C.P. No. 218
$(17,526)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL' CURRENT PAPERS

The Torsional Vibrations of a Class of Thin, Tapered, Solid Wings

By
Elizabeth A. Frost

LONDON: HER MAJESTY'S STATIONERY OFFICE
U.D.C. No. 539. 385 : 533.69 .042 .22

Technical Note No. Structures 152

January, 1955

ROYAL ATRCRAFY ESTABLISHMENT
The Torsional Vibrations of a Class of Thin, Tapered, Solid Wings
by

Elizabeth A. Frost

SUMMARY

This report considers the torsional vibrations of thin solid wings of doubly-symmetrical chordwase section, with linear variation of chord, and parabolic variation of thickness.

Frequencies of symmetrical and anta--symnetrical vibrations are presented graphically for a range of values of the aspeot ratio and the taper ratio.
IIST OF CONTENTS
Page
1 Introduotion 3
2 The Structure and Problems Treated 3
3 List of Symbols 3
4 Presentation of Results 4
5 Conclusions 4
References 5
IIST OF APPFNDICES
Appendix
Analysis for a Plate of Varying Throkness I
Chordwise Sections other than Rectangular II
"St. Venant" Frequency for Tapered Wings III
IIST OF ILIUSIRATIONS
Figure
The Geometry of the Wing 1
Fundamental Frequencies for Symmetrical Vibration 2
Fundamental Frequencies for Anti-Symetrical Vibration 3
Variation of "St. Venant" Frequency with Taper 4
Fundamental Frequencies as Ratios of the "St. Venant" Frequencies: (a) Symmetrical, (b) Anti-Symmetrical 5
Modes of a Particular Wing 6

Introduction

Torsional frequencies for cantilever rectangular plates of uniform thickness have been found by Reissner and Stein1. In this report a similar method of analysis is used to find the frequencies for a tapered wing of doubly-symmetrical chordwise section whth linear variation of chord and parabolic variation of thickness. The deflections of the wing are assumed to vary linearly across the chord. Minimisation of the potential energy then leads to an ordinary differential equation instead of the usual partial differential equation of plate theory. Taking a parabolic variation of thickness makes the solution of the differential equation tractable. The effect of constraint against axial warping is inherently included since the structure is analysed as a plate rather than as a beam.

The frequencies so obtained are compared with the frequencies obtained on the assumption that there are no constraints to axial warping, (called here the "St. Venant" method). The defloction modes calculated by these two methods are compared for a particular wing.

2 The Structure and Problems Treated

The structure considered is a thin, elastic, isotropic, solid wing of tapered thickness and chord as shown in Fig. 1 .

In Appendix I the frequency equations are derived for symmetrical and anti-symmetrical vibration of a wing with rectangular cross section.

In Appendix II it is shown that the frequencies for any doublysymmetrical chordwise sections may be obtained by modifying the parameters in the results for the rectangular cross section.

In Appendix III the equations are derived for finding the frequencies by the "St. Venant" method.

The modes may be readily obtained once the frequencies are know.

3 List of Symbols

$\theta=\theta(x)=$ angular deflection
$\omega \quad=\quad$ circular frequency of torsional vibration
$\mathbf{x} \quad=$ distance along wing from root
$\ell \quad=$ semi-span
$c_{0}=$ root chord
$c_{t}=$ tip chord
$\nu \quad=$ Poisson's ratio
$\lambda \quad=\frac{\ell}{c_{0}} \sqrt{\frac{3(1-\nu)}{2}}=$ aspect ratio parameter
$\omega_{S t .} V_{t}=$ frequency according to "St. Venant" method for tapered wings
ust. $V_{0}=$ frequency according to "St. Venant" mothod for an untaperod wing with thickness and chord equal to those at the root of tapered wing (see equation (10) of Appendix I)
$k_{1} k_{2}=$ parameters depending on the chordwise section (see equation (33) of Appendix II).

Additional symbols used only in the Appendices are given before Appendix I.

4 Presentation of Results

Figs. 2 and 3 present curves for the fundamental frequencies for symmetrical and anti-symmetrical vibration respectively. The frequenoies are expressed in terms of $k_{2} w_{S} t_{0} v_{0}$ and are plotted against $k_{1} \lambda$ where k_{1} and k_{2} depend on the ghape of the chordwise section. The values of k_{g} and k_{2} for some sections are guven in Table I below. The range of $k_{j} \lambda$ covered is $0.5 \rightarrow 4.0$ in the symmetrical case and $0 \rightarrow 4.0$ in the antlsymmetrioal case. Values taken of the taper ratio ct/oo are 0.2, 0.4, $0.6,0.8$ and the untapered case ($o_{t} / c_{0}=1.0$) is included from results obtained by Reissner and Stein ${ }^{1}$ and Mansfield ${ }^{2}$.

