C.P. No. 219
$(17,247)$
A.R.C. Technical Report
C.P. No. 219
$(17,247)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Methods for Reducing Seaplane Take-Off Distances to Standard Conditions

By
J. A. Hamilton

LIBRARY
 ROYAL AIRCRAFT ESTABLISHFE: :T BEDFORD.

MARINE AIRCRATT EXPERTABTHAL ESTABLISHWENT, FEITXSTOWE, SUFWOLK.

I:PEHODS FOR REDUCTNG SEAPLANE TAKE-OFF
DISMANCES TO STANDARD COMDITIONS
by

J.A. Hamiltor

SUMWARY

In this report are developed methods for the reduction of seaplane take-off distances to standerd conditions of weight, wind and ambient temperature. The expressions derived nre applicable to the waterborne run and to the airborne run up to the 50 foot hoight point. The methods may be applied to take-off with simulated encine failurc.

The thvoretical results are in good agreement with measurements made on reciprocating engined seaplanes of 9000 Ib . and $78,000 \mathrm{lb}$. weight for winds up to 20 knots , wight changes of 20% and a temperature range of 2 to 32 degrees G.

Horover the general applacation of the corrections should be limited to temprinture changes or less than $10^{\circ} \mathrm{C}$, woight changes of less than 10% and wind changes of less than 10 knots. These ranges should be adequate for the majority of flicht trials conducted in one location.

LIET OF CONTENTS

1. Introduction.
2. Descriptzon of Aircreft.
3. Range of Tests and Test Tcohnique.
4. Instrument Installation.
4.1. Internal.
4.2. External.
5. Correction Formulae.
5.1. Vaterborne run.
5.1.1. Corrections for wind speed and unstick speed.
5.1.2. Weaght correction.
5.1.3. Corrections for atmospheric temperature and pressure.
5.2. Airborne path.
5.2.1. Corrections for speed and wind.
5.2.2. Cormections for weight and thrust.
5.2.3. Correction of airborne distance with engine failure.
6. Comparis on with Measurements.
6.1. Waterborne distance.
6.1.1. Corrections for wind and speed. 6.1.2. Corrections for weight and thrust. 6.1.3. Comparison between corrccted and uncorrected results. 6.2. Airborne distences.
7. Discussion.
8. Conclusions.
9. Acknowledgements.

LIST OF APEFDDICOS

Appendix No.
Instrumentation. I I I I I I
Devclopment of Corrcction Formulac. II
Schemo of Calculation for Reduction of Scaplane
Take-off Distances to Standard Conditions. III

IIST OF THBLES

Toble No.
Data - Solent N.J. 20t. 1
Data - Sealand G-AKIN. 2
Measured Waterb orne Ruas Uncorrected (Temperate). 3
Measured Waterborne Runs Uncorrected (Sub-Tropicol). 4
Variation of Waterbome Distnnce with Take-off Water Speed 5 (Corrected for wejght and engine power).
Variation of Watcruorne Distence with Wind Speed
(Corrected for weight, unstick speed and engine power). 6
Variation of Waterborne Distance with Weight
(Correcteत for wind, unatiok speed nnd porcr, Temporate). 7
Veriation of Waterborne Distance with Weight
(Corrcctcd for wint, unstick specd and engine power, Tropical). 8
Measured Airbornc Distances Uncorrected, (Tempercte). 9
Variation of Airborne Distance with Take-off, Climb and
Wind Speeds (Corrected for weight and engine power, Temperate). 10
Measured Take-off Times. 11

LIST OF FIGURES

	Figure
Solent N.J. 201. Solent Automatic Observer.	
Typicrl Variation of Longitudinal Accelerstion during : Scaplono Take-off.	
Voriation of Waterbornc Distnnce with Take-off Water Speed at Unstick.	
Variation of Vaterborne Dastence with Jind Speed, Solent,	
Variation of deteroorne Distence with Tind Speed, Scaland.	
Veriation ff raterborne Distance wath Veaght, Solent.	
Variation of Vaterborne Distonce with ieight, Sealand.	
Voriation of Vaterborne Distenco with Engine Power, Solont at 77,000 lb.	
Voriation of lato arne Distance with Engine Power, 10Solent at $61,000 \mathrm{lb}$.	
Measured interborne Runs (Uncorrected), Solent.	11
Variation of firborne Distance with Unstick, Climb and iind Speeds, Solent at 77,000 1b.	
Vorintion of Airborno Distance with Unstick, Climb and Tind Specds, Solent at 61,000 1b.	
Varintion of Airborne Distrnce with Veight (corrected), solent.	
Mensurcd Airborne Distences (Uncorrected), Solent	15

1. INTRODUCTION

The correction to standard conditions, of seaplane take-off distances to 50 foot height presents problems not entirely covered by the ostablished methods for landplanes. At present, corrections are utilised for the unstick distance which have been developed over a number of years. Some of these have been confirmed only for flying boats having power/veight ratios, and wing and hull loadings loi compared with existing and future aircraft.

During the course of an extensive series of tests to investigate the airworthiness problens of contemporary flying boats, considerable information was collected on the effect of such parameters as wind speed, take-off speed, weight and atmospheric temperature on take-off distance.

In this roport the results from these tests are compared with corrections developed specielliy for the sceplane. Although the report demonstrates good agreement between measurement and theory over the folloving ranges of parameters,

wind	$5-20$ knots,
weight	80% to 100% of maximum,
temperature	$2-32$ degrees C,

its pramery function is not to provide expressions which are generally valia over these rangos but to provide a moans of correcting measurcments in any one location to the stondard conditions appropriate to that location e.g. in the United Kingdom, to temperate standard.

2. DESCRTPTION OF ATRCRAFT

The aixcraft utilised for the experimental work was a production Scaford, converted to the profile of a civil Solent (Figure 1).

The hull or this seaplane is representative of flying boat design practice in the 1940-1950 era, but its forebody length/beam ratio of 3.36 is somewhat less that that normally employed at the present time, (1953).

The engines are Hercules Mk.19, (reciprocating) giving a nominal power of $1,700 \mathrm{~h} . \mathrm{p}$. for sca level take -off.

A fow results were available from a much smaller seaplane, the Sealand (weight $9,100 \mathrm{Jb}$.) and these havo been included to chock the applicability of the correction over as wide a. range of size as possible.

Dotails of both aircroft are given in Tables 1 and 2.
3. RUNGE OF TESTS NDD TEST TYCFNIOUS

The following ranges of parameters were investigated,

Sojent

(a) weight, 60,000 to 78,000 lb. ,
(b) temperaturc, 2 deg. to 32 deg. Centigrade, the latter being obtained in a sories of sub-tropical trials in the Suez Canal Zone,
(C) rind speed, 4-22 mots,
(a) clinib arity speed, 90-108 knots.

Senland

(a) veight 8,200 to $9,000 \mathrm{lb}$. ,
(b) wind speed 5 to 10 knots.

A consistent take-off technique was employed throughout the tests. At the start of take-off, the aircraft was held anto wind wath engines idjing; the throttles were then opened as quickly as possible, and unstick from the water achieved at the specified indicated airspeed. No elevator or trum tab positions were specified, but examination of representative attitude curves showed that the variation of attitude between take-offs was remarkably small.

After unstick, the aircraft was accelerated in levcl flight to tho specified climbing speed, and then climbed away to 50 foot he aght keeping the clumb speed constant. Care was taken to avoid an artificial rate of climb by "zooming".

Occasional deviations from this technique occurrod during the accelerating airborne run, when the aircraft was allowed to climb instead of being flown parallel to the water surface, and during the actual climb away, when the climb speods tended to wardor from the specified constant value. However, with practice, pilots became adept at ellminating these errors.

A fur tosts (those with the high wand speed of 22 knots on the Solent) were done in which the aircraft was allowed to accelerate steadily throughout clirib, the aim bcing to arrive at the 50 foot height at a predetermined air speed.
4. INSTRUTENT INSTELLATION
4.1. Internal

Quantities beang measured wathin the aircraft were recorded on a singlo automatic observer, using a Bell Howell A. 4 camera operating at 5 frames per second (Figure 2). Details of the instruments recorded are gaven in sppendix I.

All instruments were calibrated at antorvels throughout the trials and checked in situ before cach day's york.

4.2. External

Take-off distances were measured by means of an optical method, using an F. 47 and a modified Boll Howcll A. 4 cemera. Briefily this method employs tiro comeras, situated at cither end of a measured bosc line. The cameras are synchronised manually, and record the bearing of the aircroft throughout the take-off run. A simple graphical plot from the recorded bearing gives the required take-off run. The base lines vore specially surveyed for these tests.

