

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
 ROYAL AIRGZAFT EStiguremment EEDFORAM.

Loading Conditions following an Automatic Pilot Failure (Elevator Channel)

By
D. R. Puttock, D.C.Ae.

ROY I IRCRIFT EST BLISLIENT

Loading conätions following an kutonatuc Pilot Failure (Elevator Ctonnel)

by

D. 2. Puttock, D.C.Ae.

SUMYMARY

A proposal ls made for a standard procedure for calculating the crıtical loading conditions ensung fron an automatio pilot failure in the elerator channel.

Geners expressions are derived through response theory for the increnents in normal accoleration at the C.G. of the aircraft, normal acceleration at the tail and aorodynatic load on tne tailplane wheh result from the sequence of elevator movenents assumed to follow a failure. Analysus of these general expressions leads to formulae suitable for assessing the numerical values of the critical loads on the wing and tailplane.

The influence of the sequence of elevator movenents on the loading conditions is discussed with reference to an exmple.
IIST OF CONTETMS
Page
1 Introduction 3
2 Detanls of the unvestigation 3
2.1 The elevator movement 3
2.2 Response of the aurcraft 4
2.3 The critical loads 5
3 Conclualing remarks 6
Notation 7
Ref'erences 10
IIST OF APTENDICES
Appendıx
The mathematical analysis and detailed discussion I
A. 1 Equations of motion
A. 2 Basic solutions
A. 3 Normal acceleration at the C.G.
A. 4 Acceleration at the tarl
A. 5 Aerodynamıc load on the tailplane
A. 6 Detanled discussion
Computational proceảure II
TABLE
Data for example
LIST OM ILIUSTRATIOTSS
FIg.
1
The assumed elevator time-history
2
Typical response to the assumed elevator time-history
Response when the recovery action is timed to give the critical tanlplane loads 3
Curves of the critical acceleration (n^{\prime}) and the $P_{i r}$ component of P_{2} ' (due to the effective angle of ancudence at the tail) 4
Curves of $J \tau^{\prime}$ and $J \tau_{2}{ }^{\prime}$ 5
Curres for the solution of $M \cos J \tau+N \sin J \tau=e^{\frac{R}{J}} J \tau$ 6
Auxaliary function K 7
Auxiliany function G ε
Auxillary function I 9
Curves of K_{a} 10

Introduction

It is recognised that complete reliability of an automatic pilot connot be expected and that the likelihood of a failure must be accepted ${ }^{2}$. Accordingly the relevant design requirement ${ }^{f}$ states that aircraf't must have a specified ultimate factor under loading conditions ensuing from a sudden movement of each main control surface - when the failure occurs - and reoovery action after a suitable time unterval. Tith a failure in the elevator channel, the critical loading conditions are usually associated with the maximum normal acceleration at the C.G. of the auroraft and with the maximum aerodynamic load on its tazlplane.

Since the requarement is couched in general terms, any approach which satisfices all the specificed conditions may be used to assess the cratical loads and accelerations. It is desarable, however, to establish a standard approach, and to this end, Reddaway3 interpreted the sudden elevator movement of the requirement as instantaneous movenent, and, disregarding the recovery action, derived formulas suztable for the calculation of the resuiting critical loads. But, while the choice of instantaneous "runaway" movement was a conservative one whth respect to the initial stages of the manoeuvre, the omission of the recovery action mignt in many cases lead to a serious underestimation of the critical loads occumring during the complete sequence of runaway and recovery.

In the present paper, the sudden movement is interpreted as a gradual movement as rapid as the control servomotor wll allow, and recovery action is taken into consideration. The investigation is based on response theory.

The response of the anroraft to the assumed elevator movements, and the formulae necessary for the calulation of the cratical loading conditions are derjved in Appendix I. This Appendix also contains some discussion of the effects of an autcmatic plot failure on possible elevator movements. In a further Appendux the formulae for the crutical loading conditions are presented in a form suitable for their direct use by the computor. In this presentation extensive use is made of charts.

An example is given to illustrate the type of response following an automatic palot fialure.

2 Details of the investigation

In a rational approach to the problem of determining the loading conditaons following an automatic pilot fallure, the investigation may be splat into three closely linked parts.
(1) The establishment of a general elevator time history to describe the sequence of movements that occur after a failure.
(ii) The derivation of the response of the aircraf't to the established elevator movement.
(iin) The analysis of the response to determine in each case the elevator movements which produce the cratical loads, and to outain workable formulae and charts suitable for routine estimation of these loads.

These three parts are described and discussed in the following sub-paragraphs.

2.1 The elevator movement

Consider first the sequence of events in the case of a typical failure of the elevator channel. At the instant of failure the elevator
begins to move under the influence of its servomotor. Its angular rate of movement is initially small because of the friction and inortia effects, but soon builds up to a value approaching the meximum angular rate of the servomotor. This movement gives rise to aerodynamic forces on the elevator, and after a while these forces may become large enough to influence the output of the servomotor, and reduce its angular rate. Finally, a state may be reached in which the external aerodynamic forces are of sufficient magnitudo to stall the servomotor. Alternatively, therc may be stops in the automatic pilot-elevator circuit to limit the total travel of the clovator under automatic control, in which case, the elevaior movencnt may be arrosted before the external forces stall the servomotor. Once the clevator is brought to rest, it remains approximately steady until the recovery is taken. If the necovery is under the direct control or the pilot, it will consist in rapid angular movenent of the elevator back to its position before failure or perhaps beyond.

Within this picture the elevator movement and the aircraft response are continuously interdependent; this renders the solution of the overall problem a formidable task, and the final complex formulae would hardly be of any practical use. The following assumptions sumplify the mathematical treatment without seriously affecting the accuracy of the final results; they are slightly conservative. It is assumed that the tine-bistory of the clevator movement may bo considered as consisting of three stagos:
(i) "runaway", during which the elevator moves at a constant rate corresponding to the maximum rate of the servomotor.
(ii) "check", when the elevator is arrected at its maximum deflection, either by a stop or by the fact that aerodynamic forces on the elevator have stalled the servomotor, until
(iii) "recovery", during whicin the elevator is moved back at a constant rate.

With these assumptions the determination of the elevator time-history becomes a rather straight-forward matter. The following quantities are required: the "runaway" rate, maximum deflcction during the "check" period, maximum rate and travel during "recovery", and the time of the beganning of "recovery". A simplified method for calculating the elevator deflection at which the servomotor stalls is given in Appendix I para A.6.6. No specific rate and amount of recovery movement are suggested; they depend on the pilot and the characteristics of the ourcraft, and discussion as to their numerical values is outside the scope of the paper. In practice the relevant recovery rate would be that likely to be used by the pilot in such on emergency; the amount of movement is more difficult to assess but some guides to its value are given in Appendix I para A.6.9. The time of the beginning of recovery is discussed in para 2.3 and in Appendix I para A.6.7.

The assumed sequence of movements is illustrated diggramatically in Fig. 1.