In Fig. 5, for the purpose of comparison, the frequenoy is plotted as a ratio of the frequency obtanned when axial warping is unconstrained. The effect of constraint against axial warping $1 s$ to inorease the frequency, and, as is seen from Fig. 5, the smaller the value of ky the greater the inorease in frequenoy. For the symmetrioal case, as $k_{1} \lambda$ decreases below 2.0 the increase becomes greater than 10% for all taper ratios. For the anti-symmetrical case the increase is greater, than 10% when the taper ratio is less than 0.6 and $k_{1} \lambda$ is small.

In Fig. 6 the fundamental symmetrical and anti-symmetrical modes are given for a wing wath a taper ratio of 0.6 and for which $k_{y} \lambda$ is unity. The modes differ considerably from each other and from that obtaine when warping constraint is ignored.

Table I

Chordwise section	k_{1}	k_{2}
Rectangular	1	1
Ellipse	$\sqrt{2}$	1
Tro parabolic arcs	$\sqrt{3}$	1.0690
	1.8145	1.1619
Dlamona		1

are presented graphically for symetrical and anti-symmetrical vibration over a range of values of the aspect ratio and the taper ratio. If axial warping constraints are ignored, the torsional frequencies may be considorably under-estimated, especially for the symmetrical case.

REFFERENCES

No.

1 Reissner and Stein

Mansfield, E.H.

Titlo, etc.
Torsion and Transverse Bending of Cantilever Plates. NACA Tech Note 2369.

The Theory of Torsional Vibrations of a FourBoom, Thin-Walled Cylinder of Rectangular CrossSection. R\& M No. 2867.

Additional Symbols used in the Appendioss

```
w = deflection normal to the plane of the wing
D(x,y) = E Et(x,y\mp@subsup{)}{}{3}
t(x,y) = local thickness of wing
E = Young's modulus of elasticzty
m(x,y) = mass per unit area
c = chora
r = parameter defining taper (see Fig.1)
1 = dufferentiation w.r.t. x or }\mp@subsup{x}{1}{
• = " " to time
60 = a small increase in 0(x) which is a function of }
* = r\ell - x
a},\mp@code{,}\mp@subsup{a}{3}{},\mp@subsup{s}{3}{}=\mathrm{ as defined by equation (4)
p
A}
Suffices }x\mathrm{ and }y\mathrm{ denote differentiation w.r.t. }x\mathrm{ and }
```


APPENDIX I

Analysis for a Plate of Varying Thickness

1 Analysis
The structure consldered is a thin, elastic, isotropic, solid wing of varying thickness as shown in Fig. 1 and is treated as a plate.

The strain energy of bending, Π_{S}, is gaven by

$$
\begin{equation*}
n_{s}=\frac{1}{2} \int_{0}^{\ell} \int_{-c / 2}^{+c / 2} D(x, y)\left[\left(w_{x x}+w_{y y}\right)^{2}+2(1-\nu)\left(w_{x y}^{2}-w_{x x} w_{y y}\right)\right] d x d y \tag{1}
\end{equation*}
$$

The wing is vibrating torsionally with simple harmonic motion, so that the potential energy due to inertia loading, Π_{ω}, is gaven by

$$
\begin{equation*}
\Pi_{\omega}=-\frac{1}{2} \int_{0}^{e} \int_{-c / 2}^{+c / 2} m(x, y) \omega^{2} w^{2} d \dot{x} d y \tag{2}
\end{equation*}
$$

where the function $w=w(x, y)$ is the maximum deflected shape.
Assuming that the deflection varies linearly across the chord we have

$$
w=y \theta(x)
$$

The total potentaal energy, Π, is now given by

$$
\Pi=\Pi_{s}+\Pi_{\omega}
$$

$=\frac{1}{2} \int_{0}^{\ell} \int_{-c / 2}^{+c / 2}\left[D(x, y)\left\{y^{2}\left(\theta^{\prime \prime}\right)^{2}+2(1-\nu)\left(\theta^{\prime}\right)^{2}\right\}-m(x, y) \omega^{2} y^{2} 0^{2}\right] d x d y$

$$
\begin{equation*}
=\frac{1}{2} \int_{0}^{\ell}\left\{a_{3}\left(\theta^{\prime \prime}\right)^{2}+2(1-\nu) a_{1}\left(\theta^{\prime}\right)^{2}-S_{3} \omega^{2} \theta^{2}\right\} d x \tag{3}
\end{equation*}
$$

where wath the notation of Ref. 1 ,

$$
a_{1}=\int_{-c / 2}^{+c / 2} D(x, y) d y ; a_{3}=\int_{-c / 2}^{+c / 2} D(x, y) y^{2} d y ; s_{3}=\int_{-c / 2}^{+c / 2} m(x, y) y^{2} d y
$$

