u$~ 1 -k' 

e..(w) 
1 -ux 1 +uz 

and is slmady tabulated+. For the incomplete integral tams 

2 
- ---m--e- -:,, E(X) - 

(1 +u~)~I -kg _. 

F-E sin 7. DOS x 1 k" sin% cosX F 
----------------- = w ---- ----- - --- 

k' .A I - % A 1 +*uz 
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Adding these results 

+ 

The kernel 

+ 

-! 
+ m-k-- [+,,,- F(k,; - :)I . ..(I&) 

1 +uz 

has been tabulated for a certain rsnge of bj; and X (see Table). 

7. ThirdPartoft~ D~miwashDerivative 

Striotly the dOmim& and its derivative at a point P of the 
propeller blade depend on the vortex wstoms of all the bladss. So far 
only the vortex system Of the original blab 00nta5ng P has been oonsi&rRd. 
In the original report' the influenoe of the other blades has been oensidered 
in an approximate manner. Eut experienae has shown that the rmnerJnd 
influenceofthesebl.adesis mall. At points of emll radius this influeme 
is not negligible but since the interference of the hub is ocmpletely 
ignored in this paper there is not muoh point in taking account'of the former 
effeot. Therefore in all later oaloulations ([2] and in this paper) the 
thirdpart of the dovmwrashderivativaprduoedbythe other blades hasbeen 
IX3gkOted. 

The following considerations show thz plausibility of tti 
influenoe being small. F'Frstofall the wrtex gystemofFigure ywhioh 
prWi.aestbedOwnwa sh derivative w be thought of alternatively as the 
qystem shw?n in Figure II. These are closed vm-tioes of oonstsnt vortioitJr 

a r 
-- 

0 
= a@. Starting at the propeller axis, arly particulsrfilament 

axr 
follows the outline of the blade to that point of the leading edge where 
th3 kxdioal vortex of radius x starts, follavsthis holicsl line to the 
trsiling edge sndthenbaokalongthe outlinetothe axis. 

Now/ 



-17- 

Now consider the influence of ona such vortex filament on tha 
second and third blades on the "downwash derivative" at tha pivotal 
point P of the original blade (see Figure 12). Vortxes 2 and 2', 
3 md3' 
1 and 1' 

add to the velocity at P induced by the original blade, but 
reduce it. The influence of I and I' is stronger than 

that of 2, 2' or that of 3, 3' since they lie nearer. The find. 
result depends on the blade math, the number of blades and the ad-e 
ratio but these opposing influences result in a relatively mall effeot 
pmduccd by these blades on the downwash derivative at the nid chord 
of the original blade. 

8. The Camber Correction Factor of the Propellar Blade 

Equations (6) and (8) give, for the special value = 2x, 

*gem 0 A-r, 
----- = - --- 

0 8v as 
. ..(6) 

snatherefore 

feff qr lJRt/x= + AS 
k = -w-w = ----m-m = ------------ 

fgem 7(op ctwd CtFvd --- 72 - 
as ad 

Write the non-&mansion&l oalculation (32) 

r 
Y =- 

m 
= AY, 

where the A factor depends on the loading. Since th? dmmsh 
derivative is proportional to A the csmber correctmn faator is 
independent of the loading 

y, JF*?? 
k = ---------------- 

. ..(a) 

. ..(47) 

. . ..ota) 

. ..(49) 
wa 

a 
CR 

-; (Yo) 

R - 
0 

--------- 
D w 
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where 

d \“d (Y,) 
v 

-------- = 

ar; 
Ii + 33 

Z& is given by equatmn (35) and G by equation (44) both calculated 
with yo defined by (48) instead of y. 

The factor A in (48) depends on the thrust coefficient CT 
of the propeller and, as a first approxzimat~on 

* cT 
A = ------------- 

1 
4s 

1 
Y, x dx 

0 

. ..(51) 

9. The Camber Correction for Best Dxtribution of Ciroulatron 

The camber correction factor has been calculated assuming the 
best distribution of cirmlatxon over two sets of affine shapes 
(see Figures 13 and 14) for several different advance ratios (see 
Figures 15 and 16). The calculationswere carried out mainly by Strass12. 
Without going into great detail scm important pomts should be 
mentioned. 

The integrsnd 5% (35) of & has a singulwity at the tip 
1 

x = I tending to infinity there -------. 
a-s-x 

Divide the integral. at 

say x' = 0.9 into two parts 

and introduce the variable 

u = J1-x 

into the second part. Then 

1 
1 1 

u’ 
J, dx = 2u Ji du with u1 = -~ 

X’ 0 
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The I.&Lang value of 2u 4 at u = 0 is independent of the .&a~*~ -I 
of the blade, that means dependent of F(x), and has the value 

The lntegrand Ja of & (I&+) tends to *ty at x = x* 
with ohsngzng sz.gn., Therefore 

:r < 
‘i 

1 
& t- 

I 

x*-j I xn+j I 1 
J,dx+- 

i 
J, ax+- J,d" 

'x 0 x x*-j i * x*+j . 

The middle intepalis symmetricalto xx and its prinoipal~value osn 
be calculated by adding the integrands at x* - e end at XT + E ' 
gymmetrical about, x*, that is 

3 
6 

[J1 (x" - e) + J, (x* + s)] de 

where 6 = Ix- x*1 varies from 0 to j. The limiting vslue at 
6 = 0 andth3limitingv3lue ofthethirdintegrsndat x = I are 
of less importance but OM easily be calculated by developing the 
integrands at these points. 

- 1 .- ‘_ 

IO. s&e Remarks about Previous Theorzes of th,e Camber Correction Factor 
. . 

