C.P. No. 12

12654
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Transitional Friction Effects in Powered Controls with Particular Reference to Hydraulic Jacks

By

F. HOLOUBEK, A.F.R.Ae.S.

Crown Copyright Reserved

LONDON. HIS MAJESTY'S STATIONERY OFFICE 1950

C.P.No. 12
 (12654)

MINISTEY OP SUPPLY

AERCNALTICAL RESEARCH COUNCIL
CURRENT PAPERS

Transational fruction effects an powered controls with particular reference to hydraulic jacks
by
F. Holoubek, A.F.R.Ae.S.

SUMMARY

The moinon of 9 system in which power as transmatted from a constant rate source irt, an oute'ut component of finite mass through an elastic medaum, in which the output element as restrained by frictaon, is anazyed and jisoussed. It is shown that the result is a quasi-oscillatory sustaned motion which includes a period of rest between consecutive cycles. It is submitted that this phenomenon is the kasis of the so called "judder" encountered in servo-mcchanisms, control circuits ttc. Neans of mitagatang the severity of the "juäder" are suggusted.

ITST OF CONTMNTS

Page No.
1 Introduction 5
2 General analytical method. 5
2.1 Fraction 5
2.2 Equation of motion 6
2.3 Discussion of method 10
3 Conolusions 12
References 13
LIST OF APPEPDICES
Appondix
Equation of motion and derivation of formulae I
IIST OF ITUUSTRATIONS
Figure
iffect on frmetion of workng fluid and pressure 1
Frnction values at the transition between boundary and film 2 Iubrioation
Effect of the steady input rate V_{1} 3
Effect of the ratio $\frac{R}{r}$ 4
Effect of stifeness k 5
Recora of a "Servodyne" run in a test rig 6
Hydraulio servo-installation (Appendix II) 7

LIST OF SYMBOLS

x_{1}	
x_{1}	$\begin{gathered} \text { steady rate lnput } \\ \text { dusolacements } \end{gathered}$
x_{1}^{\prime} $x_{1}^{\prime \prime}$)
x_{2}	
x_{2}^{\prime}	\} output dasplacements ft
$\mathrm{x}_{\mathrm{V}_{\max }}$	\int
Δx	output lag, spring compression ftt
t	
t_{0}	
$t^{\prime \prime}$	times, periods seo
tv $2 \max$	
T	perzod of cyole seo
f	frequency $\frac{1}{\text { sec }}$
F_{S}	spring force lb
F_{1}	frmotion per unit length of pernphery of a packing $3 \mathrm{~b} / \mathrm{in}$
r	knnetic fraction Ib
R	static fruction Ib
${ }^{\mu}$	viscoszty o.p.
p	working pressure $1 \mathrm{~b} / \mathrm{in}^{2}$ (also integrating faotor an Iaplace transform $\ell^{-p t}$)
p_{j}	anIet pressure
p_{2}	exhaust pressure $\} 1 \mathrm{~b} / \mathrm{in}^{2}$
p_{0}	interference pressure

v rubbıne velocity ft/sec
V_{1} equavalent steady unput rate $\mathrm{ft} / \mathrm{sec}$
v_{2} absoluto piston velocuty $\mathrm{ft} / \mathrm{sec}$
D, d jeck cylinder bore and rod diameter in.
b width of paoking in.
$c=\frac{Q_{0}}{p}$
h falm thickness in.
$k \quad$ spring constant $\mathrm{lb} / \mathrm{ft}$
$m \quad \operatorname{mass} \frac{1 b \sec ^{2}}{f t}$
p velocity ratio

A mochomoal device comprasing a mass and a spring constatutes an oscillatory system. Any form of dumping, friction or volocity damping generally causes decay of the existing oscillation, unless energy lis fed anto the systom to sustann the amplitude. There is, however, one instanco of rnction in which fruction is the culuse and condztion of sustanced oscallatory behaviour. It iss the case of incremental motion of a journel in a boaring, a rod in w sleeve, a pan in a hinge und othors. This case as of particular interest in tho application of rubbor sools in the jacks of hydraulically powered flyang controls. It has boen observed in cortain power installations that, while operated on the ground, withan a range of input rates the paston rod ond consoquontly tho control surfoco movod in a serios of increments, a phenomonon sometimos colled "ujder", gaving a vasual and audiblo ampression of a violent oscillation Suporimposed on the mean Innoar displacement.

Lot, ior tho purpose of analysis, the moment of anortia of the rotating control surfeco whth its mass balance be replaced by a dynamically oquavalont mass concentritod in the piston of the operating jack. Further, let the cominod olasticity of the system be measured or ostzmated and assumed to bo modo up of the comprossibility of the flund and tho olastucity of the envelope (expansion of the jack cylunder and plpes). Ilnaily, lot it be maginod that a constant speed hydraulic pump begins delivoring pressure onl at a rato corrosponding to a mean stcady pliston volocity v_{1}. Thas assumption would strictily apply only in the case of puro rato control whout a "follow-up" mechanzsm, as the follow-up valvo ould mppress lte oharacternstic on the volumo deluvered into the prok. As at happons in nome casos of valve control, the effecto of friction aro folt most dustinetly an the range of moduum speeds V_{1}, when the valve is only partly opon and uts fluctuatzon ronders the analysis rather complicated. It ls assumed, howiver, that the present sumple thoory does aprily in the aso of a long stroke control valve, whore a smali fluctuation of the fully open valve does not appreciably alter the rate of flow.