(8)

$$
\begin{aligned}
& \frac{L^{\gamma} L^{\alpha}}{L^{1} x} \circ\left(0^{\prime} 0\right) \alpha=\operatorname{Rp}\left(\Lambda^{\prime} x\right) \alpha \int_{2 / 0+}^{2 / 0-}=b_{B} \\
& \frac{6^{\gamma} \sigma^{x}}{6^{h^{x}}} \frac{2 t}{\varepsilon^{0} O\left(0^{\prime} 0\right) \tau}=\kappa p_{z} \kappa\left(\Lambda^{\prime} x\right) \alpha \int_{z / 0+}^{z / 0-}=\varepsilon_{0}
\end{aligned}
$$

จлеч Mou әભ

(L)
'นoţoas әsṭрдочо

(9)

$$
0=\theta_{2} m^{\varepsilon} S-1\left(1 \theta^{L_{r}}\right)(n-1) Z-n\left({ }^{\varepsilon} \theta^{\varepsilon} \varepsilon\right)
$$

$$
\begin{align*}
& 0={ }_{\gamma}^{0}\left[1 \theta \rho\left(n \theta^{\varepsilon} \theta\right)\right]+
\end{align*}
$$

$$
\begin{aligned}
& \text {-:sants }
\end{aligned}
$$

-6-
(81)
$C=\gamma=x^{n}\left[\theta^{\varepsilon} \theta\right]$
purs

$$
\begin{equation*}
0=\gamma=x_{1}\left[\theta_{B}(n-b) z-1\left(n \theta^{\varepsilon_{\theta}}\right)\right] \tag{LL}
\end{equation*}
$$

$$
\begin{align*}
& 0=0={ }^{=}[1 \theta] \quad \text { pure } \tag{9r}\\
& 0={ }^{0=x}[\theta] \quad \text { 7ert os } \tag{Gl}\\
& 0=\left(\kappa^{\prime} 0\right)^{x}{ }_{M} \\
& \text { pure } \\
& 0=\left(\Omega^{\prime} 0\right)^{\mu}
\end{align*}
$$

$$
\begin{equation*}
t_{d}{ }_{x}^{t_{x} H_{V}}+\varepsilon_{d}{ }^{t_{x} \varepsilon_{V}}+\tau_{d}{ }^{t_{x} \Sigma_{V}}+{ }_{r_{d}}{ }^{t_{x} t_{V}}=\theta \tag{2l}
\end{equation*}
$$

(レ)

әхәчм

Equation (17) becomes

$$
\begin{equation*}
\left[x_{1}^{2} \theta^{\prime \prime \prime}-16 r^{2} \lambda^{2} \theta^{\prime}\right]_{x_{1}=(r-1) \ell}=0 \tag{19}
\end{equation*}
$$

Substituting

$$
\theta=\sum_{s=1-4} A_{s} x_{1}^{p_{s}}
$$

into the boundary conditions (15), (16), (18), (19) gives

$$
\begin{gather*}
\sum_{s=1-4}^{\sim} A_{S}(r l)^{p_{S}}=0 \tag{20}\\
\sum_{s=1-4} A_{S} p_{s}(r l)^{p_{S}-1}=0 \tag{21}\\
\sum_{s=1-4} A_{S}\left\{p_{S}\left(p_{s}-1\right)\left(p_{s}-2\right)-16 r^{2} \lambda^{2} p_{s}\right\}\{(r-1) l\}^{p_{s}-1}=0 \tag{22}\\
\sum_{s=1-4} A_{S} p_{S}\left(p_{s}-1\right)\{(r-1) l\}^{p}=0
\end{gather*}
$$

The condition for a solution of equatzons (20)-(23) other than the vanishing of the constants $A_{1}, A_{2}, A_{3}, A_{4}$ Is:-

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{24}\\
p_{1} & p_{2} & p_{3} & p_{4} \\
\left(p_{1}^{3}-p_{1}-16 r^{2} \lambda^{2} p_{1}\right)\left(\frac{r-1}{r}\right)^{p_{1}} & \cdots \cdots \\
\left(p_{1}^{2}-p_{1}\right)\left(\frac{r-1}{r}\right)^{p_{1}} & \cdots \cdots
\end{array}\right|=0
$$

