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ROYAL ASRCRN?C ESTAELIS~T 

The Torsional Vibrations of n Class of Thin, 
Tapered, Solid Wings 

Elizabeth A. Frost 

This report considers the torsional vibrations of thin solid wings 

of doubly-syrmnetrical chordvvlse section, wLth linear variation of chord, 

and. parabolic varlatlon of thiclcness. 

Frequencies of synmetxxcal and ant3.-symmlxical v&rations are 

presented graphically for a range of values of the nspeot ratm and the 

taper ratio. 
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1 Introduction 

Torsional frequencies for cantilever rectangular plates of uniform 
thickness have been found by Reissner and Stein'. In this report a 
similar method of analysis is used to find the frequencies for a tapered 
wing of doubly-symmetrical chordwise section with linear variation of 
chord and parabolic variation of thickness. The deflections of the wing 
are assumed to vary linearly across the chord. Minimisation of tne 
potential energy then leads to an ordinary differential equation instead 
of the usual partial differential equation of plate theory. Taking a 
parabolic variation of thickness makes the solution of the aiffeerential 
equation tractable, The effect of constraint against axial warping is 
inherently included since the structure is analysed as a plate rather than 
as a beam. 

The frequencies so obtained are compared with the frequencies 
obtained on the assumption that there are no constraints to axial 
warping, (cdlled here the "St. Venant" method). The deflection modes 
calculated by these two methods are compared for a particular sting. 

2 The Structure and Problems l!reated 

The structure considered is a thin, elastic, isotropic, solid vting 
of tapered thickness and chord as shove in Fig.1. 

In Appendix I the frequency equations are derived for synrmetrical 
and anti-.sysmetrical vibration of a wing with rectangular cross section. 

In Appendix II it is sham that the frequencies for any doubly- 
symmetrical chordwise sections may be obtained by modifying the para- 
meters in the results for the rectangular cross section. 

In Appendix III the equations are derived for finding the frequencies 
by the "St. Venant" method, 

The modes may be readily obtained once the frequencies are known. 

3 List of Symbols 

a = a(x) 
w 
x 
e 
co 
ct 
Y 

h 

Wst.vt 

‘St .vo 

angular deflection 

circular frequency of torsional 

distance along wing from root 

semi-span 

root chord 

tip chord 

Poisson's ratio 

vibration 

p.y= J- aspect ratio parameter 

frequency according to "St. Venant" method for tapered vtings 

frequency according to "St. Venant" m&hod for an untaperod 
wing with thickness and chord equal to those at the root of 

tapered wing (see equation (10) of Appendix I) 
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5% = ptirsnmters depend;me on the whome seation (see equation 
(33) of APP- II)+ 

Additional symbols used only in the Appsndioes are given before 
Appendix I. 

4 Presentation of Results 

Figs. 2 and 3 present curves for the fundamental frequenaies for 
symmetrical and anti-symmetrical vibration respedively. The frequenoies 
are expressed in terms of k2 et.Vo and are plotted against qh where 
kq and lq d..epond on the ehape of the ohordwise se&ion. The values of 
4 and Q for some sections are gwen in Table I below. The range of 
4X covered is 0.5 -+ It.0 in the symmetrical ease and 0 + 4.0 in the anti- 
symmetrical case. Values taken of the taper ratio */oo are 0.2, 0.4, 
0.6, 0.8 and the untapered case (oJoo = 1.0) is inch&xl from results 
obtained by Reissner and Stein1 and Xansf'ield2. 

In Fig.5, for the purpose of comparison, the frequenoy is plotted as 
a ratio of the frequency obtued when axial warp- is unoonstratiled. 
The effect of constraint against axial warping 1s to inorease the fre- 
quency, and, as is seen from Fq.5, the smaller the value of 4'h the 
greater the increase 3n frequenoy. For the symmetrioal case, as kl h 
dqses below 2.0 the irzreasc becomes greater than 1% for all taper 
ratios. For the anti-symmetrical case the increase is greater,than 1% 
when the taper ratio is less than 0.6 and k~h is small. 

in pig.6 the fun&mental symmetrical and anti-symmetrical modes are 
given for a wing vnth a tap& ratio of 0.6 and for which 4h is unity. 
The modes differ oonsiderably from eaoh other and from that obtained when 
warping oonstrsint 13 ignored. 

Table I 

Chordwise section I kl 52 

I Rectangular I 1 I ' I 

Ellipse 

Two parabolic arcs 

i<>i 
I 8 
w34w3+L,3J 

$2 1 

$3 1.0690 

1.8145 I.1619 

Dramond $5 1 

5 Conclusions 

Fundamental frequencies have been found for the tarsional vibrations 
oftkin,solid~sofdoub~symmetrioalchardrvisesect;ion,Linear 
rrariation of ohord and parabdie vsriation of thidu~~. The frequfxxxi~ 
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are presented graphically for symmetrical end anti-symetrical vibration 
over a range of values of the aspect ratio and the taper ratio. If axial 
warping constraints are ignored, the torsional frequencies may be oon- 
sidcrably underestimated, especially for the symetrical case. 