2.2 Response of the aircraft

A movement of the elevator produces continuous changes in the angle of incidence of the aircraft and causes the aircraft. to fly along a curved path and rotate about its latersil axis. The aircraft is therefore subjected to normal and pitching accelerations which vary as the manoeurre develops, and its tailplane is subjected to variations in aerodynemic loading, aue partly to the movement of the elevator and partly to the movement or response of the aircraft itself.

Thus to assess the effects of an automatic pilot failure, it is necessary to derive the response of the aircraf't to the sequence of elevator movements which follow the failure. The required solutions of the equations of motion for the assumed type of disturbance have been obtained in general terms by means of Laplace transformations. The mathematical analysis pertinent to this part of the investigation is given in Appendix I paras A. 1 to A.5, where expressions are presented for the incremental values (from steady state) of the
normal acceleration at the C.G. of the aircraf't, the acceleration at the tail and the aerodynamic load on the taiplane. The type of response in acceleration etc. is illustrated in Fig. 2. The data for this example are glven in Table I.

2.3 The crutical loads

The various response formulae of Appendix i paras A. 3, A. 4 and A. 5 may be used to determine the comrlete time-historjes of the loads and accelerations produced by the general elevator time-nistory assuned in para 2.1. However, from the ammorthiness aspect, it is the various local maxima of these quantities, and in particular their absolute values, which are of major interest. It is therefore desurable to analyse the sesponse formulae and obtain general expressions for the magnitudes of the local maxima. The conclusions deduced from such an analysis are presented in Appendix I para A. 6.

They indicate that the loads and accelerations produced by movement of the elevator depend directly on its rate and magnitude, and since the movements defuning the runaway and check are the greatest possible in the curcumstances, the local maxuma that occur in these stages, are also the absolute maxima. The recovery stage must be treated somernat differently for, in addition to the rate and amount of elevator movement, its time of commencement must also be speciffied. Once the recovery movement has been chosen, its timing must be selected, from airworthiness conslderations to gave the most cratical loading conalions.

The recovery action always reduces the normal acceleration, and at is therefore only necessary to delay the recovery until the acceleration in the runaway and check stages has reached a mathematical maximum to ensure that the absolute maximum acceleration is obtained (cf Pig.2).

On the other hand, the recovery action increases the acceleration at the tail, and the zerodynmic load on the tail. The extent to which they increase depends on the rate and amount of movement and also on its timug. The method of determining the tame of recovery for the greatest tailplane load in the recovery is given in Appendix I para A.6.7. A similar approach may le uscd to determine the tame of recovery for the greatest acceleration at the tail; this case is not considered hovever, since in practice, only the acceleratior at the tail associated whth absolute maxymum tailplane load is normally requared for stressing purposes. Fig. 3 illustrates a case in which, by proper timing, the greatest tallplane load in the recovery stage 1 s ubtained. It should be noted that the greatest possible normal acceleration at the C.G. is not realised; the recovery is made before the acceleration hes reached a peak in the check stage.

In general, the maximum tailplane load in the runaway and that in the recovery are of opposite sign, and provided the parameters defaning the recovery movement are chosen realistically, these two loads represent the design loads for the automatic pilot failure case. Both may be significant, since they represent rather dafferent centre of pressure conditions, and therefore affect aifferent aspects of the strength of the tailplane.

The formulae for the magnitudes of the various critical maxima are rather complex, and some effort has been made to reproduce them in a workable graphical form. These charts are discussed at the appropriate points in Appenaix I para A. 6 . Finally, in Appendix II, detanls of the calculations recessary to determine the critical loadings are presented in a form such that the calculations can be carrıed out directly ky a computor.

This Note presents a rational method for assessing the loads on an aircraft following automatic pilot failure. It is suggested that it might form the basis of a standard procedure for airworthiness calculations.

A, B, C, C_{1}	see equations (30), (31) (32) and (33)
$a=\partial \mathrm{C}_{\mathrm{L}} / \partial \alpha$	
$a_{1}=\partial \mathrm{C}_{L_{1}}^{q}{\partial \alpha^{\prime}}^{\prime}$	
$a_{2}=\partial G_{I}^{\prime} / \partial \eta$	(includang the effects of tabs if used)
$\overline{\mathrm{B}}, \overline{\mathrm{C}}$	see equation (53)
$\mathrm{b}_{1}=\partial \mathrm{C}_{\mathrm{h}}{ }_{\partial \alpha^{\prime}}$	
$b_{2}=\partial C_{h} / \partial \eta$	(including the effects of tabs if used)
C_{L}	lift coefficient of aircraft
$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	lift coefficient of aircraft tanlplane
C_{h}	hinge moment coefficient of the elevator
$\mathrm{Ch}_{\text {h }}$	hinge moment coefficient of the elevator corresponding to the stalling torque of the servomotor
$\mathrm{C}_{\text {m }}$	pitchlng moment coefficient of aircraft
c	standard mean chord of wing
$D=\frac{1}{2} p v^{2} S \frac{a}{w}$	
$\left(\frac{d n}{d t}\right)_{s}$	"runaway" rate
$\left(\frac{d \eta}{d t}\right)_{r}=-f\left(\frac{d \eta}{\partial t}\right)_{S}$	"recovery" rate
1	ratio of recovery rate to runaway rate (considered posituve)
G, H, K, L	auxillary functions equations (9), (10) and (11)
g	gravity constant
\bar{H}_{S}, \bar{I}_{S}	see equation (39)
I	an imaginary form of J (see equation (4))

J	non-dimensional frequency of the longitudinal short period oscillations
$K_{a}=\frac{1}{\left(\frac{R}{J}\right)^{2}+1}$	
k_{B}	radius of gyration of aircraft about its lateral axis
ℓ	distance from aircraft C.G. to mean quarter chord point of tailplane
M, N	coefficients of transcendental equation in para A.6.31
$m_{q}=\frac{c}{2 \ell} \cdot \frac{\partial C_{m}}{\partial \frac{q \ell}{V}}$	damping derıvative in pitch
n	coef'ficient of normal acceleration at the C.G. of aircraft
n'	coefficient of critical normal acceleration at the C.G. of aurcraft
$\overline{\text { in }}$	coefficient of normal acceleration at the tailplane due to angular acceleration in pitch
$n_{t}=n+\bar{n}$	coefficient of total normal acceleration at the tailplane
$n{ }^{\prime}$	coefficient of total normal acceleration at the tailplane associated wath $P_{3}{ }^{\prime}$
$P=P_{W}+P_{\eta}$	net aerodynamic load on the tailplane
$P_{1}^{\prime}, P_{2}^{\prime}, P_{1}^{\prime \prime}, P_{3}, P_{3}^{\prime}$	various maxima of the tailplane load, see para A. 6.3
Q_{1}, T_{1}	coefficients of equation (40)
q	angular velocity of the aircraft in pitch
$\hat{y}=\hat{t} q$	non-dimensional angular velocity in pitch
$R=\frac{1}{2}\left(\nu+\chi+\frac{a}{2}\right)$	non-dimensional damping factor of the pitching oscillations of the aircraft
S	wing area
S^{\prime}	tailplane area
t	time in seconds
$\hat{t}=\frac{\mu \ell}{V}$	unit of aerodynamic time (seconds)
V	true airspeed of aircraft