2. General analytucal method

2.1 Eriction

Consaderable unocrtonty provaled in the assessment of the value of friction coefinciont of rubver sesls as used an hydrauizo jacks, predicm tion beang mado durfacult by the seomingly errotic bohaviour of rubber in the lubricutod bore of the jack cylander. Among the factors Influercing the אmiction coefficiont are matcrial ond degrec of finish of the bore, composition and hardness of the rubbcs soaling ming, velocity of rabhang, opuratang pressure, type of hydraulic fluzd, inztial contact pressure (intorference fit of the seci) and a number of others. Experionce from hydraulia underommage struts indicates that some 5-10\%" of thrust 10 dussipated in the fruction of the glands. Thito and Denny in thour cocent work (Reference No.1) made a welcome contrubution tovards underatanding the sealing mochanism of flexiblc packings. Working on the theory advanced by Archbut and Deely and ifichelli's theory of flow betwicen aclinod surfaces, they evolved a formula connecting the man factors in the forr of a gonerul oquation

$$
F_{I}=\sqrt{\frac{p \mu V b}{2}}(2.8+2 c)
$$

Whore $F_{\mathrm{L}}=$ friction per unit length of caroumference of the seal,
$p=$ working pressure of the flumd, $\mu=$ fluid viscosity,$V=$ speed of rubbing, $b=a x i a l$ width of the packng mag, $c=\frac{p_{0}}{p}$ and $p_{0}=\operatorname{matial}$ contact pressure (Interference fit). In the authors own admission this formula may be erring on the low side.

A pount of particular mportance, however, is the experimental evidence of an extremely steep rise of the friction coefficaent at rubbing speeds below a certain criti,cal value. This omtical velocity is definod as the one at which a. permanent film of fluid (lubricant) is established which separates the two rubbing surfaces. Above that velocaty the Minitemenny formula applies and the thickness of the film h oan be calculatod from the equation

$$
h=\sqrt{\frac{\mu v b}{p(16.2+38 C)}}
$$

At speeds below the critical, however, the film of lubricant begans to break down and, probably due to the extreme thanness and dascontinuaty of the film, the surface adhesive forces come anto play, resulting in a steep risc in the rubbing resistance. It 2s, of course, a matter of common knowledge that the static, or braakaray friction is usually somewhat hagher than the kanatic fuction, which is generally true even of non-lubricated surfaces, but the rise in frictional resistance shown by White and Donny (soc Reforence No.1, pp. 49 and 56, roproduced in figure 2 of this Report) Is so unoxpectedly abrupt and large at speeds just below critical, that it has, in some cases, the character of discontinuzty or stop change. Thus values of friction under static (boundary) conditions of 5 to 10 tames those of film fruction seem to be quite commomplace and, deponding on the combination of type of rubber and lubricant, may well be oxcooded. This is an extremely anteresting property of Iubricated soals and its imolications are discussed in the following paragraphs.

2.2 Equation of motion

Ono complete cyolo of motion of the system described in the first paragraph will be found to consust of three phases.

First Phase. Let it be first assumed that the system be initially at a standstill, 2.0. the valve is closed and there is no flow in or out of the jack. At time $t=0$ the valve opens fully and the pump begins to delıver $E l u i d$ Into the juck at a constant rate corresponding to an equivelent giston velocity v_{f}. Simultaneously pressure is appliod to the seals greng rise to a high static friction R, which resists the piston moving. As, however, the pump is delluering 011 the time at a constant rate prossure in the system rises and, until the piston "breaks away" and starts moving, the excess volume of flucd is accomnodated in the expanding cylinder and pipelines. In the symbolised representation

when

$$
t \leqslant 0
$$

$$
x_{1}=x_{2}=0
$$

$$
v_{2}=0
$$

$$
0<t \leqslant t_{0} \quad x_{1}=v_{1} t \quad x_{2}=0
$$

No movement of the mass m will take place until the spring force $k x_{1}$ reaches the level of $R_{\text {g }}$ when the seal will "break away". This condituon is expressed as

$$
\begin{align*}
& v_{1} t_{0} k=R \\
& x_{1}=v_{1} t_{0}=\frac{R}{k} \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
t_{0}=\frac{R}{k v_{1}} \tag{2}
\end{equation*}
$$

Second Phase. Almost mmeduately after the "break away" the friction force R drops to a fractlonal value r and will, for simplicity of treatment be assumed constant as long as the motaon persists. This assumption of constant friction is not ontirely correct. The absolute piston velocity v_{2} varies, as will be seen, from 0 to approximately $2 \mathrm{v}_{1}$ wathin one cyclo and the fruction force, according to Thite and Denny varres as the square root of velocity. Thus, if calculation of fruction is bascd on the mean velocity v_{1} the instantancous orror will bo whin $\pm 40 \%$. But the ovorall effect of thas variation within one cyclo and $L^{\prime \prime}$ partıcular its effect on the froquency will be found nogliguble.