1.3 Derivation of the Frequency Equation for Antz-Symmetrical Vibration For anti-symmetrical vibration, we have the following conditions at the root:-

$$
\begin{equation*}
w(0, y)=0 \quad \text { as before } \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{x x}(0, y)=0 \tag{25}
\end{equation*}
$$

Proceedurg as in Section 1.2 we again obtain equations (15), (17) and (18) as three of the boundary conditions, the fourth being

$$
\begin{equation*}
\left[\theta^{\prime \prime}\right]_{x=0}=0 \tag{26}
\end{equation*}
$$

Substituting

$$
\theta=\sum_{s=1-4} A_{s} x_{1}^{p_{s}}
$$

in equation (26) gives

$$
\begin{equation*}
\sum_{s=1-4} A_{s} p_{s}\left(p_{s}-1\right)(r l)^{p_{s}-2}=0 \tag{27}
\end{equation*}
$$

The other three boundary conditions are the same as (20), (22) and (23) of the symmetrical case.

For a solution of (20), (22), (23) and (27) other than the vanishing of the constants $A_{1}, A_{2}, A_{3}, A_{4}:-$

APPENDIX II

Chordwase Sections Other Than Rectangular

For a tapered wing with a doubly symmetrical chordwise section,

$$
\begin{align*}
& a_{3}=\frac{D(0,0) c_{0}^{3} x_{1}^{9}}{4 r^{9} e^{9}} \int_{0}^{1}\{f(p)\}^{3} p^{2} d p \\
& a_{1}=D(0,0) c_{0} \frac{x_{1}^{7}}{r^{7} e^{7}} \int_{0}^{1}\{f(p)\}^{3} d p \tag{29}
\end{align*}
$$

and

$$
S_{3}=\frac{m(0,0) c_{0}^{3} x_{1}^{5}}{4 r^{5} e^{5}} \int_{0}^{1} f(p) p^{2} d p
$$

where

$$
\begin{equation*}
y=\frac{c}{2} p \text { and } \frac{t(x, y)}{t(x, 0)}=f(p) \tag{30}
\end{equation*}
$$

The differential equation (6) becomes

$$
\begin{align*}
& \frac{D(0,0) c_{0}^{3}}{4} \int_{0}^{1}\{f(p)\}^{3} p^{2} d p\left(\frac{x_{1}^{9}}{r^{9} e^{9}} \theta^{\prime \prime}\right)^{\prime \prime}-2(1-\nu) D(0,0) c_{0} \int_{0}^{1}[f(p)]^{3} d p\left[\frac{x_{1}^{7}}{r^{7} e^{7}} \theta^{\prime}\right]^{\prime} \\
&-\frac{m(0,0) c_{0}^{3} x_{1}^{5}}{4 r^{5} e^{5}} \int_{0}^{1} f(p) p^{2} d p \omega^{2} \theta=0 \tag{31}
\end{align*}
$$

which reduces to

$$
\begin{equation*}
\left[\frac{x_{1}^{9}}{r^{9}} \theta^{\prime \prime}\right]^{\prime \prime}-16 k_{1}^{2} \lambda^{2}\left[\frac{x_{1}^{7} \theta^{\prime}}{r^{7}}\right]^{\prime}-4 k_{1}^{2} \lambda^{2} \pi^{2}\left(\frac{\omega}{k_{2} \omega_{S t .}}\right)_{0}^{2} \frac{x_{1}^{5} \theta}{r^{5}}=0 \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}^{2}=\frac{\int_{0}^{1}[f(p)]^{3} d p}{3 \int_{0}^{1}[f(p)]^{3} p^{2} d p}, \quad k_{2}^{2}=\frac{\int_{0}^{1}[f(p)]^{3} d p}{3 \int_{0}^{1} f(p) p^{2} d p} \tag{33}
\end{equation*}
$$

The parameters k_{1} and k_{2} are constant for a given section.
This differentirl equation is the same as the one obtained for the rectangular chordwise section with λ replaced by $k_{1} \lambda$ and $\omega_{\text {St. }} V_{0}$ by $k_{2} \omega_{S t .} V_{0}$

Simalarly the boundary conditions can be shown to be the same after using this replacement.

The results obtained for the rectangular section therefore give results for other sections in terms of $k_{1} \lambda$ and $k_{2} \omega_{S t} . V_{0}$ instead of λ and $\omega_{S t . V_{0}}$.

Similarly the results obtained for the untapered wing of rectangular chordwise section can be used to obtain results for sections other than rectangular.