7	Weight of aircraft
W	velocity component in a vertical plane perpendicular to the initial flight path (positive down)
$\hat{W}=\frac{W}{V}$	incremental incidence at the wing
$\alpha\left(\bumpeq \frac{W}{V}\right)$	angle of incidence at the wing
$\alpha_{\text {eff }}^{\prime}$	effective angle of incldence at tail
γ	an integer, see equation (43)
$\delta=\frac{\nabla c}{2 \mathrm{~g} \mathrm{\rho Sk}_{B}^{2}} \cdot \frac{S^{\prime} \ell}{S c} \cdot a_{2}$	elevator effectiveness
ε	angle of downwash at the tail
n	elevator angle
$\overline{7}$	elevator angle from steady state to limit stops
n_{r}	maximum angular movement of the elevator in the recovery
$\eta_{\text {crit }}$	see equation (61)
η_{s}	angular movement of the olevator in the runaway (see para A.6.6)
$\mu=\frac{\psi}{g \rho S \ell}$	relative density of the aircraft
v	rotary damping coefficient
p	air density
$\tau=\frac{t}{x}$	non-dimensional aerodynamic time
χ	downash damping derivative
$\omega=\frac{-W C}{2 \mathrm{gpSk}_{\beta}^{2}} \cdot \frac{\partial \mathrm{C}_{\mathrm{m}}}{\partial \alpha}$	static stability coefficzent

NOTATION (Contd)

Suffices

r
associated with the recovery
associated with point at which the runaway is cheoked due to effective angle of incidence at the tail
due to the elevator angle

RETHRENCES

No.
1

2

4

3 J.I. Redaway
Author
-
E. Finn and
E.A. Poulton
T. Czaykowski

Title, etc.

Design requirements for Aeroplanes (AP $970 \mathrm{Vol} \mathrm{I} .\mathrm{Ch} \mathrm{209)}$
Aircraf't with Automatic Pilots and Powered Controls: Safety Aspects RAE Technical Iote No. Structures 58 $\{$ ROC 13,609 June 1950

Tailplane Loads and Normal Accelerations after an Automatic Control Fallure sinc 14,747 C.F. 111 Dooenber 1951

Loading Conāıtions of Tailed Aircraft in Longitudinal Manoeuvres RAE Report No. Structures 177 «RC 17,607

APPENDIX I

The mathematical analysis and detailed discussion

A. 1 Equations of motion

The non-dimensional linearised differential equations of longitudinal motion of an aircraft may be written (cf Ref.4).

Vertical Forces:

$$
\begin{equation*}
\frac{d \hat{w}}{d \tau}+\frac{a}{2} \cdot \hat{w}-\hat{q}=0 \tag{1a}
\end{equation*}
$$

Iroments:

$$
\begin{equation*}
\chi \frac{d \hat{w}}{d \tau}+\omega \hat{w}+\frac{d \hat{q}}{d \tau}+v \hat{q}=-\delta . \eta \tag{1b}
\end{equation*}
$$

Eliminating \hat{q} from equations (1a) and (1b)

$$
\begin{equation*}
\frac{d^{2} \hat{w}}{d \tau^{2}}+\left(x+\nu+\frac{a}{2}\right) \frac{d \hat{w}}{d \tau}+\left(\omega+\frac{a}{2} v\right) \hat{w}=-\delta \cdot \eta \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \hat{w}}{d \tau^{2}}+2 R \frac{d \hat{w}}{d \tau}+\left(R^{2}+J^{2}\right) \hat{w}=-\delta \cdot \eta \tag{3}
\end{equation*}
$$

where $\quad R=\frac{1}{2}\left(X+v+\frac{a}{2}\right) \quad \begin{aligned} & \text { is the non-dimensional damping factor of the } \\ & \text { longitudinal short period oscillations of the }\end{aligned}$ aircraft
and $J=\sqrt{\left(\omega+\frac{a}{2} \nu\right)-R^{2}} \begin{aligned} & \text { is the non-dinensional frequency factor of the } \\ & \text { longitudinal short period oscillations of the } \\ & \text { aircraft. }\end{aligned}$

A. 2 Basic solutions

The immediate problem is to solve equation (3) for the sequence of elevator movements defined in para 2.1, and illustrated diagrammatically in Fig. 1. Thence such response quantities as the normal acceleration, n, and the aerodynamic load on the tailplane, P, may be determined ($c f$ Ref. 4). The elevator movement is composed of three separate stages and the solution to each stage is obtained separately.

Stage I

Here the elevator movement is:

$$
\begin{align*}
n & =\left(\frac{\partial \eta}{\partial t}\right)_{s} t \\
& =\left(\frac{\partial \eta}{\partial \tau}\right)_{s} \tau=\left(\frac{\eta_{s}}{J \tau_{S}}\right) J \tau \tag{5}
\end{align*}
$$

where

$$
\tau=\frac{t}{\hat{t}} \quad \text { and } \quad \hat{t}=\frac{V}{\rho G S V}
$$

Note: For the present analysis, and for the presentation of results and graphs, it is more convenient to use the non-dimensional representation of time $J \tau_{s}$ etc. instead of t_{s} etc. and thas form is usea throughout.

The solution to equation (3) for the elevator movement defined by equation (5) is:

$$
\begin{equation*}
\hat{w}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{S}}\right) K_{a}^{2}\left(\frac{J \tau}{K_{a}}+2 \frac{R}{J}\left(e^{-\frac{R}{J} J \tau} \cos J \tau-1\right)+\left(\frac{R^{2}}{J^{2}}-1\right) e^{-\frac{R}{J} J \tau} \sin J_{\tau}\right) \tag{6}
\end{equation*}
$$

thence

$$
\begin{equation*}
\frac{d \hat{w}}{d \tau}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J \cdot K_{a}\left(1-e^{-\frac{R}{J} J \tau} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J} J \tau} \sin J \tau\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \hat{\vec{W}}}{d \tau^{2}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J^{2} e^{-R \tau} \sin J \tau \tag{8}
\end{equation*}
$$

Introducing the special functions of time:

$$
\left.\begin{array}{rl}
G=K_{a}^{2}\left(\frac{J \tau}{K}+2 \frac{R}{J}\left(e^{-\frac{R}{J} J \tau} \cos J \tau-1\right)+\left(\frac{R^{2}}{J^{2}}-1\right) e^{-\frac{R}{J} J \tau} \sin J_{\tau}\right) \\
K=K_{a}\left(1-e^{-\frac{R}{J} J \tau} \cos J \tau-\frac{R}{J} e^{-\frac{R}{J} J \tau} \sin J \tau\right) \\
H & =e^{-R \tau} \cos J \tau \tag{11}\\
L & =e^{-R \tau} \sin J \tau
\end{array}\right\}
$$

equations (6), (7) and (8) become:

$$
\begin{align*}
& \hat{\mathrm{w}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{s}}\right) G \tag{12}\\
& \frac{d \hat{W}}{d \tau}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J K \tag{13}\\
& \frac{d^{2} \hat{w}}{d \tau^{2}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J^{2} L \tag{14}
\end{align*}
$$

Stage II

Here

$$
\begin{equation*}
\eta=\eta_{s} \tag{15}
\end{equation*}
$$

and to obtain this conả_tion, an additional elevator movement $-\left(\frac{\eta_{S}}{J \tau_{\mathrm{S}}}\right) \mathrm{J} \tau$ may be superimposed on the existing movement commencing at $\mathfrak{J} \tau_{s}$, see Fig.1. Then

$$
\begin{align*}
& \hat{\mathrm{w}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right)\left(G-G_{s}\right) \tag{16}\\
& \frac{d \hat{w}}{d \tau}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J\left(K-K_{s}\right) \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \hat{w}}{d \tau^{2}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J^{2}\left(I-L_{s}\right) \tag{18}
\end{equation*}
$$

where the suffices to G, K and L denote that $J \tau$ is replaced by $J\left(\tau-\tau_{s}\right)$ in equations (9), (10) and (11) respectively. These new terms appear, of course, only when $J \tau>J \tau_{s}$.