The fact that the camber ratlo caloulated by means of the 
usual propeller theory (lifting l@) ils too smdl has been known for a 
long ti&'from experimental’rosults and several. attempts have been made 
to provide abetter theory. HeJmbol& 5n 1933 gave a theoretical 
approach to the problem whioh is very much on the lines of the present 
paper.“ Since the numeracsl results do not agree with those given in 
this paper it seems NOI%MX&I to reoount bz%efly Helmbold*s theary 
and to show the differences between his approaoh and the present one. 

The axial and the tangential veloci@ of the propeller behave in 
a different manner. The change from rw to rw - wt takes plate almost 
immediately in the disc plane whereas the increase of the axialocmponent 
frcm v to v +wa is continuous. If therefore the projeotzon of the 
chord 3.n the plane oonta-ming the radius and the propeller axis is no 
longer small the variation of the axid velooi+q has to be considered. 

E=esignating the additional velocities by Va and vt and 
the ~dro&vnsmical pitch aZIg by P with 

%l 
v+- 

2 
tan/3 = ----- 

=t 
r.'w - - 

2 

then/' 
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then the adclitlond velocity nomalto themesninflowvelocity V is 

*a = va co5 p + vt sin p 

Then in accordance with equation (4) the radius of curvature R,, of the 
Streamline is given by 

l&Q I I 
- -- = ..- = - 

( 

ava avt 
--- cos p + -- sin p 

> 
. ..&2) 

vds % v as as 

where ds is the element of the streamline. The two terns are now 
considered separately. 

Assuming that the increase of vt t&es place in the propeller 
plane, Helmbold considers that it is satisfaotory to odculatc this part 
by the cascade theory. The cascade theory being a two-dimensiona.ltheorJr 
oertsinly does take account only of the increase of vt (due to the 
influence of the other blades). Helmbold refers to oslculations by We5d.g 
and Mrmachi who gave a corm&ion factor k to the lift ooaff'icient 
putting 

0 
r = kCLV- 

2 

where k depends on the local pitch angle end changes sign at 0 a - . 
4 

. . 
Helmbold then calculates the derivative of the additional sxial 

velociw v, by replaoing the prop&l& flew by the non-rotat* slip- . 
stream with constant axial velooity over the radius. Then the slipstream 
is represented by the psxsllel inflow v plus the influence of a semi- I 
infInite vortex oyltier of rsdms R. The derivative in streemline 
direotion is ths derivative in axial direation e multiplied by sin@. 
Therefore the first term of (52) 

. ..(53) 

The differential +I sxial direction is the influeme of the orig+sl 
semi-inftite vortex oylinder minus the influenoe of a similar vortex 
oylindermoveclby the infimitemnal &stsnoe de. In the limit the 
differenoe between these two vortex cylinders is a vortex nng of 
radius R in the propeller plane and of strength 

dr 
- = wa 
a-. 
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The requred downwash derivative in axisl direction at radius r 1s glvon 
by the velocity induced by a vortex rmg of z-a&us R 
dr 

and of streryth 

-- at a point of radms r in its own plane. This induced velocity can 

g expressed by complete elliptic integrals (see equataon (43)) giving 

av wa E 
2 = - ------ 

ae **I -xa 

Ths derivation strictly holds only for the propeller vvlth lnfbnite number 
of blades and with constant induced axial velocity over the radurs. 
Helmbcld applies it to the propeller with finrlte number of blades and with 
variable axial velocity by introducing KW~ instead of vra, where K is 
the Goldstein faotJr, accor&ngly 

I I 

c / 

1 ma E(x) sin p C&S p 
-- = - -- ---------------- 

R0-V VZR 1 -2 
a 

Therefore finally (see equation (5)) 

r = k --.. v - 
'0 ova Elx) sin/3 o&s@ 

a - ..A -mm -----------_---- 

The basic idea behind the method of the present paper is almost 
the ssme as that of Helmbold's paper, but his simplifications are not 
introduced. The axial velocity of the best propeller is not constant 
along the radius and Figure 31 shows, for example, that the camber 
ccrmct~un factor does depend on the circulation distribution. Helmbold's 
calculation makes the downwa sh derivative ondependent of the shape and 
this is certainly not true. Furthermore if a lifting surface is used the 
vt velocity varies along the chord by the influence of the bound vortices 
of the blade itself. Numericsl agreement between Helmbold's results and 
the present ones therefore cannot be expected. 

II. Ilmiting cases. Dmnwash Derivative and Camber Correction Factor for 
the Aerofoil with Shock Free Entry at the Leadine Edge 

The theory developed in previous sections is en approximate 
theory of the lifting surface. Its validity therefore can be checked to a 
certain extent by comparison mth exact aerofoif theories. The exact 
calculation of the lifting surface has ority been carried out for the 
cm~lar and el..lip io dzscs617, and for the cap of a sphere with sero 
angle of incidence 8 . Since the present method for the camber correction 
is developed for zero effective angle of incidence (shock free entry) only, 
it is the ease of the cap of a sphere that is suitable for comparison. 
Kinner has shown that the circulation dastnbution over span is parabolic 
inthis ease 

so that 

r 
-DC l/c-q 
c 

. ..(54) 
where/ 
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where rl 1s the spmwise co-ordinate. The dmmash derivative is 
obtamed frcm the velocity induced by the circumferential vortex of 

r a r 
strength - and by the vortex lsyer of strength -- - 

0 
I,-dmbgin 

0 ay 0 
flow direction from the lea&ng edge to the trading edge. As long as 
the strength of tb mrcumferential vortex remain s finite at the tip the 
dmmash derivative mst tend to infinity at the tip; this point Cl1 be 

r 
discussed m detail later. For the cap of the sphere hovrever, - tends 

0 
to zero at the tip according to (54). 

