C.P. No. 242
(17.569)
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

LIERARY
ROYAL AIRCRAFT ESTABLISHMENT EEDFORD.

Loading Conditions following an Automatic Pilot Failure
 (Rudder Channel)

By
D. R. Puttock, D.C.Ae.

KOXIT LIRCR'PT ESTMBLISHIINTT

Ioading Condztions Followng an Nutonatic Pilot Peilure (Rudder Channel)
by
D.R. Futtock, D.C.Ae.

SUMMRY

A method is presented for the determination or the critical loading conditions of aurcraft that ensue fron an automatic pilot failure in tire rudder channel.

General expressions have been derived through response theory for the angle of sideslip, fan-and-rudder load and lateral acceleration both at the C.G. of the aurcraft and at the tail, that result from the sequence of rudder movernents assumed to follow an automatic pilot failure. Analysis of these general expressions leads to formulas suitable for assessing the nunerical values of the craticai loading conditions and it is suggested that these formulae might form a basis for the interpretation of the appropriate design requirement ${ }^{1}$.

An example is given to lllustrate the type of response produced by a rudder chamel fonlure and the calculation procedure.
Page
1 Introdixction 3
2 Detalls of the investigation 3
2.1 The rudder movement 3
2.2 The response of the azrcraft 4
2.3 The critical conditions 4
3 Concluding remarks 4
Notation 5
References 8
LINH OF APPENDICES
Apsendix
The mathematzcal analysis I
A1 Equatzons of motion
A2 Srlution for the argle of sideslip
A3 Net aerodynamic load on the fin-and-rudder A4 Lateral acceleration

 A5 Cricical conditions

 A6 Simpliffications

 A7 Fistimation of the anount of rudder movement in the "check" stage
 A8 Estumation of the anount of rudder movement in the "recovery" stage
Ccmputatzonal procedure II
TABLE
Data Lor example I.
ITGTT OF ILIUSTRATIONS
NIg. 1
Response an argle of sideslap (various recovery tames) 2
Response in fin-and-rudder load (varıous recovery times) 3
Response in lateral accelera, ion (various recovery times) 4
Chart showing functions Π_{a}, Π_{b} anil ${ }^{K} \pi$ 5
Chart showing functions Λ_{a}, Λ_{b} and Λ_{o} 6
Carrt showing time of occurrence of the maxima 7

Introduction

A rocedure hais recently been developed ${ }^{2}$ for assessing the critucal loading conditions that ensue fror a falluxe in the elevator chamel of an automatic pilot. The aim of the present investigation is to develop an $212 l$ golus procedure for the rudder charnel failure. Cwng to the manerical differences in the magntude of the varıous parameters, numerous minor differences in aproach have, however been necessary. A full discussion of the problem as gaven below.

The critical conditions in the present case are usually associated whth the maximur angle of sideslip and with the raximum aerodynamie load on the fin-and-rudaer.

2 Setails of the investugation

The inves江gation has been split anto three sections
(1) the cholce of a general rudder time-history to describe the sequence of movements that occur after a fallure
(11) the deravation of the response of the alreraft to the chosen ruader movements
(111) the analysis of the response to determine the numerical values of the parameters of the rudader movement which produce the critical loading conditions ard to obtam workable formulae and cnarts suatable for routine estimation of these conditzons.

These sections are described and discussed in the following paragraohs.

2.1 The rudder moverrent

The general sequence of events in a rudder charnel fallure is the same as that in an elevator chamel faylure ${ }^{2}$. Accordingly, it is assumed that the ruader tame-hastory as composed of trie following stages
(1) "runaway", during which the rudder moves at a constant rate corresponding to the maximum rate of the servorotor.
(د.1) "check" after the rudder has been arrested at its maximum displacerent, ezther by a stop or $b ;$ the fact that aerodyname forces on the rudder have stalled the servomotor, urtal
(iil) "recovery" when the rudder has been moved back instantareously.
The quantities definirg tras sequence of rudder movement are - tho "runaway" rate, the maximum displacerent during the "check" period, the time of initiation of the recovery action and the dasplacement in the recovery. The sequence is illustrated diagramatically in Fig. 1 . The timing of the recovery action and the magnitude ot the maximum displaoment in the "cheok" jermod and in the "recovery" aro discussod in Appendix I paragraphs A5, A7 and $L 8$ respectively.

The only difference between the sequence defined above, and that used in the investigation of the elevator channel failure ${ }^{2}$, is the adoption of instantaneous movement for the rocovery action instead of gradual movernent. Tris change permits a sumplification in the mathenatical treatment whout affecting the accuracy of tne final results to any appreciable extont; the simpliflcation leads to a slightly conservative result.

2.2 Tre response of the amrcraft

sanual operation of the rudier alone causes the aircraft to sudeslip and roll, and perhaps piten. Fowever, in the event of a failure in the ruider cnarnel of the automatic plot, it ray be assuncd that the alleron ard elevator channels contimue to funct. on correctly until the autonatio pat is disenceged, and operate so as to reduce the rolling ana patobing motions mabced by the rudier displacenent. As a result, the alicraft tends to execute a flat turm. . The flat turn involves sideslip ard lsieral aceeleration, and bota these movements affect the loading on the fin-and-rudder. The loading as due to both the disturbing moverent of the mader and the ensuing response of the airoraft itself.

The response of an auroraft to tho sequence of muder moverents assumed to follow the failure is dernved in Appendix I by means of Laplace Trarsfoms, ixpressions are obtained for the uncrenental ralues of the angle of sideslip (para. A2), fan-and-rudder load (para. 43) and lateral acceleration both at the C. G. of the amrorar't and at tre tail (para. A4). Nue respouse ir theae quant ties as illustratel an Figs. 2, 3 ard 4 respcotively; the data for these exam les are contaired in Table I.

2. 3 The critical conditions

The varıous response formulae of Appeniax I pararraphs A2, A3 and A4 may be usod to letemme the complete time-hastomes of ire loads and accelerations produced by the sequence of rudder movements defined in aara. 2.1. Fowever, irfer the amworthness aspect it is the varions iocal maxima of these quantities, and in particular their absolute maxima winch cie of major interest. It is therofore necessary to analyse the jeeponse formulae and outan general expresslons for the magnitudes of the local maxara. Details of such an analysis are given in Appendix I para. A5, including soue liscussion as to the exact timing of the recovery action, wh.en is not precisaiy dofined in para. 2.1 and which fust be chosen in such a way that the ahsolute maxima of the various quantities are realised; use is marie of Figs. 2,3 and 4 tw lilustrat; this discussion. Iniomation concurring a rurber of charts winch may be used to facilatate the calculation of the aosolutc saxisa lis given in Aopendix I jara. Ab. fith regard to trese charts, It has ben fourd trat tre mubcr nesued way be reduced to three if ccrtain approxirations arc made. These atprox matzons, hare no sugnificant effect oil the tinal results.

The analys 1 s of the response formulae adacates that the sequence of ruducr moverents definud in para. 2.1 proauves two algrificart joral naxima of each of the resconse quantities inentioned above (of $5+5.2,3$ and 4) and $t_{1} u s$, provided the serivenco of ruldor movements $1 s$ chosen realistics in, these maxima represent the destgn cond thong for tro oase of an autonatic pilot fas iume in the rudder channel.