Stage III
Here

$$
\begin{align*}
\eta & =\eta_{s}-f\left(\frac{\partial \eta}{\partial t}\right)_{s}\left(t-t_{r}\right) \\
& =\eta_{s}-f\left(\frac{\eta_{s}}{J \tau_{s}}\right) J\left(\tau-\tau_{r}\right) \tag{19}
\end{align*}
$$

where (-f) is the ratio of recovery rate to runaway rate.

Equation (19) may be satisfied beyond $J \tau_{r}$ by superposing a further elevator movement $-f\left(\frac{\eta_{S}}{J \tau_{S}}\right) J\left(\tau-\tau_{r}\right)$ from this point. Then

$$
\begin{align*}
\hat{w} & =-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right)\left(G-G_{s}-f G_{r}\right) \tag{20}\\
\frac{d \hat{w}}{\partial \tau} & =-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J\left(K-K_{s}-f K_{r}\right) \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \hat{w}}{d \tau^{2}}=-\frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J^{2}\left(L-I_{s}-f I_{r}\right) \tag{22}
\end{equation*}
$$

The suffix r denotes that $J \tau$ is replaced by $J\left(\tau-\tau_{r}\right)$ everywhere in the functions so suffixed.

A. 3 Normal acceleration at the C.G. (cf Ref.4)

$$
\begin{equation*}
\mathrm{n}=\mathrm{D} \hat{\mathrm{w}} \tag{23}
\end{equation*}
$$

where

$$
D=\frac{1}{2} \rho V^{2} S \cdot \frac{a}{w}
$$

Thus in Stage III

$$
\begin{equation*}
n=-D \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{S}}\right)\left(G-G_{S}-f G_{r}\right) \tag{24}
\end{equation*}
$$

The corresponding equations for Stages II and I may be obtained by deleting $f^{\prime} G_{r}$, and $f G_{r}$ and G_{s} respectively.

A. 4 Acceleration at the tail (of Ref.4)

A.4.1 Due to pitching alune

$$
\begin{equation*}
\bar{n}=-D\left(\frac{2}{\mu a} \frac{d^{2} \hat{W}}{d \tau^{2}}+\frac{1}{\mu} \frac{d \hat{W}}{d \tau}\right) \tag{25}
\end{equation*}
$$

Therefore in Stage III

$$
\begin{equation*}
\bar{n}=D \frac{\delta}{J^{2}}\left(\frac{n_{S}}{J \tau_{S}}\right)\left(\frac{2 J^{2}}{\mu a}\left(L-L_{S}-f I_{r}\right)+\frac{J}{\mu}\left(K-K_{S}-f K_{r}\right)\right) \tag{26}
\end{equation*}
$$

Equations for Stages II and I may be obtained as in A. 3 above.

A. 4.2 Total

$$
\begin{equation*}
n_{t}=n+\bar{n} \tag{27}
\end{equation*}
$$

A. 5 Aerodynamic load on the tailplane (of Ref. 4)

$$
\begin{align*}
F & =A\left(\hat{W}+C \frac{d \hat{w}}{d \tau}+a_{2} \eta\right) \tag{28}\\
& =A B\left(\hat{w}+\frac{C_{1}}{J} \frac{d \hat{w}}{d \tau}\right)+A a_{2} \eta \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
& A=\frac{1}{2 \rho} V^{2} S^{1} \tag{30}\\
& B=\left(1-\frac{d \varepsilon}{d \alpha}+\frac{a}{2 \mu}\right) a_{1} \tag{31}\\
& C=\left(1+\frac{d \varepsilon}{d \alpha}\right) \frac{a_{1}}{\mu} \tag{32}\\
& C_{1}=\frac{C J}{B} \tag{33}
\end{align*}
$$

For the present problem it is sumpler to wate

$$
\begin{equation*}
P=P_{W}+P_{\eta} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{W}=A B\left(\hat{W}+\frac{C_{1}}{J} \frac{d \hat{W}}{d \tau}\right) \tag{35a}
\end{equation*}
$$

$$
\begin{aligned}
& =\text { load due to effective angle of ancidence } \\
& \text { at the tall }\left(\alpha^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{align*}
P_{n} & =A a_{2} \eta \tag{35b}\\
& =\text { load due to elevator deflection. }
\end{align*}
$$

Thus, in Stage I

$$
\begin{align*}
& P_{W}=-A B \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{S}}\right)\left(G+C_{1} K\right) \tag{36a}\\
& P_{\eta}=A a_{2}\left(\frac{\eta_{S}}{J \tau_{s}}\right) J \tau \tag{36b}
\end{align*}
$$

in Stage II

$$
\begin{align*}
& P_{W}=-A B \frac{\hat{\delta}}{J^{2}}\left(\frac{n_{S}}{J \tau_{S}}\right)\left(\left(G-G_{S}\right)+C_{1}\left(I-K_{S}\right)\right) \tag{37a}\\
& P_{\eta}=A a_{2} n_{S} \tag{37b}
\end{align*}
$$

and in Stage III

$$
\begin{align*}
& P_{W}=-A B \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{S}}\right)\left(\left(G-G_{S}-f G_{r}\right)+C_{1}\left(K-K_{S}-f K_{r}\right)\right) \tag{38a}\\
& P_{\eta}=-A a_{2} f\left(\frac{\eta_{S}}{J \tau_{S}}\right) J\left(\tau-\tau_{r}\right)+A a_{2} \eta_{s} \tag{38b}
\end{align*}
$$

A. 6 Detailed discussion

A. 6.1 Introduction

To facilitate this discussion, attention is drawn to Fig. 2. This figure illustrates the type of response which is produced by the assumed elevator timehistory. The "crosses" are assoclated with points of discontinuity in the elevator movement, and the chain dotted curves immedately following these points indicate what the response would have been had the elevator movement not been altered. The symbols in the figure illustrate the notation.

A.6.2 Normal acceleration at the C.G.