From equation (5), a constant downwa sh derivative along the 
span can be expected if 

f 1 avr, 
-- = -- --- = const . 
aa 8vax 

. ..(55) 

Fmsupposmg elliptic outlme this condition is fulfilled for ths smell 
cap of en ellipsoid of revolution and therefore this case was considered 

r 
in more detail. Since from (54) - is constant, the camber correction 

c' 
factor will also be constant fratn (47). The actual calculation8 is very 
cumbersome, several principal values of integrals having to be calculated, 
but the result is independent of y ad is given by the simple relation 

*cl 1 1 
--- = --- 

ax d 
+ ----- _a In ----- ;-zT- 

J 

aa 
. ..(56) 

4T( ‘-- 2 

where a is the axis ratio 

40) 
a = --- 

b 

of'the elliptic outline of the ming. Then the corresponding camber 
correction factor 

1 
k = _------------------c--------- 

a c ' 

a' 
I+ ---;-l-e In ----- ;~~~~-.~~ 

aa a’ 

’ --i ’ - ’ --- J 2 

. ..(57a) 
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or 

I 4 
k = --------------------------- a > 1 

ad-2 
L * I+ ---------- 

. ..(57b) 

If a 3 0, k tends to I in accordance mth (574, and this 
is the limiting case of the ld'ting line. 

I 
I- IfLti- 03, 

l.lnri.t& value. 
k tends to zero, but the llrt itself has a finite 

The total lift coefficient is 

WC 16k- 
f(rl) 'b, = - f(O) $ ) & = --- 'f 0) 

a 32 

whencei the'totsl lift is given by, using (57b) 

L. 2x 
------------ = ----------------__--________---_- 

Wo) 1 2-1 
PP tiJ ----- 

40) 
3-; 1 - + ----------- -- 1 - -- 

a d-c 2 - ap . 

21-- > aa 
_I 

. ..(58) 

Hence 

L L 
1ma-> L7.l ------------ = - d/-i = 1.88 

P+ @ 
Wo) 3 
-m-w- 
40) ” 

For the cap of the sphere a = 1, the result is 

dwa -mm = 0.517, k = 0.615 
dx 

The coefficmnt of total lift for this "cap" (tmsted so that&he 
condition of shock free entry is f~lfdled eveqdmm along the span) 
becomes . 

EL = 3.27 f(0) 

From this it was estimated8 that bthe totsl.lif% coefficient for the 
untisted oap with'zero angle of incidence would‘be 

. . 
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while Kinner gives 

CL = 1.87 f(O) 

Equation (57) gives a general idea of thz dependmoe of the 
aw& 

camber correction factor on the aspect ratio (see F5gure 17) ---- 
as 

0 ~a/~' 
decreasesw~thinoreasing - but # ---- increasessndtherefore k 

aecreases accordbg to (47): 
a.3 

The dotted cupve in Figure 17 refers to a 
constant circulatzon distribution over rectangular wings. Here, however, 
the camber oorreotion is not constant along the span, so the curve refers 
only to one pointofthe spenbut5.t shows the same tsndency of k with 
aspect ratio. 

For the elliptio outline the parabolio oimulation distribution 
("cap" of the ellipsoid of revolution mith shock-free entq) was fcund 
to be the only one with constant downwash derivative (ana constsnt camber 

r 
oorreotion) along the span. The fImction - is eIlipti0 in this case. 

0 
Figure 18 shows that this is the important feature, because for the 
rectangle with elliptic circulation distribution the downwa sh derivative 
along span proves to be constant aswell. The figure gives the three 
cases 

for the two outlines cimle and square. The similarity is strzking. 

The corresponding camber correction factors are given in 
Figures IV and 20. For the square with elliptic circulation distribution 
r r 
- is elliptic giving a constant am6h dmivative, beut -- is not 
c 0s 
constant, so that neither is k in thx case. 

12. Influence of Blade Shape. Number of Blades and Circulation 
Mstntution on the Camber Correction for the Propeller 

So far the camber correction factor had only been cslculated 
for best distribution over two sets of aff‘ine outlines* (see Figums 13 
ana 14). The dowmash derivative decreases with increasing blade srea 

(see Figures 21 end 22) but c? f!? increases andthsrefore in 

accordance with equation (47) k '&creases (see Figures 15 and 16). If 
the total blade area is distributed ov8r ssy 6 blades instead of over 3, 
the width of tix single blade of the 6 bladea propeller is only hslf that of 
the latter. Therefore the camber corm&ion factor wculd increase fmm 
points on say the 10% ourve to those on the 5% curve (Figures 15 and 16) 
which means that the necessary geometrical camber ratios of the 6 blat&d 
propeller sm snaller than those of the 3 bladea one. For points near 
the tip where k is smell (impracticably high geometrical camber ratios) 
the inarease ofnumb-sr ofbladesmightbe the onlywsyto achieve the 
mqtin.3a lift for these pints. Besides/ 
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Besides the two sets of shapes z.n Figures 13 and II+ the k 
factor has been calculated for some &.liptic blades (see Figure 23). ' 
Generally the k factor seems to decrease xf the madnnm~ 
blade shifts towards the tip, (see Figures 2I+, 25 and 26). 

wdth of thy 

For the case of the &drofozl a simple rule relating the 
downwash denvstlve ndh the ratio of the ox-culation to the chord was 
noted (Section 11 snd Figure f8). A similar correspondence exists for 
the propeller as 1s show-, by Figure 27. The shape corresponding to the 
rectangular hydrofoil is ths sector shaped propeller blade since this 
he.9 a constant sngle T (see Figure 5) corresponding to constant chord 
length x.n the Hydrofoil. Shape 2 (Figure II+) is nearly sectorshaped. 