In Appundix II, the proceduce fur calculatarg tho absolute maxira is presented un suck a form that the calculatins can be carried out directir by a computor.

3 Concluding rerariss

Trus note presents a raticnal tethod for assessing the loads on azreraft follorirg an automatic plot fallure an the ruüul channel. It $1 s$ suggosted tiat it maght form a basis for the artermetation of the rolovart design requreront 1 .

[^0]
NOTATION

A, B, C, C_{1}	coefericients, see equation (23)
$a_{1}=-\frac{\partial C_{Y f}}{\partial \beta}$	Including effects of local siderash at the tail
$a_{2}=\frac{\partial C_{Y f}}{\partial \zeta}$	
b	mung span
$z_{1}=-\frac{\partial C_{h}}{\partial \beta}$	Including effects of local sidewash at the tall
$b_{2}=\frac{\partial C_{h}}{\partial \zeta_{0}}$	
C_{h}	ruäder hinne moment coepficzent
$c_{h_{s}}$	rudder hinge moment coefficient equivalent to the stalling torque of the rudder servomotor
C_{IS}	lateral force coefincsent of the fin-and-ruader
$\left(\frac{\partial \zeta}{\partial t}\right)_{f}$	"munarray" rate of the mudder
E	coefficlent, sce equation (25)
G	special function of trie, see equation (11)
g	accelewation due to gravaty
$\bar{H}, \bar{H}_{f}, \bar{H}_{o}$	special functions of time, see equations (13), (23) asd (40) respectavely
$a_{c}=\frac{4 k_{c}^{2}}{b^{2}}$	coefficient of mertia about the z axis
J	non-dimensional curoular frequency, see equation (4)
$J \tau_{a}, J \tau_{b}, J \tau_{a}^{1}$ etc.	non-dimensional times of occurrence (in radiars) of local maxima, see Appondux I paraprashs A5 and Á́
$J \tau_{\rho}$	non-dimensional time (in radians) at wach the "runaway" is arrested
${ }^{\tau}{ }_{c}$	non-dinensionai time (in radians) at whion the "reocvery" is anatiated
K	specisi function of time, see equation (12)
$\mathrm{K}_{\text {a }}$	coefficient, sue equation (5)
$\mathrm{K}_{\pi}, \mathrm{K}_{\pi}^{\prime}$	sece equation (33) and (41) respoctively

NOTATION (Contd)

k	see equation (18)
k_{c}	radius of gyration about the z axis
$\underline{L}, \overline{\bar{I}}_{\mathrm{f}}, \overline{\bar{L}}_{\mathrm{c}}$	special function of time, see equations (14), (29) and (40) respectively
2	fin-and̈-rudder arm
e_{R}	distance of C.P. of fin-and-rudder load due to rudder deflection to C.G. of the alrcraft
n_{s}	coefficient of lateral acceleration at the C.G. of the aircraft
n_{ℓ}	coefficient of lateral acceleration at the tail of the aurcraft due to acceleration in yaw
n_{t}	coefficlent of total lateral acceleration at the tail
n_{r}	rotary dampang derivative
n	statze stabulity derıvatuve in sudeslup
-	net fin-and-mudder load
r	angular velocity in yaw
$\hat{r}=r \hat{t}$	non-damensional angular velocaty in yaw
5	wing area
S"	fin-and-rudder area
t	time in seconds
$\mathrm{t}=\frac{\mathrm{W}}{g_{0} S V}$	unit of aerodynamic time
V	velocity of the C. ${ }_{\text {c }}$. of the aircraft
$\bar{V}_{\mathrm{Z}}=\frac{S^{\prime \prime} e_{\mathrm{R}}}{S_{\mathrm{B}}}$	fin-and-rudder volume coefficient
W	Treight of aircraft
y_{V}	lateral force derivative due to changes in angle of sıdeslip
$\bar{y}_{v}=-y_{v}$	
V_{ζ}	lateral force derivative due to changes an rudder angle
$2, z_{1}, z_{2}$	see equations (36) and (40)
β	angle of sideslup

NOTATION (Contd)

$\delta_{\mathrm{n}}=\frac{1}{3_{\mathrm{c}}} \cdot \mu_{2} \overline{\mathrm{v}}_{\mathrm{r}} \mathrm{a}_{2}$	rudder efsectiveness
ζ	rudder displacement
ζ_{c}	rudder aisplacement durng "recovery"
ζ_{f}	rudder displacement durung "runaway"
$\bar{\zeta}$	limat of ruduer displacement under automatic pilot action
$A_{2}, \Lambda_{0}, \Lambda_{0}$	functions, sue equations (48) ard (51)
$\mu_{2}=\frac{2 W}{g \rho S b}=\frac{2 l}{b} \cdot \mu_{3}$	relative donslty of azreraft (referred to semi span)

$\mu_{3}=\frac{W}{g \rho S l}=\frac{b}{2 l} \cdot \mu_{2} \quad \begin{aligned} & \text { relative density of aureraft (referred to fin-and- } \\ & \text { rudder arm) }\end{aligned}$
$\nu_{n}=-\frac{1}{l_{c}} \cdot n_{r} \quad$ rotary damping paranéver
Π_{a}, Π_{b}
functions, see equation (33)
$\Pi_{a}^{\prime}, H_{b}^{\prime}$
p
air donsity
soo equation (19)
$\tau=\frac{t}{t} \quad$ non-dimensional aerodynamic time
$\omega_{\mathrm{n}}=\frac{1}{I_{c}} \cdot \mu_{2} \cdot n_{v} \quad$ statac stabinty pararoter in adeslip

Suffices

a
b
f
ζ
relating to the first maxama (In tame) of the crutical conditions
relating to the second maxima (in time) of the critical conditions
associated wath point at which the "runaway" is arrested
associated with the "recovery"
due to the effective anctdence of the fin-and-rudder due to rudaer displacerrent

RIFTHENCES

No.	Author
2	D.R. Puttock
3	T. Czajkowskz

Design Requarements for Acroplanes AP970 Vol.I (Ch. 209 - AL. 21)

Lesding condutions followng an Autonatic Bilot Faclure (Ilevator Charnel) C.P. No. $2+3$

Jamary, 1955
Dyname Fin-and-Rujder Loads in Yavang Nanoeuvres RAS Report Structures 76 June, 1950

APPETIIX I

The mathematroal analysis

A1 Equations of motion

The non-dimensional linearised difierential equations of lateral motion of au alroraft when rolilug and pitching rotions are absent may be written (cf Ref.3)

$$
\begin{align*}
\frac{d \beta}{d \tau}+\bar{y}_{v} \beta+\hat{r} & =0 \tag{1a}\\
-u_{n}^{\beta}+\frac{\partial \hat{r}}{d \tau}+\nu_{n} \hat{r} & =-\delta_{n} \zeta \tag{1b}
\end{align*}
$$

These equations may be written in terms of β alone, whence

$$
\begin{equation*}
\frac{d^{2} \beta}{d \tau^{2}}+\left(\nu_{n}+\bar{y}_{v}\right) \frac{d \beta}{d \tau}+\left(\omega_{n}+\bar{y}_{v} \nu_{n}\right) \beta=\delta_{n} \zeta \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d^{2} \beta}{d \tau^{2}}+2 R \frac{d \beta}{d \tau}+\left(R^{2}+J^{2}\right) \beta=\delta_{n} \zeta \tag{3}
\end{equation*}
$$

Where $\quad \underline{i}=\frac{1}{2}\left(\nu_{n}+\bar{y}_{v}\right)$ is the non-dimensional damping factor of the lateral osclilations of the aircraft and $J=\sqrt{\omega_{n}-\frac{1}{4}\left(\nu_{n}-\bar{y}_{v}\right)^{2}}$ is the non-dimensicnal frequency factor of the lateral oscillations of the aircraft.