Wind speed was recorded during each take-off by a hand held vane type anomometer operatud from a marine craft situated near the take-off path.

Outside air temperature and pressure were measured on the aircraft, and werc checked against the readings of a. noarby meteorological office.

Huminity was obtaned from the meteorological office.

5. CORRECTICN FORMULAE

5.1. Waterborne run

The problem of reducing the seaplane water run to standard conditions is sinilar to that for the landplane, with the added complication of the varlation of vater resistance with load, speed and attrtudc. Thererore, the denivation of sultable oxpressions for the seaplane has been attempted in a similor fashion to that for the landplene, utilising in particular the methods domonstrated in Reference 1. The basis of these methods rests on the assumption that in a landplane ground run, the acceloration falls off as the square of the
speed, and thet therefore,

$$
\begin{aligned}
& a=a_{0}\left[1-r\left(\frac{U}{U_{t}}\right)^{2}\right], \\
& \text { where } r=1-\frac{a_{t}}{a_{0}}, \\
& a_{t}=\begin{array}{l}
\text { longitudinal acceleration at any instant during the } \\
\text { waterborne run, }
\end{array} \\
& U_{t}=\text { ater speed at the some anstant, } \\
& a_{0}=\begin{array}{l}
\text { longatudinal acceleration at the start of the waterborne } \\
\\
U
\end{array} \\
&=\begin{array}{l}
\text { unstick speed. }
\end{array}
\end{aligned}
$$

Hence, all the relevant reduction formulae can be expressed in terms of a mean acceleration a_{m}, which applies to a mean velocity $U_{t} / \sqrt{2}$.

Now arises the question of the validity of applying this assumption to the scaplane. Examination of a large number of acceler ation records from seaplanes varying in weight between 9,000 and $80,000 \mathrm{lb}$. shows that a typical acceleration curve is of the form Given in Figure 3, i.e, apart from a region at low speed, the acceleration is nearly constant. Thore are variations from this typical curve, deperiting on keel attıtude during take-off, hull lines, etc., but the fundamental shape is generally of the form shown.

This forr of acceleration curve implies that the mean accelorstion exists at any speed in the planing region, i.e. ofter the speed corresponding to maximum resistance, but to keep in step with landpline corrcctions all mean accelcration corrections are referred to a volocity of $0.7 \mathrm{U}_{\mathrm{t}}$. This assumption is also very convenient for reducing the comolication of scverel of the correction formulac.

With thesc assumptions, the equation of motion may be written

$$
\begin{equation*}
\frac{a_{m}}{g}=\frac{T_{m}}{W}-\frac{D_{m}}{W}-\frac{R_{m}}{W} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\text { longitudinal acceloration, } \\
& T=\text { total engane thrust, } \\
& D=\text { air resistance, } \\
& R=\text { water resistance, } \\
& W=\text { mean take-off weight, } \\
& m \text { rofers to mean conditions i.e. at } 0.7 U_{t}
\end{aligned}
$$

and the relationship between the waterborno run X and α_{m} is

$$
\begin{equation*}
X={\frac{U_{t}}{2 \epsilon_{m}}}^{2} \tag{3.}
\end{equation*}
$$

From energy consideretions,

$$
\begin{equation*}
P_{m} X=\frac{W U_{t}}{2 g} \tag{4}
\end{equation*}
$$

where $F_{m}=$ excess thrust at mean speed,

$$
\begin{equation*}
\text { and } F_{m}=\frac{W a_{m}}{g} \tag{5.}
\end{equation*}
$$

These expressions are only strictly correct if the forward velocity at the start of the waterborne run is zero. Most seaplones have a taxying velocity while the onganes are idling, amounting to about 5% of the take-off speed. The error involved in lgnoring the inital speed will be of the order of $\frac{1 \%}{1 \%}$. Considering the usual order of the corrections to be applied, this small additional orror may be noglected.

All the later corrections are basod on these expressions.

5.1.1 Corrections for wind speed and unstiok spoed

These are considered together sunce they are of the same form. The effect of wind on waterborne distance is twofold.
(i) The water speed at unstick is reduced - assuming the pilot lecves the water at constant T.A.S.
(ii) The mean wator resistance is reduced owng to the reduced waterborne load at a given vater speod.

Jones considered the wind corruction in Reference 2 and deduced from measurements on seaplanos of that time (1934) that changes in resistance due to wind could be ignored, i.e. that the lonritudnal acceleration would be the same with and without the presence of vind.

Jones obtained an expression of the form

$$
\begin{equation*}
X_{s}=\underbrace{}_{a} \tag{6.}
\end{equation*}
$$

$$
\begin{aligned}
& \left(1-\frac{V_{w}}{V t_{s}}\right)^{2} \\
\text { where } X_{\mathrm{S}} & =\text { waterborne run in zero wind, } \\
X_{a} & =\text { measured waterborne run, } \\
V t_{s} & =\text { true } \varepsilon \text { conditions, } \\
& =\text { wind speed } .
\end{aligned}
$$

This may be written

$$
\begin{aligned}
\frac{X_{S}}{X_{a}} & =\frac{V_{t}^{2}}{U_{t}^{2}} \\
\text { where } V_{t} & =\text { truc air speed at unstick, } \\
U_{t} & =\text { water speed at unstick. }
\end{aligned}
$$

The validity of Jonos' nugloct of the effect of wind on resistance has been re-examined in the light of accoler ation measurements made in the present anvestigation and the conclusion is that for senplanes having wing loadings of $30-50 \mathrm{lb} / \mathrm{sq}$. foot and greator, the offect on acceleration 1 s
negligible. fror seaplanes of wang loadings of the order of $20-30 \mathrm{lb} / \mathrm{sq}$. foot the effect is such that for wind corrections of greater than 10 f.p.s. the effect of wind on resistance may be appreciable. Unfortunately no simple analytacal expression could be evolved for this part of the wind correction and such aircraft will have to be considered individually.

With this qualification Jones' expression may be accepted.
Standard unstick distances for scaplanes are usually quoted in terms of a standard T.A.S., and in zero wand I.e. in terms of a standard water speed at unstick, This being so, the corrections for mind and unstick speed can be combined to give a simple correction

$$
\begin{equation*}
\frac{x_{s}}{X_{a}}=\left(\frac{U_{t_{s}}}{U_{t_{a}}}\right)^{2} \tag{8.}
\end{equation*}
$$

where

$$
\begin{aligned}
X & =\text { waterborne dustance } \\
U_{t} & =\text { water speed at unstick }
\end{aligned}
$$

and a and s refer to measured and standard conditions respectively.

5.1.2. Weight corrcction

The weight correction has been applicd at constant speed. This assumes that in zero wind, the unstick water speed for the two weights being considered is the same. If they are not, then the speed correction of para. 5.1.1. must be applied. Details of the weight correction aro given in Appendix II. The final expression is,

$$
\frac{X_{s}}{X_{a}}=\frac{W_{s} \cdot F_{m a}}{W_{a}} \frac{F_{m s}}{X_{m}}
$$

where

$$
\begin{aligned}
X & =\text { Waterborne distance } \\
W & =\text { Aircraft weight } \\
F_{m} & =\text { Mean excess thrust during waterborne run }
\end{aligned}
$$

and a and s refer to measured and standard conditionsrespectively.
Of these quantities, X_{a}, W_{s} and W_{a} are knorm; $F_{\text {na }}$ may be deduced from the measurements made (cf. Appendix II). The problem is to determine F_{ms}, the excess thrust under standard conditions. F_{ms} mey bo obtained from $F_{m a}$ by making the followang assumptions.
(a) At the mean spocd, the load on the wetor is equal to half of the total weight. This arplics that the attitude of the aircroft remains constant botween the mean speed and the unstick speed. Examination of a large number of typical take-off runs confirms that this is a reasonablo assumption.
(b) The effect of the change in air dreg due to weaght chenge is negligible compared with the change in water drag.
(c) The coefficient R_{5} does not chance with woight. (Δ is the waterborne load).
(b) and (c) arc admitted to be sweoping assumptions and their only justafication at prosent is that corrections of the right order are obtained by making them (rigures 7 and 8). The problom is thet the variation of wator resistance with weight is not casily expressiblo analytucally and ono is face with cither a rigorously justifiable but cumbersome correction or an easily applied corrcction based on some oversumplification. With these assumptions a simple cxpression may be deduced (Appendix II) for the change in water resistance with weight,viz:

$$
\delta R=\left(\frac{R}{\Delta}\right)_{m} \quad\left(\frac{W_{s}-W_{a}}{2}\right)
$$

where $\left(\frac{R}{\Delta}\right)_{m}$ is the ratio water resistance at the meen woterborne speed.
To apply this expression sme value has to be deduced fort $\frac{1}{\Delta}$) This may be cbtained from tank tests on the hull or similar hulls or from generalised data, see for example, Ref.4. A typical value is 0.17.