The dependence of the camber correction factor on the adv&nce 
ratio or on the pitch is given in Figures 15, 16, 28. Thus dependence' 
on h seems to beccme very slyht if the projected shape is held 
constant rather than the developed shape. However, tbs was only 
demonstrated-for a very simple case 
olrculation distribution (Fzgure 29j. 

viz., for the sectorblade~;lth oonstsnt 

For this simple shape the fzrst attempts were made with a 
circulation distrdx&ion different from the best distribution 
@w-u= 30 end. 31). For reasons of comparison the camber correction 
for bast dzstributxon as well is given using Lock's approximation 

-L--. 
r opt = Ad1 -xl 

where 

I,';$' 

A was chosen equal to 3 in order to provide the integral 
dx = 1 for comparison with the constant distribution 
= 1 . The best distribution gxves sn almost constant downwash 

r 
derivative because - 1.5 almost ellibtic in this case; this is 

d.iiscussed in detad'later in Section 15. 

l’j. -The Shape of the Blade with Minimum Surface Cavitation 

To obtain maximum thrust for a given blade area rd3.le 
avozdlng surface cavltatlon, the drop in pressure should be constant 
over the back of ths blade. To provde nearly constant pressure over 
chord shook'tie entry at the leading edge xs needed snd the necessary 
lift is produced by tb aember of the profile only. Considering a 
circular 9.x camber line the minimum presmux over the back occurs at 
the rmdpoint of the profde and It ShouXi be arranged that thxs is 
constant over the zaclius. 

The difference between the minimw pressure * sndthe 
stat10 pres- PO is given by the ma.ximm velocit;y vmnx ever the 
profde and the i&a-~ v&city V to it as 

PO - bin = ; (I’, - v”) 

.-. 

. ..(59) 

‘For/ 
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f 
For circular arc profiles of camber ratio -Ez end maximum thickness 

0 
t this tiference is given by 

p"-Rnin = 
-P) = 5 . ..(60) 

2 

where v is the forward velocity and b. tlx3 corresponding cavitation 
number. The first term in the third expression is mmly the lift 
coefficient CL since of (8) and (32) 

Then (60) becomes 

x xa + x' 
-u. = ------- 
4 xa 

t 
2- 

IV D 
---------m- + --- ,--_. 

Ji ““, P +P - 
D D 

Therefore the shape which provides unifompressure drop slongthe 
radxus is 

Tlx first expression on the right hand sxle depends on the 
. circulation &sttibution and on the loading CT, for the second 0x53 

the general expresaon 

. ..(61) 

. ..(62) 

. ../63) 

t 
- = 0.04(1-x) 
D 

seems to cover the thwkness distlrbutions which - generally prov-i&& 

Introduoq (48) and (51) 

0.08 (1 - x) . ..(64) 

_I - 

if v is constant then - is (for given a,) given by (64), if RU is 
D 

constant the factor ha mst be ad&d. I For/ 
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For the -best dxstnbution of c~nxiiatmn 

Kxa 
Y, = ------- 

P +P 
. . ..(65) 

the correspondmg blade shapes for the fmst case are given in Figure 32. 
The dotted curve is the fraction arising f!rom the thxkness distribution 
whxh oannot be neglected, especaally for mall loadings. The resulting 

' . blade shapes are appro-tely affjne and are very s5xnlsr to Shape 1 
used in Ref. 2 (see Fqure 13). Therefore this shape is the most useM 
for avoiding surface cavitation provided that the best distribution of 
cimulatlon is employed. 

For shock free entry the pitch angle of the chord (see Figure 33) 
is the induced angle of advance 

snd the pLtch angle of the sero lift line separates anto two parts 

e =ec+a, 
I 

. 
2fe'rr 

% = ---- = 9 - GE) + Ui) 
0 

~..(67) 

,  ‘, 

)  . 

The first part Bc is.i.n&&ndent of the shape.and depends on the 
ciroulataon distribution only. The second part depnds on the shape as 
well. . . 

The foGowing investigations are based en an example 

CT = 0.327 U. = 0.98 h = 0.2 e = 3 

The blades corresponding to'(64) 
. 

are commredmtha circularblade end 
have the same blade area. 

- . . . 
' The best distribution of circulation is the only one in which 

the shock free entry chord lines form a constant pltoh screw surface 
same the condition for minsmum loss of kdnetia energy is 

: 

xtsn(p+ai) = oonst. . ..(68) 
? 

For zuy &her ciroulation distribution x tan ec is no longer constant 
and the blade is twisted. 

In addition to the best distribution, two other circulation. 
distributions are considered, one with finite slope at the tip and the 
other one v&h zero slope at the tip, Though the downwash of the 
lifting line theory given by the principal value of sn integral is no 
longer convergent at the tip itself (1ogsxitlvni.o singulsrity) for 

\ " ciroulation/ 
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cimulation distributions with finite slope, this is a mere mathematical 
diffkulty of the liftmgline theory and.nop~sioal singularity of the 
dmashinduoedbythe lifting surf'aoe. Inpartioulerusing amethod 
likeMulthopp~sVth3 difficulty is overcome by the meohsniasl integration 
giving reasonable values for the dawmvash up to the point 0,931 neared 
to the tip. 

The pertiou&r examples chosen are 

7wT I& 
Y = -------- -me--- 

l&z 0.352 P + xa 
. ..(69a) 

7?ac, 
Y = --- sin xx . ..(@b) 

.4-z 

2dcT Tc y = --I 1 + sin (l+x - 1) - 
b 2 

The corresponding blade shapes are given by (63) snd are plotted in 
Figures 34a, 3Lb, 340; the effective camber ratios as given by (66) and. 
plotted in Figures 35a, 35b, 350 and the oritical cavitation numbers sre 
given by (60) and plotted in figures $a, 36b, so. To show the twist 
of the blades the expression x tan (p + QI) is plotted in 
Figures 37a, 37b, 370. 

The effective camber ratio is proportion& to the lif% 
oceffioient. 
0 

In all three oases (see Figure 35) the adequate blade 
l eel pmin = constant) provides high lif't ooef%'i.oients near the 

hub which dearease towards the tip; the f%gures do of course refer to 
idsalazed propellers without hubs. The elliptic blade produces a much 
more uniform distribution of lift ccefficient OvBr radius in th3 ease (a) 
of best distribution. 