St. Venant Frequency for Tapered Wings, $\omega_{\text {St. }} V_{t}$

- When axial warping constraints are ignored, (the St. Venant method), the differential equation for torsional vibration is

$$
\begin{equation*}
\ddot{J}=\frac{d}{d x}\left(C \frac{d \theta}{d x}\right) \tag{34}
\end{equation*}
$$

For a thin wing

$$
\begin{aligned}
& J=\int_{-c / 2}^{+c / 2} m(x, y) y^{2} d y=s_{3} \\
& c=2(1-v) \int_{-c / 2}^{+c / 2} D(x, y) d y=2(1-\nu) a_{1}
\end{aligned}
$$

and equation (34) becomes

$$
\begin{equation*}
S_{3} \ddot{\theta}=2(1-\nu) \frac{d}{d x}\left(a_{1} \frac{d \theta}{d x}\right) \tag{35}
\end{equation*}
$$

For the tapered wing vibrating with simple harmonic motion equation (35) becomes, on using equations (8) and (10),

$$
\begin{equation*}
4 x_{1}^{2} \theta^{\prime \prime}+28 x_{1} \theta^{\prime}+\pi^{2} r^{2}\left(\frac{\omega_{S t . V_{t}}}{\omega_{S t .} V_{0}}\right)^{2} \theta=0 \tag{36}
\end{equation*}
$$

A solution of the above arfferential equation is of the form $x_{1} p$ where p satisfies the following equation:-

$$
\begin{equation*}
4 p^{2}+24 p+r^{2} \pi^{2}\left(\frac{{ }^{\omega} S t \cdot V_{t}}{\omega_{S t}}\right)_{0}^{2}=0 \tag{37}
\end{equation*}
$$

and the general solution is

$$
\begin{equation*}
\theta=A x_{1}{ }^{p_{1}}+B x_{1} p_{2} \tag{38}
\end{equation*}
$$

where p_{1} and p_{2} are the roots of equation (37).

The boundary conditions are

$$
\begin{align*}
& {[\theta]_{x_{1}=r \ell}=0} \tag{39}\\
& {\left[\theta^{\prime}\right]_{x_{1}=(r-1) \ell}=0} \tag{40}
\end{align*}
$$

Substatuting (38) into (39) and (40) gives

$$
\begin{gather*}
A(r l)^{p_{1}}+B(r \ell)^{p_{2}}=0 \tag{41}\\
A p_{1}[(r-1) l]^{p_{1}-1}+B p_{2}[(r-1) \ell]^{p_{2}-1}=0 \tag{42}
\end{gather*}
$$

The frequency equation is the condition for a solution of (41) and (42) other than the vanishing of the constants A and B, i.e.

$$
\left|\begin{array}{cc}
(r l,)^{p_{1}} & (r l)^{p_{2}} \tag{43}\\
p_{1}[(r-1) \ell]^{p_{1}-1} & p_{2}[(r-1) \ell]^{p_{2}-1}
\end{array}\right|=0
$$

whzch becomes

$$
\begin{equation*}
q \cos \gamma+p \sin \gamma=0 \tag{44}
\end{equation*}
$$

where
and

$$
\left.\begin{array}{l}
p_{1}=p+1 q \tag{45}\\
p_{2}=p-i q \\
r=q \log _{e}\left(\frac{r-1}{r}\right)
\end{array}\right\}
$$

(a) PLAN FORM

(b) SECTION ALONG THE SPAN SHOWING VARIATION OF THICKNESS.

FIG.I. THE GEOMETRY OF THE WING

FIG. 2.

FIG.2. FUNDAMENTAL FREQUENCIES FOR SYMMETRICAL VIBRATION.

FIG. 3.

FIG. 3. FUNDAMENTAL FREQUENCIES FOR ANTI-SYMMETRICAL VIBRATION.

FIG. 4.

fig.4. Variation of the "st venant" FREQUENCY WITH TAPER.

FIG.5.(a)

FIG.5.(a) FUNDAMENTAL FREQUENCIES FOR SYMMETRICAL VIBRATION PLOTTED AS RATIOS OF THE "ST. VENANT" FREQUENCIES.

FIG.5.(b)

FIG5(b) FUNDAMENTAL FREQUENCIES FOR ANTI-SYMMETRICAL VIBRATION PLOTTED AS RATIOS OF THE "ST VENANT" FREQUENCIES.

FIG. 6.

FIG.6. DEFLECTION MODES FOR A PARTICULAR WING.

Crown Copyright Reserved

PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE

To be purchased from
York House, Kıngsway, london, w.c 2. 423 Oxford Street, london, w 1 P O Box 569, london, sel
13a Castle Street, edinburgh, 2 | 109 St Mary Street, Cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Street, belfast
or from any Bookseller
1955
Price 2s. 6d. net
printed in great britain

