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Abstract

The standard propeller theory is that of the 1lifting line and
therefore strictly valid for narrow blades only. The present farst step
towards a theory of the propeller blade as a lifting surface considers
besades the downwash which induces an inclination of flow, the dowrswash
derivative and the corresponding induced camber of the streamlines in the
special oase of shock free entry of flow at the leading edge. The result
is given in the form of a correotion factor to be applied to the camber
ratio of the seotion deraved bty the lifting line theory, The farst part
(sections 1 to 9) of the present paper presents again the theory of
Ludweig and Ginzell but with a modified mathematical deravation.

In the sscond part ‘the influence on the camber correction
factor of blade shape, of muber of blades and of circulation distribution
over the radius 1s shown. The condition of uniform minimm pressure over
the radius determines an adequate shapc of the blade which depends on the
circulation distribution., Unfortunately the section camber ratio tends to
infinity at the tip for these adequate blade shapes in partioalar for the
so-called best distribution (with the usual blade shapes). Therefore a
modified circulation distrabution but retaiming the previcus blade shape
is suggested and this case of constant dowrwash derivative over the radius
proves to be of special interest.
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1. Introduction

In high-speed flight the 1ift coefficient of the modern
agrofoil is small. The aim is a drag coefficient as low as possible,.
For this purpose so=-called laminar profiles have been developed. These
profileos show for certain low 1if% coefficients a more or less constant
rressure distribution over the chord and by this means the flow remains
laminar over a large range of Reynolds mubers and the drag 1s accordingly
ke

Ship propellers rurning at a high number of revolutiona and
producing a high forward speed are in the danger of cavitating. To
avoid surface cavitation the pressure should be distributed as uniformly
as possible over the surface. Suction peaks mist be avoided and the
pressure distribution over the chord should be approximately constant.
Therefore both in aerofioil and in propsller thsory shock free entry of
flow at the leading edge plays an important part. It has beon suggested

that/
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that laminar profiles should be used also for ship propellers and for
turbine blades. Since for these profiles low drag is guaranteed only
for a very small range of angles of incidence their application for
propellers is rather doubtful because the accuracy of propeller theory
is not so good as ths accuracy of aerofoil theory. In partioular the
usual propelier theory of the lifting line mast be ‘corrected before such
refinements as laminar profiles can be introduced.

Certainly the presuppositions of the theory of the lifting line
do not hold for the broad blade of the modern ship propeller. These
rresuppositions are high aspect ratio that 1s smell ratio of chord over
span or chord over radius respectively so that the condations in a section
perpendicular to the radius are nearly those of two dimensional flow. :
With small chord ratios the variation of the dowrwash velocity along the
chord may be neglected, the induced angle of incidence depends on the
radius only and the formulae of two-dimensional flow can be used ty
introducing an effective angle of incidence (geometrical angle of
incidence reduced by the induced angle of incidence).

With large chord ratios the variation of the dowrwash velocity
along the chord cammot be ncglected. In first approximation this vamationis
given bty the dowmwvash derivative and defines the curvature’of the stream-
linea, In curved flow the camber ratio of the profile is less effective
than in straight flow, therefore the effective camber ratio is the
geometrical camber ratio reduced by the induced camber ratio. The aim
of the following investigation is to determine the effective camber ratio
for circular arc camber line aerofoils and propellers in a flow meeting
the leading edge with shock free entry. Then the flor is gymmetrical to
the midpoint of the chord and the camber ratio of the flow must be
calculated at thas point. All aerofoil or propeller theories are based
on the condition that the flow has to follow the surface of the profile.
Prandtl's theory of the lifting line introduces the correct direction of
flow

Ugeom = Yeff * 9 eee(1)

voe e N

whexe o 1is the angle of incidence and the suffices mean geometrical,
offective and induced respectively. The new thsory ensures that both
tho direction and the cember of flow are correct, so besides (1) another
equation (2) has-to be fulfilled

b pif N
geam eff . o .u(2)
(4] C C

where f 1is the camber and ¢ the chord of the profiles

2. Tho Lifting Surface at the Condition of Shock Free Entry

' The tengent of the streamline clement ds relative to the
inflow is the ratio of the dowrwash velocity wg and the inflow
velocity V- .

Wd
tan @ = == ---(3)
v

Hence/



) -

Henoe the radius R, of its ourvature is given by

or with small wg/V .

1 1 aw
d
U vea(t)
Ra Vv .ds
: £
instead of using the radius of curvature the camber ratioc -~ oan be
. . o
introduced in asccordance with Figure 1
a B
(-) = £ (2R, - F)
2 -
£8 *
or for small (-)
o
t 10 o dwg
- = . ves(5)

© e 8 Rg -8V ds

The camber ratio of the streamline with chord ‘¢ is fvom (5) given by
the downstream derivative at the midpoint of ths ohord produced by both
the lifting vortices and the ftrailing vortices of the whole gystem.
Acoording %o (2) the expression (5) determines the gecmetrical camber of
the profile -

£ c dw,
goom da
aneeasemes 2 . - 1 aae (6)

o Br ds

In the Tntroduction it was stated that the optimm profile
from cavitation point of view would be the profile with constant
circulation distribution over chord but-that it would be difficult to -
incorporate this feature in a propeller. The usual propeller section
is the bioircular aro profile. For this equation (6) gives immediately
the camber ratio of the skeleton line. The condition of shock free
entry is defined for the ocirocular axc section as

s %epf = %geom =% = O «oo(7)
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which means that the 1ift is produced by the camber ratio only;

oy, 2L pp abr, 2fgeom ety
. )\ a GL = ——— - e - N e e Bk OO G-t
da o e da 00 c o

n

i d.CL "2r .
CL (-—-) k -'-'g'e-sf'l ’ L '-0(8)

da o -
[v2a]

The factor k is called camber correction factor and gaves the reduction
of 1lift caused by the curvature of the streamline

f .
k = --Ef-.f: 'Iooo(9)

fgeom

. The circulation distribution over the chord for the circular
‘arc section at shock free entry is not rectangular but elliptic. However,
for the =ubsequent considerations this elliptic distribution is replaced
by a rectangular one which gives the same dowrwash derivative at the mid-
point and has the same integral value as the elliptic one. Since the aim
of the theory is to determine the dowrwash derivative at-the midpoint or
the curvature of the flow there and not the exact downwash distribution
over the chord this simplifying assumption regerding the circulation
digtribution over the chord seems reasonable. Furthermore it seems
sufficient that the dowmwash derivative for both the elliptic and the
' réplacing reotangular distribution should. agree in two-d:lmenmonal ow
(see Pigure 2).

The chord of the elliptic distribution g& 1s o; the chord
of the ‘replacing rectangular distribution g, is o. They have the same '
integral wvalue if

ox _ ‘ - o
5-31(0) = g,(0) ' se+(10)

where g,(0) eand go(0) are the corresponding velues at the midpoint.
These distributions provide the same dowrwesh derivative in two=
{dimensional flow if

‘3‘.59.). - €,(0) : ’ eee(11)

From/



From (10) end (11) for x = 0

- V6F = 0.707 vee(12)

ot of

The btlade with circular arc sections and chord distribution o
is thus replaced by a reduced blade with chord distribution ¥ and )
having constant circulation distribution over the chord (see Figure 3).

3« The Vortex Surface of the Aerofoil with Constant Chordwise Circulation
Digtribution

The vortex surface of the aerofoil with circulation distribution
I'(y) is covered by vortex filaments in both span and chord directions
called g, and gy vortices, If the circulation distribution over the
chord © "is assumsd constant then the intensity of the &y vortices is

riy)

o me——— ooo(13)
&4 G(y)

Since vortex filaments can anly begin and end at infinity in the absence
of solid surfaces (zero divergence%in

dgx ‘4 a ,T ( .)
——— = LT = - e - ‘ "o 11{-
ax dy ¥ dy ('c')

For the same reason the vortex component normal to the asrofoil outlins
in the plano of the surface muist vanish over the leading edge while over
the trailing edge the ocomponent of the bound voxtioces normal to the out-
line must equal the oomponent of the trailing vortices normal to the
outline, The circulation of this vortex filament along the aerofoil
outline is (see Figure L)

<]
: a-
r r 2 e
AP en(15)
el c &y c 2

and it varies with y. The dash denotes a derivative with respect to y.
This is the initial value of the g, vortices which start at the leadang
edge. At the trailing edge their v?arlue sums up to

c
’éd T
gxtr = "f_ "'(:)d"‘c(y)

/S dy \o

2

a ,r r _ T _

3 e 2_--(-)6.}(--0'--_-:0' 0-0(16)

_oé"y G 2c 2¢ -

gvl ]
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with the second term contributed by the vortex along the leading edge
(equation 15) and the thard term ty that along the trailing edge., Thus

_ | re I's!
G c

and this is the value of the trailing vortices.