Figure 38 shows the thrust distribution for the cases (a), (b), 
(c). m derivation From the best distribution entails a loss of 
efficienoy but th5.s loss is surprisingly snail in view of the considerable 
change of distribution (b) and (0) fram that of (a). 

I&. The Impossibility of Achieving hractly Constant Suction over the 
Whole Blade 

In the previous section it %ms shown that the condition of 
shock free entry settles the pitch distribution of the blade 
(see equation 65) and that the condition of uniform mjnimum pressure 
over back settles the shape of the blade (see equation 63). The 
effective cember ratio is determine 
(see equation 61). 

d by the circulation di&ribution 
The corresponding geometrical. camber ratio is 

related to the downwash derivative of the streamline by equation (6). 
In sections 5 and 6 it was seen that the downwash tirivative is 
determined directly from the actual dowrn~sh of a remainder wrtex 
system, viz., that consisting of a single vortex which has the form of 
the blade outline (vrith chord reduced by a factor $a) and has the 

r 
strength - and a wstem of vortices covering the blade in ohord 

'i 
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d r 
direction and haxdng the strength - = 

0 
dx where r, r' are related 

to the chords c, ij by (18). The&%: the requmed d isuIwash~ a3riYative 
r r. _ 

tends to infinity as l/(1 - x) at the tip as long as - cr - tends 

to a finite linut them. Unfortunately this is in fact Le cd for the 
adequate shape defined by (63) since from (63) and (18) 

-- 
Y y&?-+7? Y - = ---------- = ---------------------------- 
7 2: 

’ 
8 [+\/p? 7 

---- --------- - 0.08 (1 D TuToh I ! hY xj i 
A 

Since in practical cases the second term in the dencminator vanishes 
Y 

near the tip, - is finite there. Hence f'rcxu (6) the geometrical 
i- 

camber ratio tends to infinity if the chord vanishes at a lower order 
than l-x. It is impossible in this case to provide the camber 
necessary to maintain the design airoulation near the tip. That is to 
say a unifom distribution of minimum pressure overtho radiusis 
inccznpatible with the condition of shock free entry for broad blades. 

15. %&est.-ion of a Circulation Distribut~cn Different from the 
mstributlon of Minxmxn Loss of Kinetio EnerglI 

The above diffxulty asnnot be overcome by deomasing the 
Y 

ChordIlearthetip because thiswould zinxeaso -. The only way out 
7 

Y Y 
I of the &i.fficulty is to-make - or - 

0 ( ) 
tend to zero at the tip 

but l&As dcesimply that the adequateTshaps must be given up. One 
obvious possibility is a non-zero chord length at the tip. It has been 
prcved (see Egures 27 and 3) that the best distribution of circulation 
over a sector blade gives f'inite dcwrwash derivative at the tip. However, 
apart frun the difficulties at the edge, other considerations favour an 
alteration of y rather than of c. 

The usual blade shape (usual for the best a-Lstribution f 
circulation) is elliptic near the tip and is vary broad. x?inneJ has 
shown that for the cap of the sphere with zerc angle of attack the 
o&x.lation distnbdion over span is not elliptic but pnrabclic. 
Therefore a czrculation distribution vAich is parabolic neax the tip 
seems reasonable for the usual propoller blade. 

Such circulation distributions are not normally wed in the 
lifting line theory because the dcwnwa sh integral being dsfined by its 
p&ncipal vdlue has a logs2zi.thxi.c singd.ariQy at the tip in this case. 
It, was me&cloned before (section 13) that this is no physical 
sin@;ularitybut ameremathematical ddfYiculty Of the lifting lti 
theo?.y. A more serious objection against w aeviaticn from the best 
&stfihtion is the decrease in efficiency. Fortunately as has *a@ 
been mentioned in section 13, even quite considerable deviations 
produce only a slight drcp in eWiciency. 

For/ 
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For the case of the iydrcfoi.l in shock free flew It was shwn 
111 section II that parabolic cxculat~on distribution together w&h 
elliptxc chord distrdnztion provides constant downwash derlvatxve over 
span. This should be about the same UI the more complicated case of the 
propeller. The author's suggestion is to introduce a new circulation 
distribution 

Y = Ax(l-P) . ..(70) 

over a propel&x blade having the developed shape 

1 - = w-s 0.08 (1 - x) . ..(71) 

i 

where Y, is that of Lock's distribution 

.__ 
Yo = XJI - x= . ..(72) 

Figure 39 shows this new dxstributlon (70); two of the best 
distributions (65) together Tslth Lock's approximation (72) arrsnging 
that each has the same maximum 0.5. Lock's approtition is very close 
to the best distribution over the outer part of the blade, for the 
range of h considered, whereas the new distrdxtion is close t0 the 
best distribution over the xnner part but differs from It in the wter 
part in the desired manner. Introducing (72) into (71) gives 

0 4 Sk ____ ---. x= + A= 
- = -em - CTX~I - x2 L/x= + A= + ---;-- 0.08 (I - x). 

I . 

. ..(73) 
D 7160 L" 

To get an impression of the ,effect of the change from best 
distribution to distribution (70) a comparison is made between the 
bstribution 

15 
Yi = -- lrAC;x (1 - x") 

82 

and the Lock distribution 

w --- 
y, = -- CTXJl - x= 

. z 

both applied to the blade 73 (see figure 413) for the example 

(-+ = 0.43 UC = 0.49 A = o-4 z = 3 
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Figure 41 shams the distribution of the lift ccefficient. The lift 
coefficient increases over the inner part of the blade for the new 
clLstr1bu~0n yi , and tends to zero at the tip as \/I - x2. Now the 
blade shape (73) was derived so that for Lock's distribution the 
minimum pressure is unif'on~~ over the la&us but this IS no longer so for 
the new distribution vr for which the presOmrce dro? is 2C$ greater than 
for Ya over the inner part of the blade. This seems to be a not ' 
unreasonable increase (see Figure L&2). 