Knowing the change in ronistance $\delta \mathrm{R}, \mathrm{F}_{\mathrm{ms}}$ follows from the expression

$$
F_{m s}=F_{m a}+\delta R
$$

and knowing $F_{m s}, X_{s}$ may be doduced from equation 9.

5.1.3. Corrections for otmosphoric temperature and pressure

Tomperature and prissure effects on take-ofi appear primarily as alterations in thrust and may be corrccted by substituting the appropriate values of nett thrust in cquation 9. If δF is the change in thrust due to temperature and pressure changes thon

$$
F_{\mathrm{ms}}=F_{\mathrm{ma}}+\delta F
$$

Combining this expression with equation 11 gaves a totel correction to nett thrust for weight, temperature, and pressure, of the form

$$
\begin{equation*}
F_{\mathrm{ms}}=F_{\mathrm{ma}}+\delta R+\delta F \tag{13.}
\end{equation*}
$$

and the finsl corrected wherborne distance as given by

$$
\frac{X_{\mathrm{g}}}{X_{\mathrm{a}}}=\frac{W_{\mathrm{S}}}{W_{\mathrm{a}}} \frac{\mathrm{~F}_{\mathrm{ma}}}{\left(\mathrm{~F}_{\mathrm{ma}}+\delta R+\delta \mathrm{F}\right)}
$$

5.2. Lirborne Path

Corrections for the airborne path have boon developed fully in Reference 1. The main modirications in this report have been made to render the eppropriate expressions more convoniont ior routanc handiang.

5.2.1. Corrcctions for spoci and wind

Thesc have boon combined as for the wator run to give the expression,

$$
\begin{equation*}
\frac{X_{c s}}{X_{C a}}=\frac{\left(U_{c s}^{2}-U_{t s}^{2}\right) / 2 g+50}{\left(U_{c a}^{2}-U_{t a}^{2}\right) / 2 g+50} \tag{15.}
\end{equation*}
$$

5.2.2. Corrections for weight and thrust

Corrections for weight and thrust, ancluding the effect of temperature, pressure and drag, may be applied in one stage, using the relation,

$$
\frac{X_{C S}}{X_{C a}}=\frac{W_{S}}{W_{a}}\left[1+\frac{\delta F}{W_{a}} X_{c a} /\left\{\frac{U_{c a}^{2}-U_{t a}^{2}}{2 g}+50\right\}\right]^{-1}
$$

where δF is the sum of the changes in effective thrust brought about by changes in weight, temperature, pressure, etc. Evaluation of these is discussed in detail in Reference 1.

5.2.3. Correction of airborne distance with englne failure

The correction methods developed for the all-engine airborne distance may be applied equally to the airborne distance with simulated engine failure. Considering the distances prior to ana after failure, the following relationships result:

Before fanlure

Correction for speed and wind,

$$
\begin{equation*}
\frac{X_{C S}}{X_{C a}}=\frac{\left(U_{f s}{ }^{2}-U_{t s}{ }^{2}\right)}{\left(U_{f a^{2}}{ }^{2}-U_{t a}{ }^{2}\right)} \tag{17.}
\end{equation*}
$$

Correction for weight and thrust,

$$
\begin{equation*}
\frac{X_{c s}}{X_{C a}}=\frac{W_{S}}{W_{a}}\left[1+\frac{\delta F}{W_{a}} X_{C a} /\left[\frac{U_{f a}^{2}-U_{t a}^{2}}{2 g}\right]\right]^{-1} \tag{18.}
\end{equation*}
$$

Where $\mathrm{U}_{\mathrm{f}} \mathrm{a}=$ speed relative to water at engine failure.
After failure
Correction for speed and wind,

$$
\begin{equation*}
\frac{X_{C S}}{X_{C a}}=\frac{\left(U_{C S}^{2}-U_{f s}{ }^{2}\right) / 2 g+50}{\left(U_{C a}{ }^{2}-U_{f a}{ }^{2}\right) / 2 g+50} \tag{19.}
\end{equation*}
$$

Correction for weight and thrust,

$$
\frac{X_{\mathrm{cS}}}{X_{c a}}=\frac{W_{S}}{W_{a}}\left[1+\frac{\delta F}{W_{a}} X_{c a} /\left\{\frac{U_{c a^{2}}-U_{f a}^{2}}{2 g}+50\right\}\right]^{-1}
$$

6. COMPARTSON WITH MEASUREMENTS

Wherever possible, the corrections deraved in Section 5 and Appendix II have been compared with resulus covering an appreciaile range of the parameter concerned. This is a much more satisfactory method of proving such expressions than relying enturely on their ability to reduce the scatter of an uncorrected set of results.
/ 6.1.
6.1. Waterborne distenco

6.1.1. Correction for wind and suoed

Figure 4 shows the variation of teke-off distance with unstick speed at constant weights of $61,000,69,000$ and $77,000 \mathrm{lb}$.

The theoretical correction assuming that distanco is proportional to $U_{t}{ }^{2}$ follows the experimental points closely for $7,000=U_{t}{ }^{2}=5,000 \mathrm{i} . \mathrm{c}$. for a range of unstick wator specds of 70 to 84 knots. That this agrocment is becoming less close at values of $U_{t} 2<4,000$ is indicatod by s smell number of points for a weight of $69,000 \mathrm{lb}$. These wure obtainod in wind speeds $>$ 20 knots and they suggest that for vinds of this order the formulae of the present note are overcorrecting.

Since the wind correction assuned may bo in some aubt because or the omission of the resistance component, the toke-off cistances, corrected to a common true airspeeत at take-off, heve been plotted ag anst wind spoed in Figure 5. Here agein agreoment with the smple form is good up to 18 lnots wind speed. Results at 18 to 22 knots (Trble 2) show the correction to be intocurato above 18 knots bui are not shom on Figure 5 to avoid confusion as they are at 69,000 Ib.

In Figure 6 is plotted a corrosponding dicgram for the Sealand, (wing loaing $25 \mathrm{lb} . / \mathrm{sq}$.foot). Herc, the veriation of ostimiter and acturl teke-off distances with wind spoed is surilor, but there is a discropancy of about 8 per cont between the two. Apperentiy, the rosistencc component of the wind correction is becoming appecieble for seaplancs of thas wing looding. (see Section 5.1.1.).

6.1.2. Corroctions for woight nni thrust

The mossured variations of whterborne तistance with weight in temperate (ambient temper cture $10^{\circ} \mathrm{C}$) and sub-tropicol (ambiont temperaturo $32^{\circ} \mathrm{C}$) conditions are given in Figure 7.

In this figure are plotted rlso the ostimnted take-off distanoes at $78,000 \mathrm{Ib}$. based on tho measured distences at $61,000 \mathrm{lb}$. The estimates are besed on the correction formulae of soction 5.1.2. using a mocn P of 0.175 . This velue has been deduced from tho full scele resistance measuroments of Reference 3.

Corresponding measured and estimato distance/weight variations for the Sealand are given in Figure 8. In the absence of mensured values of \underline{R} for the Sealend, the Solent value of 0.175 has been used. This should not be ${ }^{\Delta}$ greatly in error since the two hulls are of similar shape end ore operating at similor hydrodynamic loodings.

When the distences have been corrected to the same water speed at unstick the variation of waterborne run with atmosphoric temperrture is primarily variation with porver. Digures 9 and 10 give the measured and estimnted distance/power veriations for weights of 77,000 and $61,000 \mathrm{lb}$. The meosuren distanoes are the means of the individual pounts given in Figure 7.

Horsepowers are the values mensured by the circonft's torquemeters and propeller officiencios have been besod on wind tunncl tests of a propeller samilor in form to those fitted on the Solent.

6.1.3. Comparison between corroctod and uncorrccted rosults

The effect of the normal variations on measured tekemfeperformance may be obteaned by compering Figures 7 and 11. In Figure 11 the sub-tropical and temperate distances have been plotted as measured and in Firure 7 the corrections developed in this report have been applied to bring each set of results to its mean v nlues of power and t ke-off speed.

6.2. 4irborne instancos

The demonstration of the agreement between the measured and estimated. variations of airborne distance whth speed, weaght, and thrust follows the seme pattern as thet for the waterborne distance.