E. Author Titlo, etc. 

1 Reissner and Torsion end Transverse Bending of Cantilever 
Stein Plates. 

NACA Tech Note 2369. 

2 Mansfield, E.H. The Theory of Torsional Vibrations of a Four- 
Boom, Thin-Walled Cylinder of Rectangular Cross- 
Section. 
R& MNO. 2867. 
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Additional Symbols used in the Appendices 

w = deflection normalto the plane of the wing 

D(x,Y) 

t(x,y) 

E 

m(w) 

c 

r 

* 

. 

E t(x,y)3 
= 12 (I-Y2) ' 

the flexwal rigd~ty of the wing 

= local thickness of wing 

= Young's modul~~s of elasticity 

= mass per unit area 

cz chord 

= parameter defining $aper (see Fig.1) 

= Wferentiation w.r.t. x or x, 

= 11 I, to tims 

= a small increase in 8(x) whioh is a functkn of x 

= r-!/-x 

e as defined by equation (4) 

= roots of equation (Ii) 

= constants occurring 5.n equation (12) 

Suffices x and y denote differentiation 5v.r.t. x and y 

. 
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A?EFmDIX I - 
Analysx for a Plaxe of Varyrng Th-rckmss 

1 AnalYSlS 

The structure considered 1s a thm, elastx, xotropuz, solldwing 
of varymg thuzlmess as shown in Flg.1 and is treated as a plate. 

The stram energy of bendmg, Ils, 1s gxven by 

e +v2 

n, = & 

ii 

D(xi,y) [(w,+PY~)~ t '2(1 -~)(w$y-w@'&] dxdy (1) 
0 42 

The wl"g 1s v~bratmg~torsunally mth smple harmonic motmn, so 
t&t the potential enera due to mertu load-, II, , 1s given by ' 

e. +v2 

nw = -& 
JS 

m(x,y) cd* w2 dk dy (2) 

0 -% 

where the function ,w = w(x,y) 1s the maximum deflected shape. 

Asswnmg that the deflection vanes linearly across the chord we 
have 

The total potential energy, n, is now g~.ven by 

n = n, + rrw 

4 +v2 

=& 
Ji 

[D(x,y) ig (~3")~ + 2(1 - U)(e')'j - h(4.v) w2y2021 dx do' 

0 -C 
12 

45 

=& 
1 

)a3(fY)* + 2(1 - ~)‘a,(e')~ - S302 02] dx 

0 

where vnth the notation of Ref.1, 

(3) 

+=/2 +% +v2 

al = J D(x,y)dy; a3 = J wGY)Y2dy; s3 = 
J 

m(x,y)y24y (4) 

-c 
12 -o/2 

-C 
/2 
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(8) 

(9) . 

6” 6z 
z/o- 

z1 
6L $( 0’o)a 

= &zK(S6x)a = ‘w 
i 

\. Z/0+ 
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(w) C = ““[ d8] 

Ix-J 

UC) 0 = -[,d= (” - 4)z - I ( UC&] 

(94) 

(54) 

c-1 

(El) 

0 = o=x[,e] 

0 = 3’X[e] 

0 = (“‘o)% 

0 = (K’O)fi 

0 = Z*+IJZu* - d (z”zyg6 + z+r) - zd (zJzWc - 6z) + Edzl + ?< 
Z 

$ (” - 4) ; = zY ! 
z3 2 (O‘OpJ 

10’o)a zu (6 - 119 = oh’wm 
Z 

(6) 
e oA’lS, 

rJ=- ( > e$xz ’ 
zy zY+l - 

.(.e’,1x) zyg4 - ,,(‘lQ $2 



Eqmtlon (17) becomes 

[x; 8" - 16 r* h* e'lx = r l)e 
I(- 

= 0 

Substltutmg 

-, 0 = 1 ps As x1 f-2 
scl-4 

into the boundary condztwns (?5), (16), (IS), (19) gives 

)? 
A, (r8)ps = 0 

S'Zlc 

A, p, (re) 
P,-I 

= 0 

(19) 

(20) 
\ 

(21) 

c A, lp, (ps - l)(ps - 2) - 16 r2 X2 p,jj(r - I)81 
P&.-l 

= 0 (22) 

c A, P, (P, - 1) !(r - ')d 
P,4 

= 0 

s=1-l+ 

The condition for a solution of equations (Z.O)-(23) other than the 
vanishng of the constants A,, A *, A3, A4 IS:- 

I 1 1 1 

PI _ % P3 p4 

PI 
(p;-pl -16r*h2Pl) 5 , ------- 

( > 

(Pf 
r-1 PI 

-p,) r 
( ) 

___---- 

= 0 (UC) 

1.3 Derivation of the Frequency Equation for Anti-Symmetrical Vibration 

For anti-symmetrical. vibration, we have the followmg condltlom at 
the root:- 
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and 
W(O,Y) = 0 as before (43) 

W,(O,Y) = 0 (25) 