Measuring time t from the instant of the "break away" the spring force at any anstant car be expressed as

$$
\begin{align*}
\mathrm{F}_{\mathrm{S}} & =k \Delta \mathrm{x} \\
& =k\left(x_{1}-x_{2}\right) \\
& =k\left(x_{p_{0}}+v_{1} t-x_{2}\right) \tag{3}
\end{align*}
$$

and \perp nsertane (1) for x_{1}

$$
\begin{equation*}
\mathrm{F}_{\mathrm{S}}=\mathrm{k}\left(\frac{\mathrm{R}}{\mathrm{k}}+\mathrm{v}_{1} t-\mathrm{x}_{2}\right) \tag{4}
\end{equation*}
$$

Now the equation of motion can be written

$$
\begin{equation*}
-m \frac{d^{2} x_{2}}{d t^{2}}-r+F_{s}=0 \tag{5}
\end{equation*}
$$

Using (4) for F_{S} and arranging the terms in the way suitable for operational solution

$$
\phi(D)=\psi(t)
$$

the equation of motion becomes

$$
\begin{equation*}
\frac{d^{2} x_{2}}{d t^{2}}+\frac{k}{m} x_{2}=\frac{k}{m} v_{1} t+\frac{R-r}{m} \tag{6}
\end{equation*}
$$

Transformiug (6) (Laplace)

$$
\begin{equation*}
\left(p^{2}+\frac{k}{m}\right) \int_{0}^{\infty} e^{-p t} x_{2} d t=\frac{1}{m} \int_{0}^{\infty}\left(k v_{1} t+R-r\right) e^{-p t} d t \tag{7}
\end{equation*}
$$

complato solution of (6) as obtained

$$
\begin{equation*}
x_{2}=v_{1}\left[t-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}} t\right]+\frac{R-r}{k}\left[1-\cos \sqrt{\frac{k}{m}} t\right] \tag{8}
\end{equation*}
$$

It can be soen from (8) that tho motion is baslcally an oscillation about the mean datum $v i t$, somewhat assymetric due to the presonco of friction. (Seo skotch page 9 and figures 3, 4, 5 and 7).

The duration of this phase t is obtained from tho condation of maximum amplitudo by dafforentleting (8) wath respect to time, equating to zoro and solving for t, thus

$$
\begin{align*}
\vdots & =\frac{2 \pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{or}\\
& =\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{9}
\end{align*}
$$

deponding on whether the maxumm lies in the fourth or third quadrant (See Appondux I).

Third Phase. At the unstant t^{\prime} the piston volocity becomes zaro and as a conscauonco the friotion risos agan from r to Its static value R and the motion will cease for such a period of time as the spring force remains less than the fraction $\pm R$. At the instant $t^{\prime \prime}$ the amplitude x_{2} mis

$$
\begin{equation*}
x_{2}^{\prime}=v_{1}\left[t^{\prime}-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}} t^{\prime}\right]+\frac{\mathrm{k}-r}{k}\left[1-\cos \sqrt{\frac{k}{m}} t^{\prime}\right] \tag{10}
\end{equation*}
$$

and at the same time X_{1} was

$$
x_{1}^{\prime}=x_{y_{0}}+v_{1} t,=\frac{H}{k}+v_{1} t^{\prime}
$$

The time $t^{\prime \prime}$ (measured from the Instant t') necessary to complete the cycle, 1.0 . Whon again $x_{2}=x_{1}$ is caloulated from

$$
\begin{equation*}
t^{\prime \prime}=\frac{\Delta x}{v_{1}}=\frac{x_{2}^{\prime}-x_{1}^{\prime}}{v_{1}} \tag{12}
\end{equation*}
$$

Inserting oxprossions (10) and (11) for x_{2}^{\prime} and x_{1}^{\prime} in (12) a simplo expression is obtanod for $t^{\prime \prime}$, thus

$$
\begin{equation*}
t^{\prime \prime}=\frac{R-2 r}{k v_{1}} \tag{13}
\end{equation*}
$$

irrespective of the quadrant in wheh the muximum of x_{2} Inos.

At the instant th the initial conditions ($x_{1}=x_{2}, \frac{d x_{1}}{d t}=v_{1}, v_{2}=0$) have been reproduced and a now identical cycle will begin.

The total period of the cycle whll be the sum of the antervals of the throo phases, thus

$$
\begin{equation*}
I=t_{0}+t^{\prime}+t^{\prime \prime} \tag{14}
\end{equation*}
$$

whore the right hand sade 1 s tho sum of equations (2), (9) and (13). Because of the duallty of (9) the total time T is oither

$$
\begin{equation*}
T=\frac{2 \pi}{\sqrt{\frac{k}{m}}}+\frac{2(k-r)}{k v_{1}}=\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{15a}
\end{equation*}
$$

or

$$
\begin{equation*}
T=\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{2(R-r)}{k v_{1}}+\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{15~b}
\end{equation*}
$$

Referring to (15a) tho first torm of the raght hand slde is olearly tho natural period T_{0} of tho same system without friction and it is apparent, and can bo genorally show (for 15b above), that T is always greator then T_{0}, in other words, the addation of thas type of fruotion roduces the natural froquency of a frictionloss systom.

2.3 Dascussion of mothod. Graphical roprescntation.

For the purpose of graphical enalysis arbitrary values wore introduced into equation (8), vaz. $W=1 \mathrm{lb}, k=10 \mathrm{lb} / \mathrm{ft}, \quad \mathrm{F}=0.4$ (0.8, 1.6) $\mathrm{Ib}, r=0.2 \mathrm{Ib}$ and $\mathrm{v}_{1}=1.0(0.5,2.0) \mathrm{tc} / \mathrm{sec}$. The results vere tabulated and plottod (figuros 3 und 4). First the steady input rate v_{1} was varmed $\left(v_{1}=0.5,1.0,2.0 \mathrm{ft} / \mathrm{soc}\right)$. It can be soen (figure 3) that inth incroasing v_{1} tis pernod of rest betweon consecum tive cycles (during which $\frac{d_{2}}{d t}=0$) which is characteristic of incremental (as distinct from truc owcillatory) motion, decrases to a mall fraction of the total period of the cycle. One possible inferenco from thas fact Is that above a certan value of v_{1} tho pemod of rest becomes so small that the film ostablished during the precoding part of the cycle has no time to broak dow with tho result that a somewhat constant low valuc of fruction coofficiont prevezls throughout the cycle. The motion, howover, always remains incromental, although with docrossing period of rost the incremental charactor of the cycle becomes less and less patent.