1, *\ 
Since the new distribution is no longer the best distribution 

the Goldstein factor is of no us0 and the calculation of the qnduoed ( 
engles of incidence rrmst be derived by some other means, e.g., Multhopp's 
metho&. For shock free entry the pitch angle of the chord must equal 

'the induced sngle of advenoe (see equation 66). It has already been 
pointed out that for best distribution x tan @ + pi) is a constant so 
that these chords would form a true helical -face. Figure 43 shows the 
deviation of x tan (/3 + a-i) for both distributions y, and ya ~YCJIII 
the constant optomum value. It is apparent that the distribution Ye 
requires the blade to have a slight trust towards the tip in order to 
mantam shock free entry, 

Figure 44 gives the thrust distribution. The efrloiency is 
, . I 

_ t .I _ 
'li . = 0.792 

in both cases. 

The main point is'the camber correction factor for the new 
distribution. Up to now the calculation has been carried out for the 
outline Figure 40 and the advsnce ratio ah = 0.4 mdy. Since for the 
new oiroulation distribution there is no singularity m the integrand of 
thofirstpert r, (equation 35) this oaloulation is easier. The f!ineiL 
result is given in Figures 45 end !+6. Figure 45 proves as expected that 
the dmTash derivative is constant over the outer part of the blade. 
Figure 46 shows the new correotion factor compared~lth that for the 
same blade and advance ratio but with best distribution of circulation. 

--;-- being constant the geometrical cember ratio is from (6) 

and (22) ~, 
- . . 

fgeoli 
h 

c%/J 
----- = --------- - ---mm 

c 4(? + ha) D d$ 
. ..(74) 

tend.ing to sero at the tip as the chord c. Figure 47 shows the 
geometrical camber ratios for the example. In the tier part of the 
blade the new camber ratios are much greater than those for best 
distribution but towards the tip the Fatter ones tend to infinity. 

16. SW 

To dcloy the onset of surfacecavitation as far as possible 
the suctaon developed over the blade should be distributed as uniformly 
as possible. The flow should meet the leading edge with shock free entry 
so thattie lift.is produced only by the camber of the profile. The 
curvature of the strosmlanes at the mid-chord line of the blade is 
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calculated by a method which wx suggested for the first time by Ludwieg. 
The prosent paper gives a different derivation for the result given 
previously by IudPneg snd. Ginsel. The downwash derivative is needed in 
order to determine the seoticn csmber ratios which ere necessary to 
produce the desired circulation and thrust distribution. The circulation 
diatrabution over the radius remains arbitrary. For best distribution 
of circulation, i.e., minimum loss of kinetio energy, over two sets of 
affine blade shapes the numerical odloulations were carried out by Ginzel 
an3 Straaal and given in the form of a camber correction factor k to 
be applied to the oember ratios csloulated by the usual lifting line 
theory of the propeller. For convenience these numerical results are 
reproduced again here in the form of graphs. 

In the second part of the paper the influenoe on the camber 
correction factor of blade shape, of number of blades, and of circulation 
distribution over the ndius are shown. A8suming.a normal distribution of 
maxumxn thickness over a blade the condition of constant minimum pressure 
over the radius detemninos an adequate shape of the blade whxh depends on 
the circulation tiatribution. Hawavcr, the section camber ratio tends to 
infinity at the tip for these adequate blade shapes, in particular for 
beat distribution over the usual blade shapes which are elliptic in form 
nesr the tip. From an exact theory of the lifting surface of the cap of 
a sphere at zero angle of attack it is known that the ciroulation distribution 
over span is parabolio rather than elliptic. It is shown in this paper 
that for shook free condition and parabolic circulation distribution the 
downwash derivative is constant along the span. 

It is suggested therefore that the beat distribution of 
circulation over a broad propeller bladekbe replaced by a acmewhat 
slterod distribution tilch is parabolic towards the tip of the blade 
but the usual blade shape (adequate for best distribution) be retained. 
The dowrmash derivative is then constant over the main part of the 
radius end the camber correction factor is finite and non sero at the 
tip. The change from beat distribution to the new distribution does 
not affect the efficiency. 

NC. - 
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Influence of the Other Blades on the 
Propeller Blade Camber Factor 

AD-1 
Abstract 

The exact expression is derived for the downwash derivative at 
the mid-chord lane of a propeller blade produced by the vortex surface3 
of the second and third blades of a three-bladed propeller. The influence 
of these blades is to reduce the curvature of flcnv anduoed by the vortex 
surface oftl-a origlnalblade. The effect on the asmber correction factor 
is given as sn influence factor i in Figure 48 whch has been derived 
for one particular blade shape and another of half the vvldth with several 
circulatzoon distrabutions and one ratio of advance. For best distribution 
of circulation snd usual blade shapes the factor might be applied generally. 

1. Introduction 

The numerical values of,the camber factor given in previous 
reports' are based on the downwash derivative produced by the vortex 
system of the origonal blade only, because the influence of the other 
blades was presumed to be negligibly smsll. This supposition was based 
on the results of an approximate method in which the remaining blades 
were replaced by sector blades of t& same blade area as the original one 
with oonstant radial oirculat.Lon distributzon, each blade giving the ssrm 
thrust as the original blade. 

Since It is rather diff%oult to judge the vsLi&ity of the 
approximation it seemed desirable to .denve the exact solution and 
calculate a few exas@es. The equations can be derived according to the 
method used in sections5 snd 6 of reference 1 and split up 111 two parts 
accordingly. Although they.refer to a.three bladed propeller, this is 
no fundamental restrlctlon since by inserting other angles instead of 
2% b 
-- and -- in the equations any possible arrangement may be covered. 