4+ The Vortex Surface of the Propeller with Constant Chordwise
Circulation Distraibution o '

. The surface of the propeller blade is part of a screw surface.
The chords are arcs of helices and along their continuation behind the
«blade lie the trailing vortices. These helices are given by their pitch
engle

-A '
‘ta_n ﬁ = ‘:— r - ..0(17)
Irw X

where v i1s the forward speed, r the radius, w the angular velocity,
r

A  the advance ratio, and x = ~ +the dimensionless radius. According
R

to Prandtl the pitch angle of the trailing vortices is in second

approximation arctan Aj/x, where A; is the induced advance ratio,

Therefore throughout the following investigation A might be replaced

Wy A

.These helical lines form one set of components of vorticitye.
The »~ther cnes are vortices which coincide with the radii of the screw
surface. The vortex surface of the asrofoil is built up by rectangles
(see Figure L), characterised bty the circulation and the chord at
section y. The vortex surface of the propelier blade is built up by
cylandrical screw surfaces. These are soctors of a circle in the dise
plane (see Figure 5). These elements of the lifting surface are
characterised by the circulation at radius r and the angle 7 of
the disc plane at radius r. This function 7(r) replaces the functien
c(y) of the aerofoil. The chord of the blade at seotion

r
¥ = = is related to r(r) ty
:R
- Bxr —
I R T S — - = RV xﬁ + 7\.9 -00(18)
A
cos arctan -
x

The reduced chord length € introduced in section 2 gives a reduced
angle 7. Figure 6 shows the propeller blade built up by cylindracal,
screw elements, Tor constant circulation distribution over the chord
the strength of the gp vortices as

g/
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I(r) I'(x)
g ® Z=== = = ees(19)
T(x) 7(x)
end that of the gy vortices (¢ being the angular co-ordinate) is
G 4 T
—-i‘g 2 o emew (:) N 000(20)
2¢ dx \7
or corresponding to (16) by integration
a T 7 7 7
g¢ = = om- (:) ¢-'~-_: - '-\<¢i<- "‘(21)
ax \T 27 2 2
The elemsnt of are of the chord is
Rxd¢
ds = =scmcceceme—— = Rd.¢v x? + xﬂ 000(22)
A
cos arctan -

X

5. First Part of the Dowrwash Derivative

The aim of the investigation is to find the downwash derivative
in chord direction dwy/d$ at a point ¢ = ¢%*, x = x* produced by
the surface of vorticity represented by the radial vortex system g,
(equation 19) and the helical vortex system gg (equation 21). The
induced velocity o¢f these vortices is given by the law of Biot=Savart in
the general form (see Figure 7)

1 Gsinyg !
dwd = e ---—;-—-— ds 000(23)
N a

G is the circulation of the vortex line with element of arc ds at the
point Q, a is the distance from the pivotal point P to the point Q,
v is the angle between the element ds and X, The induced velocity is
perpendicular to the plane given by ds and P, To determine the indnosd
angle and induced camber only the component perpendioular to the screw
surface at point P is needed. Therefore introduce the angle © between
the normal to the screw surface at point P and the direction of the
induced velocity at this point.

For the purpose of calculation it is convenient to consider the
dowrwash w3 as made up of three parts. The first ia that produced by the
g&r vortices and the vortices of strength given by the second term
in (21). The second by the downwash produced by the gy vortices of
strength given by the first term in (21), And the third pert is that
associated with vortices of the othexr blades.,

Firstly/
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Firstly then the radial vortices (equation 19) are oconsidered
which produce the dimensionless dowrmash component

1 I' s51in Vf,_
yevlJ T 8%

where 8, is the radial co-ordinate. Secondly part of the helical
vortices are considered (see squation 21) producing the dowrmash
camponent .

1 I'TY sin v,
[ r— --:: —————— OO0 egdSa ".(25)
Ly 2t a*

where a; is the helicel co-ordinata,

Now consider the vortices dsy and dsz at the arbitrary
point 6 (x, ¢) (see Figure 8), The angle i is the angle botween
FQ and the radius through Q. Imagine a system of orthogonal co-
ordinates with radius OP as first axis, propeller axis as third axis
and the second axis perpendicular to these two, The radius NQ in this
gystem has direction cosines

oes 1 = cos (#* ~ ¢)
cos ¥y = gin (¢F - ¢) «ee(26)
cos T, = 0

and FQ has direction cosines

x cos (¢ = @) - x*

cos Uy =
a
x sin (¢* - ¢)
cos v, = oo e{27)
a
A (-9
coSs '1'= = --:-
a
and a itself is given by
aﬁ
- = ® + ¥ - 20® cos (85 = ¢) + N (¢* - 9)? ese(28)
R

The/



The direction cosines of the normal tc a plane containing the two
directions o , v,, T, and w, v,, 7, which form the angle ¥,
batween them ara see Bell "Co-ord.:_na.‘be Geometry of three Dimensions",

rp. 22, 39)
COS ¥, COS T, = COS V, COB T, A (¢* - ¢) sin (¢* - ¢)
coB Y = 2 m——
sin ¢, a Bin ¢,
COS T, COS 4, = COS T, COS U A (¢* = ¢) cos (¢* - ¢)
008 Yy, = =m- —— = - —_ eee(29)
sin ¥, a sin A
008 y, €08 U, = 008 i, CO8 V, * sin (p* - ¢)
cos T, = = - =
gin v, g 8in ¥,
The normal to the propeller surface at P has direotion oosines
cos Y, = 0
A
“ o T UETR ()
<*
CO8 Ty = CO8 fig = =————omee-
* V™ 47
A
with ﬁx’* = arctan -3 pitch angle at P. Therefore
x

008 §, = cos u, cos g, + cos v, cos V, + 008 T, COS T,

A (9% - ¢) com (¢* - ¢) + x*? sin (¢* - ¢)

e sin y, V™ 4 7B

From (2)) with ds; = Rdx +the whole system of radial vortices gives
the dowrmwash component

1 I sin v,
— f [ = ==mm— COB Gidsidgﬁ
Ly T a' .
1 ArE y AR (% - 6) cos (6% - §) + X® sin ($% - ¢) apdx
h .2-; 4T i [2® + x* = 2xx* cos (p* = ¢) + 2 (¢* = ¢)°]37£ VES £ AR
2

eae{31)
where/



where

eee32)

‘the advantage of this derivation is that the term sin ¢y ocancels.

To evaluate that psrt contributed by the helical vortices given.

N
W (25) the direotion ocosines of the helix with pitch angle arctan ~ at
x
Q =are needsd
-x sin (% - ¢)
QWS = - e -
& V2 o+ A2
" x cos (¢* - ¢)
cos v, = eoe(33)
VY .
N
cog T1 T e e e e e
VxR o+

The direction cosines of PQ are given by (27). Therefore

oos v1 cos TB - COS Un cos T:I.

coes y, = -
] sin v
Mx (#* - ¢) cos (3% - ¢) - Ax sin (8% - ¢)
) a V@ +M3 siny,
co8 T, 008 f; = CO8 Ty 008
008 Yy = =m—w- - _— "
X ain vg
Mx cos ($* =-¢) = x*) +Ax ($* = @) sin (¥* - ¢)
) ) Ta V¥ + 2N an Vg
0os g, ©CO8 Y, = 008 4, cos VU, =X + xx* cos (¢* - ¢)
ocog Ty = =

sin yg ‘ ca. VvV + N* gin oy,

and/.
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and with u , v, 7, from (30)

cos ,Ua ces y, + cos Ua cos 94 + CO8 'l'a cos8 'l‘4

M x cos(p* - ¢) = x* + x(¢* - ¢) sin(¢* = ¢)] ~ ¥*d x ~ x* cos(g¥ - 8)]

a Ve +2° Vi® 40\ sinvy,
The element of arec is
ds, = d$ VX' +2?

Therefore the whole system (25) gives the dowrwash component

IT! sin v, 1 1 y"l-"'
- ———fj wwe meeewe 08 0, da; dr = - -—/ '[ - — X
2% dg ar

ISTEPERCE T

A* [ x cos(p* - ¢) - x* + x(¢¥ - @) sin(g* - ¢)] - oMx - % caos’-(q,ﬁSIE - ¢)]dgdx

(2 + 2% - 2% cos(§® = §) 422 (¢% - pF 194 /R 4
vee(3L)
Now add {31) to (34).