It is antoresting to note that the total period T and its reciprocal, the frequency, is practically independent of v_{1}, with a soaroely perceptible tendency for the frequency to ruse with v_{1}.

The maximum instantaneous amplitude relative to the stoady anput rate datum $v_{1} t$ (dnsplacement lag) increascs with v_{p}, but the relative amplitude, that is tinc ratio of maximum Instantancous amplitude and the total displacemont in one cycle (betweon two consecutivo rests) falls
orf with crowing v_{1}. It may be that the violence of oscullation of thes type should be gaugod by its relative maximum ampintude rather than by ats absolute valuo, or, at any rato tho psychological mprossion in the obscrvor may be some function of the two combined, which, if' accopted, may oxplain tiny the motion would "cppcar" most unovon within a cortain noduun rungo of stocuty anput volocity v_{1}. Anothor possiblo argumont is
 cant, in the rogion of hagh v_{1} in hydraulic cliccuits hydraulic damping foroes come into play, proportional to $\mathrm{V}^{N}(N=1$ to 2) which kivo not beon considered in thas trontiso for roason of sumplionty, tending to ovon out the oscillation. That leavos ngain a certain medium range of v_{1} whero the aneramental notzon appears relatively most violent.

Quite accadentally in the thrce cases considered (fagure 3) the value of static fruction was choson twice that oi kinetic fimetion, $R=2 r$. This is a cpoc_al onse and it mill have boen alroady notaced that in this case t" becomes zero and tho oyclo has only two phasos.

In f^{\prime} gure 4 s. sut of throo cases as plotied in which the ratio R / r mis vamed $(\mathrm{R} / \mathrm{r}=2,4,8)$. The incroase of the pemod of rost with k/r is vomy obvzous, but agam tho totell poriod of tho cycio is Inttio affoctod, there belng a tondoncy for the froquency to drop with znereem sing K / r.

In figure 5 as show the offect of stiffoning of the trangritting medrum, k. The rosult is twofold: tho frequency of the cycle increases
 quickiy dumazehos. Tho lattor offect loads to a situat on similar to that oncounterod above inth high v_{1} and similer considemtions apply
 modzum as cloarly an offoctivo way of combating the sovority of "juddor".

It has bcon mantionod in paragraph 3.2 that on orror is introducod by basing calcuintion of fraction on the moan valocity v_{1} instead of on the variable r_{2}. The mixumm instantoncous value of volocity v_{2} ann bo colculatod in tho usual way by difficrontactang tiaco equation (8), cquating to zero, solving for t and incorting this value into tho farat differonticl. DividLns tho melimum zustantencous velocity $v_{2 m a x}$, thus obtainod, by v_{1} a simplo velocity ratio resuitis, thus

$$
\begin{equation*}
\rho=\frac{v_{2 \max }}{v_{i}}=1+\sqrt{1+\left(\frac{R-m}{m v_{1} / \frac{k}{m}}\right)^{2}} \tag{16}
\end{equation*}
$$

It is found an most practical applications that the square of the bracket under the root sign is , wite small and the value of ρ tends towards 2 and so the reasoming of paragraph 3.2 (as regards the average value of fructıon) upplies.

It may be of intorest to note the t due to the prosence of fruction the infloction puint of $x_{2}=f(t)$ does not coincide with the interscction with $x_{1}=v_{1} t$ as ono might conclude from the fact that at that instant $x_{2}=x_{1}$ and the spring force oquals zoro. The znfloction point and consequantly $v_{\text {max }}$ can be found also eraphically from'the plot of $x_{2}=f(t)$ at the intersoction wath a lino parallei to $x_{1}=v_{1} t$ (soo sketch on pagu 9)

$$
\begin{equation*}
x_{1_{F}}=v_{1} t-\frac{r}{k} \tag{17}
\end{equation*}
$$

At that instant (of intersection wath (17)) the residual spming force Just equals the instantaneous value of friction, $\frac{d^{2} x_{2}}{d t^{2}}=0$ and v_{2} is maximum.

In a recont tost on a hydraulic servo unat the traces of the output show a remarkeble sumiciraty to the curves computed by the present method and the relovant graphs are roproduced hero for interost (figure 6).

3 Conclusions

In systoms 20 whech power is transmitted from a constant rate source into the output clenent of finite mass through an elastic medium and in which the output oloment is restrained by friction, the resulting motion of the mass may be of an incremental character, with periods of rest intorposed betrieon the consecutive cycles of sustained amplitude. This poriod of rest and the rolatave violence of the ancremental motion is strongly accontuated by the difference between the statio and kinetic values of frıction, which appears to be very pronounced in the cese of rubber-metal rubbing combination, such as is used in hydraulic jack seal.s. Recont investagetions have show that the ratios of the two frictions of the order of 5 to 10 may be frequently realised. The resultant response to a stop input is then distanctly incremental, quasi-oscillatory, consisting of a succession of jerks in the general durection of motion and it Is submitted that thas is the basis of what is commonly referred to as "juader".