Figures 12 and 13 show the combined variation with unstick speed, climb speed and wind speed.

Figure 14 shows the variation with weaght and atmospheric temper ature. The estimeted distance at $77,000 \mathrm{lb}$. is based on the measured distence at $61,000 \mathrm{Ib}$. and the corroction of $\dot{2}$ ppondix II. The change in nott aceelerating thrust hes been attributed ontircly to chenge in the drag due to lift, assuming G_{L} to be proportional to weight.

This figure also shows for general information, the effect of differing climbevray speeds on the airborno distence.

Finally, Figure 15 show the uncorrocted rirborne distence rosults for comparison with Figure 14. The flgures for the solent at 69,000 1b. at 22 knots windspeeत hove not been inclunca because of the difforent iechmque used and unknown corroctions for thesu hagh find speeds. (seo para.6.1.1.).

7. DISCUSSION

The expressions तeveloped in this report are intended for small corrections only. Thet their agreement with measured velues has been demonstrated by using relatively very large viraations in the appropriate paramoters is intended only as proof of thear usefulness for small corrections i.e. for correcting results made in temperate conditions at one nominal weight, to the standerd value in temperate conditions.

They mey be utilised to obtean rough preliminary estamates of such quantities as the increase in take-off distance when the seaplane is operated in tropical atmospheres but for an accurrte estimation a more detelled analysis will be necessary, toking account of the non-quadratic variation in acceleration with speed in the rugion of maximum water resistance.

The most doubtful correction is that for weight, not only beceuse of the assumptions made in devcloping it but also becouse it involves the estimation of R - a factor not easily resolvable into a general form. Δ 8. CONCLUSIONS

Expressions have been developed for weight, speed, drag and thrust corrections to seaplane take-offs. These heve shown good agroement wh th measured values over a much wider range of the appropriate variables than is normally encountered.

Use of the expressions should be confined however to the follwing ranges of parameter

Temperature $\pm 10^{\circ} \mathrm{C}$ from the standerd value	
Wind	$\pm 10 \mathrm{knots}$ from the standord value
Weaght	$\pm 10,9$ from the atandard value

The wind correction may be in error for seaplanes of wing londings less then $30 \mathrm{~m} / \mathrm{sq}$. foot though for wing londings between 20 and $30 \mathrm{lb} . / \mathrm{sq}$. foot the orror in correction should not exceed 20%.
9. $\angle C H N O W L T D G M E N T S$

Acknowledgement is made to hir J. Taylor for his woris in obtuining the full scale information as Chief Observor on the flight tests and his holp in oreparing the report.

LIST OF SYMBOIS

No.	Author(s)	Title
1	J.S. Glass and A.G. Thompson	Performance reduction methods used at A.F.E.E. for tug and glider aircroft. A.F.E.E. Report NJ. Res/22. (November 1947).
2	E.T. Jones	Effect of wind on the toke-off of seaplanes. R. and M. 1593. (January 1934).
3		Full scale tests on the hydrodynamic resistance of a four engined flying bont (Seaford I). M.A.E.E. Report ND. F/Res/213. November 1948.
4.	D. Whittley P. Crewe	in Interim Report on the generalised presentetion of tank tests on a scoplane hull or float. Saunders Roe Report IVo. AH/37/T. (March 1947).

ADVANGE DISTRTBUTION LIST

P.D.S.R. (A)	1
A.D.S.R. (5.ceords)	1
P.D.R.D. (A)	1
D.M.A.R.D. (R.A.F.)	1
$D_{*} M_{*} H_{0} R_{0} D_{0}\left(\mathrm{H}_{*} \mathrm{~N}_{*}\right)$	1
I.D.I.3(S)	1
A.D./R.D. (proj.)	1
A.D./A.R.D. (Res)	1
D. C.A.R.D.	13
A.D./R.D.A.C.1.	1
S.D./R.D.A.C. 2.	1
R.D.A.C.2(c) and (d)	1
	1
M.D. $/$ R. D. A.E.	1
D./Ti.h.r.	4
C.S./A. \& A.E.E.	2
T.P.A.3/T.I.B.	120

APPERDIX I
INSTRUMENTATION

The following quantities were recorded in the automatic observer:-

Quantity	Method of Measurement	Range and Accuracy
Aerodynamic Controls $\begin{aligned} & \text { Aileron }\left\{\begin{array}{l} \text { Forces, } \\ \text { angular move- } \\ \text { Rudder } \\ \text { ments and } \\ \text { trimmer } \end{array}\right. \\ & \text { Elevator positions. } \end{aligned}$ Flap angle	Desynn system. Aileron and elevator forces measured by R.A.E. twin-axis control wheel force recorder, fitted to the second pilot's control colum in lieu of wheel. Rudder force measured by R.A.E. type pedal force recorders. Desynn angular movement recorder.	$25^{\circ} \quad \frac{1}{4}^{\circ}$
Aircraft Orientation and Position $\left.\begin{array}{l}\text { Pitch angle } \\ \text { Roll angle }\end{array}\right\}$ Rate of yaw and roll Direction Sideslip	Indicated by microanmeter from Anschutz horizontmutter eleotrical gyroscope. These readings were cheoked during the tests by comparison with bubble. inclinometers reading to $1 / 10^{\circ}$ over range of 8°. R.A.E. rate gyroscope with desynn indicator. Compass repeater from standard R.A.F. distant reading compass. R.A.E. desynn vane recorder.	Range: $\begin{aligned} & \text { Pitoh }-50^{\circ} \\ & \text { RoIl }-90^{\circ} \end{aligned}$ Accuracy: $\frac{1}{4} 0$ during take-off and landing manoeuvres. Correct to $1 / 6^{\circ}$ in stcady condıtions. 10. 25 and 50 deg. per sccond. $360^{\circ} \quad 1^{\circ}$ Range: $\pm 30^{\circ}$. Accuraoy: $\frac{1}{2}^{\circ}$.
Airspeed E.A.S. (i) Pitot head and static vent. (ii) Pitot in venturi and trailing static. (iii) Pitot in venturi and static reservoir.	Low reading A.S.I.	Accuracy: 1 knot.

/AItitude

APPEPDIX I (Contd.)

Quantity	Method of Measurement	Range and Accuracy
Altitude	(i) Kollsman sensitive aneroid altimeter. (ii) Redio altimeter Type AYF.	10 feet. Unreliable during initial climb and final approach. Later abandoned.
Acceleration Longitudinal acceleration. Normal acceleration.	R.A.E. type 2-2 desynn accelerometer mounted rigidly to the main spar near C. of G. Kollsman visual V.G. recorder.	-0.3 to +1.0 g . Accuracy: 0.01g. Not used in automatic observer.
Engine Power Torque Engine speed	4 Bristol type torquemeters with steel capillary tubing and Bourdon type gauges. 4 electric R.P.M. indicators.	$\begin{aligned} & 0-800 \mathrm{lb} . \quad 1 \mathrm{lb} . \\ & \mathrm{p} \cdot \mathrm{~s} \cdot \text { i. } \end{aligned}$
Miscellaneous Time Fuel contents Event lights Air temperature	3-second timer stopwatch. Later replaced by master contacter driving a Vet der counter. 4 'gallons gone' indicators. These operated by human observer to indicate events not recorded elsewhere, e.g. landing and take-off points, arbitrary end of recording, etc. Balanced bridge air thermometer.	$\begin{aligned} & 1 / 200 \text { second. } \\ & \text { Indioates oach } \\ & \frac{1}{2}-\text { seconond. By inter- } \\ & \text { polation of film } \\ & \text { frames accuracy }=1 / 20 \\ & \text { second. } \end{aligned}$
Water contact Means of indicating the time of making or breaking contact with the water.	Make and break, electrical circuit dependent on external pressure on diaphragm, between hull of flying boat and water.	used in automatic observer and on pilots, ooaming indication light. operationally instantanious.