Fer the dowrwash derivative in chordwise direction the
expression must be differentiated with respect to ¢*. Since ¢ and ¢*
occur in the combination ¢* -~ ¢ only the differentiation with respect
to ¢* and the antegration waith respect to ¢ can be accompllshed by

T T
anitting the ¢ integral end replacing ¢ by the limits - and - - ,
2

2
In particular for ¢* = 0 the integrand is symmetrical and the

following is the expression for this part of the dowmwash derivative

*

dei/T 1 1y
———— I I:. = = - »
dgs Kég T
T T T T ToT . T
R’-cos-+x¥° sin-+—--7\’(x--x*+x-si.n-— -xx:’*(x-x cos-)
2 2 2 2 2 2 2
L iy _ -~ d}&"
( 7 Fa 3/::
VEP 222 1@ 4 x® - 2xx® cos - + A2 (-)
L 5 2
: vee{35)

This downwash derivative of the system of g, vortices (19)
and of the second texm of the g4 vartices (21) (Whlcﬁ is aindependent
of ¢) was gained from the dowrwash itself by simply replacing the co-
ordinate ¢ ty its limits and dropping the integral. This shows that
it can be explained aa dowowash itself. The dowrmwash dexdvative is the

effect/
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effect of ths original vortex surface minue the effect of this surface
moved by the differential amounts d¢p or ds in chord direction. The
two surfaces overlap in their maain part and since the circulation
distribution over the chord is constant the g, vortices and &'
vortices cancel each other with the exception of those port:n.ons at the
leading edge and at the trailing edge (see Figures 3 and L). '
remaining parts of both systems form:one contimwous vortex wh:.ch has the -
shape of the (reduced) blade outline. This is the physical explanation
for associating the contributions from the g, vortices (equation 19)
and from the second part of the vortices (equation 21). Equation (35)
gives the dowrwash at P(¢¥, x*) the circumferential vortex of

y
strength =3¢ (see Figure 9)s This is the first part of the dovmwash
T

derivative. Strassl® gave snother derivative of equation (35) starting
fran the circumferential vortex but this deravation is less sample tha.n
that given above in equations %26) to (35). In the original report! a

more geomstrical method was used whereas present equation (35) proved the
more accurate and wes first used in Strassl's calculations.

6. Second Part of the Dowrwash Derivative

The velooity induced at point P by the first term in (21) of
the helical vortices 8

a ,T T T
S VR PO
dx \ 71 2 2
can be written as
7 o .
1 fes d L,y &K (¢ - ¢%, x, x*) ,
= .._.f[__ -_(:)(¢-¢*)__ dgdx aes(36)
2ndod T dx \T dg
2

VES |

ia the induced velocaty for such voxrtices of unit strength. Partial
integration with respeot to ¢ gives

1 s a ‘i’ 2d
Z - - ()(¢ $*) E(z? [f K(¢-¢* xx)d¢dx
2rdy ax ] -5

If the derivative with respect to ¢ is taken the first torm vanishes
for reasons of symmetry for ¢¥ = 0, The downwash is the component
of the induced velocity perxrpendicular to the screw surface, therefore aa
before a factor cos 6 must be added. Then the second term gives the

downwash
%/
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w3 1 1 a y : . .
U R __f - (_—_—)/?_ K (¢ - ¢", x, x¥) cos 6 dpax
o dax \7/J.T

Differentistion with respect to ¢* and integration with respect to ¢
gives, when ¢* = 0, by reason of symmetry, for the dowrwash derivative

. A L - - 1[1 (;) K(:, x, x*> cos 0 ax eee(37)

dg nd dx \T 2

where K is the induced velocity for a vortex of unit strength along the
helical line between leading and trailing edge and © is as before ths
angle between the velocaty induced hy the vortex through Q and the
normal to the screw surface at the point P. Eguation (37) shows that
the second part of the dovmwash derivative can be explained as dowrnwash
of a surface of helical vortices conneoting the leading and the trailing

a ,v
edges and having the strength = - ( _-_-) d¢ (see Figure 9).
ax \ 7

The rest of thas section ig devoted to the kernel K. The
helical arcs of length ¢ = K7 VE +A? appear in the disc plane as
oircular arcs RxXT. These helical arcs may be replaced hy circulaxr arcs
of angle T and of radius

RXx = RVA + A ees(38)

_ Since this circular arc is to pass through the midpoint of the heliocal
arc, its centre lies beyond the axis a distance x = x. The posaition of
the pavoted point P +to the ciroular arc 18 therefore given by

P ——— eee(39)

if the radius of every circular are is reduced to unity. This reduction
has to be amended 1f and when the integral is taken (see oquation 1;0) .

First the integration over the elemsntary circular arc with
(for this integrataion) constant circulation distribution

< -LEG) e

has to be considered. This oan be dene in temms of elliptical integrals.
The radius is reduced to 1, the pivotal point is o3. For reasons ef

T -
gyrometry integration over half the circular are «~ is sufficient. In
: 2
accordance wath Figure 10, Biot Savart's law (23) gives as’ the corresponding
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1 - og oos ¢f

- v s o L
(1 +o¢? = 205 cos g1)23/a

1

[ ]
A l":<
s Bt
o=t

where ¢! is the angle between O'P and O'Qj where O!'. is the centre

of the oircular arc, This integral is (see [ 3} p. 128)
)
g 1 = ou cos ¢f 2 |—E' E(X) X sin ¥ cosX
5. ' = e e S s o L )
'[o (1 +0g® - 20% oos ;5’)3/; (1 +o0g)? {_k'” (k'a k194

Loy ™ =D F(y) - DY) sin¥ cos X |

- c | ee——— a cmeaeene - cscmwscwee- coe(ll)
(1 +0g)® L k? kt? k134 J
with
1« o=)? T
¥ = ——h—f‘{c—--, k'? = 1 -k = E-—-—-———E-c-)--’ X =2 -
(1 +og) (1 + 0g)® 2,
S YA,
D‘ = --—;c-'u--.’ A = 1 - ka Sj..rlix = 1 - k2 ,OOSQ i: L 0‘(1{—2)
where

P' is the complete elliptical integral of first order

E' L] " 1 ) L 1] i ) Second 1]
F  is the incamplete " " " first Y
E " n it " i bl second n

The term consisting of complete integrals can be written

F' - E!
L
2 hog - k? B! F!
------ vl e rinsarali * es(83)
(1 = ox) (1 +0g) 1~k 1 =0 140z

and is already tabulated®. For the incomplete integral terms

2 9 k? siny cos'X,I Log 1
- 8 ) B(X) - - ¥ 3 .3
(1 +og)®1 - k7| A (1 +0g)® 1 =k
F~F sin) cos? 1 k? sin¥ cos X F
gL e (s ) -
k A 1-0'2 A 1+‘O-E

Adding/



Adding these results

- P . .-‘-‘_"‘_'
K sgin - cos =
- awy 1 p14 sy 1 x 7 I L+
A N PR SR Y G
ag ®J X dx \T 1 -0z 2 L A
V' - “_
1 ® T
T—— ol -F(k,- - -) dx eoo{lk)
1 + 0= 2 L
LS A -
where 6 = arctan - = arctan —— eee(l5)
x x*

The kernel
- - — e
' T T
‘ ¥ sin - oog -
1 T * 7 L L
o) = o el - ) +

1 I = L ]
+ ememm F'(k,- )- F(k,- .- )J ees(L6)
1 +0'5-c 2 2 L

has been tabulated for a certain range of oz and X (see Table).

7+« Third Part of the Dowrwash Dexrdwvative

Striotly the dowrmash and its derivative at a point P of the
propeller blade depend on the vortex systems of all the blades. So far
only the vortex system of the original blade oontaing P has been considered.
In the original report! the influence of the other blsdes has been ocmsidered
in an approximate manner, But experience has shown that the numerioal
influence of these blades is snall, At points of anall redins this influence
is pot negligible but since the interference of the hub is completely
ignored in this paper there is not much point in taking account ‘of the former
effeot. Therefore in all later calculations ([2] and in this paper) the
third part of the dowrwash derivative produced by the other blades has bsen
negleoted.

The following considerations show the plausibility of the
influence being small, First of all ths vortex gystem of Figure 9 which
provides the dowmwash derivative may be thought of alternatively as the
gystem shown in Figure 11. These are closed vortioces of oonstant vortioity

a ,T

- - (:)dgi. Starting et the propeller axis, any particular filament

dx \7

follows the outline of the blade to that point of the leading edge where

tho helical vortex of radius x starts, follows this helical line to the

trailing edge and then back along the outline to the axis. /
Now,
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Now consider the influence of one such vortex filament on the
second and third blades on the "downwash derivative" at the pivotal
point P of the original blade (see Fagure 12). Vortices 2 and 2°,

53 and 3' add to the velocity at P induced Ty the original blade, but
1 and 1' reduce it. The influence of 1 and 1' is stronger than
that of 2, 2* or that of 3, 3' since they lie nearer. The final
result depends on the blade wrdth, the mumber of blades and the advance
ratio but these opposing influences result in a relatively small effect
produced by these blades on the dowrwash derivative at the mid chord
of the original blade.