3/. 3 . , 

2. l3rstPar-t of the DownwashEerivatave . * , _ 

The first part of the duwnwash derivative is that produced by' 
the gr vortices of the second blade and the .a++ vortices of strength 
given by th second term of (21) in referenoe I. [The starred numbers 
of the equations and figures correspond to those unstarred in reference Id 
The pivotal point is x = xx, 4 = #" (see Figure 8*) end the points 

2x 
of the second blade have co-ordinates x and - 4 #,# varying f'r& 

3 

- i; (x) to ; (x). ' 

.The ra&us NQ in the second blade has ddrsctlon cosines 

( 

2x 
00s h = cos $* - - - $5 

3 ) 

. ..(26*) 

an4/ 
00s T* = 0 
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and FQ has direction cosines 

( 

277. 
x 00s $5’ - -- - $5 - x* 

3 > 
00s 4 = --------------,,,--,,,,,, 

‘a 

( 

2.x 
x sin $?P - -- -; p3 

3 > 
co9 “* I ---------_---------_- 

a 

x (P - $1 
~COS Ta q -----w---w 

a 

and a itself 

as 
( 

2% 
-- = 9 +x* - 2xX" 008 -- r? +$ -p 1 > + ha ($9 - $5y 

3 

. ..(27*) 

Therefore the ~5010 system of rdisl vortices of the seoond blade gives 
frcm (31) in reference 1 the dcwmash cmponent 

1‘ 
where y = -. 

vD- 

The second tezm of (21) in reference 1 gives oorrespondingly 

I  .  

1 
- -- 

2% I 



‘ 

b 2.x 
Now add (31*) to (34"). For the 5nfluence of the third blade the same expression holds with -- replacing --. 

3 3 

For the dm-mvash derivative III chordwise rkrection the expression must be differentiated with respect to $". Since 
6 sna P occur m the ccmbination # - #* only the differentiation with ressot to 6% and the integratz.on with respect to 

7 7 
6 asn be accomplished by mitting the $ integrd. and replacing y5 by its limits - and - - ad introducing a negative 

2 2 I 
Sigh For the part (31*) the difference between the upper and lmer limits is taken sinoe the remaining radial vorticity at the L.4 
leading edge and that at the‘tmilkg edge are of opposite signwhen taking the differem bekeen the original vortex surface and ' 
the one moved in chord di.reoQ.on. 

For the part (34%) special consideration.is necessary. As can be seen from equation (16) in reference 1 there is tb 
E' 

tern - --= which is th3 initial value of the helical vortices at the leading edge being th helicsl wise component of th3 
2T 

I%' - r7r 
circumferential vortex. Atthetmddg edge anothertern - -- cr 

2; 
- --- must be added (seeFigure 4th reference 1). This 

oan be interpreted either as the part of the aircumferential vortex in helmal direction or as that part of the trailing vortices 
which does not cancel out when the difference is taken between the oz+.gksl vortex surface and the one moved in choti tieotion. 
The two r emender infinztesimsl vortex pleoes are of the same sign. 
added. 

Consequently the tmo limits for the part (34*) have to be 

This Oonsideration applied in the derivation of equation (35) inreferenoel asweU.butwasnot mentlonea -e the 
symmetry of the tide &ffeot was obvious. 

w 



1 2 In the present ease of (31*) and (34*), however, the integrand shows no metry with $* = 0. Then the dmmsh 
derivative 

A check on the equation is obteined by replaoing - by 0; then ths expression reduces to (35) of reference :. 
3 



c . For convenienoe the angles should be expressedby those in the first quadrant. Then . 

4x 2x 
Inserting - instead of -. in the above equation and then expressing by the angles in the first quadrant the result is 

3 3 
the same but the two integrsls appear m the reverse order. Therefore the first part of the dorrnwash derivative produced by both 
blatisis 

aw /v . 1 1 
2, = Ii = - 

1 

1 1 

+ 
J,, dx + - Jip dx = - J1 dx 

?I ?z 1 

1 1 

x 1 
. ..(3‘F) 

0 0 0 
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Agak (see section 9 in reyence l),the integrsnd 5% of (35**) 

tends to infinity at the tip as ---I--- = - for best distribution and 
J1---- x u 

ususlblade shapes. The ssme process as suggested in the previous report 
oan be used, this time the limiting value 2uJ1 at u '= 0 ILLS the 
value 

J 
-_. 
3 2 

P(‘; +x’)-x’(l +f> ’ 
- ---------- ----___--------------------- ..--_ h (1 +P)4 T//ha + x% (1 +x* +,*)3/a 

or 

ljm 
(r) P(;+xq-xyl +ff) 

- 2 -~_____=------------------- 
* JP + x?@ (1 + x= + x*)3/a 

--_- 
for w other distribution tending to zero at the tip as dl - x. 

4. Second Part of the Domm Sh'Derivative 

The velocity induoed at point P bythetenn 

d r 
-- - 

0 

7’ ? 
4 --<$,(- 

ax‘r 2 2 

of the heliosl vortioes % can be written as 

2?T 

“4 - ’ ’ ‘; o,::-f. ” ; 6 
aK - + $5 - g, x, x’y 

--- - - -- 
v If 27c o 2 0 

( 3 _______________---__---~ a$& . ..m*) 
~axr I a# 

2 

with B slight modifioation to (36) introducing immediately the kernel K 
which is actually built up not from helical vortices of radius x but 
from circular arcs ofradxwl. This is the same as in reference 1. 