The response in n is shown in Fig. 2(b). If the recovery action is delayed sufficiently long, the acceleration builds up to a local maximum in Stage II, denoted n^{\wedge}. The equation which characterises the response in n in Stage JI is:

$$
\begin{equation*}
n=-D \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{S}}\right)\left(G-G_{S}\right) \tag{24}
\end{equation*}
$$

and the time of occurrence of n^{\prime} (1.e. When $\frac{d n}{d \tau}=0$) is given by the first root beyond $J \tau_{s}$ of the equation
where $\quad \bar{H}_{S}=e^{R \tau_{s}} \cos J \tau_{S}$
and $\quad \bar{L}_{s}=e^{R \tau_{s}} \sin J \tau_{s}$

Equation (39) represents a function of $\frac{R}{J}$ and $J \tau_{s}$ only, wnich is inderendent of the magnitude (or rate) of the runairay movement. Thus J ' may be expressed graphically in terms oI $\frac{R}{J}$ and $j \tau_{s}$, see Fic. 5(a), and this information ray be combined with equation (24) to give n^{\prime} in terms of $\frac{R}{J}$ and $J \tau_{s}$, see Fig. 4(a).

A.6.3 Aerodynamic load on the tailplane

The response in P is shown in $\mathcal{F}_{2} .2(d)$. Three local maxima, $F_{1}{ }^{\prime}$, P_{2} and P_{3} may be expectec.

$$
A .6 .31 \quad P_{1}^{\prime}
$$

The condztion for this local maximum (i.e. When $\frac{d P}{d \tau}=0$ in Stage I) is given by the first positive root of

$$
\begin{equation*}
\cos J \tau+G_{1} \sin J \tau=T_{1} e^{R \tau} \tag{40}
\end{equation*}
$$

where $\quad Q_{1}=\frac{R}{J}-\frac{C_{1}}{K_{a}}$

$$
T_{1}=1-\frac{a_{2} J^{2}}{\operatorname{BbK}_{2}}
$$

This root, $J_{\tau_{1}}{ }^{\prime}$, does not depend on the rate or amount of elevator movement. In some cases it will be found that $J_{\tau_{1}}$ ' is greater than $J_{\tau_{S}}$ and this means that the runaray is checked before the matheratical maximum occurs, and instead, a srailer, non-mathematical, maxnuun - also designated $E_{1}{ }^{\prime}$ - occurs at $j \tau_{s}$ (tinis case is not iliustrated).

The significant parameters associated with $P_{1}{ }^{\prime}$ are $\frac{R}{J}, C_{1}, a_{2}$ and δ and consequentiy P^{\prime} ' cannot be easily represented graphically. Instead, $J \tau_{1}{ }^{\prime}$ must first be determaned. In this connection Fig. 6 may be used with $\mathrm{N}_{1}=\frac{1}{\mathrm{~T}_{1}}$ and $\mathrm{N}=\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}$ (use of thas graph is explained in Appendix II). It then remains to calculate P at $J \tau=J \tau_{1}$. . The relevant equation for P is

$$
P=P_{W}+P_{\eta}
$$

where

$$
\begin{equation*}
P_{W}=-A B \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{B}}\right)\left(G+C_{1} K\right) \tag{36a}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\eta}=A a_{2}\left(\frac{\eta_{s}}{J \tau_{s}}\right) J \tau \tag{36b}
\end{equation*}
$$

Graphs of K and G, Figs. 7 and 8 respectively, may be used in the estimation of P_{W} at $J \tau=J \tau_{1}^{\prime}$.

Note: It may be worthwhile to determine beforehand whether $P_{f}{ }^{\prime}$ occurs at or before $J \tau_{s}$. Trils may be done by finding the sign of $\frac{d P}{d \tau}$ at $J \tau=J \tau_{s}$ i.e. applying the followng inequalities: $\left.\begin{array}{l}\quad \begin{array}{l}\text { If } \\ \text { and if } \\ \quad\left(\mathrm{K}+\mathrm{C}_{1} \mathrm{~L}\right)_{J \tau=J \tau_{s}}<\frac{\mathrm{a}_{2} J^{2}}{B \delta} \quad \text { then } J \tau_{1}^{\prime}<J \tau_{s} \\ \left(\mathrm{~K}+\mathrm{C}_{1} \mathrm{~L}\right)_{J \tau=J \tau_{s}}\end{array}>\frac{\mathrm{a}_{2} J^{2}}{B \delta} \quad \text { then } \quad J \tau_{1}^{\prime}=J \tau_{s}\end{array}\right\}$

A. $6.32 \mathrm{P}_{2}{ }^{\prime}$

P_{2}^{\prime} is the value of the local maximum that occurs in Stage II if the recovery action is delayed sufficiently long. It always occurs before n^{\prime} if the Stage is long enough for both to occur. The position of P_{2}^{\prime} (1.e. when $\frac{d P}{d \tau}=0$ in Stage II) is given by the first root beyond $J \tau_{s}$ of the equation

$$
\begin{equation*}
J_{\tau}=J_{\tau_{2}}^{\prime}=\tan ^{-1}\left\{\frac{Q_{1} \bar{I}_{s}-\left(\bar{H}_{s}-1\right)}{\bar{I}_{s}+Q_{1}\left(\bar{H}_{s}-1\right)}\right\} \tag{42}
\end{equation*}
$$

The signaficant parameters are $\frac{R}{J}, C_{1}$ and $J \tau_{s}$ and, in $F 1 g .5$, $J \tau_{2}$ ' is given as a function of $\frac{R}{J}$ and $J \tau_{s}$ for four values of C_{1}. A property of equation (42) is that

$$
\begin{equation*}
\left(J \tau_{2}^{\prime}\right)_{J \tau_{s}=r \pi}=\left(J \tau_{2}^{\prime}\right)_{J \tau_{s}=\pi}+(\gamma-1) \pi \quad r=1,2 \text { etc. } \tag{43}
\end{equation*}
$$

This relationship may be used to extend Fig. 5 beyond $\mathrm{Jt}_{s}=\frac{3 \pi}{2}$. The values of $J \tau_{2}{ }^{\prime}$ from equation (42) may be combined with equation (37a) to obtain $P_{w_{2}}$, the contribution of P_{W} tc P_{2}^{\prime}; the results are given in Fig. 4. The corresponding value of $P \eta$ is $A a_{2} \eta_{s}$.

A. $6.33 \mathrm{~PB}_{3}$

P3 is the value of the local maximum that occurs in Stage III. In this region the overall response in tailplane load may be considered as a combination of two responses, one due to the runaway and check, and the other due to the recovery (this response is identical in character to that in Stage I - of equations (36) and (38)). The maximum P_{3} may be a mathematical maximum,
satusfying the condition $\frac{d^{3}}{d \tau}=0$, on a non-mathonatical maximum ip the recovery motion is arrested before the condiulon $\frac{d P}{d \tau}=0$ Is reached.

It is clear thot the value $O_{1}^{2} \mathrm{P}_{3}$ depends or the value $\mathrm{o}_{\mathrm{n}} \mathrm{J} \tau_{r}$ and on the parameters which define the recovery action, and since, in practice, the chief interest lues in the mevinum value of P_{3} (see para 2) general formulae for P_{3} and its tine of occurrence are not required. In connection with the determination of the maximun value of E_{3} (see para A.6.7) nowever, the quantity $P_{1}{ }^{\prime \prime}$ is meeded.