Thore saom to be two mann means to mitigate the severnty of the phenomenon, namely, one, inoreasing the ow frequency of the system by stiffening the trensmitting medium. To this end the fluld should be thoroughly de-aerated by blecding the systom, the jack cylindor so descignod and dumonsionvd as to onsure its maximum rigidity and tho pipom linos of sturdy design bo kopt as short as practicable. It may be advasoble in some sy stoms using stationary plston and moving jack oylundor to ruversc the order and koep the cylunder stationary in order to moke the usc of mgid metal papclincs (in place of elastic filexible hoses) possible. Altornatively, or perhaps simultaneously, the jack frrction should be kopt genorily low and in partioular combinations of mubbing materials and lubricants (fluids) with pronounced dufference between the static and kinetze froction coefficuents should be avolded.

REFERENCES

Ref.No.
1 C.M. Whate
D.F. Denny
F.W. Read

3 H.S. Carslaw
T.C. Jaeger

Title etc.

The Sealing mechaniem of flexible packings.
M. of 3 . Scyentific and Technical Memoranäum No.3/47, January 1947 (H.in. Stationary Office 1948)

Tests on "Servodyne" Hydraulic flying control assister. Technical Note Mech.Eng. 10 (R.A.E. 1947) ARC 12,653

Opcrational methods in applicd mathematies. (Oxfora Universaty Press)

APPENDIX I

Equation of motion and derivation of formulae

Phase I

$$
\begin{align*}
& x_{1}=v_{1} t \tag{1}\\
& v_{1} t_{0} k=R \tag{2}\\
& x_{1}=v_{1} t_{0}=\frac{R}{k} \tag{3}\\
& t_{0}=\frac{R}{k v_{1}} \tag{4}
\end{align*}
$$

Phasc II

Condition of equalibraum of forces acting on the mass m

$$
\begin{equation*}
-m \frac{d^{2} x_{2}}{d t^{2}}+p_{s}-r=0 \tag{5}
\end{equation*}
$$

Spring force

$$
F_{3}=k \Delta x=k\left(x_{1}-x_{2}\right)
$$

If t is now counted from the unstant t_{0}

$$
\begin{equation*}
x_{1}=x_{1_{0}}+v_{1} t=\frac{R}{k}+v_{1} t \tag{6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F_{S}=k\left(\frac{R}{k}+v_{1} t-x_{2}\right) \tag{7}
\end{equation*}
$$

Introducing (7) into (5) and rearranging in the way suitable for operational solution

$$
\phi(D)=\psi(t)
$$

the equation of motion becoms now

$$
\begin{equation*}
\frac{d^{2} x_{2}}{d t^{2}}+\frac{k}{m} x_{2}=\frac{1}{m}\left(k v_{1} t+R-r\right) \tag{8}
\end{equation*}
$$

Laplaco tranafommtion of (8)

$$
\begin{align*}
& \left(p^{\circ}+\frac{k}{2}\right) \int_{0}^{\infty} e^{-p t} i_{2} d t=\frac{1}{1 .} \int_{0}^{\infty}\left(k v_{1} t+R-r\right) e^{-p t} d t \\
& \quad=\frac{1}{m}\left[k v_{1} \int_{0}^{\infty} e^{-p t} t d t+(\mathrm{R}-r) \int_{0}^{\infty} e^{-p t} d t\right] \tag{9}
\end{align*}
$$

Intograting the right hand side of (9)

$$
\begin{align*}
\int_{0}^{\infty} e^{-p t} t a t= & -\frac{1}{p} t e^{-p t}+\frac{1}{p} \int_{0}^{\infty} e^{-p t} \\
& \left.-\frac{1}{p} t e^{-p t}-\frac{1}{p^{2}} e^{-p t}\right]_{0}^{\infty} \\
& =\frac{1}{p^{2}} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} e^{-p t} d t=\left[-\frac{1}{p} e^{-p t}\right]_{0}^{\infty}=\frac{1}{p} \tag{11}
\end{equation*}
$$

Thus, insorting (10) and (11) into (9)

$$
\int_{0}^{\infty} e^{-p t} x_{c} d t=\frac{k v_{1}}{m} \frac{1}{p^{2}\left(p^{2}+\frac{k}{n}\right)}+\frac{R-r}{m} \frac{1}{p\left(p^{2}+\frac{k}{m}\right)}
$$

or

$$
\begin{equation*}
\bar{x}_{2}(p)=v_{1} \frac{\frac{k}{n}}{p^{2}\left(p^{2}+\frac{k}{n}\right)}+\frac{R-r}{k} \frac{\frac{k}{n}}{p\left(p^{2}+\frac{k}{m}\right)} \tag{12}
\end{equation*}
$$

The expressions on the raght hand side are reauced by splatting anto partial fractions

$$
\begin{align*}
\frac{\frac{k}{m}}{p^{2}\left(p^{2}+\frac{k}{m}\right)} & =\frac{k}{m}\left[\frac{A}{p^{2}}+\frac{B}{p^{2}+\frac{k}{m}}\right] \\
& =\frac{k}{m} \frac{(A+B) p^{2}+A \frac{k}{m}}{p^{2}\left(p^{2}+\frac{k}{m}\right)} \\
& =\frac{1}{p^{2}}-\frac{1}{p^{2}+\frac{k}{m}} \tag{13}
\end{align*}
$$