A2 Solution of the angle of sideslip

The rudder time history defined in para. 2.1 is comcosed of linear and instantaneous movements, and the solution to equation (3) is therefore requared for both these types of movement; the principle of superposition may then be used to build up the solution for the complete sequence of rudder movements (of Ref.2).

For linear movenent of the rudaer the solution $1 s$, using the nctation of Pig. 1

$$
\begin{equation*}
\beta=\frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau_{f}}\right) \cdot K_{a}^{2}\left(\frac{J \tau}{K_{a}}+2 \frac{R}{J}\left(e^{-\frac{R}{J} J \tau} \cos J \tau-1\right)+\left(\frac{R^{2}}{J^{2}}-1\right) e^{-\frac{R}{J} J \tau} \sin J \tau\right) \tag{5}
\end{equation*}
$$

where $K_{a}=\frac{1}{\left(\frac{2}{J}\right)^{2}+1}$

Thence

$$
\begin{equation*}
\frac{d \beta}{d \tau}=\frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\breve{L}_{f}}{J \tau_{f}}\right) \cdot J \cdot K_{a}\left(1-e^{-\frac{R}{J} J \tau} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J J \tau}} \sin J \tau\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \beta}{d \tau^{2}}=\frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau}\right) \cdot J^{2} \cdot e^{-\frac{R}{J} \cdot \tau \tau} \sin J \tau \tag{7}
\end{equation*}
$$

and for instantaneous movement of the rudder the solution $2 s$, with the notation of Fig. 1

$$
\begin{equation*}
\beta=\frac{\delta_{n}}{J^{2}} \cdot \zeta_{c} \cdot K_{a}\left(1-e^{-\frac{R}{J} J \tau} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J} J \tau} \sin J \tau\right) \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\partial \beta}{d \tau}=\frac{\delta_{n}}{J^{2}} \cdot \zeta_{\mathrm{c}} \cdot J \cdot 3^{-\frac{R}{J} J \tau} \sin J \tau \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a^{2} \beta}{d \tau^{2}}=\frac{\delta_{n}}{J^{2}} \cdot \zeta_{c} \cdot J^{2}\left(e^{-\frac{R}{T^{2}} J} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J J} \tau} \sin J \tau\right) \tag{10}
\end{equation*}
$$

Thus, using the following special functions of tame

$$
\begin{align*}
& G=K_{a}^{2}\left(\frac{J \tau}{K_{a}}+2 \frac{R}{J}\left(e^{-\frac{R}{J} J \tau} \cos J \tau-1\right)+\left(\left(\frac{R}{J}\right)^{2}-1\right) e^{-\frac{R}{J} J \tau} \sin J \tau\right) \tag{11}\\
& K=K_{a}\left(1-e^{-\frac{R}{J} J \tau} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J} J \tau} \sin J \tau\right) \tag{12}\\
& H=e^{-\frac{R}{J} J \tau} \cos J \tau \tag{13}\\
& L=e^{-\frac{R}{J} J \tau} \sin J \tau \tag{14}
\end{align*}
$$

the complete solution for β in Stage III, i.e. when the recovery action has been taken, is

$$
\begin{equation*}
\beta=\frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\zeta_{f}}{\delta \tau_{f}}\right)\left(G-G_{f}-k K_{c}\right) \tag{15}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\partial \beta}{d \tau}=\frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\zeta_{f}}{J \tau_{f}}\right) \cdot J \cdot\left(K-K_{f}-k I_{c}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \beta}{d \tau^{2}}=\frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\zeta_{p}}{J \tau_{f}}\right) J^{2}\left(I-L_{f}-k\left(H_{c}-\frac{R}{J} I_{c}\right)\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\varphi J_{f} \tag{18}
\end{equation*}
$$

The suifices to the special functions, f and c, denote that J is everywhere replaced by $J\left(\tau-\tau_{f}\right)$ and $J\left(\tau-\tau_{c}\right)$ respectively in these suffixed functions. The corresponding complete nolutions in Stages iI and I may be obtained from equation (15) etc. by putting equal to zero all the special functions with suffix c and f and c respectively. Thus in Stage I the appropriate equation for β is

$$
\beta=\frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau_{f^{\prime}}}\right) G
$$

ana in Stage II is

$$
\beta=\frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau_{f}}\right)\left(G-G_{S}\right)
$$

The appearance of the suffixed special functions implies cnanges in the form of the rudder movement.

A3 Net aecodynamic load on the fin-and-rudder (of Ref.3)

$$
\begin{align*}
P & =A\left(B \beta-C \frac{\partial \beta}{d \tau}+a_{2} \zeta\right) \tag{20}\\
& =-A B\left(\beta+C_{1} \cdot \frac{1}{J} \cdot \frac{\partial \beta}{d \tau}\right)+A a_{2} \zeta \tag{21}
\end{align*}
$$

where
and

$$
\begin{align*}
A=\frac{1}{2} \rho V^{2} S^{\prime \prime} & B=\left(1+\frac{\bar{y}_{v}}{\mu_{3}}\right) a_{1} \\
C=\frac{1}{\mu_{3}} a_{1} & C_{1}=\frac{G J}{B} \\
\mu_{3}=\frac{W}{g \rho S \ell} & \tag{22}
\end{align*}
$$

It is convenient to write equation (20) In the form

$$
P=P_{\beta}+P_{\zeta}
$$

where

$$
\begin{aligned}
P_{\beta} & =-A B\left(\beta+\frac{C}{J} \cdot \frac{\partial \beta}{d \tau}\right) \\
& =\text { aerodynamic load due to effective angle } \\
& \text { of incidence of the fin }
\end{aligned}
$$

and

$$
\begin{equation*}
P_{y}=A a_{2}{ }_{2} \tag{24}
\end{equation*}
$$

= aerodynamic load due to the rudder displacement.

A4 Lateral accelerations (of Ref.3)

$$
\begin{equation*}
n_{s} \bumpeq-E\left(\bar{J}_{\mathrm{v}} \beta-y_{y} \zeta_{\mathrm{s}}\right) \tag{25}
\end{equation*}
$$

where

$$
\Psi=2 \cdot \frac{\frac{1}{2} \rho v^{2}}{W / S}
$$

and.

$$
\begin{equation*}
n_{e} \bumpeq \frac{E}{\mu_{3}}\left(\frac{\partial^{2} \beta}{d \tau^{2}}+\overline{y_{v}} \frac{\partial \beta}{d \tau}-y_{\zeta} \frac{d \zeta}{d \tau}\right) \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
n_{t}=n_{s}+n_{\ell} \tag{27}
\end{equation*}
$$

Examples of the response in angle ori sudeslip, fin-and-rudaer load and lateral acceleration both at the C.G. of the aurcraft and at the tail to the type of rudder moverent defined in para. 2.1 are shom in Pigs. 2,3 and 4 respectively. In eacn case the full curve lillustrates tho erfects of the sequence of runaway and check, and the edditional curves zive the eirect of the recovery action. The dotted curves relate to the case 12 , mach tha reoovery action is timea to produce the critical conditions in the particular quantity. The data ror these graphs are onntainod in Table I.