DEVELOPMEITI OF CORPRETION FORMULAE

1. WATERBORNE DISTAICE

1.1. The effect of changes in weight, thrust and drag

If we assume that the waterborne distance can be experessed in terms of mean values then:

$$
F_{m a}=\frac{W_{a} U_{t a}^{2}}{2 g X_{t a}}
$$

II. 1
where

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{ta}}=\text { measured watcrborne distancc }, \\
& W_{a}=\text { aurcraft weight during run } \\
& \mathrm{U}_{\mathrm{ta}}=\text { water speed at unstick, } \\
& \mathrm{F}_{\mathrm{ma}}=\text { mean excess thrust undor conditions of test. }
\end{aligned}
$$

Assuming that the measured waterborne distances have been correctod to the stonderd unstick water spoed, we may write

$$
\begin{equation*}
\frac{X_{t s}}{X_{t a}}=\frac{F_{m a}}{F_{\mathrm{ms}}} \cdot \frac{W_{s}}{W_{\mathrm{a}}} \tag{II. 2}
\end{equation*}
$$

where

$$
\begin{aligned}
& X_{t s}=\text { waterborne distance in standard conditions, } \\
& F_{\mathrm{ms}}=\text { mean excoss thrust in standard condztions } \\
& W_{\mathrm{s}}=\text { standard woight. }
\end{aligned}
$$

Now in Expressicn II 2, $X_{t a}, W_{a}$ and W_{s} are known and Fma may bo deduced from the test measurcnents (Equation III). The problem is to derive an expression for F_{ms}.

For alterations in thrust and air drag, F_{ms} may be deduced dircctly from F_{ma} if the changes in thrust and drag are know or can be estimated, c. g. changes in thrust owing to change in engine power with ambient temporature and changos in air drag oving to the aadition of extermal storos.

To corroct for alterations in weight, we make the following assumptions.
(a) The mean watorbomo load is $\frac{V}{2}$, 1. c. the wing incidence remains constant betwoen mean specd, $0.7 \mathrm{U}_{\mathrm{c}}$, and unstick specd, U_{t}. This is a close approxination to the usual seaplane take-off tochniquc.
(b) The air drag variation with weight is small in comparison with the wator drag variation.
(c) The ratio water $\frac{\text { drag }}{\text { watorborne load }}=\frac{R}{\Delta}$ does not change with weight.

If now the difference between the aircraft test weight and standard weight is 8 W , and the corresponding change in drag is $0 \mathbb{R}$, we may write

$$
\delta R=\left(\frac{R}{\Delta}\right)_{m} \cdot \frac{\delta 17}{2}
$$

Where δW is know, $\left(\frac{R}{\Delta}\right)_{m}$ must be deduced from tank tests on the hull or similar hulls or from generalised curves; see, for example, Reference 4. Honce, knowing $E R$,

$$
F_{m s}=F_{m a}+C R,
$$

and the standard waterborne distance $X_{t s}$ follows from Equation II 2.
2. AIRBORNE DISTATCE
2. 1. The effect of changes in unstick, climb and wind speeds

If $U_{t a}=$ actual take-off water speed $=\left(V_{t a}-V_{W}\right)$,
$U_{c a}=$ actual climb speed relative to the water,
$\gamma a=$ actual climb gradient and $U_{t s}, U_{c S}, \gamma_{S}$ are the corresponding standard values,
then

$$
\begin{array}{ll}
X_{c a}=\frac{I}{r_{a}} \frac{U_{c a}^{2}-U_{t a}^{2}}{2 g}+8 h \cos r_{a} & \text { II. } 4 \cdot \\
X_{c s}=\frac{I}{r_{s}} \frac{U_{c s}{ }^{2}-U_{t s}{ }^{2}}{2 g}+\delta h \cos r_{s} & \text { II. }
\end{array}
$$

where

$$
\text { oh }=50 \text { feet nomally }
$$

and assuming

$$
r_{a} \rightarrow r_{s} \rightarrow 0
$$

wo can write

$$
\frac{X_{\mathrm{CS}}}{X_{\mathrm{Ca}}}=\frac{\left(U_{\mathrm{Cs}}^{2}-U_{t s}^{2}\right) / 2 g+50}{\left(U_{\mathrm{ca}}{ }^{2}-U_{t a}^{2}\right) / 2 g+50}
$$

2.2. The effect of changes in thrust and weight

$$
\begin{aligned}
\text { If } F_{m a} & =\text { actual mean excess thrust auring airborme distance } \\
F_{\mathrm{ms}} & =\text { standard mean excess thrust, } \\
X_{a} & =\text { actual distanco corrected to zero wind, } \\
X_{S} & =\text { standard take-off distance, }
\end{aligned}
$$

we nay write

$$
\frac{X_{c a}}{X_{\mathrm{cs}}}=\frac{\frac{W_{a}}{F_{\mathrm{ma}}}\left[\frac{\left(U_{\mathrm{ca}}{ }^{2}-U_{t a}^{2}\right)}{2 g}+50\right]}{\frac{W_{\mathrm{s}}}{\mathrm{~F}_{\mathrm{ns}}}\left[\frac{\left(U_{\mathrm{cs}^{2}}-U_{t s}^{2}\right)}{2 g}+50\right]}
$$

If $X_{c a}$ has been corrected for wind speed, take-off speed and climb speed.

$$
\begin{aligned}
U_{c s} & =U_{c a} \\
U_{t s} & =U_{t a} \\
\text { and } \frac{X_{c s}}{X_{c a}} & =\frac{W_{s}}{W_{a}} \cdot\left[1+\frac{\delta F_{1}}{W_{a}} X_{c a} /\left[\left(\frac{U_{c a}-U_{t a}}{2 q}\right)+50\right\}\right]^{-1} \text { II.11 }
\end{aligned}
$$

$$
\text { where } \delta F \text { includes the effect of changes in air drag, height, }
$$

$$
\text { temperature and weyght. These are duscussed in detail in Reference } 1 \text {. }
$$

$$
\begin{aligned}
& \text { Write } F_{m s}=F_{m a}+i F, \\
& \text { then } X_{c a}=\frac{W_{a}}{F_{\text {ma }}}\left[\frac{\left(U_{c a}^{2}-U_{t s}{ }^{2}\right)}{2 g}+50\right] \\
& \text { and } X_{C s}=\frac{W_{s}}{F_{m a}}+\delta \mathbb{F}\left[\frac{\left(U_{\mathrm{Cs}}{ }^{2}-U_{t s}{ }^{2}\right)}{2 g}+50\right] \\
& \delta\left(U^{2}\right)=U_{c}{ }^{2}-U_{t}{ }^{2} \\
& =\frac{W_{a}}{W_{\mathrm{s}}}\left[\frac{\frac{\delta\left(\mathrm{U}_{\mathrm{a}}\right)^{2}}{2 \mathrm{~g}}+50}{\frac{\hat{\left(U_{\mathrm{s}}\right)^{2}}}{2 \mathrm{~g}}+50}\right]+\frac{\frac{\delta \mathrm{F}}{}}{W_{\mathrm{s}}} \cdot \frac{W_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{a}}}\left[\frac{\left.\frac{\delta\left(\mathrm{U}_{\mathrm{a}}\right)^{2}}{2 \mathrm{~g}}+50\right]}{\left[\frac{\delta\left(\mathrm{U}_{\mathrm{s}}\right)^{2}}{2 \mathrm{~g}}+50\right]}\right. \\
& =\frac{\left[\therefore\left(U_{a}\right)^{2} / 2 g+50\right]+\frac{8 F X_{t a}}{W_{a}}}{\left[W_{s} / N_{a} x\left(U_{s}\right)^{2} / 2 g+50\right]} \\
& \text { and } \frac{X_{C s}}{X_{c a}}=\frac{\frac{W_{s}}{W_{a}}\left[\frac{U_{c s}{ }^{2}-U_{t s}{ }^{2}}{2 g}+50\right]}{\left[\frac{U_{c a}{ }^{2}-U_{t a}{ }^{2}}{2 \delta}+50\right]+\frac{8 F}{W_{a}} X_{c a}} \\
& \text { II. } 8 . \\
& \text { II. } 9 . \\
& \text { II. } 10 .
\end{aligned}
$$

APPEIDIX III

SCHENE OF CALCULATTON FOR REDUCTION OF
SEAPLAME TAKE-OFY DISTANCES TO SLANDARD CONDITIONS

2. MEASURED QUANIITTES

2. DERTVLITION OF STINDIRD WITTERBORNE DISTAMCE

2.1. Correct $X_{t a}$ to zero wind and standard T. A. S. at unstick ($V_{t s}$)

$$
x_{1}=x_{t a}\left(\frac{v_{t s}}{v_{t s}-v_{w}}\right)^{2} .
$$

2.2. Correct X_{I} to standard weight, drag and atmospheric conditions.
(a) istimate actual excess thrust

$$
F_{\mathrm{ma}}=\frac{W_{a} U_{t a}^{2}}{2 g X_{t a}}
$$

where $U_{t a}=$ measured water speed at unstick.
(b) Calculate change in water drag due to weight change.