Similariy,

$$
\begin{equation*}
\frac{\frac{k}{n}}{p\left(p^{2}+\frac{k}{m}\right)}=p \frac{\frac{k}{m}}{p^{2}\left(p^{2}+\frac{k}{n}\right)}=\frac{1}{p}-\frac{p}{p^{2}+\frac{k}{m}} \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\bar{x}_{2}(p)=v_{1}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}+\frac{k}{n}}\right]+\frac{R-r}{k}\left[\frac{1}{p}-\frac{p}{p^{2}+\frac{k}{n}}\right] \tag{15}
\end{equation*}
$$

Using a table of Laplace transforms (Reference 2) the completo solution can now be writton directly

$$
\begin{equation*}
x_{2}=v_{1}\left[t-\frac{1}{\sqrt{\frac{k}{n}}} \sin \sqrt{\frac{k}{m}} t\right]+\frac{\mathrm{p}-r}{k}\left[1-\cos \sqrt{\frac{k}{m}} t\right] \tag{16}
\end{equation*}
$$

To determine the maximum amplitude x_{2}^{\prime} and the corresponding time t^{\prime} (measured from the instant t_{0}) (16) is differentiated and equated to zero

$$
\begin{equation*}
\frac{d x_{2}}{d t}=v_{1}\left[1-\cos \sqrt{\frac{k}{m}} t\right]+\frac{R-x}{k} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t=0 \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{1} \cos \sqrt{\frac{k}{m}} t=\frac{R-r}{k} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t+v_{1} \tag{18}
\end{equation*}
$$

Squaring (18) and expressing cos in terms of sin

$$
\begin{equation*}
v_{1}^{2}-v_{1}^{2} \sin ^{2} \sqrt{\frac{k}{m}} t=\left(\frac{R-r}{k} \sqrt{\frac{k}{m}}\right)^{2} \sin ^{2} \sqrt{\frac{k}{m}} t+2 v_{1} \frac{R-r}{k} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t+v_{1}^{2} \tag{19}
\end{equation*}
$$

Dividing by $v_{1}{ }^{2} \sin \sqrt{\frac{k}{m}} t$ and rearranging (19)

$$
\begin{equation*}
\left[\left(\frac{R-x}{k v_{1}} \sqrt{\frac{k}{m}}\right)^{2}+1\right] \sin \sqrt{\frac{k}{m}} t+2 \frac{k-r}{k v_{1}} \sqrt{\frac{k}{m}}=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
\sin \sqrt{\frac{k}{m}} t & =-\frac{2 \frac{R-r}{k v_{1}} \sqrt{\frac{k}{m}}}{\left(\frac{R-r}{k v_{1}} \sqrt{\frac{k}{m}}\right)^{2}+1}= \\
& =-\frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{21}
\end{align*}
$$

The negative sign signifies that the angle $\sqrt{\frac{k}{m}} t$ lies either in the third or fourth quadrant and consequently

$$
\begin{equation*}
t^{\prime}=\frac{2 \pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(\Omega-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
t^{\prime}=\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{23}
\end{equation*}
$$

To decide between (22) and (23), equation (18) is solved for $\cos \sqrt{\frac{k}{m}} t$,
thus

$$
\begin{equation*}
v_{1}-v_{1} \cos \sqrt{\frac{k}{m}} t+\sqrt{\frac{k}{m}} \frac{R-r}{k} \sqrt{1-\cos ^{2} \sqrt{\frac{k}{m}} t}=0 \tag{24}
\end{equation*}
$$

Wrating a instead of $\left(\sqrt{\frac{k}{m}} \frac{R-r}{k}\right)$, squarunc and rearranging with. respect to $\cos \sqrt{\frac{k}{m}} t$

$$
\begin{equation*}
\left(v_{1}^{2}+a^{2}\right) \cos ^{2} \sqrt{\frac{k}{m}} t-2 v_{1} \cos \sqrt{\frac{k}{m}} t+\left(v_{1}^{2}-a^{2}\right)=0 \tag{25}
\end{equation*}
$$

a quadratic for $\cos \sqrt{\frac{k}{m}} t$ is obtained. Solving for $\cos \sqrt{\frac{k}{m}} t:-$

$$
\begin{align*}
\cos \sqrt{\frac{k}{m}} t & =\frac{2 v_{1}^{2} \pm \sqrt{4 v_{1}^{4}-4\left(v_{1}^{4}-a^{4}\right)}}{2\left(v_{1}^{2}+a^{2}\right)} \\
& =\frac{v_{1}^{2} \pm a^{2}}{v_{1}^{2}+a^{2}} \tag{26}
\end{align*}
$$

The plus sign must be neglected since $\sqrt{\frac{k}{m}} t$ cannot be equal to zero. Taking the maus sign at is clear that $\sqrt{\frac{1}{m}}$ t lies in the thırd quadrarit if $V_{1}<a$, and in fourth quadrant if $v_{1}>a$ and equations (23) or (22) rospectively apply.