Aj.1 Angle of sideslip (soe Fig. 2)

Two local maxama occur during the sequence of funaway and recoverf, and the critical values of chese maxina, β_{a} and β_{b}, result when the recovery is mitiated armedzately the angle of sideslizo reaches a maiheratical peak in Stage II, I.t. when $d \beta / d \tau=0$ in this stage. Trus $J \tau_{c}=J \tau_{a}$, where $J \tau_{a}$ is the first root beyond Jv_{f} of the equation

$$
\begin{equation*}
J \tau=\tan ^{-1}\left\{\frac{\left(\frac{S_{J}}{J}\right) \bar{L}_{\mathrm{P}}-\left(\overline{\underline{E}}_{\mathrm{f}}-1\right)}{\frac{\bar{L}_{\mathrm{f}}+\left(\frac{R}{J}\right)\left(\overline{\mathrm{H}}_{\mathrm{f}}-1\right)}{}}\right\} \tag{28}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\bar{I}_{\mathrm{f}}=e^{\frac{R}{J} J \tau_{f}} \sin J \tau_{\mathrm{f}} \\
{\overline{I_{f}}}=e^{\frac{R}{J} J \tau_{f}} \cos J \tau_{f} \tag{29}
\end{array}\right\}
$$

and

Then (of equation (15))

$$
\begin{equation*}
\beta_{a}=\frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{e}}{J \tau_{f}}\right)\left(G-G_{f}\right)_{J \tau_{=U}^{J} \tau_{a}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{b}=\frac{\delta_{n}}{J^{\prime}}\left(\frac{\zeta_{\rho}}{J \tau_{f}}\right)\left(G-G_{\rho}-k K_{c}\right)_{J \tau=J \tau_{b}} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
J \tau_{b}=\pi+J \tau_{a} \tag{32}
\end{equation*}
$$

$$
\left.\begin{array}{l}
\Pi_{a}=\frac{1}{J \tau_{f}}\left(G-G_{f}\right)_{J \tau=J \tau_{a}} \\
\Pi_{b}=\frac{1}{J \tau_{f}}\left(G-G_{f}\right)_{J \tau=\pi+J \tau} \tag{33}\\
K_{\pi}=K_{J \tau=\pi}
\end{array}\right\}
$$

equations (30) and (31) may be simplified to

$$
\begin{align*}
& \beta_{a}=\frac{\delta_{n}}{J^{2}} \cdot \zeta_{f} \cdot \Pi_{a} \tag{34}\\
& \beta_{b}=\frac{\delta_{n}}{J^{2}} \zeta_{f} \cdot\left(\Pi_{b}-\varphi K_{\pi}\right) \tag{35}
\end{align*}
$$

A5.2 Fin-and-rudder load (see Fig. 3)

Here three local maxima occur during the sequence of runaway and recovery, but the first one is normally very small in magnitude and therefore unimportant from the strength aspect. The critical values of the remaining maxima, P_{a} and P_{b}, result when the recovery is initiated immediately the $f_{2 n-a n d-r u d d e r ~}^{\text {I }}$ ad reaches a maximum in Stage II, ie. when $d P / d \tau=0$ in this stage. Thus, in this case $J \tau_{c}=J \tau_{a}^{\prime}$, where $J \tau_{a}^{\prime}$ is the first root beyond $J \tau_{f}$ of the equation

$$
\begin{equation*}
\left.J \tau=\tan ^{-1} \frac{i \bar{z}_{f}-\left(\bar{H}_{f}-1\right)}{\left[\bar{I}_{f}+Z\left(\bar{I}_{f}-1\right)\right.}\right\} \tag{36}
\end{equation*}
$$

where

$$
z=\frac{R}{J}-\frac{C_{1}}{K_{a}}
$$

Then (of equations (23) and (24))

$$
\begin{align*}
P_{a} & =P_{\beta a}+P_{\zeta a} \\
& =-A B \frac{\delta_{M}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau_{f}}\right)\left(\left(G-G_{f}\right)+C_{1}\left(K-K_{f}\right)\right)_{J \tau=J \tau}+A a_{2} \zeta_{f}(1-\varphi) \tag{37}
\end{align*}
$$

ara

$$
\begin{align*}
P_{b} & =P_{B b}+P_{\zeta D} \\
& =-A B \frac{\delta_{n}}{J^{2}}\left(\frac{\zeta_{f}}{J \tau_{f}}\right)\left(\left(G-G_{f}-k Y_{c}\right)+C_{1}\left(\left(\Omega-K_{2}+k I_{c}\right)\right)_{J \tau=-\tau_{b}^{\prime}}+A a_{2} \zeta_{f}(1-\varphi)\right. \tag{38}
\end{align*}
$$

where $J \tau_{b}^{\prime}$ as the first positive root beyond $J r_{c}$ of the equation (obtained from the condition $\nsupseteq / \lambda \tau=0$ an Stage III)

$$
\begin{equation*}
J \tau=\tan ^{-1} \frac{2 \bar{I}_{f}-\left(\bar{I}_{f}-1\right)+Z_{1} \bar{I}_{0}+Z_{2} \bar{H}_{c}}{\frac{\bar{I}_{f}+Z\left(\bar{H}_{f}-1\right)-Z_{2} \bar{I}_{c}+Z_{1}}{\bar{H}_{0}}} \tag{39}
\end{equation*}
$$

where

$$
\left.\begin{array}{ll}
Z_{1}=\frac{k}{K_{a}}\left(0_{1}\left(\frac{R}{J}\right)-1\right) & \bar{H}_{c}=e^{\frac{R}{J} J \tau} c^{\cos J \tau_{c}} \\
Z_{2}=\frac{k c_{1}}{K_{a}} & \bar{I}_{0}=e^{\frac{R}{J} J \tau^{c}} c_{\sin J \tau_{c}}
\end{array}\right\}
$$

introducing the following factors

$$
\begin{align*}
& \Pi_{a}^{\prime}=\frac{1}{J \tau_{f}}\left(\left(G-G_{f}\right)+G_{1}\left(K-K_{f}\right)\right)_{J \tau=J \tau_{a}^{\prime}} \\
& \Pi_{b}^{\prime}=\frac{1}{J \tau_{f}}\left(\left(G-G_{f}\right)+C_{1}\left(K-K_{f}\right)\right)_{J \tau=J \tau_{b}^{\prime}} \tag{41}\\
& K_{:}^{\prime}=\left(K+C_{1} L\right)_{J \tau=J \tau_{b}^{\prime}-J \tau}^{a}:
\end{align*}
$$

equations (37) and (38) may ko simplified to

$$
\begin{align*}
P_{a}= & -A B \frac{\delta_{n}}{J^{2}} \cdot \zeta_{f} \cdot \Pi_{a}^{\prime}+A a_{2} \zeta_{f}(1-\varphi) \tag{42}\\
P_{D}= & -A B \frac{\delta_{n}}{J^{2}} \zeta_{f}\left(\Pi_{b}^{\prime}-\varphi K_{\pi}^{\prime}\right)+A a_{2} \zeta_{f}(1-\varphi) \tag{43}\\
& -15-
\end{align*}
$$