Change in water drag $=\delta R=\frac{R}{\Delta}\left(\frac{W_{a}-W_{S}}{2}\right)$
$\frac{R}{\Delta}=\frac{\text { water drag }}{\text { waterborne load }}$, and is estimated at a water speed of of 0.7 ($\left.\frac{U_{t s}+U_{t a}}{2}\right)$.
Tank tests or generalised curves may be used for estimation
(Reference 4).
Then excess thrust corrected for weight is

$$
F_{c}=F_{m a}+\delta R
$$

(c) Calculate the thrust changos due to atmospheric changes, etc.

$$
\delta F=8 F(\text { atmospheric changc })+E F(\text { air drag })+\ldots \ldots \ldots
$$

The standard excess thrust is then

$$
\mathrm{F}_{\mathrm{ms}}=\mathrm{F}_{\mathrm{ma}}+\delta \mathrm{R}+\delta \bar{F}
$$

(d) Calculate the standard waterborne distance

$$
X_{\mathrm{s}}=X_{\mathrm{I}}\left(\frac{T_{\mathrm{s}}}{W_{\mathrm{a}}}\right)\left(\frac{F_{\mathrm{ma}}}{F_{\mathrm{ms}}}\right)
$$

3. DIRIVATIOT OR STADDARD ATPBOPRT, DIETANCE

3.1. Correct $X_{c a}$ to zeno wind, standard unstick T.A.5. and standard clina Z.A.S.

$$
x_{2}=x_{c a} \frac{\left(\mathrm{u}_{\mathrm{cs}}^{2}-\mathrm{U}_{t s}^{2}\right) / 2 \mathrm{~g}+50}{\left(\mathrm{u}_{\mathrm{c}}^{2}-\mathrm{U}_{t a}^{2}\right) / 2 \mathrm{~g}+50}
$$

where $U_{c}=$ clatid $2 . A . S_{0}$ - wand speed,

$$
U_{t}=\text { unstick T.A.s. - wind speed, }
$$

and s and a $=$ cier to standard and measured quantitues.
3.2. Corroct A_{2} for changes in thrust and wexght.

IA $\delta \mathrm{F}$ is the total chance an excess thrust due to chancos in atnosphuric conditions, wearth, air drag and height, the stan?ard arrborne dustance may be deraved from

$$
x_{c s}=x_{2} \frac{\pi_{s}}{\pi_{a}}\left[1+\frac{\delta F}{\pi_{c}} \cdot X_{c a} /\left\{\frac{U_{c a}^{2}-U_{t a}^{2}}{2 g}+50\right\}\right]^{-1}
$$

Mothods of dor aving $\delta \mathbb{F}$ are given in Referenoe 1.

This follows the sane pattern as the normal aurborne distance coiroction. follownac: If $U_{S}=\mathbb{T} . A . S$. at engine fallure - wind syeed, we have the

Before faylure
Thad and spoca corraction

$$
X_{3}=X_{c a} \frac{\left(U_{f s}^{2}-U_{t s}^{2}\right)}{\left(U_{i a}^{2}-U_{t a}^{2}\right)} .
$$

Teight and thrus't correction -1

$$
X_{c s}=X_{3} \frac{U_{s}}{V_{a}}\left[1+\frac{\delta P}{W_{a}} X_{c a} /\left\{\frac{U_{f a}^{2}-U_{t a}^{2}}{2 \mathrm{G}}\right\}\right]
$$

where $X_{c a}$ and $\pi_{C S}$ nor apply to the airborno distances between unstick and engre fazlure.

After failure

rind and speod correction

$$
X_{4}=X_{c a} \frac{\left(U_{c s}^{2}-U_{\mathrm{fs}}^{2}\right) / 2 g+50}{\left(\tilde{U}_{\mathrm{ca}}^{2}-\mathrm{U}_{\mathrm{f}}^{2}\right) / 2 g+50}
$$

-22-

feight and thrust correction

$$
X_{C S}=X_{4} \frac{V_{S}}{W_{a}}\left[1+\frac{\delta F}{W_{a}} \cdot X_{c a} /\left\{\frac{U_{c a}^{2}-U_{1 a}^{2}}{2 g}+50\right\}\right]
$$

where $X_{c a}$ and $X_{c s}$ now apply to the airborne distance bctreen engine fallure and the 50 feet hewint point.

Wings

Section	Gottingen 436 (mod.)
Gross Area	1688 square feet
Span	112.8 feet
S.M.C.	14.97 feet
Distance of S.M.C.leading edge in	7.93 feet
\quad front of step	7.54
Aspect ratio	0 deg.
Washout	3 deg.
Dihedral (to mid thickness 30% chord)	4 deg.
Sweepback (normal to aerofonl datum line)	6 deg. 9 min.
Wing setting to hull datum	

Taı1plane

Section	R.A.F. 30 (mod.)
Gross Area	265.5 square feet
Span	42.45 feet
Elevator Area	97.8 square feet
Dihedral (to lower surface measured at stub)	6 deg.
Leading edge root above datum	16.19 feet
Tailplane setting to hull datum	4 deg.

Flaps

Type	Gouge
Area	286.2 square feet
Flap span	38.1 feet
Flap chord $\%$ wang chord	32.75%

$-24-$

MABIE 3 (Conta.)

IV17

Beam at step chine	10.27 feet
Forebody length : beam	3.36
Afterbody length : beam	3.23
Unfaired step depth	10.1% of beam
Step facring	$1: 3$
Afterkeel angle to forebody keel (at step)	7.1 deg.
Forebody keel angle to hull datum	1.8 deg.

Ergines

Four Hercules XIX giving 1700 B. H. P. at 2800 r. P. 1 . and $+8 \frac{1}{2}$ p.s. i. boost pressure for sea level take-oi'r.

Gear ratio
$0.441: 1$
Propellers

Type
De Havliland D9/446/4
Diameter
Soliduty at 0.7R
Section
I/C at $0.7 R$
No. of blades
12.75 Seet
0.141

Olark Y
6.8%

4
-25-

ABIE 2

Data-Sealand G-AKII

irings

Gross inea	353 square feet
Span	59 feet
Aspect ratio	9.9
Section	A.D. 6.
ding sectañ to huil daturn	6 deg.
Dinedral	2.3 deg.
Hull - overall $10.90{ }^{\text {a }}$	42.2 こeet
3eam ai step	5 Seet
Iorebody length: bear. retio	3.66
APterbody leneth: buan ratio	2.94
Step Pazring	1:3.5
Aftcrboay keel - Forcbody keel ancle	7.2 deg.

Enganes
Iro De Havilland Ginsy Queen Serics 70 , Giving $331 / 345$ B. F. P. at $2,000 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}_{\mathrm{t}}$ and $+6 \mathrm{Ib} . / \mathrm{sq}$. In , boost for sua level take-off.

Propellers
Type
De Havilland PD/83/312/1

Diametor
Tumbor of Blades
$7.5 \operatorname{sect}$

3

TABIE 3
SOLENT N.J. 201
MRASURFD FATERBORIE RUNS UNCORRECTTD (TEMPERATE)

Run No.	Take-off Water Speed in Knots	Teight in lb .	Power in B.H.P.	Tind Speed in Knots	Take-off Distance in feet (Uncorrected)
752	76	77,500	1573	12	2770
754	81	77,250	1579	8	2850
755	73	76,800	1550	14	2730
756	73	76,500	1577	15	2420
793	72	77,400	1547	17	2580
058	76	77,850	1547	15	2980
060	72	77,300	1518	15	2550
061	71	77,100	1536	15	2520
063	73	76,600	1530	15	2930
064	69	76,350	1489	15	2640
070	72	77,900	1525	15	2660
071	72	77,650	1525	15	2620
072	71	77,400	1539	13	2490
073	74	76,950	1529	13	2580
084	77	77,650	1533	11	3170
085	75	77,200	1519	12	3050
086	75	77,000	1521	12	2960
088	75	76,350	1523	10	3020
089	79	76,050	1516	10	2900
091	73	75,400	1519	10	2480
101	75	77,750	1509	14	3260
231	76	77,850	1518	14	3040
232	78	77,550	1507	15	3450
233	77	77,300	1513	13	31.50
235	83	77,800	1523	9	3960
239	82	76,700	1516	5	3350
24,0	83	76,400	1516	5	3770
24.1	83	76,150	1479	4	3470
54,	77	77,700	1600	9	2860
544 545	80	76,600	1580	9	3000
545 546	83 80	76,400 76,250	11585	10	3420 2980
547	79	76,000	1580	12	2900
563	77	77,650	1515	12	3050
565	76	77,400	1520	13	3160
568	81	76,700	1500	11	3520
621	77	61,900	1630	9	1650
622	75	61,650	1620	10	1690
623	78 73	61,400 61,250	1620	112	1790 1660
625	73	61,100	1620	13	1590
661	76	61,750	1620	13	1720
663	75	61,150	1620	16	1570
664	75	60,900	1600	13	1600
371	56	69,500	1582	22	1850
373	55	69,300	1565	22	1640
377	57	$6 \times, 350$	1570	21	1730
379 381	61 59	60,650 60,450	1570 1570	19	1770 1680