This quantity $2 s$ the value of the local max min of the trulplane load due to the recovery action itself, and sunce it is identical in character to the local max mum in tho runeway stage, the procedure of para M6.3f nay be used in ats calculaticn. Truse if the time of cccurrence of $P_{1}{ }^{\prime \prime}$ relative to $J \tau_{r} \quad 1$ s $J \tau_{1} "$ then $J \tau_{1} "$ is equal to $J \tau_{1}{ }^{\prime \prime}$ (see para A.6.31 equation (40) or $\quad-T_{r} / f\left(\frac{\eta_{\mathrm{s}}}{J \tau_{S}}\right)(\sec$ para A.6.9) whicnever of the two is less and

$$
\begin{equation*}
\bar{D}_{W_{1}}{ }^{\prime \prime}=L_{L} B \frac{\delta}{J^{2}} f\left(\frac{\eta_{S}}{J t_{S}}\right)\left(G+C_{1} K\right)_{J \tau=J \tau_{1}} \tag{4+4}
\end{equation*}
$$

and

$$
\begin{equation*}
P{r_{1}}^{\prime \prime}=-b a_{2} f\left(\frac{\eta_{S}}{J \tau_{s}}\right) J \tau_{1}^{\prime \prime} \tag{45}
\end{equation*}
$$

Wherce

$$
P_{1}^{\prime \prime}=P_{r_{1}}^{\prime \prime}+P_{r_{1}}^{\prime \prime}
$$

A. S.l sceveration at the tail

The reaponscs in \bar{n} and n_{t} are illustrated in $F i, 2(c)$. The total acceleration at the tall associated whth the first local maximm of the tallolane load is usually very small, but that associated with F_{3} is much greater and may provide inurtia relief. It may be calculated from

$$
\begin{align*}
n_{t}= & (n+\bar{n})_{J \tau=J \tau_{r}}+J \tau_{1} \prime \prime \tag{46}\\
= & -D \frac{\delta}{J^{2}}\left(\frac{n_{S}}{J \tau_{S}}\right)\left(G-G_{S}-f G_{r}\right)_{J_{\tau}=J_{\tau_{r}}+J \tau_{1}} \\
& +D \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{s}}\right)\left(\frac{2 J^{2}}{\mu a}\left(L-L_{S}-f I_{r}\right)+\frac{J}{\mu}\left(K-K_{S}-f \mathbb{K}_{r}\right)\right)_{J_{\tau=J} \tau_{\tau_{r}}+J \tau_{1}} \tag{47}
\end{align*}
$$

A. 6.5 Modifications when I is imarinary

A.6.51 To the basic fommlae of paragraphs A. 2, 3, 4 and 5

So far it has been assumed that, equation (4) yielas a real ralue of J i.e. that $\omega+\frac{1}{2}(a, \nu)>R^{2}$. However, cases may arise in which this inequality is not satisfjed. In these cases equation (3) may be written:

$$
\begin{equation*}
\frac{d^{2} \hat{W}}{d \tau^{2}}+2 R \frac{d^{\hat{\eta}}}{d \tau}+\left(R^{2}-I^{2}\right) \hat{w}=-\delta \cdot \eta \tag{48}
\end{equation*}
$$

The solution to thas equation may be obtained fror equations (6), (7) and (8) by meking a number of modifications, namely
but
(a) Replace J, J^{2} etc. by I, I^{2} etc. i.t. J τ becomes I τ
(b) Replace $\sin \mathrm{J} \tau$ by $\sinh I \tau$
(c) $" \cos J \tau$ by $\cosh I \tau$
(a) $\quad\left(\frac{R}{J}\right)^{2}+1 \quad$ by $\left(\frac{R}{I}\right)^{2}-1$
(e) $1\left(\frac{R}{J}\right)^{2}-1$ by $\left(\frac{K}{I}\right)^{2}+1$

A. 6.52 To the equations of paragramh A. 6.1 to A. 6.4

When J is imagnary a nuriber of alterations also have to be made to the equations and conditions for maxima.
(i) n^{\prime} (A.6.2) occurs after an Infinite time, and equation (39) and Fig. 4 (a) no longer apply. Equation (24) still applies hovever, but can be sumplufized to

$$
\begin{equation*}
n^{\prime}=-D \frac{\delta}{I^{2}} \cdot K_{a} \cdot \eta_{s} \tag{4,9}
\end{equation*}
$$

where

$$
K_{a}=\frac{1}{\left(\frac{R}{I}\right)^{2}-1}
$$

(ii) the condition for P_{j} (A. 6.31 , equation (40)) is modified in accordance whth the rules of A.6.51. It becomes

$$
\begin{equation*}
\cosh I_{\tau}+Q_{1} \sinh I_{\tau}=T_{1} e^{R \tau} \tag{50}
\end{equation*}
$$

where

$$
Q_{1}=\frac{B}{I}-\frac{C_{1}}{K_{a}} \quad T_{1}=1-\frac{a_{2} I^{2}}{B \delta K_{a}}
$$

Figs.6, 7 and 8 no longer apply, but equation (36) is only modifica. Fquation (50) may give a value of $I \tau_{1}^{\prime}$ wh_ch $1 s$ groeter than $I \tau_{s}$, if so the mplacation is the same as in the J case. In this respect the inequalıtıea, equation (41), suitably modıfied, stıll apply.
(112) $P_{2}^{\prime}(A .6 .32)$ Is reached aftor an urfincte time, and equations (42) and (13) anc Fis. 4 ro longer ayply. Irstoad

$$
\begin{equation*}
P_{2}^{\prime}=-A B \frac{\delta}{I^{2}} K_{a} \eta_{S}+A a_{2} \eta_{S} \tag{51}
\end{equation*}
$$

(iv) the procedure for celculating P_{3} is unchemged, but the equation for $i \tau_{1} "$ as modified as in (iz) sbove.

A.6.6 Estamation of the amount of elevator movement to stall the sex vomotur

The stalling torque of the notor is usually known, but the external ronces on the elevator (hinge roments) depend on the resporse of the aurcrait, which, in turn, defends on the amount of elevator movemont. Thus to valculate the wact anomt of elevator movement to stall the servomotor, n_{s}, a process of "trial and error" would have to be adopt,ed. io ease this labour, two simplified methods are suggested for finding a good approximation to r_{l}.
(1) From asymptotic conditions:

The general exprossion for the hinge moment of the elevator in a longatudinal manoeuvre is (cf Ref.4)

$$
\begin{equation*}
c_{h}=\bar{B} \hat{w}+\bar{C} \frac{d \hat{v}}{d \tau}+b_{2} \eta \tag{52}
\end{equation*}
$$

where
and

$$
\left.\begin{array}{l}
\overline{\mathrm{B}}=\mathrm{B} \frac{b_{1}}{a_{1}} \tag{53}\\
\overline{\mathrm{C}}=\mathrm{C} \frac{b_{1}}{a_{1}}
\end{array}\right\}
$$

The asymptotic conditions depend solely on η_{g} and the way in which this deflection is reached has no effect whatever. Thus equations (16) and (17) may be used to determine the asymptotic values of \hat{w} and $\frac{d \hat{w}}{d \tau}$ (assuming that the recovery action is nut taken).