Introducing t^{\prime} into (16) the maxamum amplitude x_{2}^{\prime} is ablaincid

$$
\begin{equation*}
x_{2}^{\prime}=v_{1}\left[t^{\prime}-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}} t^{\prime}\right]+\frac{R-r}{k}\left[1-\cos \sqrt{\frac{k}{m}} t^{\prime}\right] \tag{27}
\end{equation*}
$$

at that instant

$$
\begin{equation*}
x_{1}^{\prime}=x_{10}+v_{1} t^{\prime}=\frac{R}{k}+v_{1} t^{\prime} \tag{28}
\end{equation*}
$$

The puriod of the third phase $t^{\prime \prime}$ (countod from the anstant t^{\prime}) is calculated from the exprossion

$$
\begin{equation*}
t^{\prime \prime}=\frac{x_{2}^{\prime}-x_{1}^{\prime}}{v_{1}} \tag{29}
\end{equation*}
$$

x_{2}^{\prime} and x_{1}^{\prime} aro found in equation (27) and (28) rospectavely.

$$
\begin{align*}
t^{\prime \prime} & =t^{\prime}-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}} t^{\prime}+\frac{R-r}{k v_{1}}\left[1-\cos \sqrt{\frac{k}{m}} t^{\prime}\right]-\frac{R}{k v_{1}}-t^{\prime} \\
& =-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}} t^{\prime}-\frac{R m r}{k v_{1}} \cos \sqrt{\frac{k}{m}} t^{\prime}-\frac{r}{k v_{1}} \tag{30}
\end{align*}
$$

Equations (22) and (23) will supply t^{\prime} in (30). Let also Ω be written, for the time being, instead of $\sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}{ }^{2} m k}$.
Turning first to equation (22)

$$
\begin{align*}
t^{\prime \prime} & =-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}}\left[\frac{2 \pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \Omega\right]-\frac{R-r}{k v_{1}} \cos \sqrt{\frac{k}{m}}\left[\frac{2 \pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \Omega\right]-\frac{r}{k v_{1}} \\
& =\frac{1}{\sqrt{\frac{k}{m}}} \sin \Omega-\frac{R-r}{k v_{1}} \cos \Omega-\frac{r}{k v_{1}} \\
& =\frac{1}{\sqrt{\frac{k}{m}}} \sin \Omega-\frac{R-r}{k v_{1}} \sqrt{1-\sin ^{2} \Omega}-\frac{r}{k v_{1}} \tag{31}
\end{align*}
$$

Taking next equation (23)

$$
\begin{align*}
t^{\prime \prime} & =-\frac{1}{\sqrt{\frac{k}{m}}} \sin \sqrt{\frac{k}{m}}\left[\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{1}{\sqrt{\frac{k}{m}}} \Omega\right]-\frac{R-s}{k v_{1}} \cos \sqrt{\frac{k}{m}}\left[\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{1}{\sqrt{\frac{k}{m}}} \Omega\right]-\frac{r}{k v_{1}} \\
& =\frac{1}{\sqrt{\frac{k}{m}}} \sin \Omega+\frac{R-r}{k v_{1}} \cos \Omega-\frac{r}{k v_{1}} \\
& =\frac{1}{\sqrt{\frac{k}{m}}} \sin \Omega+\frac{R-r}{k v_{1}} \sqrt{1-\sin ^{2} \Omega}-\frac{r}{k v_{1}} \tag{32}
\end{align*}
$$

Remembering that

$$
\sin \left(\sin ^{-1} A\right)=A
$$

$$
\begin{align*}
t^{\prime \prime} & =\frac{2(R-r) v_{1} n}{(R-r)^{2}+v_{1}^{2} m k} \mp \frac{R-r}{k v_{1}} \sqrt{1-\left(\frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} m k}\right)^{2}}-\frac{r}{k v_{1}} \\
& =\frac{2(R-r) v_{1} m}{(R-r)^{2}+v_{1}^{2} m k} \mp \frac{R-r}{k v_{1}} \sqrt{\frac{\left.\left.\mp(R-r)^{2}-v_{1}^{2} m k\right]\right]^{2}}{\left[(R-r)^{2}+v_{1}^{2} m k\right]^{2}}-\frac{r}{k v_{1}}} \tag{33}
\end{align*}
$$

Taking first the toy signs

$$
\begin{align*}
t^{\prime \prime} & =\frac{2(R-r) v_{1} m}{(R-r)^{2}+v_{1}^{2} m k}-\frac{1}{k v_{1}}\left\{(R-r) \frac{(R-r)^{2}+v_{1}^{2} m k}{(R-r)^{2}+v_{1}^{2} m k}+r\right\} \\
& =\frac{2(R-r) v_{1} m}{(R-r)^{2}+v_{1}^{2} n k}-\frac{1}{k v_{1}} \frac{(R-r)^{2}(2 r-R)+R v_{1}^{2} m k}{(R-r)^{2}+v_{1}^{2} m k} \\
& =\frac{2(R-r) v_{1}^{2} m k-(R-r)^{2}(2 r-R)+R v_{1}^{2} m k}{k v_{1}\left[(R-r)^{2}+v_{1}^{2} m k\right]} \\
& =\frac{(R-2 r) v_{1}^{2} m k+(R-2 r)(R-r)^{2}}{k v_{1}\left[(R-r)^{2}+v_{1}^{2} m k\right]} \\
& =\frac{R-2 r}{k v_{1}} \tag{34}
\end{align*}
$$

The same rosult is obtainod if the bottom signs are taken in equation (33).