TABLE 4

SOLTMT N.J. 201
MEASUREW TATEGRORNE RUNS UNORRRECTED (SUB-TROPICAL)
$\left.\begin{array}{|c|c|c|c|c|c|}\text { Run No. } & \begin{array}{l}\text { Take-off } \\ \text { Wrater Speed } \\ \text { in Knots }\end{array} & \text { Reight in 1b. } & \begin{array}{l}\text { Power in } \\ \text { B.H.P. }\end{array} & \begin{array}{l}\text { Wind Speed } \\ \text { in Knots }\end{array} & \begin{array}{l}\text { Take-off } \\ \text { Distance in } \\ \text { feet }\end{array} \\ \text { (Uncorrected) }\end{array}\right]$
$/$ TASIE 5
-28
THBE 5
SOLENT N.J. 201
VARIATION OF WATERBORNA DISTANCE WITH TAKE OFPT WATER SPRED
(CORRECLED FUR VEIGHT AND FMGINE POWRD)

Run No.	Take-off Tratur Speed in Tinots	$\begin{gathered} \text { Meichnt in } \\ \text { Ib. } \end{gathered}$	$\begin{aligned} & \text { Pover in } \\ & \text { B.II.P. } \end{aligned}$	Tind speed in Knots	Take-off Distance in feet (Corrected to 1540 B.H.P.)
752	76	77,500	1573	12	2960
754	81.	77,250	1579	8	3070
755	73	76,800	1550	14	2790
756	73	76,500	1577	15	2620
793	72	77,400	1547	17	2620
060	72	77,300	1510	15	24.30
061	71	77,100	1536	15	2500
072	71	77,400	1539	13	2410
073	74	76,950	1529	13	2570
035	75	77,200	1519	12	2990
086	75	77,000	1521	12	2850
231	76	77,850	1518	14	2920
232	78	77,550	1507	15	3270
541	77	77,700	1600	9	3190
542	83	77,150	1575	8	3240
543	77	76,850	1570	8	3410
544	80	76,600	1580	9	3220
545	83	76,400	1535	10	3670
546	80	76,250	1575	8	3180
561	76	77,900	1520	13	3340
563	77	77,650	1515	12	2910
565	76	77,400	1520	13	3160
568	81	76,700	1500	11	3300
371	56	69,500	1582	22	1830
373	56	69,300	1565	22	1680
377	57	68,850	1570	21	1800
379	61	68,650	1570	19	1840
381	59	60,450	1570	18	1760
					$\frac{\text { Corrected to }}{1620 \text { B.H.P. }}$
621	77	61,900	1630	9	1680
- 622	75	61,650	1620	10	1690
623	78	61,400	1620	11	1790
624	73	61,250	1615	12	1650
625	73	61,100	1620	13	1590
661	76	61,750	1620	13	1720
663	75	61,150	1620	16	1570
664	75	60,900	1600	13	1550
665	71	60,750	1610	18	1580

TABLE 6

TABLE 6
SOLINT N.J. 201
VARIMTON OF WATMRBORNE DISTANCE WITH WIND SPERD (CORREWTED FOR WETGFT, UNSTICK SPEMD AND FNGINE FOTMR)

Run No.	$\begin{aligned} & \text { Take-off } \\ & \text { T. A.s. in } \\ & \text { Knots } \end{aligned}$	Werght in 1b.	$\begin{aligned} & \text { Powor in } \\ & \text { B.H.P. } \end{aligned}$	Tind Speed in Knots	Take-off Disrance in feet (Corrected to 38 knots T.i.S. and $1540 \mathrm{~B} . \mathrm{H} . \mathrm{P}$.)
752	88	77,500	1573	12	2960
754	89	77,250	1579	8	3010
755	87	76,800	1550	14	2860
756	88	76,500	1577	15	2620
790	87	77,850	1554	18	2290
793	89	77,400	1547	17	2560
060	87	77,300	1518	15	2490
116	85	77,900	1513	4	3400
117	85	77,700	1482	7	3470
233	90	77,300	1513	13	2870
237	86	77,250	1528	5	3330
542	86	77,700	1600	9	3330
544	89	76,600	1580	9	3150
546	88	76,250	1575	8	3180
371	81	69,500	1582	22	2190
373	81	69,300	1565	22	2000
377	81	68,850	1570	21	21.50
379	84	68,650	1570	19	2030
381	20	68,450	1570	18	2090
					$\frac{\text { Corrected to }}{1620 \text { B.H.P. }}$
621	86	61,900	1630	9	1760
622	85	61,650	1620	10	1810
623	89	61,400	1620	11	1750
624	85	6I, 250	1615	12	1770
625	86	61,100	1620	13	1670
661	89	61,750	1620	13	1680
663	91	61,150	1620	16	1470
664	88	60,900	1600	13	1550
665	89	60,750	1610	18	1550

TABLE 7

SOITNT N. $\mathrm{N}_{2} 201$
VARIATION OF WAIMBORNE DISTINCD WIMH WEIGHT

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Take-af Water Speed in Knots	Weight in 1b.	Power in B.F.P.	Wind Speed in Knots	Takemor Distanco in feet (Corrected to 80 kts . G.S. and 1600 B. H.P.
752	76	77,500	1573	12	2900
754	81	77,250	1579	8	2670
755	73	76,800	1550	14	3010
756	73	76,500	1577	15	2780
793	72	77,400	1547	17	2890
058	76	77,850	1547	15	3020
060	72	77,300	1518	15	2690
061	71	77,100	1536	15	2830
063	73	76,600	1530	15	3130
464	69	76,350	1489	15	2940
070	72	77,900	1525	15	2870
071	72	77,650	1525	15	2830
072	71	77,400	1539	13	2830
073	74	76,950	1529	13	2620
084	77	77,650	1533	11	3060
085	75	77,200	1519	12	3020
086	75	77,000	1521	12	2940
088	75	76,350	1523	10	3020
089	79	76,050	1516	10	2510
091	73	75,400	1519	10	2540
141	75	77,750	1509	14	3210
116	81	77,900	1513	4	2750
117	78	77,700	1482	7	3060
118	79	77,600	1484	8	3290
231	84	77,850	1518	14	2920
232	80	77,550	1507	15	3110
233	84	77,300	1513	13	2920
235	83	77,850	1528	9	3280
239	82	76,700	1516	5	2720
240	83	76,400	1516	5	3050
24.1	83	76,150	1479	4	2560
54.1	77	77,700	1600	9	3080
542	83	77,150	1575	8	2700
54.4	80	76,600	1580	$1{ }^{9}$	2890 3090
545	83	76,400	1585	10	3090
546	80	76,250	1575	8	2850
547	79	76,000	1580	12	2860
563	77	77,650	1515	12	3820
565 568	76 81	77,400 76,700	1520 1500	13	3060 2890
621	77	76,700 61,900	1500 1630	9	1860
622	75	61,650	1620	10	1970
623	78	61,400	1620	11	1940
62.4	73	61,250	1615	12	2030
625	73	61,100	1620	13	1960
661	76	61,750	1620	13	1960
$66{ }^{60}$	75	61,150	1620 1600	16	1840 1820
664 371	75 56	60,900 69,500	1600 1582	13 22	1820 3490
373	56 55	69,500	1585	22	3180
377	57	68,850	1570	21	3320
379	61	68,650	1570	19	2980
381	59	68,450	1570	18	2990

-31-
TABLS 8
SOLENT N.J. 201
VARIATION OF TVATERBONNE DIST ANCE TITH TEETGHT
(CORREOTED FOR FIND, UNSTICK SPEED AND EINGINE POIFR, TROQICAL)