A5.3 Lateral accelerations (see F1g. 4)

(1) at the C.G. of the aircraft

The oritical values of the significant local maxima, $n_{\text {sa }}$ and $n_{s b}$, are obtained when the recovery is inftiated immediately the sideslip reaches a maximum in Stage II, I.e. when $d \beta / d \tau=0$ so that $J \tau_{c}=J \tau_{a}$. Then (of equation (25))

$$
\begin{equation*}
I_{s a}=-\mathbb{E}\left(\bar{y}_{v} \frac{\delta_{n}}{J^{2}} \zeta_{f} \Pi_{a}-y_{\zeta} \zeta_{f}(1-\varphi)\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{s b}=-E\left(\bar{y}_{v} \frac{\delta_{n}}{J^{2}} \zeta_{f}\left(\Pi_{a}-\varphi K_{\pi}\right)-y_{\zeta} \zeta_{f}(1-\varphi)\right) \tag{45}
\end{equation*}
$$

(ii) at the tail, due to angular acceleration in yaw

Here the critical values of the significant local maxima, $n_{l a}+n_{l k}$, are obtained when the recovery is inntiated immediately a mathomatical mainmum of

$n_{\ell a}=\frac{E}{\mu_{3}} \cdot \frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\zeta_{f}}{J \tau_{f}}\right)\left(J^{2}\left(I-I_{f}-k\right)+\overrightarrow{J y}_{v}\left(K-K_{f}\right)\right)_{J \tau=J \tau^{\prime \prime}}$
and
${ }^{n_{C b}}=\frac{E_{j}}{\mu_{3}} \cdot \frac{\delta_{n}}{J^{2}} \cdot\left(\frac{\zeta_{f}}{J \tau_{f}}\right)\left(J^{2}\left(I-I_{f}-k\left(H_{c}-\frac{R}{J} L_{c}\right)\right)+J \bar{y}_{v}\left(K-K_{f}-k L_{c}\right)\right)_{J \tau=J \tau_{b}^{\prime \prime}}$
and if

$$
\begin{align*}
& \Lambda_{a}=\frac{1}{J \tau_{f}}\left(\left(I-L_{f}\right)+\frac{\bar{y}_{v}}{J}\left(K-K_{f}\right)\right)_{J \tau=J \tau_{a}^{\prime \prime}} \\
& \Lambda_{b}=\frac{1}{J \tau_{f}}\left(\left(I-I_{f}\right)+\frac{\bar{y}_{v}}{J}\left(K-K_{f}\right)\right)_{J \tau=J \tau_{b}^{\prime \prime}} \tag{48}\\
& \Lambda_{0}=\left(k\left(H-\frac{R}{J} L\right)+\frac{v_{v}}{J} \cdot k \cdot L\right)_{J \tau=J \tau_{b}^{\prime \prime}-J \tau_{a}^{\prime \prime}}
\end{align*}
$$

equations (46) and (47) become

$$
\begin{align*}
& n_{l a}=\frac{\mathbb{E}}{\mu_{3}} \cdot \delta_{n} y_{f}\left(\Lambda_{a}-\varphi\right) \tag{49}\\
& n_{l b}=\frac{E}{\mu_{3}} \cdot \delta_{n} \zeta_{f} \cdot\left(\Lambda_{b}-\psi \Lambda_{0}\right) \tag{b0}
\end{align*}
$$

A6 Samplifinations
Calculations inducate that it may be assumed whthout signaficant loss nf accuracy that
(1) the first critical naxima of β, p, n_{s} and n_{l} cocur at the same Instant i.e. $I \tau a=J \tau_{a}^{\prime}=J \tau=a_{a}^{\prime \prime}$ and $n_{t a}=n_{s a}+n_{Q b}$
(11) the other crıtical maxima of there quantitues occur at an interval $山 \tau=I$ after the Pirst maxura 1.c. $J \tau_{b}=J \tau_{a}+\pi$ eto. and $n_{t b}=n_{s b}+n_{b b}$ (2.12) the functions H_{a} etc. are. numerically equal to tale funstions π_{a}^{1} etc. (2v)

$$
\left.\begin{array}{l}
\Lambda_{a}=\frac{1}{J \tau_{f}}\left(I-I_{f}\right)_{J \tau=J \tau_{a}^{\prime \prime \prime}} \\
\Lambda_{b}=\frac{1}{J \tau_{f}}\left(L-I_{f}\right)_{J \tau=J \tau_{a}^{\prime \prime \prime}+\pi} \tag{51}\\
\Lambda_{0}=\left(H-\frac{R}{J} L\right)_{J \tau=\pi}
\end{array}\right\}
$$

where $J \tau_{a}^{\prime \prime \prime}$ 1s the first root beyond $J \tau_{f}$ of the equation

$$
\begin{equation*}
\left.J \tau=\tan ^{-1} \frac{\cdot \frac{R}{J} \overline{\bar{L}}_{f}-\left(\bar{H}_{f}-1\right)}{\bar{I}_{f}-\frac{R}{J}\left(\bar{H}_{f}-1\right)}\right\} \tag{52}
\end{equation*}
$$

Thus, in practice, tho sstumation of the critical maxima of the various quantitios (see equations (34) and (35), (42) and ($1+3$), (44) and (45) and (49) and (50)) only necesisita ees the estamation of the appropriate values or Π_{a}, Π_{b} and K_{π} (from equations (33) or (41) and Λ_{a}, Λ_{b} and Λ_{0} (frcm equation (49)). This work ray be surmplifled by the use of charts, see Figs. 5 and 6. The information contazned in Fig. 5 has beer outained from equations (36) ard (41) with $C_{1}=0.3$; Lhese particular equations have been used because $\Pi_{a}^{*}, \Pi_{b}^{\prime}$ etc, are in fact up to 2% greater than the
corresponding I_{a}, I_{b} etc, and the results so obtained lead to slightly conservative values of the maxima of β and n_{S}, and of P also if the actual value of O_{1} is less than 0.3 (0.3 is the expected upper lamt to C_{1}). The tames of occurrence of the critioal maxima, if requared, may be estimated from Fig. 7 .

A7 Estimation of the amount of rudder displacement in the "check" strge

The stalling torque of the servomotor is usually know, but the external forces on the rudder (hange momenta) dopend on the response of the aircraft, wnich, in turn, depends upon the magntuce of the rudati daplacement. Thus, to calculate exactly the amount of displaoment to stall the servomotor, Cof $^{\prime}$, a procass of "trial und error" would have to be adopted. To ease thas labour, two sumplified methods are suggcsted for obtaining a good approximation to ζ_{f}
(i) from asymptotis conditions, assuming the recovery action is not taken.