They are

$$
\left.\begin{array}{rl}
\hat{W} & =-\frac{\delta}{J^{\prime 2}} K_{a} \eta_{\mathrm{s}} \tag{54}\\
\frac{d \hat{w}}{d \tau} & =0
\end{array}\right\}
$$

Thus the asymptotic value of C_{h}, if the recovery action is not taken, is

$$
c_{h}=\left(b_{2}-\bar{B} \frac{\delta}{J^{2}} K_{a}\right) \eta_{s} \equiv o_{h_{\mathcal{Z}}} \quad \text { when the servouotor stalls. }
$$

Thus

$$
\begin{equation*}
\eta_{s}=\frac{c_{h_{s}}}{\left(b_{2}-\bar{B} \frac{\delta}{J^{2}} K_{a}\right)} \tag{55}
\end{equation*}
$$

(ii) From conditions arising fron instantancous elevator moverent.

With instantaneous movement of the elevator, the response in $\stackrel{\sim}{w}$ and $\frac{d \hat{w}}{d \tau}$ is initially zero, and the hinge moment at $j \tau=0$ is

$$
c_{h}=b_{2} \eta_{s} \equiv c_{h_{s}} \quad \text { when the servonotor stalls }
$$

and

$$
\begin{equation*}
\eta_{s}=\frac{c_{h_{s}}}{b_{2}} \tag{56}
\end{equation*}
$$

Method_(i) is conservative when \bar{B} is positive, and method (ii) is conservative When \vec{B} is negative. It is suggested that when determining η_{s} the sign of \bar{B} should first be examined. The conservatuve value of η_{s} (larger than that occurrung in practice) may then be calculated.

A. 6.7 Choice of $J \tau_{r}$ for the greatest tailplane load in the recovery

$J \tau_{r}$ is to be chosen to procuce the maximum valu of $P_{3}\left(\equiv P_{3}{ }^{\prime}\right)$. Since the principle of superposition applies, the recponse in P in Stage III may be considered as a combination of two basic responses each of which reaches a local maximum at a calculable time, and it is only necessary to ensure that both these maxima occur at the same time $\left(J \tau_{3}\right)$ to obtain P_{3}. The maxima are P_{2}, and $P_{1}{ }^{\prime \prime}$, and they occur at $J \tau_{2}$ ' and $J \tau_{r}+J \tau_{1}{ }^{\prime \prime}$ respectavely (see paras A.6.32 and A.6.33). These tro tumes must be identical, thus

$$
\begin{equation*}
J_{\tau_{r}}=\left(J \tau_{2}{ }^{\prime}-J \tau_{1}^{\prime \prime}\right) \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
J \tau_{3}=J \tau_{2}^{\prime} \tag{58}
\end{equation*}
$$

also

$$
\begin{equation*}
P_{3}^{\prime}=P_{2}^{\prime}+P_{1}^{\prime \prime} \tag{59}
\end{equation*}
$$

In the caloulations leading to $P_{3}{ }^{\prime}$ the times $J \tau_{2}{ }^{\prime}$ and $J \tau_{1} "$ are needed but $J \tau_{r}$ is not, $2 r_{\text {fact }}$ it is only required to determine the precise time at Which the recovery is made. A case in which P_{3}, is obtanned is illustrated in Fig. 3.

In the I oase, the ereatest acceleration is obtained after an infinıte tam?, but for the majority of practical cises a very close approximation to this acceleration is obtained aftem a few scconds. P_{2}^{\prime} is similarly affected, and thus for finite recovery tames equation "(59) is sligntly conservative.

A. 6.8 Comparison of 1 gs .2 and 3

The response curves in sig. 3 relate to an automatic palot failure and recovery in which the -ecovery is timed to produce the greatest tailplane load. Tise runavay and recovery moveinents are uhe same as in Fig. 2 , but the tume of recovery is necessarily earlier. The dotted curves relate to an elevator time-histoxy, in wrach the ruxamy and recovery movements are instantaneous, and η_{I} is equal to η_{S}; tne redovery 2 s again timed for the maximun taniplane loan.

The full curres are sinilar to thcse in Fig. 2. The maximum value of n as lover then $n n+z .2$, tut $n t$ is almost unenanged. The greatest value of F is, of course, 'higher but not much so. The slope of the response curve in P in the neabhbourhcod of P_{2}^{\prime} is very low, and thus P_{3} is insensitive to changes in $J \tau_{r}$. Fowrever when $\frac{\pi}{J}$ is lower there may be considerable variations in P_{3}, with $J \tau_{r}$.

Comparison of the full ind dutted curves in lig. 3 gives some anslght into the effects of the rate of elevator fovement. Although the inztial responses in n are considerably aufferent the raxumum values obtained are not materially changed. The unitual reaponses in n, n_{t} and P in Stage I are very different but only in the c se of $P \quad a s$ this of any consequence. If the first maximum of D is to be predroted acourately, it is essential that a rate of runaway is used whion is close to the practical one. For the same reason, the rate of rccovery must also be shosen carefully. In the present example, the maximun Inai for che instantarecus movenent case is 380, greater than that from the movernent defined in para 2.1 even though η_{r} is assumed to be less.
46.9 Choice of n_{1},

In cerbain cases the response an P in Stage $I_{\perp} I$ rases to a mathematical maximum and then fails. In these cases P_{3} does not depend on η_{r} and movement of the elevator beyond this deflection does not increase P_{3} (cf point X in Fig.3). The condition for thas state of affairs is

$$
\begin{equation*}
J \tau_{1} n<-\frac{\eta_{r}}{f^{(}\left(\frac{\eta_{S}}{\sqrt{J \tau_{S}}}\right)} \tag{60}
\end{equation*}
$$

If this luequalaty is not satisfied, the implacation is that F_{3} is a nonmathematical maximum, and, xi such, is a function of r_{r}.

In the first ster, towerds the selection of a numprical value of η_{r} it is advascuble to calculate $\eta_{r o r i t}$

$$
\begin{equation*}
\eta_{r_{\text {crit }}}=-f\left(\frac{\eta_{S}}{J \tau_{s}}\right) J \tau_{1} \prime \tag{61}
\end{equation*}
$$

For the calculation of the maximum acceleration tne values of η_{r} and f are not required.