8+ The Camber Correction Factor of the Propeller Blade

/dc]'_,
Equations (6) and (8) give, for the special value(\---'> = 27,
Da
Lgeom = ° vee(6)
e} 8v ds
2r Lopp
Cf, @ =— = )\% .-?-.._
Vo c.
snd therefore . g
. fors LT MTRV%? + AP
fgem 2 de a d]'Vd
e ——— " ———
ds d¢

Write the non-dimensional caloulation (32)

~
]

T
-— = AYQ
vD

where the A factor depends on the loading. Since the downwash
derivative is proportiocnal to A the camber correction factor is

independent of the loading

where/

ooo-(ll—a)



where

w
d
d - (v,)
-—---:-—'-- = I:. + I2 0-0(50)
do

I, dis given by equataon (35) and I, Yy equation (L4) both caleulated
with y, defined by (48) instead of vy.

The factor A in (48) depends on the thrust coefficient O
of the propelier and, as a first approximation
A Crp
A = .e -(51)

1
Mf%xh
o]

9. The Camber Correction for Best Distribution of Cireulation

The camber correction factor has been calculated assuming the
best distribution of circulation over two sets of affine shapes
(see Figures 13 and 14) for several different advance ratios (see n
Figures 15 and 16). The calculations were carried out mainly by Strassl®.
Without going into great detail some important points should be
mentioned.

The integrand J, (35) of I, has a singularity at the tip
1

x = 1 tending to infinity there e====-==, Divide the integral at

Viex
say X' = 0.9 into two parts
1 rx?® 1 m
I =-f Jidx+-[ J, dx
‘Ko ‘th'

and introduce the wvariable

V1 -x

4]

u

into the second part. Then

i
x! o)

1 ) u!
f J, dx =f 2uJ1 du with u' = v1 - x!

The,/
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The limiting velue of 2u J; at u = O_ is independent of the shape:: -
of the blade, that means independent of 7(x), and has the value

J—‘:z 1 A o+ x¥
A (1 +}\3)3/4 (1 = x*p VAR + xR

‘ The integrand J, of I, (44) tends to infinity at x = x*
with changing sign. Therefore ~ ' t

.
kS

1 px"=J 1 px™j 1
I =-f g, dx + - Jadx+-f J ax
13 o ' - x +

s L xﬂ_j ~ ﬁ'+j

The middle integral is symmetrical to x* and its principal.value can
be calculated by adding the integrands at x¥* «¢ andat x* +e¢ '
gymmetrical about x*, that is '

x¥e g ' 3
L J, ax = [ (5, (x*=¢) +3 (x*+ e)] ae
=J
where ¢ = |x ~ x* varies from 0 to J. The limiting value at

e = 0 and the limiting value of the third integrand at x = 1 are
of less importance but can easily be calculated by developing the
integrands at these points.

- * = " s

10. Some Remarks about Previous Theories of the Camber Correction Factor

The fact that the cambsr ratio caloulated by means of the
usual propeller theory (lifting line) is too amall has been known for a
long time from experimental results and several attempts have been made
to provide a better theory. Helmbold® in 1933 gave a theoretical
approach to the problem which is very mach on the lines of the present
papers " Since the mumeracal results do not agree with those given in
this paper it seems wortlwhile to recount braefly Helmbold's theory
and to show the differences between his approach and the present one.

The axial and the tangential velocity of the propeller behave in
a different marmner. The change fram rw %o rw = wgy takes place almost
immediately in the disc plane whereas the inorease of the axial camponent
fram v to v +w, is continuous. If therefore the projeotion of the
chord in the plane containing the radius and the propeller axis is no
longer small the variation of the axial velocity has to be conaidered.

Designating the additional velocities by V, and vy and
the hydrodynamical pitch angle by £ wath

H

ro |

tan f = mew————

then/ "



then the additional velocity normal to the mean inflow velocity V is
Wg = Vg co8f +vy sin g

Then in accordance with equation (4) the radius of curvature Rg of the
streamline is given Ly

- e = - = - (-—— [ala):] ﬁ + w—— Si.'ﬂ ﬁ ) ...(52)
V ds Ra v 98 ds

where ds is the element of the streamline. The two terms are now
considered separately.

Assuming that the increase of vy takes place in the propeller
plane, Helmbold considers that it is satisfactory to calculate this part
by the cascade theory. The cascade theoxy being a two-dimensional theory
certainly does take account only of the increase of w4 (dus to the
influence of the otherxr blad.es). Helmbold refers to caleculations by Weindg
and Numachi who gave a correction factor k to the lift coefficisnt
putting

- o
' = kG, V=
L 2
=
where k depends on the local pitch angle and changes gignat 8 = =,
‘ 4

Helmbold then caloulates the dsrivatave of the additional axdial
velocity v, by replacing the propellor flow by the non-rotating slip- .
atream with oconstant axial wvelocity over the xesdius,s Then the &lipsiresm
is represented by the paraliel inflow v plus the influence of a semi-
infinite vortex gylinder of radius R. The derivative in streamline
direotion is the derivative in axial direction e multiplied by sin £.
Therefore the first term of (52)

) 1 1 ava
R - = .= == 5in B cos B . ees{53)
Rody Vv Jde .

The differential in axial direction is the influence of the original
semi~infinite vortex oylinder minus the influence of a similar vortex
oylinder moved by the infinitesimal distance de. In the limit the
difference botween these two vortex oylinders is a vortex raing of
radinus R din the propeller plane and of strength

The /



The required downwash derivative in axial direction at radius r 18 given
by the wvelocity induced by a vortex ring of radius R and of strength

dar

E- at a point of radius r in its own plane. This induced velocity cen
e

be cxpressed by complete elliptic integrals (see equation (43)) giving

ava _ Wy B

- = v o

de AR 1 - x3

This derivation strictly holds only for the propeller with anfinite number
of blades and with constant induced axial velocity over the radius.
Helmbcld applies it to the propeller with finite number of blades and with
variable axial velocity by introducing «w, inatead of w,, where « ia
the Goldstein factor, accordaingly

1 1 «w, B(x) sin g ces g

Roly, V =R 1 -

Therefore finally (see equation (5))

acy, o ' "o xw, B{x) sin g ces g
T = Kk e V - fo A T e L ey yea—
da 2 R V 1 - x?

The basic idea behind the method of the present paper is almost
the same as that of Helmbold's paper, but his simplifacations are not
antroduced. The axial velocity of the best propeller is not constant
along the radius and Figure 31 shows, for example, that the camber
ccrrectivn factor does depend on the circulation distribution. Helmwbold's
calculation makes the downwash derivative independent of the shape and
this is certainly not true. IMurthemmore if a lifting surface is used the
vy veloccity varies along the chord by the influence of the bound vortices
of the blade itself, Numerical agreement between Helmbold!s results and
the present cnes therefore cannot be expected.

M. Lamiting Casss. Dowrwash Derivative and Camber Correction Factor for
the Aerofoil with Shock Free Entry at the Ieading Edge

The theory developed in previous sections is an approximate
theory of the liftang surface. Its validity therefore can be checked to a
certain extent by comparison with exact asrofoil theories. The exact
calculation of the lafting surface has only been carrisd out for the
circular and ellipjic discsbs?, and for the cap of a sphere with gzero
angle of incidence®. Since the present method for the camber correction
is developed for zero effective angle of incidence (shock free entry) only,
1t is the case of the cap of a sphere that is swmatable for comparison.
Kainner has shown that the circulation dastribution over span is parabolic
in thas case

I' = .1 -7
so that
T
- X \}'1 -1 ¢|0(5}+)

c where
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where n 1s the sparwise co=ordinate, The dowrmwash derivative is
obtained from the velocity induced by the circumferential vortex of

r d ,T
strength - and by the vortex lsyer of strength m-(-> rmunning in
c dy \o

flow direction from the leading edge to the trailing edge. As long as
the strength of the circumferential vortex remains finite at the tip the
downwash derivative mist tend to infinity at the tip; this point will be

r
discussed in detail later. For the cap of the sphere however, - tends

c
to zero at the tip according to (54).