The general expression for the hange moment coeffionent of the rudder in a yawing menocuvre is (of Ref.3)

$$
\begin{equation*}
c_{h}=-b_{1} \beta+b_{2} \zeta_{b} \tag{53}
\end{equation*}
$$

The asymptotic conditions devend solely on the asymptotzc rudder displacement and therefore equations (5) or (8) may be used to determine the asymptotic value of β. It is, assuming that the corresponding rudder aisplacoment is ζ_{f},

$$
\begin{equation*}
\beta=\frac{\delta_{n}}{J^{2}} \cdot F_{a} \delta_{f} \tag{54}
\end{equation*}
$$

and the asymptotic value of C_{h} is

$$
\begin{equation*}
c_{h}=\left(b_{2}-\frac{\delta_{n}}{J^{2}} \cdot K_{a} b_{1}\right) \zeta_{f} \tag{55}
\end{equation*}
$$

If thas hange moment coefficiont is equated to the servomotor stalling torque then

$$
\begin{equation*}
\xi_{f}=\frac{c_{h_{s}}}{\left(b_{2}-\frac{\delta_{n}}{J^{2}} \cdot K_{a} b_{1}\right)} \tag{56}
\end{equation*}
$$

(ii) from conditions arısing from instantaneous rudder displacoment.

With instantaneous movement of tho rudder of magnitude ζ_{f}, the response in β see equation (8), is initially zero, and the correspondang hange moment coeffacient is

$$
\begin{equation*}
C_{1}=b_{2} \breve{L}_{\mathrm{f}} \tag{57}
\end{equation*}
$$

and if this hange moment is equated to the servomotor stalling torque then

$$
\begin{equation*}
\zeta_{p}=\frac{c_{h_{s}}}{b_{2}} \tag{58}
\end{equation*}
$$

Wethod (1) is conservative when 01 is positive, and method (i1) is conservative when b_{1} is negative. It is suggested that when determining ζ_{0}, the sign of b_{1} should farst be examined. The conservatave value of Y_{f} (i.e. one larger than that occurring in practice) may then bo estimated.

A8 Estimation of the amount of rudder movement in the recovery

The rudder hinge moment at the instant of recovery due to the munaway and check movements of the rudder is, (cf equation (53))

$$
\begin{equation*}
c_{h}=-b_{1} \beta_{a}+b_{2} \zeta_{f} \tag{59}
\end{equation*}
$$

and the assoniated hinge moment due to the instantaneous rocovory movernent, ζ_{c}, is, sunce tho response in β due to the recovery moverent is initially zerc,

$$
\begin{equation*}
c_{h}=b_{2} \zeta_{c} \tag{60}
\end{equation*}
$$

Thus, uf, when the automatac palot as disengaged, the pilot does not touch the rudder pedals, the rudder will be moved under the influonce of the out of balance hinge moments until equilibraun is reached, i.e. till

$$
-b_{1} \beta_{a}+b_{2} \zeta_{\mathrm{f}}+b_{2} \zeta_{c}=0
$$

or

$$
\begin{equation*}
\zeta_{c}=-\zeta_{\mathrm{c}}+\frac{\mathrm{b}_{1}}{b_{2}} \beta_{a} \tag{61}
\end{equation*}
$$

Fquation (61) may be considered as a condition to fix a lower lamit to the amount of rudder displacemont to be expected during the recovery sunce any action that the pilot might make woula invariably be in the sense to move the rudder back still further; just how much farther is difficult to assess, and In any casc is outsize the scope of thas paper.

It should be ncted that if b_{1} and b_{2} are negative (In practice b_{2} at least must be) the value of ζ_{C} rrom equation (61) whll be lers than ζ_{f}, whilst af b_{1} ls positive the rudder will be moved back beyond its neutral position before the resultant hange moment drops to zero.

APPENDIX II

Computationa] procedure

A1 Introduction

Al. 1 This Apperidix contains details of the procedure for calculating the maximum angle of sideslip, maximum fin-and-rudder load and the maximum lateral acceleration, both at the C.G. of the aurcraft and at the tall, that ensue from a fallure $1 \gamma_{1}$ the rudder channel of an automatic pilot and the subsequent recovery.

A1.2 A list of the numerical data requared is given in para. 2 and partaculars of the prelun nary calculations are given in para. 3. The formulae recessary for the calculation of the various maxima are given in para. 4.

A1.3 IWo formulae are given for cach of the quantities; they refer to maxima that arise at different stages of the falluro and subsequent recovery. Just which of the two maxima is oritical in a practical case depends on the characteristios of the aircraft and the automatic pilot, and it is therefore necessary to consuder both formulae to determine tho akeplute or critical maximum of the particular quantity in question.

A1.4 The formilae contain the functions $\Pi_{a}, \Pi_{b}, K_{,}, \Lambda_{a}, \Lambda_{b}$ and Λ_{a}, and tho numerical values of these functions may be ovtained from Figs. 5 and 6. The times of occurrence of the maxima may be obtained from rig. 7. Alternatively the numerical values of the functions may be obtained from the set of formulac in para. 5.

A1.5 A numerical example illustrating the procedure is given in para.6. The data for this example are taken from Table i.

A2 List of data required (of Inst of Symbols)

a_{1}	n_{v}	$\mathrm{Ch}_{\text {s }}$
a_{2}	${ }^{n} r$	$\bar{\zeta}$ (radians)
b	y_{v}	$\zeta_{\text {f }}$ (radıans)
b_{1}	$\mathrm{S}(\mathrm{ft})^{2}$	ζ_{0} (radıans)
$\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$	$S^{\prime \prime}(f t)^{2}$	($\frac{d \zeta}{\text { c }}$) (radians $/ \mathrm{sec}$)
k_{c} (ft)	V (ft/sec)	$\left.\left(\frac{d t}{d t}\right)^{(r a d i a n s} / \mathrm{sec}\right)$
e (it)	W (Ib)	
t_{k} (ft)	p (slugs/ft ${ }^{3}$)	

Note: ζ_{f} and $\left(d y_{o} / d t\right)_{f}$ axe negative when the rudder is dısplaced to starboard;
displaced to starboard.

A3 Basic quantities to be evaiuatod (cf last of Symbols)

AS. 1

$$
\begin{aligned}
& \mu_{2}=\frac{2 W}{g \rho S b}=\frac{2 \ell}{b} \cdot \mu_{3} \\
& \bar{V}_{R}=\frac{S^{\prime \prime} \ell_{R}}{S b} \\
& \mu_{3}=\frac{W}{g \rho S \ell}=\frac{b}{2 \ell} \mu_{2} \\
& \omega_{n}=\frac{1}{i_{c}} \mu_{2} n_{v} \\
& \hat{t}=\frac{W}{g \rho S V}=\frac{\ell}{V} \mu_{3} \\
& \delta_{n}=\frac{1}{i_{c}} \mu_{2} \overrightarrow{\mathrm{~V}}_{\mathrm{R}} \mathrm{a}_{2} \\
& A=\frac{1}{2} p V^{2} S^{\prime \prime} \\
& \nu_{n}=-\frac{1}{i_{c}} n_{r} \\
& B=\left(1+\bar{y}_{v} / \mu_{3}\right) a_{1} \\
& \overline{\mathrm{y}}_{\mathrm{v}}=-\mathrm{y}_{\mathrm{v}} \\
& E=2 \cdot \frac{\frac{1}{2} p v^{2}}{W / S} \\
& y_{\zeta}=\frac{1}{2} \frac{S^{\prime \prime}}{S} a_{2} \\
& i_{c}=\frac{4 k_{c}{ }^{2}}{b^{2}} \\
& R=\frac{1}{2}\left(\nu_{n}+\bar{y}_{v}\right) \\
& K_{a}=\frac{1}{\left(\frac{R}{J}\right)^{2}+1} \\
& J=\sqrt{\omega_{n}-\frac{1}{4}\left(\nu_{n}-\bar{y}_{v}\right)^{2}} \\
& \text { The relationship between tame }(t) \text { and } J \tau \text { is } t=\frac{\hat{t}}{J}(J \tau) \text {. }
\end{aligned}
$$