It $2 s$ obvious that $t^{\prime \prime}$ becomes zero when $R=2 r$. The total period of the completo cyole is

$$
\begin{equation*}
T=t_{0}+t^{\prime}+t^{\prime \prime} \tag{35}
\end{equation*}
$$

Referrine to oquations (4), (22) or (23) and (34)

$$
\begin{align*}
T & =\frac{R}{k v_{1}}+\frac{2 \pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m}+\frac{R-2 r}{k v_{1}} \\
& =\frac{2 \pi}{\sqrt{\frac{k}{m}}}+\frac{2(R-r)}{k v_{1}}-\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m} \tag{36}
\end{align*}
$$

or

$$
\begin{align*}
T & =\frac{R}{k v_{1}}+\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-r)^{2}+v_{1}^{2} k m}+\frac{R-2 r}{k v_{1}} \\
& =\frac{\pi}{\sqrt{\frac{k}{m}}}+\frac{2(R-r)}{k v_{1}}+\frac{1}{\sqrt{\frac{k}{m}}} \sin ^{-1} \frac{2(R-r) v_{1} m \sqrt{\frac{k}{m}}}{(R-x)^{2}+v_{1}^{2} k m} \tag{37}
\end{align*}
$$

The velocity of the mass m at any instant is given by the first derivative of (16) and appears in equation (17)

$$
\frac{d x_{2}}{d t}=v_{1}\left[1-\cos \sqrt{\frac{k}{m}} t\right]+\frac{R-r}{k} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t
$$

Differentrating agan and equating to zero

$$
\begin{gather*}
\frac{d^{2} x_{2}}{d t^{2}}=v_{1} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t+\frac{R-r}{k} \frac{k}{m} \cos \sqrt{\frac{k}{m}} t=0 \tag{38}\\
\\
\quad \frac{R-r}{m} \cos \sqrt{\frac{k}{m}} t=-v_{1} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t
\end{gather*}
$$

or

$$
\begin{equation*}
\tan \sqrt{\frac{k}{m}} t=-\frac{\mathrm{R}-\mathrm{r}}{m v_{q} \sqrt{\frac{k}{m}}} \tag{39}
\end{equation*}
$$

The instant of maxumum instantaneous velocity v_{2} is oaloulated (t
counted from the instant t_{0}) from

$$
\begin{align*}
t_{v_{2 \max }} & =\frac{1}{\sqrt{\frac{k}{m}}} \tan ^{-1} \frac{-(\mathrm{R}-r)}{m v_{1} \sqrt{\frac{k}{m}}} \\
& =\frac{\pi}{\sqrt{\frac{k}{m}}}-\frac{1}{\sqrt{\frac{k}{m}}} \tan ^{-1} \frac{\mathrm{R}-r}{m v_{1} \sqrt{\frac{k}{m}}} \tag{40}
\end{align*}
$$

and maximum veloczty

$$
\begin{align*}
& v_{2 \max }=v_{1}\left[1-\cos \sqrt{\frac{k}{m}} t_{v_{2 \max }}\right]+\frac{R-r}{k} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t_{v_{2 \max }} \\
& =v_{1}\left[1-\cos \left(\pi-\tan ^{-1} \frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}}\right)\right]+\frac{R-r}{m} \sqrt{\frac{k}{m}} \sin \left(\pi-\tan ^{-1} \frac{R-r}{m \frac{v_{1}}{\frac{k}{m}}}\right) \\
& =v_{1}\left[1+\cos \tan ^{-1} \frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}}\right]+\frac{R-r}{k} \sqrt{\frac{k}{m}} \sin \tan ^{-1} \frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}} \tag{41}
\end{align*}
$$

Remembering again that

$$
\sin \left(\tan ^{-1} A\right)=\frac{A}{\sqrt{1+A^{2}}}
$$

and

$$
\begin{gather*}
\cos \left(\tan ^{-1} A\right)=\frac{1}{\sqrt{1+A^{2}}} \\
V_{\text {max }}=V_{1}\left(1+\frac{1}{1+\left(\frac{R-r}{m V_{1} \sqrt{\frac{k}{m}}}\right)^{2}}+\frac{R-r}{k} \sqrt{\frac{k}{m}} \frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}}\right. \tag{42}\\
\sqrt{1+\left(\frac{R-x}{m} v_{1} \sqrt{\frac{k}{m}}\right)^{2}}
\end{gather*}
$$

and the ratio

$$
\begin{align*}
\rho=\frac{v_{\text {mnax }}}{v_{1}} & =1+\frac{1+\frac{(R-r)^{2}}{k r v_{1}^{2}}}{\sqrt{1+\left(\frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}}\right)^{2}}} \\
& =1+\sqrt{1+\left(\frac{R-r}{m v_{1} \sqrt{\frac{k}{m}}}\right)^{2}} \tag{4.3}
\end{align*}
$$

 (reproduced from ref No I)

FRICTION VALUES AT THE TRANSITION BETWEEN BOUNDARY \& FILM LUBRICATION (reproduced from ref ne i.)

FIG. 3

FIG.5.

INERTIA OF LINKAGE $320 \mathrm{lb} \mathrm{FT}^{2}$
FIG.6. LAG AND OUTPUT TRACE DURING JUDDER ON A FOLLOWING LOAD.

FIG. 7. HYDRAULIC SERVO INSTALLATION

C.P. No. 12

12654
A.R.C. Technical Report

PUBLISHED BY HES MAJESTY'S STATIONERY OFFICE ${ }_{y}$
To be purchased from :
York House, Kingsway, london, w.c 2, 429 Oxford Street, london, w.1, P.O. Box 569, LONDON, S.E 1 ,

13a Castle Street, edinburgh, 2. 1 St. Andrew's Crescent, Cardiff
39 King Street, Manchister, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3- 80 Chichester Street, Belfast, or from any Bookseller

1950
Price 1s. 9d. net