From equation (5), a constant downwash derivative along the
span can be expected if

£ 1 dawg
st = - = = COnSt . L '(55)

o 8V dx

Presupposaing elliptic outline this condition is fulfilled for the small
cap of an ellipscid of revolution and therefore this case was considered
T
in more detail., Since from (54) =-- is constant, the camber correction
2
C
factor will also be constant fram (47). The actual caleulation® is very
cumbersome, several principal values of integrals having to be calculated,
but the result is independent of y and is given by the simple relation

a

1+ [1 = ==

dwg 1 1 2
—— = ——— 4 ——smem 1N ————— . see(56)

dx ra? a2 ‘ a? .
b 4 - — 1-J1~-—
2 2 '

where a is the axis ratio

) c(0)

b

of the elliptic outline of the wing. Then the corresponding camber
correction factor

1
k = = ——oome=e 0 < 1 «ve(57a)
aﬂ
1-+J1-w-
a? 2
1 4+ ee—ezcmoee D emeeeesce—e-
aa { aﬂ
L |1 - - 1 - J 1 = ==
2 2

or/
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or

' '1
k = - 7 o o e e P e e e e a > 1 [ X ]
- (57b)
- 1 4 ~reeoe———— R
J-3 :
2 1 = == argsin |1 = ==
a? a?

If a = 0, k¥ tends to 1 in accordance with (57a), and this
is the llmltn_ng case of the 1lafting line.

P

2 If»a' - o, k tends to zero, but the 1ift 1tself has a :E‘J.m.te
limiting value. The total 1lift coefficient is .

- 1 b Lk +1 X - 16k
G = - lmk[ £(n) &n = — f(O)f (1 =) & = =—=2(0)
xa -1 a - ‘ 3a
whence the‘ total lift is given by, using (57b)
. L : 2m (
———————————— = - - phvad sew 58
2£(0) 1 1 2 | )
p\P P wmeee 3 =+ - ——— 081N 1 - -
e(0) a \f 2 - a?|
(-7)
a® B
Hence
L V5
lam - e m—— = - 2 = 088
B> ou 22(0) 5
Cop ———
c(0)

For the cap of the sphere a = 1, the result is

de
e D Ot51 7, k = 00615
dx H

The coefficient of total 1ift for this "cap" (twisted so that -the
condition of shock free entry is fulfilled everywhere along the span)

becomes

C;, = 3.27 £(0)

Prom this it was est:imateda that 'the total 1ift ocoefficient for the
untwisted cap with zero angle of incidence would be

v C, = 1.75 £(0) while/

s f



while Kinner gives

Equation (57) gives a general idea of the dependence ;; the
dwa/v
camber correction factor on the aspect ratio (see Figure 17) ==w==

ds
) &wg /v
decreases with increasing - but o* =ee-- inoreases and therefore k
b ds

decreases according to (47). The dotied curve in Figure 17 refers to a
constant circulation distribution over rectangular wings. Here, however,
the camber correotion is not constant along the span, so the curve refers
only to ong point of the span but it shows the same tendency of k with
aspect ratio.

For the elliptic outline the parabolic circulation distribution
("cap" of the ellipsoid of revolution with shock-free entry) was found
to be the only one with constant dowrnwash derivative (and constant camber
T
correction) along the span. The function = is elliptic in this case.
o
Figure 18 shows that this is the important feature, because for the
rectangle with elliptic circulation distribution the downwash derivative
along span proves to bs constant as well, The figure gives the three
cases .

for the two outlines circle and square. The similarity is striking.

The corresponding camber correction factors are given in
Figures 19 and 20, ¥For the square with elliptic circulation distribution
T

r
- is elliptic giving a constant downwash derivative, but - is not
¢ o

constant, so that neither is k in thas case.

12, Influence of Blade Shape, Number of Blades and Circulation
Distribution on the Camber Correction for the Propeller

So far the camber correoction factor had only been calculated

for best distribution over two sets of affine outlinese (sece Figures 13
and 11...). The dowrwash derivative decreases with increasing blade area

aw
(see Figures 21 and 22) but o -2 increases and therefore in

ag
accordance with equation (47) k decreases (see Figures 15 and 16). If
the total blade area is distributed over say 6 blades instead of over 3,
the width of the single blade of the 6 bladed propeller is only half that of
the latter. Therefore the camber correction factor would increase from
points on say the 100% curve to those on the 50% curve (Figures 15 and 16)
which means that the necessary geometrical camber ratios of the 6 bladed
propeller are smaller than those of the 3 bladed one, For points near
the tip where k is smell (impracticably high geometrical camber ratios)
the increase of nmumber of blades might be the only way to achieve the
required 1ift for these points. Besides/
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Besides the two sets of shapes in Figures 13 and 1L the k
factor has been calculated for some elliptic blades (see Pigure 23).
Generally the k factor seems to decrease if the maximum wadth of the
blade shifts towards the tip, {(see Figures 24, 25 and 26).

For the cose of the hydrofoil a simple rule relating the
dowrvash derivative waith the ratio of the carculation to the chord was
noted (Section 11 and Figure 18). A similar correspondence exists for
the propeller as 1s shown by Figure 27. The shape corresponding to the
rectangular hydrcfoil is the sector shaped propeller blade since this
has a constant angle v (see F:Lgure 5) correspondlng to constant chord
length in the hydrofoil, Shape 2 (Figure 14) is nearly sector—shaped,

The dependence of the camber cocrrection factor on the advance
ratio or on the pitch is given in Figures 15, 16, 28. This dependence’
on A seems to became very slight if the projected shape is held
constant rather than the develorsd shape. However, this was only
+ demonstrated for a very simple case, viz., for the sector blade wath constant
circulation distribution (Figure 295.

For this simple shape the first attempts were made with a
circulation distrabution different from the best distribution
(Figure 30 and 3 ). For reasons of comparison the camber correction
for test drstribution as well is given using Lock's aspproximation

I‘op,b - AX\/-J‘ - }-{2

L
b

where A was chosen equal to 3 in order to provide the integrsl

jl"(x) d.x = 1 for comparison with the constant distribution
T (x) 1. The best distrabution gaves an almost constant dowrwash
T
derivative because - i1s almost elliptic in this case; this is

r
discussed in detail later in Section 15.

‘I‘_‘B. -The Shape of the Blade with Minimum Svrface Cavitation

To obtain maximum thrust for a given blade area whale
avoadaing surface cavitation, the drop in pressure should be constant
over the back of the blade. To provade nearly constant pressure over
chord shock' free entry at the leading edge 1s needed and the necessary
1ift is produced by the camber of ths profile only,., Consgidering a
circular arc camber line the minimum pressure over the back occurs at
the madpoint of the profile and 1t should be arranged that this is
constant over the radius,

The difference between the minimum pressure . and the
static pressure Py is given by the maximum velocity Vpo, ©Over ths
profile and the inflow velocity V +o it as

P
Po - Pmin = > (Bax = ) eso(59)

" For/
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iy
i
For circular arc profiles of camber ratio et and maximm thickness
[+
t this dafference is given by
p p Bfepr 8 ¢ P
Po = Pmin = "("gmax'va) = -VQ(------"--): = v, +++(60)
2 2 c ® ¢ 2

where Vv is the forward velocity and o, tho corresponding cavatation
number. The first term in the third expression is m1nly the 1ift
coefficient Cp since by (8) and (32)

Ynfgpe 2T 2y

CL T wes—— = - e e eee (61 )

c /
x’+')ﬁ-

Then (60) becomes — -~

t
2 -
m X o+ Ay D
- O-O = - Pttt + we- . 00(62)
L A2 / o c
\/x’ T
D D |

Therefore the shape which provides uniform pressure drop along the
radius is

c L _ ¥ o+ A2 t )
LA WF s 2 : ve2(63)
D g ; A D )

Tre first expression on the right hand side depends on the
* cireulation distribution and on the loading Cp, for the second one
the general expression

t
- = 0-0&. (1 - x)
D

seems to cover the thickness distrabutions which are gemnerally provided.
Introducing (48) and (51)

— -

c Lo 7Crp N ¥ O+A2
- = eem | emmeme———— VY +2 yg ——mm—m= 0.08 (1 = x) ves(6l)
D oA 1 A2
11-2/ Yoxdx
o _,J i
[+
if v is constant then =~ is (for given o,) given by (64), if Rw is
D

constant the factor A* must be added, ' For/
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Por the -best distribution of circulation

Yo = =m————= - wes(65)

the corresponding blade shapes for the first case are given in Figure 32,
The dotted curve is the fraction arising from the thickness distribution
which cannot be neglected, especially for amall loadings. The resulting

" . blade shapes are approxamately affine and are very simlar to Shape 1

used in Ref, 2 (see Figure 13). Therefore this shape is the most useful
for avoiding surface cavitation provaded that the best distribution of
circulation is employed.

For shock free entry the patch angle of the chord (see Figure 33)
1s the induced angle of advance

Bc i = £+ Cl-l‘ o--(66)
and the pitch angle of the gzero lift line separates into twe parts
8 = 8, + gy
5 ' '000(67)
fore : '
Gy = —memm = 0 - (B +ay)
o]

+

The first part 6, is .indepéndent of the shape and depends on the
circulation distribution only. The second part depends on the shape as
well. |- .