AS. 2
(I) ζ_{f} If b_{1} is negative then $\zeta_{\mathrm{f}}=\bar{\zeta}_{\mathrm{f}}$ or $C_{\mathrm{h}_{\mathrm{S}}} / b_{2}$ radians, whichever of the two is less. But if b_{1} is positive then $\zeta_{f}=\bar{\zeta}_{f}$ or $C_{h_{s}} /\left(b_{2}-\delta_{n} K_{a} b_{1}\right)$ radians, whichever of the two 1 s less.
(ii) φ and $J \tau_{f}$

$$
\varphi=-\left(\frac{\zeta_{\mathrm{c}}}{\zeta_{\mathrm{f}}}\right)
$$

$$
J \tau_{\mathrm{f}}=\frac{J \zeta_{\mathrm{I}}}{\hat{\mathrm{t}}(d \zeta / d t)_{\mathrm{f}}}
$$

A3.3 In addition $\Pi_{a}, \Pi_{b}, K_{\pi}, \Lambda_{a}, \Lambda_{b}$ and Λ_{0} mast be evaluated. Here, either FIgs. 5 ard 6 or the appropriate formulae of para. 5 may be used. In most cases the graphs will be sufficient. Further, if the times of occurrence of the maxima are required, they may be found from Fig. 7. The first set of maxima scour after $J \tau_{a}^{\prime} \hat{t} / J$ sees and the second set after $\left(\pi+J \tau_{a}^{2}\right) \hat{t} / J$ secs where $J \tau_{\mathrm{a}}$ is expressed in radians.

Quantzty	Formulae for maxima	Associated graphs	Arprox. time of oocurronce of nexima	Assoczated graph
Angle of Sideslap	$\beta_{a}=\frac{\delta_{n}}{2} \cdot \zeta_{0} \cdot \Pi_{a}$	5 F - 5 c	$J \tau=J \tau_{a}^{\prime}$	Fig. 7
	$\beta_{b}=\frac{\delta_{n}}{J^{2}} \cdot \zeta_{f} \cdot\left(\Pi_{b}-\varphi K_{\pi}\right)$	FIgs. 5 a and 5b	$J \tau=\pi+J \tau^{2}$	"
Fin-and-mudder loda	$P_{a}=-A B \cdot \frac{\delta_{n}}{J^{2}} \cdot \zeta_{1} \cdot \Pi_{a}+A a_{2} \zeta_{\rho}(1-\varphi)$	F+8.5a	$J \tau=J \tau_{\mathrm{a}}^{\prime}$	"
	$P_{b}=-A B \cdot \frac{\delta_{n}}{2} \cdot \zeta_{i} \cdot\left(\Pi_{0}-\varphi K_{\pi}\right)+A a_{2}(1-\varphi)$	Figs. $5 a$ and 5b	$J \tau=\pi+J \tau^{\prime}{ }^{\prime}$	"
Coeff. of lateral acceleration at the C.G.	$n_{s a}=-\bar{s}\left(\bar{y}_{v} \cdot \frac{\delta_{n}}{J^{2}} \cdot \zeta_{i} \cdot \Pi{ }_{a}-y_{\zeta_{c}} \zeta_{f}(1-\varphi)\right)$	Flg. 5a	$J \tau=J \tau$	"
	$n_{s b}=-E\left(\bar{y}_{v} \cdot \frac{\delta_{n}}{J^{2}} \cdot \zeta_{f}\left(\Pi_{b}-\varphi K_{\pi}\right)-y_{\zeta^{\prime}} \zeta_{f}(1-\varphi)\right)$	Prgs. 5 a and 5b	$J \tau=\pi+J \tau$	"
Coeff. of lateral acceleration at the tazl due to acceleration in yaw	$n_{\ell a}=\frac{E}{\mu_{3}} \cdot \delta_{n} \cdot \zeta_{f} \cdot\left(\Lambda_{a}-\varphi\right)$	Pig. $6 a$	$J_{r}=J_{l}^{\prime}$	\#
	$n_{l b}=\frac{\underline{F}}{\mu_{3}} \cdot \delta_{n} \cdot \zeta_{f} \cdot\left(\Lambda_{b}-\varphi \Lambda_{0}\right)$	Figs. Ga and 6b	$J \tau=\pi+J \tau_{\text {a }}^{*}$	H
Coeff. of total lateral acceleration at the tail.	$n_{\text {ta }}=n_{s a}+n_{l_{a}}$	-	$J \tau=J \tau{ }_{a}^{k}$	n
	$n_{t b}=n_{s b}+n_{l b}$	-	$J \tau=J \tau \quad{ }_{a}^{\prime}+\pi$	"

A5 Formulae for the functions Π_{a} etc.
(i)

$$
\Pi_{a}=\frac{1}{J \tau_{f}}\left(\left(G-G_{f}\right)+0.3\left(K-K_{f}\right)\right)_{e^{\tau \tau}=J \tau_{a}^{\prime}}
$$

where $J \tau_{a}^{\prime}$ is the first root beyond $J \tau_{f}$ of the equation

$$
J \tau=\tan ^{-1}\left\{\frac{2 \bar{L}_{f}-\left(\bar{H}_{f}-1\right)}{\bar{I}_{f}+Z\left(\bar{H}_{f}-1\right)}\right\}
$$

and

$$
\bar{L}_{f}=e^{\frac{R}{J} J \tau_{i}} \sin J \tau_{f}, \bar{H}_{f}=e^{\frac{R}{J} J \tau_{f}}{ }_{c o s} J \tau_{f} \text { and } Z=\frac{R}{J}-\frac{0.3}{K_{a}}
$$

(13)

$$
\Pi_{b}=\frac{1}{J \tau_{f}}\left(\left(G-G_{f}\right)+0.3\left(K-K_{f}\right)\right)_{J \tau=J \tau_{b}^{\prime}}
$$

where $J \tau_{b}^{2}$ is the first root beyond $J \tau_{a}^{\prime}$ of the equation

$$
J \tau=\tan ^{-1}\left\{\frac{2 \bar{L}_{f}-\left(\bar{H}_{f}-1\right)+Z_{1}{\overline{I_{a}}}_{a}+z_{2} \bar{H}_{a}}{\bar{I}_{f}+Z\left(H_{f}-1\right)-Z_{2} \bar{L}_{a}+z_{1} \bar{H}_{a}}\right\}
$$

and

$$
\begin{array}{ll}
Z_{1}=\frac{k}{K_{a}}\left(0.3\left(\frac{R}{J}\right)-1\right) & Z_{2}=\frac{0.3 \mathrm{k}}{\mathrm{~K}_{a}} \\
\bar{H}_{a}=e^{\frac{R}{J} \cdot J \tau_{a}^{\prime}} \cos J \tau_{a}^{t} \quad \text { and } \quad \bar{L}_{a}=e^{\frac{R}{J} J \tau_{a}} \sin J \tau_{a}^{i}
\end{array}
$$