Run No.	Take-off Water Speed in Knots	Feight in 7 b .	Power in B. H. P.	Tind Speed in Knots	Take-off Distance in feet (Corrected to 80 Knots G.S. and 1500 B. H.P.
373	78	61,700	1525	10	2560
378	81	60,900	1525	12	2310
379	76	60,700	1530	11	2360
330	75	60,450	1520	13	2490
391	84	70,800	1505	9	3030
392	83	70,500	1500	10	3040
393	80	70,250	1510	11	2810
394	83	70,000	1504	10	2740
396	87	69,750	1500	3	2910
415	85	77,200	1470	5	3610
416	86	76,850	1470	6	3330
417	86	76,500	1480	6	3620
418	84	76,100	1460	7	3430
419	85	75,750	1460	7	3230 3980
431	82	78,250	1460	8	3980
432	82	77,900	1465	7 8	3710 3780
433	83	77,500 76,000	1250	8	3780 34.20
437 439	85 84	76,000 75,400	1475 1480	8 10	3420 3270
441	78	74,800	1480	10	3340
477	82	76,600	1461	8	3300
485	84	77,350	1479	8	3660
486	84	77,200	14.83	7	3660
488	86	76,850	1479	6	3440
489 491	82 83	76,700 76,250	1486 1490	10 10	3530 3480

/ TABLE 9
(THPERATE)

Run No.	Take-off Tater Speed in Knots	Climb Speed in Knots	Tina spoca in Knots	Weight in 7 b.	Airborne Distance in feet Actual
752	76	91	12	77,500	1540
755	73	90	14	76,800	1610
793	72	92	17	77,400	1890
101	75	94	14	77,750	1870
237	81	99	5	77,250	1940
543	77	98	8	76,850	21.40
544	80	100	9	76,600	2060
545	83	100	10	76,400	1650
561	79	94	13	77,900	1710
563	77	95	12	77,650	1920
621	77	94	9	61,900	1260
622	75	93	10	61,650	7240
623	78	97	11	61,400	1.220
624	73	94	12	61,250	1400
625	73	91	13	61,100	1150
626	78	98	9	60,900	1540
661	76	90	13	61,750	900
663	75	89	16	61,150	860
664	75	89	13	60,900	1080
063	73	82	15	76,600	950
231	76	84	14	77,850	1110
233	77	84	13	77,300	980
547	79	92	12	76,000	1630
665	71	82	18	60,750	790
060	72	76	15	77,300	760
061	71	76	15	77,100	780
062	69	75	15	76,850	530
064	69	75	1.5	76,350	660
070	72	73	15	77,900	570
071	72	77	15	77,650	910
072	71	75	13	77,400	650
073	74	80	13	76,950	830
234	72	78	14	77,000	810
		TROPICAL			
378	81	103	12	60,900	1730
379	76	105	11	60,700	2070
380	75	100	13	60,450	1800
391	84	108	9	70,800	1980
392	83	106	10	70,500	1730
393	80	107	11	70,250	24.10
415	85	108	5	77,200	2330
416	86	109	6	76,850	2670
431	82	97	8	78,250	1850
433	83	96	8	77,500	1640
		TGMPERATE			
371	56	90	122	69,500	1270
373	55	89	22	69,300	1180
377	57	92	21	68,850	1310
379	61	91	19	68,650	1340
381	59	92	18	68,450	1240

For No's 371 onwards the Aircraft was allowed to accelerate, and steadily climbed so that it arrived at the screen heicht at 100 knots .
The climbing speeds given are the mean values.

SOLENT N.J. 201
VARIATION OF AIRBORNE DISTANCE TITH TAKE-OFF, GLTB AND TTND SPENDS (COR AECTHD FOR TETGHT AND BMGINE FOTER, TEMPIRATE)

Run No.	Take-0ff Tater Speed in Inots	Climb Speed in Knots	Tind Speed in Knots	$\begin{gathered} \text { Teight in } \\ \text { Ib. } \end{gathered}$	Airborne Distance in feet	$\frac{v_{c}^{2}-U_{t}^{2}}{2 g}+50$
752	76	91	12	77,500	1540	162
755	73	90	14	76,800	1610	173
793	72	92	17	77,400	1890	196
060	72	76	15	77,300	760	76
061	71	76	15	77,100	780	83
063	73	82	15	76,600	950	112
070	72	73	15	77,900	570	56
071	72	77	15	77,650	910	83
072	71	75	13	77,400	650	76
073	74	80	13	76,950	880	91
101	75	94	14	77,750	1870	192
231	76	84	14	77,850	1110	107
233	77	84	13	77,300	980	100
234	72	78	14	77,000	810	89
237	81	99	5	77,250	1940	194
543	77	98	8	76,850	2140	213
544	80	100	9	76,600	2060	209
545	83	100	10	76,400	1650	187
547	79	92	12	76,000	1630	149
561	79	94	13	77,900	1710	165
553	77	95	12	77,650	1920	187
621	77	94	9	61,900	1260	178
622	75	93	10	61,650	1240	184
623	78	97	11	61,400	1220	197
624	73	94	12	61,250	1400	204
625	73	91	13	61,100	1150	180
626	78	98	9	60,900	1540	205
661	76	90	13	61,750	900	153
663	75	89	16	61,150	860	151
664	75	89	13	60,900	1080	151
665	71	82	18	60,750	790	124
371	56	90	22	69,500	1270	270
373	55	89	22	69,300	1180	265
377	57	92	21	68,850	1310	281
379	61	91	19	68,650	1340	250
381	59	92	18	68,450	1240	268
For No's 371 omvards the Aurcraft was allowed to accelerate, and steadily climbed so that it arrived at the screen height at $108 \mathrm{knots}. \mathrm{(Safety} \mathrm{spead)}$. The climbing speeds given are the mean values.						

SOLENT N.J. 201
MEASURED TIME TO TATSTICK

Temperate of Table 3		Subutropical of Table 4	
Run No.	Time in sec.	Run so.	Tine in sec.
752	38.6	415	61.5
754	37.4	416	60.2
755	36.8	417	57.2
756	37.6	418	55.4
793	36.7	419	52.8
058	40.9	431	58.3
060	38.0	432	56.8
061	37.0	433	63.5
063	38.5	437	57.3
064	37.1	439	51.0
070	39.2	441	51.4
071	39.1	477	55.4
072	39.1	483	53.4
073	39.2	485	56.0
084	42.7	486	57.1
085	42.3	488	56.4
086	41.0	489	56.1
088	41.7	491	52.0
089	40.7	391	46.2
091	38.1	392	43.7
101	-	393	42.2
116	48.3	294	43.6
117	44.8	396	46.0
118	46.0	373	35.2
231	42.3	378	32.8
232	44.6	379	31.8
233	42.1	380	35.6
235	45.3		
239	43.0 46.8		
24.1	46.6		
541	39.7		
542	42.9		
54.4	40.4		
545	44.0		
546	41.5		
547	39.8		
563 565	40.1 41.8		
568	43.6		
621	22.7		
622	23.8		
623	24.4		
624	22.5		
625	23.0		
661	24.4		
663	23.3		
664	23.5		
665	23.0 33.0		
373	31.0		
377	32.0		
379	33.0		
381	31.0		

FIG. 2

FIG. 3.

TYPICAL VARIATION OF LONGITUDINAL ACCELERATION dURING A SEAPLANE TAKE-OFF.

VARIATION OF WATERBORNE DISTANCE WITH TAKE-OFF WATER SPEED AT UNSTICK.

FIGS. 5 \& 6.

FIG. 5.
VARIATION OF WATERBORNE DISTANCE WITH WIND SPEED, SOLENT.

FIG. 6.
VARIATION OF WATERBORNE DISTANCE WITH WIND SPEED, SEALAND.

FIG. 8.

VARIATION OF WATERBORNE DISTANCE WITH WEIGHT, SEALAND.

FIGS. 9 \& 10.

FIG. 9
VARIATION OF WATERBORNE DISTANCE WITH ENGINE POWER, SOLENT AT 77,000 LB.

FIG.IO.

FIG.II.

FIGS.12 \& 13.

FIG.I2.
VARIATION OF AIRBORNE DISTANCE WITH UNSTICK,CLIMB AND WIND SPEEDS, SOLENT AT 77,000LB.

FIG.I3.
VARIATION OF AIRBORNE DISTANCE WITH UNSTICK, CLIMB AND WIND SPEEDS, SOLENT AT 6I,OOOLB.

Variation of airborne distance with weight (CORrected), solent.

measured airborne distances (uncorrected), solent.
A.R.C. Technical Report

Crown Copyright Reserved

printed and published by her manesty's stationery office
To be purchased from
York House, Kingsway, LONDON, w c. 2423 Oxford Street, London, w 1 P O Box 569, LONDON, S E 1
13a Castle Street, bdinburgh, 2109 St Mary Street, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1955
Price 4s 6d net
ominted in oreat exitaik

C.P. No. 219