The foliowing in;restigé.tions are based en an example
Op = 0.327 0y = 0,98 A = 0.2 z = 3

The blades corresponding to (64) are compared with a circular blade and
have the same blade area,

- The best distribution of circulation is the only one in which
the shock free entry chord lines form a constant patch screw surface
sance the condition for minimum loss of kinetic enexrgy is

x tan (@ + a3) = oonst, ees(68)

For any other ciroulation d.lStI‘lbuthn x tan 9, 1is no longer constant
and the blade is tw:.sted.

In addition to the best distribution, two other circulation.
distributions are considered, one with finite slope at the tip and the '
other one with zerc slope at the tip. Though the dowrmrash of the
liftaing line theory given by the principal value of an integral is no
longer convergent at the tip itself (logarithmio singularity) for
circulation/

4
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ciroulation distributions with finite slope, this is a mere mathematical
difficulty of the lifting line theory and no physical singularity of the
dowrwa.sh induced by the lifting surface. In partioular using a method
like Multhopp'sY the difficulty is overcome by the meohanical integration
giving reasonable values for the dowrwmsh up to the point 0,981 nearect
to the +ip.

The particular examples chosen are

MGT Kxa

- .--(69&)
Lz 04352 @ + A®

72 ACrp
y = w~wee= gin xx e (69D)
Lz

27NCT S
Lz 2

The corresponding blade shapes are given by (63) and are plotted in
Figures 3ka, 3Lb, 3L4c; the effective camber ratios as given by (66) and
plotted in Figures 35a, 35b, 350 and the oritical cavitation munbers are
given ty (60) and plotted in Faigures 36a, 36b, 36c. To show the twist
of the blades the expression x tan (@ + ay) is plotted in

Figures 37a, 37b, 37c.

The effective camber ratic is proportional to the 1lift
coefficient. In all three cases (see Figure 35) the adequate blade
(1ee4y Pmin = constant) provides high lift coefficients near the
hub which decrease towards the tip; the fiigures do of courss refer to
idealaized propellers without lmbs. The elliptic blade produces a much
more unifiorm distribution of Llif% coefficient over radius in the case (a)
of best distribution.

Figure 38 shows the thrust distrazbution for the cases (a), (b),
(e)s Any derivation from the best distribution entails a loss of
efficiency but this loss is surprisingly smell in view of the consaiderable
change of distribution (b) and (o) from that of (a).

14« The Impossibility of Achieving Exactly Constant Suction over the
Whole Blade - ‘

In the previous section it was shown that the condition of
shock free entry settles the pitch distribution of the blade
(see equation 65) and that the condition of uniform minimum pressure
over back settles the shape of the blade (see equation 63). The
effective camber ratio is determined by the circulation distribution
(see equation 61). The corresponding gecmetrical camber ratio is
related to the dowrwash derivative of the streamline by equation (6).
In sections 5 and 6 it was scen that the dowrwash derivative is
determined directly from the actual downvmsh of a remainder vortex
gystem, vize., that consisting of a single vortex which has the form of
the blade outline (with chord reduced by a factor %v2) and has the

T
strength =~ and a gystem of vortices covering the Plade in chord
T

direotion/
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4 I
direction and having the strength == (:) dx where T, T are related

ax \7 .
to the chords ¢, & y (1 8). Therefore the required dowrwash: derivative
T r . -
tends to mf:.mty as 1 /(1 - x) at the tip as long as =« or = tends
T o

to a finite limit there. Unfortunately this is in fact the case for the
adequate shape defined by (63) since from (63) and (18)

Y y\/:_::"‘_TK"‘ Yy
T c 8 !_ V2 +2\ ]
2~ + —————e—— 0.08 {1 ~ x}:
D WM { Ay - -

r

Since in practical cases the second term in the denaminator vanishes
Y
near the tip, -~ is finite there. Hence fram (6) the geometrical
T ' .
camber ratio tends to infinity if the chord vanishes at a lower order
than 1 = x, It is impossible in this case to provide the camber
necessary to maintain the design circulation near the tip. That is to
gay a uniform distribution of minimmm pressure over the radius is
incampatible with the condition of shock free entry for broad blades.

15. Suggestion of a Circulation Distribution Different from the
Dastribution of Minimum Loss of Kinetic Energy

The above difficulty cannot be overcome by decreasing the

y
chord near the tip because this would increasc =-. The only way out
T

of the difficulty is to-make Z <or Z) tend to zero at the tip

c T
but thais dees imply that the adequate shape muist be given up. One
obvious possibility is a non-zero chord length at the tip. It has been
proved (see Faigures 27 and 30) that the best distribution of circulation
over a sector blade gives finite dowrwash derivative at the tip. However,
apart fram the diffhculties at the edge, other considerations favour an
alteratron of y rather than of o.

The usual blade shape (usual for the best distribution of
circulation) is elliptic near the tip and is very broad. Kinner® has
shown that for the cap of the sphere with zero angle of attack the
circulation distribution over span is not elliptic but parabolic.
Therefore a circulation distribution which is parabolic near the tn.p
seems reasonable for the usual propeller blade.

Such circulation distributions are not normally used in the
lifting line theory because the downwash integral being defined by its
principal value has a logarithmic singularity at the tip in this case.
Tt was mentioned before (section 13) that this is no physical
singularity but a mere mathematical dafficulty of the lifting line
theory. A more serious obgect:non against any deviation from the best
distribution is the decrease in efficiency. Fortunately as has already
been mentioned in section 13, even quite considerable deviations

produce only a slight drop in efficiency.
Foxr/
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For the case of the hydrofoil in shock free flow 1t was shown
in section 11 that parabolic circulation distribution together with
eliiptic chord distribution provides constant downwash derivative over
span. This should be about the same in the more complicated case of the
propeller. The autbor's suggestion is to introduce a new circulation
distribution

i

y = Ax (1 - ) | oo o(70)

over a propellecr blade having the developed shape

c N WCT - - X o+ AR -]
. e V3B £ Ay 4 mmmece= 0,08 {1 ~ x) eoe{71)
D ™, 1 A2
Lz / Y oxdx
° - i

where Yo is that of Iock!s distribution

Yo = xV1 = %3 vee(72)

Figure 39 shows this new dastributaon (70), two of the best
distributions (65) together with Lock's approximation (72) arranging
that each has the same maximum 0.5. Lock!s approximation is very close
to the best distribution over the outer part of the blade, for the
range of A considered, whereas the new distrabution ia close to the
best distrabution over the imner part but differs from 1t in the outer
part in the desired mammer. Introducing (72) into (71) gives

!

o hooiL I A
- = me- - CTX'\/1 - x? \/Kg +?\.3 + =emmm=e 0,08 (1 - JC) . "'(73)
D W, !z A2

To get an impression of the .effect of the change from Lest
distribution to distribution (70) a comparison is made between the
dastribution

15 i
y, = ==7\Cpx (1 - x?)
8z
and the Lock distribution .
LA e
Y, = --= CTx\/‘I - x7
N -

both applied to the blade 73 (see figure LO) for the example

v

Cp = 03 05 = 049 M = 0k 2 = 3
Figure/
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Figure 11 showa the distraibution of the 1lift coefficient, The 1lift
coefficient increases over the inner part of the blade for the new
distribution y, , and tends to zero at the tip as 1 = x3. Now the
blade shape (73) was deraved so that for Lock's distribution the

minimm pressure is uniform over the radaus but this 15 no longer so for
the new distribution y, for which the pressure drop 1s 20% greater than
for ¥ ovor the immer part of the blade. This seems to be a not '
unreasonable increase (see Figure L2). '

Since the new distrabution is no longer the best distribution
the Goldstein factor is of no use and the calculation of the induced |
angles of incidence must be derived by some other means, e.g., Multhopp's
mothod?, For shock free entry the pitch angle of the chord must equal
' the induced angle of advance (see equation 66). It has already been
pointed out that for best distribution x tan (8 + ay) is a constant so
that these chords would form a true helical surface. Figure 43 shows the
deviation of x tan (6 + aj) for both distrzbutions y, and y, from
the constant optimum value. It is apparent that the d.:l.strlbutlon Y
requires the blade to have a slight twist towards the tip :l.n order to
maintein shock free entry,

Figurs L gives the thrust distribution. The effaciency is
L H . .

-

ni e 00792

in hoth cases,.