(iii)

$$
K_{\pi}=(K+0.3 L)_{J \tau=J \tau_{b}^{\prime}-J \tau_{a}^{\prime}}
$$

(iv)

$$
\Lambda_{a}=\frac{1}{J \tau_{f}}\left(L-L_{f}\right)_{J \tau=J \tau_{a}^{\prime \prime \prime}}
$$

where $J \tau_{a}{ }^{\prime \prime \prime}$ is the f^{2} irst root beyond $J \tau_{f}$ of the equation

$$
J \tau=\tan ^{-1}\left\{\frac{-\frac{R}{J} \bar{L}_{f}-\left(\bar{H}_{f}-1\right)}{\bar{I}_{f}-\frac{R}{J}\left(\bar{H}_{f}-1\right)}\right\}
$$

(v)

$$
A_{b}=\frac{1}{J \tau_{f}}\left(L-L_{f}\right)_{J \tau=\pi+J \tau_{\bar{a}}^{\prime \prime \prime}}
$$

(vi)

$$
\Lambda_{0}=\left(H-\frac{R}{J} L\right)_{J \tau=\pi}
$$

Iurther details of these formulae are given in Appendix. I.

A6 Numerical exampie

The detalls are gaven under the relevant paragraph headings of this Appendix.

Para.A3

A3. 1 all the necessary data are contanned in Table I.
A3.2 b_{1} is negative, $\bar{\zeta}=0.2093$ and $C_{h_{S}} / b_{2}=-0.0513 /-0.3=0.171$ rads so that $\zeta_{f}=0.171$ rads .

$$
\varphi=1 \text { and } J \tau_{f}=\frac{4.293 \times 0.171}{1.34 \times 0.1745}=3.142 \bumpeq \pi
$$

A3.3 With $R / J=0.093$ and $J \tau_{f}=\pi$ we obtain from F igs. 5 and 6

$$
\begin{array}{ll}
\Pi_{a}=1.483 & \Lambda_{a}=-0.482 \\
\Pi_{b}=0.623 & \Lambda_{b}=0.361 \\
K_{\pi}=1.763 & \Lambda_{0}=-0.759
\end{array}
$$

also, from FIg.7, $J_{\tau}^{\prime}=257^{\circ}$ so that the first set of maxima occur after $\left(257 \times 1.34 / 57.3 \times 4^{\text {a }} 293\right)$ secs, 1.e. 1.4 secs. The second set of maxima occur after $(257 / 57.3+\pi) 1.34 / 4.243$ secs or 2.38 secs.

Para. A4

Since

$$
\begin{aligned}
& \frac{\delta_{n}}{J^{2}} \cdot \zeta_{f}=\frac{22.53}{4.293^{2}} \times 0.171=0.2093 \\
& \beta_{a}=0.2093 \times 1.483 \mathrm{rads}=0.31 \mathrm{rads} \\
& \beta_{b}=0.2093 \times(0.623-1.763) \mathrm{rads}=-0.235 \mathrm{rads} \\
& p_{a}=-6400 \times 2.517 \times 0.2093 \times 1.483 \mathrm{lb}=-5000 \mathrm{lb} \\
& P_{b}=-6400 \times 2.517 \times 0.2093 \times(0.623-1.763) \mathrm{lb}=3750 \mathrm{lb} \\
& n_{s a}=-11.8 \times 0.23 \times 0.2093 \times 1.483=-0.84 \\
& n_{s b}=-11.8 \times 0.23 \times 0.2093(0.623-1.763)=0.62 \\
& n_{l_{a}}=\frac{11.8}{29.44} \times 22.53 \times 0.171 \times(-0.482-1)=-2.29 \\
& n_{l b}=\frac{11.8}{29.44} \times 22.53 \times 0.171 \times(0.361+0.759)=1.73 \\
& n_{t a}=-0.84-2.29=-3.13 \\
& n_{t b}=0.62+1.73=2.35
\end{aligned}
$$

Thus, in the present example, the critical corditions are

$$
\begin{aligned}
\beta & =0.31 \mathrm{rads} \\
P & =-5000 \mathrm{lb} \\
n_{s} & =-0.84 \\
n_{t} & =-3.13
\end{aligned}
$$

they arise 1.4 secs after failure of the automatic pilot.

TABLE I

μ_{3}	$=29.44$	b_{1}	$=-0.1$ per radran	
\hat{t}	$=1.34$ seos	b_{2}	$=-0.3$ per radian	
A	$=6400 \mathrm{lb}$	$\overline{\%}$	$=12^{\circ}$	
E	$=11.8$		$=0.2093 \mathrm{radmans}$	
J	$=4.293$	$\left[\zeta_{f}\right.$	$=9.81^{\circ}$	See Apiendix If Para. 6
	$=0.093$	\square	$=0.171$ radians	
	$=22.53$	${ }_{5}$	$=-\zeta_{\mathrm{f}}$	
	$=0.23$	$\left(\frac{d y^{2}}{d t}\right)^{\text {a }}$	$=10^{\circ} / \mathrm{sec}$	
Ψ_{ζ}	$=0.067$		$=0.1745 \mathrm{rads} / \mathrm{sec}$	
a_{2}	$=1.8$ per radian	C_{S}	$=-0.0513$	

FIG. I ASSUMED RUDDER TIME-HISTORY

FIG. 2

FIG. 2. RESPONSE IN ANGLE OF SIDESLIP (VARIOUS RECOVERY TIMES)

FIG 3. RESPONSE IN FIN-AND-RUDDER LOAD. (VARIOUS RECOVERY TIMES)

FIG 4.

FIG 4. RESPONSE IN LATERAL ACCELERATION (VARIOUS RECOVERY TIMES.)

FIG. 5a. CHART SHOWING
FUNCTIONS π_{a}, Π_{b} AND K_{π}

FIG. 5b

FIG. 5b. CHART SHOWING FUNCTIONS π_{a}, π_{b} AND K_{π} (CONT)

FIG. 6a CHART SHOWING FUNCTIONS Λ_{a}, Λ_{b} AND Λ_{0}.

FIG. 6b

FIG. 7. CHART SHOWING
TIME OF OCCURRENCE OF THE MAXIMA
A.R.C. Technical Report

Crown copyrıght reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c 2
423 Oxford Street, London w 1
P O Box 569, London S.e.I
${ }^{13}$ A Castle Street, Edınburgh 2
109 St Mary Street, Cardıff
39 Kıng Street, Manchester 2
Tower Lane, Bristol i
2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast
or through any bookseller
PRINTED IN GREAT BRITAIN

[^0]: * At least, if the autoratic pilot heading control is coupled to the rudder.