Frcmxdmg as in Section 1.2 we a&am obtain equations (15), (17) 
and (18) as three of the boundary conditions, the fourth being 

Substituting 

b”l.& = 0 (26) 

in equation (26) gives 

P 

L A,P~(P,-~)(~@ 
Ps-2 

= 0 

The other three boundary condi 
(23) of the syrnmetrios.1 case. 

i?or a solutKm of (ZO), (22), 
of the constants A ,> A29 A 3' A)+:- 

.t 

( 

(27) 

Ions are the s- as (20), (22) and 

23) and (27) other than the vtish2n.g 

I I I 1 

P&P,-4 P2(P24) Pj(Pj4 PJP/+-1) 

(P: - P, 
PI 

-16r2~2P,)~ __________-____ 
( > 

(p:-p,)($.~ -_--_----_----_ 

= 0 

(28) 
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Chordmse Sectmns Other Than Rectangular 

For a tapered wing with a doubly symmetrical chordmse sectmn, 

If (P)J3 P2 aP _ 
0 

9 = D(O,O) co If (PN' dP 
0 

and 

m(o,o) c; < 
1 

s3 = 
4 r5 85 $ f (P) P2 dP 

0 

where 

;p and tx 
Y = 4-9 t x,0 = f (P) 

The differential equation (6) becomes 

(30) 

D(W)c; 
4 

m(o,o)c~ x7 
2 c5 

f(P) P2 dp &J2 8 = 0 (31) , 
4 

0 

which reduces to 

- 4 k; A2 x2 
2+ 

i=O 
(32) 
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where 

1 1 

I 
uw3 dP 

i 
HP)13 dP 

k2 O 0 1 t 9 k2 2 S 1 . (33) 

3 3 J f(P) P2 dP 
0 0 

The parameters k, and k2 are constant for a given section. 

This dif'ferentizl equation is the same as the one obtained for the 
rectangular chords&e section with h replaced by k,h and ust V by 

k2%t.vo - 
l 0  

Sirmlarly the boundary conditions can be shown to be the same after 
using this replacement. 

The results obtained for the rectangular section therefore give 
results for other sections in terms of k,h and k2wstaV lnsteaii of 

h ana wSt.Vo * 
0 

Similarly the results obtauled for the untapered wing of rectangdar 
chord-wise section can be used to obtain results for seotions other than 
rectangular. 
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APPENDIX III 

St. Venant Frequency for Tapered Wings, ust V 
* t 

- When axial warping constraints are ignored., (the St. Venant method), 
the differentzal equation for torslonal vlbratlon is 

For a thin wng ' 

tc 
s 

12 

J = m(x,Y) Y2 4v = S3 I 

-c 
/2 

+C 
/2 

0 = 2(1-v) 
i 

D(x,y)dy q 2(1-v)a, 

-o/2 

and equation (3&j becomes 

s,; = 2(1-v) $ ( 
w 

9 z 
/ 

(34) 

(35) 

For the tapered wing vibrating with simple harmoruc motion equation 
(35) becomes,on using equations (8) and (IO), 

4 xf 0” + 28 x, 8’ + x2r2 (36) 

where 
A solution of the above d-fferentul equation 1s of the form xl' 

p satlsf'zes the follomng equation:- 

4 p2 t 24 p t r2n2 (37) 
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ana the general solution is 

e = Axlp' + BxlP2 (38) ' 

where p 
1 and P2 are the roots of equation (37). 

The boundary conditions are 

bl,=,, = 0 (39) 

wq+-,), = O (40) 

Substituting (38) into (39) and (40) gives 

A(r.e) PI + B(r4) P2 = 0 (41) - 
. . 

A P, [(r-1)41 
P,-1 

+ B p2 [(r-l)41 
PC.&-1 

E 0 (42) 

The frequency equation is the condition for a solution of (41) and 
(4.2) other than the vamshxny of the constants A ard B, 1.e. 

(rPJP’ (re)P2 
= Q (43) 

P, [(r-1)81 
P,-' 

p2 [(r-lb] 
P2-1 

which becomes 

where 

q cos y+ ps3.ny = 0 

PI 
= p+1q 1 

ana 
pz c p-iq 

y = q log, + 
( i I 

(44) 

(45) 
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FIG. 2. 
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FIG. 2. FUNDAMENTAL FREQUENCIES FOR 
SYMMETRICAL VIBRATION. 



FIG. 3. 
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FIG. 3. FUNDAMENTAL FREQUENCIES FOR 

ANTI-SYMMETRICAL VIBRATION. 
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FIG.S,(a, FUNDAMENTAL FREQWENCIES FOR 
SYMMETRICAL VIBRATION PLOTTED AS RATIOS 

OF THE “ST VENANT4 FREQUENCIES. 
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FIG 5 (b) FUNDAMENTAL FREQUENCIES FOR 
ANTI-SYMMETRICAL VIBRATION PU>TTED AS 
RATIOS OF THE -ST VENANT” FREQUENCIES. 



FIG. 6. 
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