The main point is'the camber correcotion factor for the new
distribution. Up tco now the calculation has been carried out for the
outline Figure 40 and tho advance ratio tA = 0.4 only. Since for the
new circulation distribution there is no singularity in the integrand of
the first part L (equation 35) this calculation is easier. The final
result is given in Fagures 45 and 46. Figure L5 proves as expected that
the dowrwash derivative is constant over the outer part of the blade.
Figure 46 shows the new correction factor compared with that for the
same blade and advance ratio but with best distribution of circulation.

awy/v

~-==-- being constant the geometrical camber ratio is from (6)

d& .
and (22)
) T . -, ' A c dw,
Jgem oL - M eoe(7h)
- L(Z +N)D ap ; :

tondang to zero at the tip as the chord c. Fagure 47 shows the
goometrical camber ratios for the example. In the inner part of the
blade the new camber ratios are much greater than those for best
drstribution but towards the tip the lavter oncs tend to infinity.

16+ Summary

To delay the onset of surface cavitation as far as possible
the suction developed over the blade should be distributed as uniformly
as possible. The flow should meet the leading edge with shock free entry
so thatthe 1if't is produced only by the camber of the profile. The
curvature of the strcamlines at the mid-chord line of the blade is

calculated/
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calculated bty a method which was suggested for the first time by Ludwieg.
The prescnt paper gives a different derivation for the result given
Pproviously by ludwieg and Ginzel, The downwash derivative i1s needed in
order to determine the section camber ratios which are necessary to
produce the desired circulation and thrust distribution, The circuletion
distrabution over the radius remains arbitrary., For best distribution
of circulation, i.e., minimm loss of kinetic energy, over two sets of
affine blade shapes the numerical calculations were carried out by Ginzel
and Strassl and given in the form of a camber correcction factor k to

be applied to the camber ratios calculated Yty the umal lifting line
theory of the propeller. For convenience these mumericel results are
reproduced again here in the form of graphs,

In the second part of the paper the influence on ths camber
correction factor of blade shape, of number of blades, and of circulation
distribution over the radius are shown. Assuming a normal distribution of
maximum thickness over a blade the condition of constant minimum pressure
over the radius determines an adequate shape of the blade which depends on
the eirculation daistribution. However, the section camber ratio tends to
infinity at the tip for these adequate blade shapes, in particular for
best distrabution over the usual blade shapes which are elliptic in form
near the tip. ¥From an exact theory of the 1afting surface of the cap of
a sphere at zero angle of attack it is known that the circulation distribution
over span 18 parabolic rather than elliptic. It is shown in this paper
that for shock free condition and parabolic circulation distribution the
dowrwash derivative is constant along the span.

It is suggested therefore that the best distribution of
circulation over a broad propeller blade-be replaced by a somewhat
altereod distribution which is parabolic towards the tip of the blade
but the usual blade shape (adequate for best distribution) be retained.
The dowrtwvash derivative is then constant over the main part of the
radius and the camber correction factor is finite and non zero at the
tip. The change from best distribution to the new distmbution does
not affect the efficiency.
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Influence of the Other Blades cn the
Propeller Blade Camber Factor

ADTENTUM
Abstract

The exact expression is deraved for the dowrwash derivative at
the mid-chord line of & propeller blade produced by the vortex surfaces
of the second and third blades of a three-bladed propeller. The influence
of these blades is to reduce the curvature of flow induced by the vortex
surface of the original blade. The effect on the camber correction factor
is given as an influence factor i in Figure 48 which has been derived
for one particular blade shape and another of half the width with several
circulation distributions and one ratio of advance, For best distribution
of circulation and usual blade shapes the factor might be applied generally.

1. Introduction

The numericel velues of® the camber factor given in previous
J:'eports1 are based on the dowrwash derivative produced by the vortex
gystem of the original blade only, because the influence of the other
blades was presumed to be negligibly small., This supposition was based
on the results of an approximate method in which the remaining blades
were replaced by sector blades of the same blade area as the originel one
with constant radial circulation distribution, each blade giving the same
thrust as the original blade.

\ Since 1t is rather difficult to judge the validity of the
approximation it seemed desirable to deraive the exact solution and
caloulate a few examples. The squations can be derived according to the
method used in seotionsb and 6 of reference 1 and split up 1n two parts
accordingly. Although they, refer to a-three bladed propeller, this is
no fundamental restraction since by inserting other angles instead of
e %o

~= and -~ in the eguations any possible arrangement may be covered.

3 . 3
/ .

[

2. First Part of the Downwash Derivative - S !

The first part of the downwesh derivative is that produced by
the g, vortices of the second blade and the vortices of strength
given by the second term of (21) in reference 1. [The starred numbers
of the equations and figures correspond to those unstarred in reference 1]
The pivotal point is x = x*, ¢ = ¢* (see Figure 8%) and the points

b .
of the second blade have co~ordinates x and «- + ¢,§ varying from
' 3

¢

.The radius N in the second blade has direction cosines

2x
cos (qb" - o= - qb)
3

cos iy =
27

coB U’. = sgin (q&* = mem - ¢> 000(26*)
3

coa T, = 0



erd PQ has direction cosines

3
cos ty =
‘a
2R
x sin (gb*-—--qb)
3
cos vy, = eee(27%)
a
A (8% - ¢)
008 T, = mmmmemeaeee
a
and a itself ’
a? on
1-29- = ¥ +x® o oxx* cos(-—- +¢ - sb’“) + A7 (p* - ¢)? . ee(28%)
3 .

Therefore the whole gsystem of radial vortices of the second blade gives
fram (31) in reference 1 the dowrwesh camponent |

2n 25
- M (p - ¢%) cos(-- £ - 95*)- 9 s_m(..- +¢ = ¢*)
14 z 3 .
= e depdx

1 4
27\:/;

mm-i i

T o e
[2® + x* - oxx* oos(-— + ¢ - ¢*) +22 (¢ - «;6"‘)3]"“‘/9\/:n:"‘-i + 22

3 esa(31%)
T

where y = - o--(32*)
vD



- - 23 <xcos(--—+¢a $*) = x* 4+ x (¢~ ¢*) sin{ == + ¢ - ¢*>‘>-m’*<’1x-x*cos(-+¢-¢)5-
1oLy | 3 3 j L 3 | .
- __f 2 - =mers APAX oo s (30%)
ex 4 iz 2T | 27 l -
2 ¥ o+ X - 2xx® cos(——+q§-¢*) + A% (¢ -~ ¢%)? Ve
i 2 J
b 2n
Now add (31*) to {(34%). PFor the influence of the third blade the same expression holds with -~ re¢placing =--.
3 3

-

For the dowrnwash derivative in chordwise direction the expression must be differentiated with respect to ¢*. Since

¢ and ¢* occur in the combination ¢ - ¢* only the diffeventiation with respect to ¢* and the integration with respect to
. 7

¢ can be accomplished by omitting the ¢ dintegral and replacing ¢ by its limits - and =~

. : 2

sign. For the part (31*) the difference between the upper and lower limits is taken since the remaining radial vorticity at the

leading edge and that at the trailing edge are of opposite sign when taking the difference between the original vortex surface and
the one moved in chord directaon.

and introducing a negative

Lo B |

For the part (3L*) special consideration.is necessary. As can be seen from equation (16) in reference 1 there is the

7!
term = -~= which is the initaal value of the helical vortices at the leading edge being the helical wise component of the
2T
ror - I7e )
circumferential vortex. At the trailing edge another term = «~w= ©r = --= mst be added (see Figure L in reference 1), This
. - 20 2r

can be interpreted either as the part of the eircumferential vortex in helical direction or as that part of the trailing vortices
which does not cancel out when the difference is taken between the original vortex surface and the one moved in chord direction.

The two remainder infimitesimal vortex paeces are of the same sign. Consequently the two limits for the part (34%) have to be
added.