Partial integration with respeot to # gives 
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Again q5 end $5’ occur in the combinatmn $ - $* only. This means 
integratmn with respeot to $ and ddferent~ation with respect 1 ;o 4* 
cancel each other and # may straight away be repaced by the ltits = I 1 , 
- ad --; Ea.3 $3* is put zero. The first tern does not vsmsh since ) 
2 2 
it is no longer ~tricel. 

i: 
The third blade gives the same contribution; 

th integrend between - - sncl 0 of tb second blade equals that bdween 
2 

T 
Od- ofth~~thirdblade. Then the downwash derivativebeomes 

2 

-I T 
+K 

( )I 
- -,x,x* ax . ..(wc”) 

2 

with 

h h. 
e = arc&m- - arctsn-- . ..(45”) 

x X* 

K is the velooity induced by a vortex of unit strength end 
2% i 2x ? 

of circular sm form between -- - - snd - + - and of radius 1. 
3 2 3 2 3 2 3 2 

Since the replacing circular arc is to pass through tix? mid-point of the Since the replacing circular arc is to pass through tix? mid-point of the 
helical am its centre lies beyond the axis at distance j? - X. The helical am its centre lies beyond the axis at distance j? - X. The 
distance of the pivotal point P to the centre of the cimuls.r am is distance of the pivotal point P to the centre of the cimuls.r am is 
therefore gxven by (see Figure IO’) therefore gxven by (see Figure IO’) 

-- 1 

d 
2x 

xm + (2 - x)' + 2x" (E - x) 00s - i 
3 T.4F-r~~ - x* (Z - Gj QS = -------------------_--------___---- = ‘---“-------=-“---“-----’ .*.(39”) x X 

Biot-Saverts' law gives the induced velocity 

1 
i 

i: 

-~oos(~-~~) 

if = 2 -.---------------------------- 

'/ I + 5 00s - + 6' 

Qj?= 2 

(1 ) 

Y 

----------_---------------- 

-12 ( -- 277 > -if 
3/a 

W' 

I+@-2500s - @ ' 
' 

2 1 +ug+~xcos- +$6' 
3 -' c > 

5./ 
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5. The Numerical Results 

Since it is convenient for the calculation to use a blade shape 
given by an sns&tical expression the shape Figure 40 (reference 1) was 
used which is very similar to the TO& blade of shape 1 (Figure 13 in 
reference 1) . There is a slight deviation from shape 1 over the inner 
part up to 0.7, where the blade Figure &O is straighter (similar to 
shape 2, Figure lJ+ in reference 1). This results in a slight deviation 
of ths uncorrected osmber factors from those given for shape 1. 

For this shape and the affane one of hslf the width (5@) of 
the original (IO&) the expressions (35**) end (a*) have been calculated 
The result is plotted in figure &8 in the form of a correction i where 

Cl,, . = CLco*. (’ - i, . ..(75) 

mfl kncorr. is the osmber factor as given in previous reports so 
giving the new corrected one Gorr,. 

This faotor i is given for best distribution with X = 0.4. 
It depends on the blade shape B,T?ELLargely on the cumulation distribution. 
Look's distribution l' = xdl - xa deviates from the best distribution 
for A = 0.4 mainly over the inner part. Hence the difference in i 
(qgd in k) for the inner parts of the blade (see dashed curve in 
Figure 48). The corrected and uncorrected camber factors for best. 
distribution can be seen in Figure 49. 

The influence of the other blades decreases the curvature effect 
of the original one espec~J.ly over the inner part of the blade. This is 
mainly due to ths helical vortices covering the blade since the kernel 
function does no longer change sign along the radius beoause the pivot&l 
point is outside the blade. Since such vortices near the atis would give 
wunreasonably large contribution, the caloulation has been made wxth the 
pa-t from 0 to 0.2 of the integral (a*') cumitted. Even then for the 
wide blade the part (44") was 14 times the part (35**) at x = 0.3, 
4.5 times at x = 0.5, and 3 times at x = 0.7. For the +O$ blade 
the part (&*) was 2 times that of 35”” at x = 0.3 snd at x = 0.5, 
and about the same at x = 0.7. For the contributions from the original 
blade, the part & is slwfqs much greater than I,. 

This effect of the positive kernel function is overahelming for 
a Y 

circulation distributions with positive -- 
0 

- over the radius as for 
a%? 

instance the best distribution over outlines like shape I (see 'section 13 
in reference 1). For the new distribution y = x (1 - x?) suggested in 

a Y 
reference 1 conditions are different. Then -- - 

0 dx; 
ohanges sign over 

radius and the contribution (f+.Q*) of the "oasoade effeot" becomes very 
small. Then the increase in k as indicated in Figure 50 is sJmost 
solely due to the oiroumferential vortices of the other blades. That 
this would result in a reduced donnwash derivative was already pointed 
out in section 7 of referenoe 1. The correction i is very smsll and 
nearly constant along the blade (see Figure 48). 
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6. summary 

The exact solution for the influenoe of the remxdng blades 
on the curvature of flow at the oentra line ofmthe 5nitisl blade has shown 
that for uswl blade shapes with circulation distmbutions nesr the opt= 
th3.s "cascade effect" on the camber oorreotion alwsys increases the 
k factor tending to counteract the influence of tha original blade. For 
best distribution of oi7xxlat3.on the effect on the sections near the root 
is greater than expected from approxzimate caloulations, being an increase 
of up to ioqb on the k factor for very broad three bladed propellers. 
The effect decreases rapMy towards the tip as shown in Rw 48. The 
lnflueme factor i given in this Figwe may be applied to all camber 
factors previously published which refer to best distribution and usual 
shapes. For the new ouwulation distribution suggested in the previous 
report the "oasoade influence" is-small over all the blade as shown in 
figura 4s and Fzigurs 50. It should. again be noted that the camber faotor 
(and the oasoade influence on it) are of doubtful vslidity at sections near 
the atis slnoe the hub is not properly sllcwed for. 
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