This consideration applied in the deravation of equation (35) in reference 1 as well but was not mentioned since the
gymnetry of the whole effect was obvaous,
In/



5 In the present case of (31%) and (34%), however, the integrand shows no symmetry with ¢* = O. Then the dovmwash
derivative >

7 2n T 2r T\ T! [ﬁ [ 2r T T 2 T n 1 T
A? - cos(-- - -)- x*3 s:.n(-- - -)-!- -~ ).?f\x cos(-- - -)- X - s:.n(-—- - -)- XY - xx \x - x* cog —
dwdi/v 1 Ay 2 3 2 3 2 2 | 3 2 2 3 2 ] 5 3
d¢ 2'Rl ; !_ ?_ﬂ ; "i: 2_!3/2
VER 4 )2 %xa + X2 - 2xx¥ cos(-—--) -l-?@(-)i
! 3 2 2/
T 2x T 2r TN TV Q- ¢ ox T T r T R J’ 7t
A - cos{ — + -)+ X2 s:‘.n(-- + ->+ — = A% x cos(-— + -)+ x - sin(-- -+ -)— N - :.':x’fr x - x¥ cogf ~= *
1 f1 y 2 3 2 3 2 2 | L 3 2 2 3 2 1 L 3
+ w- = e e e s e e e e o i - =
e, T e 2y S ?“"l“/"’_
VB N ix” +x’*’-2xx*cos(-——+— +A (-
3 2 2J

A check on the equation is obtained by replacing -- by 0; then this expression reduces to (35) of reference 1.
3



. For convenience the angles should be expressed by those in the first guadrant, Then -

T T T . nT Tt r ® T T x0T ;\ " x x TIAI
-la-cos<—+-)—xm sin(-+-)+-—— A2 xcos(-+->+x-sin(-+-):l-xr>-mc X+ X cos(-+-
&, /v 1 # 2 3 2 3 2 2 1 3 2 2 3 2 § 3 2

Y
-—t-—-— = --[ - ——— - e - = o o ——— — — o o e e s (]
ag 2ma, 7T e x 3 =2 o/t
VR 4 a2 }f + x4 2xxt cos<-+-)+ A9 (-);
L "\3 2 2/
7 T o T [ T T % T N ®OT
v - A2 -cos(-—-—)vrx“ s:.n(---)+ - lh’ ‘X cos(-—-)-x-sin(---)-n—x* - xx* x o+ x* cos(--- !
S gy 2 3 2 3 2/ 2 | h 3 2 2 3 2 f . 3 2
+ -—f - - - — —— -— - = - ——— dax
> ¢ ) 2% 7 R f o r ; 2",3/2
- VIR 22 R 4 x® oy 2xx* cos(-—->+ 7@(-—)1 *
‘ i 3 2 2/| e (35%)
hn 2r .
Inserting ~- instead of ~~. in the above equation and then expressing by the angles in the first quadrant the result is
3 3

the same but the two integrals appear in the reverse order. Therefore the first part of the dowrwash derivative produced by both
blades is

d;wi/v' 1 A 1 4 1 A
O -[ J,, (1x+—[ I, & = -[ J, ax oo o(357%)
dgb 4 ® *%
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Again (see seotion 9 in reference 1) the integrand J, of (35**)
1 1

tends to infinity at the tip as wwawwaw = « for best distribution and
1 - x u
usual blade shapes. The same process as suggested in the previous repcrt

can be used, this time the limiting value 2uJ, at u = 0 has the

value
4 el
. 7@(-+x*>-x*<'l +-->
\/3 2 2 2

A (1N VT e (14 X8 4 %)

or

r
lm<">2 -------- A e ok e et s
u/ VR P (1 +x8 4 x¥)9/2

for any other distribution tending to zero at the tip as V1 - x.

L4e Second Part of the Downwesh Derivative

The velocity induced at point P by the temm

d T T T
ax\T 2 ) 2

of the helical vortices 395 can be written as

2n
d.K(-— + ¢ - %, x, x*
w 1 1

cos & & ,vy 3 ’ p
- TR A S (=>¢ dgdx eee(367)
27: 5 X ‘ ag

[0 pal |

I'\JH

with a slight modification to (36) introducing immediately the kermel K
which is actually built up not from helicel vortices of radius x but
fraom circular arcs of radaus 1. This is the same as in reference 1.

Partial integration with respeet to ¢ gives

- - T
1 pMdcos@d ,ys| aK ,2n 2
-“/ -‘:““<=)l¢["<"‘+¢'¢*: Xy X*>d¢‘ +
2T 4 x dx\7 g\ 3 -
L -1
' 2
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Again ¢ and ¢*® occur in the combination ¢ - ¢* only. This means
integration with respect to ¢ and dirfferentiation with respect to ¢*
cancel each other and ¢ may straight away be repaced by the limits

T T

- and =« ; and ¢* is put zero. The first term does not vamsh since .
2 2

it is no longer symmetrical. The third blade gives the same contribution;

the integrand between - and O of the second blade equals that between

oI |

0 and

/v s 7 aK F 7 T ¥
s RO L ) 1500

eI ] |

of the third blade. Then the downwash derivative becames

T *
+ K(- -,x,x*) dx too(u{. )
2 -
with
A A :
® = arctan - - arctan =- oo (15™)
X x*
K is the velocity induced by a vortex of unit strength and
2 T 2 T
of circular arc form between == « = and -- + « and of radius 1.

3 2 3 2
Since the replacing circular arc is to pass through the mid~point of the
helical arc its centre lies beyond the axis at distance X ~ x. The
distance of the pivotal point P +to the centre of the circular arc is

therefore gaven by (see Figure 10%)

j
\ 27\'.
wa+(§-x)°+2x*(§:-x) cos = _ /
3 VxR o+ (x-xP - (% - x) .
S S _ - AR C
x X

Biot~Savarts! law gives the induced velocity

2% - pd
- 1 —cr;coos(---qb' 1 +c3-coos<-+¢‘>
K —_~F - ] - agt = |2 ? - dg*
/7 o iaﬁ ¥ 3/a
2 1+o‘]-€-20'3-ccos<-—-¢')[ 21+c3t-°+2o-5-ccose+¢'>
3 E

5¢/



5. The Numerical Results

Since it is convenient for the calculation to use a blade shape
given by an analytical expression the shape Fagure L0 (reference 1) was
used which is very similar to the 100% blade of shape 1 (Figure 13 in
reference 1). There is a slight deviation from shape 1 over the imner
part up to 0.7, where the blade Figure 40 is straighter (similar to
shape 2, Figure 1) in reference 1), This results in a slight deviation
of the uncorrected cember factors from those given for shape 1.

For thia shape and the affine one of half the width (50%) of
the original (100%) the expressions (35%*) and (44*) have been caloulated
The result is plotted in figure 48 in the form of a correction i where

G () e

COorr. VNCOIY «

and Kyneorr, 18 the camber factor as given in previous reports so
giving the new corrected one kaogpy, e

This factor i is given for best distribution with A = 0.4,
It depends on the blade shape and largely on the ciroculation distribution.
Look's distribution I' = xV% - ¥ gdeviates from the best distribution
for A = 0 mainly over the inner part. Hence the difference in i
(and in k) for the inner parts of the blads (see dashed curve in
Fagure 48). The corrected and uncorrected cember factors for best .
dastribution can be seen in Figure L9.

The influence of the other blades decresses the curvature effect
of the original one especially over the imnex part of the blade. This is
mainly due to the helical voriices covering the blade since the kermel
function does no longer change sign along the radius because the pivotal
point is outside the blade. Bince such vortices near the axis would give
mmunreasonably large contribution, the calculation has been made wath the
part from O to 0.2 of the integral (4L4*) amitted. Even then for the
wide blade the part {(LL*) was 1L times the part (35"*) at x = 0.3,

4.5 tumes at x = 0.5, and 3 times at x = 0.7, For the 50% blade
the part (41*) was 2 times that of 35 at x = 0,3 and at x = 0.5,
and about the same at x = 0.7. For thy contributions from the original
blade, the part I, is always much greater than TI,.

This effect of the positive kermel function is overwhelming for

a ,y
circulation distrmbutions with positive --(-—) over the radius as for

dx \7 .
instance the best distrabubtion over outlines like shape 1 (see section 13
in reference 1), For the new distribution ¥ = x (1 - ¥ ) suggested in

d sy
reference 1 conditions are different. Then —-(:) changes sign over
dx \7
radius and the contribution (L4*) of the "cascade effect" bscomes very
smalls Then the increase in k  as indicated in Faigure 50 is almost
solely due to the circumferential vortices of the other blades. That
this would result in a reduced downwash derivative was already pointed
out in section 7 of reference 1, The correction i is very small and
nearly constant along the blade (see Figure L48).

6'/



6. Summary

The exact solution for the influence of the remaining blades
on the curvature of flow at the centre line ofmthe initial blade has shown
that for usual blade shapes with circulation distributions near the optimum
thas "oascade effect" on the camber correction always increases the
k factor tending to counteract the influence of the original blade, For
best distribution of circulation the effect on the sections near the root
is greater than expscted fram approximate calculations, being an increase
of up to 10% on the Xk factor for very broad three bladed propellers.
The effect decreases rapidly towards the tip as shown in Figure 48. The
anfluence factor 1 given in this Figure may be applied to all camber
factors previously published which refer to best distribution and usual
shapes. For the new circulation distribution suggested in the previous
report the "cascade influence" is "small over all the blade as shown in
Faigure L8 and Figure 50, It should again be noted that the camber factor
(and the cascade influence on it) are of doubtful validity at sections near
the axis smance the hub is not properly allowed for,.

Reference
No. Author(s Title, etc,
1 I. Ginzel Theory of the broad-bladed propeller.

AJR.L. Report. A.R.L.AR3/GAY/7/1.
AJR.C. 15,120, (See forepart of this

Report.)
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