ATPENDTX II
 Computational Procodure

1
 Introduction

1.1 This Appendix contans details of the procedure for calculating the maxumu normal acceleration and maxmum aerodynmic tarlplane load that ensue from an automatio pilot fazlume and subsequent recovery.
1.2 The list of numerical data required $1 s$ glven in para 2 and particulars of the preliminary calculations are given in paras 3 and 4 . Pinally, in para 5, formulae are given for the response in acceleration and tailplane load and f'cr the maximum acceleration and maxamum tailplane load; particulsrs of various charts whzch may be used to facilitate the calculations are also gaven.
1.3 The rosconse quantities are expresscd in terms of G, K and I, which are functions of $J \tau$. Since $J \tau$ is a measure of time (see para 3), the numerical vaiues of these quantitues can be calculated for any time during the manoeuvre, and complete tame-historles of the response quantities may be obtarned.
1.4 'Tho formulae are given for the maximum tailplane load, for P_{1} ' and $P_{3}{ }^{\prime}$; they refer to conditions at different stages of the failure and recovery, and represent rather dafferent centre of ressure cases, thereby affecting different aspects of the strength of the tailplane. These formulae contain contributions due to the incidence of the tailplane
(suffix w) and the angular displacenent of the elevator (suffix n) and should be distributed according to the usual " x " and " η " chordwise distributions respectively. A formula is also given for the normal acceleration at the tall assoclated whth the load P_{3} ' ; the acceleration associated with the load E_{1}^{\prime} is usually negligable.
1.5 The accelerations and loads given by the formulae of para 5 are incremental values, and total vilues are obtained by adding to them the steady accelerations and loads which prevail bofore the fallure.
1.6 \& numerical example illustrating the procedure is given in para 6. The data for tnis exmple axe taken from Table I.

2 List of data requared
(cf List of Symbols)

a	$\left(m_{q}\right)$	
a_{1}	3	$\left(f^{\prime} t\right)^{2}$
a_{2}	S^{\prime}	$(f t)^{2}$
b_{1}	V	($1 t / \mathrm{sec}$ T.A.S.)
b_{2}	\%	1b
$0 \quad(f t)$	ρ	(slugs/ft t^{3})
$\frac{\partial C_{\mathrm{m}}}{\partial \alpha}$	C_{h}	(usually positive if the elevator movernent is negative)

```
(of Last of Symbols) (Sontä)
```


3 Basic quentities to be evaluated

3.1

$\mu=\frac{W}{\mathrm{~g} \mathrm{~S} \ell}$
$\hat{t}=\frac{\mu t}{V}$
$B=\left(1-\frac{d \varepsilon}{d \alpha}+\frac{\varepsilon}{2 \mu}\right) a_{1}$
$\bar{B}=B \frac{b_{1}}{a_{1}}$
$C=\left(1+\frac{d \varepsilon}{d \alpha}\right) \frac{a_{1}}{\mu}$
$D=\frac{1}{2} p v^{2} \frac{a}{v / S}$
$F=\frac{\text { TS }}{}{ }^{\dagger}$
$\omega=-\frac{W C_{C}}{2 g \rho S k_{B}^{2}} \cdot \frac{\partial C_{m}}{\partial \alpha}$
$\frac{\partial C_{m}}{\partial \alpha}=\left(\frac{\partial C_{m}}{\partial \alpha}\right)_{\text {less tall }}-\frac{S^{\prime} \ell}{S c}\left(1-\frac{d \varepsilon}{d \alpha}\right) a_{1}$
$v=v_{\operatorname{tall}}+v_{\text {Ias } \operatorname{tai} I}$
$\delta=\frac{\operatorname{Hc}}{2 g \rho \delta_{B}^{2}} \cdot \frac{g \cdot \hat{\varepsilon}}{\mathrm{Sc}} \cdot a_{2}$

$$
v_{t o i l}=\frac{S^{\dagger} e^{2}}{S k_{B}^{2}} \cdot a_{1}
$$

$v_{\text {less tail }}=-\frac{e^{2}}{k_{B}^{2}} .\left(\mathrm{m}_{\mathrm{q}}\right)_{\text {less tail }}$

$$
x=\frac{d \varepsilon}{d \alpha} \cdot v_{t a i l}
$$

$R=\frac{1}{2}\left(\nu+x+\frac{1}{2} a\right)$
$J=\sqrt{\left(\omega+\frac{1}{2} a \nu\right)-R^{2}}$
or $I=\sqrt{R^{2}-\left(\omega+\frac{1}{2} \varepsilon \nu\right)}$
$C_{1}=\frac{C J}{B}$
$K_{2}=\frac{1}{\left(\frac{R}{J}\right)^{2}+1}$
$Q_{1}=\frac{R}{J}-\frac{C_{1}}{K_{a}} \quad T_{1}=1-\frac{a_{2} J^{2}}{B \delta K_{a}}$
Some discussion of the numerical values of these quantities is given in para 2 of the man text. The quantities are considered negative when the elevator is deflected upwards.
3.2 In addi-tion to those quatities tio follo ily auxiliary functions inll also hare to be evaluated (for the range of $J \tau$ corresponding to the duration of the failure and subsequent recovery) af the tame-hastory in acceleration or tallplane load is requarud.

$$
\begin{array}{ll}
H=e^{-\frac{R}{J} J \tau} \cos J \tau \\
L=e^{-\frac{R}{J} J \tau} \sin J \tau & \text { (cf Fig.9) } \\
G=K_{i}^{2}\left(\frac{J \tau}{K_{a}}+2 \frac{P}{J}(H-1)+\left(\left(\frac{R}{J}\right)^{2}-1\right) L\right) & \text { (cf Fig. } 1 \text {) } \\
K=K_{a}\left(1-H-\frac{R}{J} L\right) & \text { (cf Fig.7) } \\
K_{a}=\frac{1}{\left(\frac{R}{J}\right)^{2}+1} & \text { (of Fig. 10) } \tag{ofFig.10}
\end{array}
$$

where $J_{r}=\frac{J t}{\hat{t}}$, and t is time in seconds
3.3 Then the suffices s and r are used with tnese auxiluary functions it merely meens that the arguments of the trignometrical and exponential terms are changed from $J \tau$ to $J\left(\tau-\tau_{g}\right)$ and $J\left(\tau-\tau_{r}\right)$ respectively in the suffixed functions, but it should le noted that these functions only appoar when J_{τ} is greater than J_{s} ard J_{τ} is greater than $J \tau_{r}$ respectuvely. Thus if $J \tau$ is less than $J \tau_{s}$ whe response equations wall not contain any ouffaxtd auxiliary functions, if $J \tau$ is greater than $J \tau_{s}$ but less than $J r_{r}$ the response equations will contain auxiliary function Whth the sufficx s in addruion to the unsuffized function, and if $J \tau$ as greater than $J \tau_{r}$ the response equations $w i l l$ contain auxiilary functions with suffix r in addition to the unsuffixed functions and functions with the suffix s.
3.t The volues of the auxiliary functions at specified values of $\mathrm{J} \tau$ are also reguired in the direct valculation of the maximum accelerations and tainlane loacis. Here the graph:4,5,6,7,8, 9 and 10 may ease the labour involved.
3.5 In the rare cases where J is imnginary ($=$ iI where $1=\sqrt{ }-1$) a number of modiffications must be made to the basic guantities and auxiliary functions presented above, namely:

but	(i)	renlace whence	$\begin{array}{ll} J, & J^{2} \\ J \tau & \text { becol } \end{array}$			
	(i2)	replace	$\sin J_{\tau}$	by	sinh	I
	(iil)	"	$\cos J \tau$	4	cosh	

> (iv) replace $\left(\frac{R}{J}\right)^{2}+1$ by $\left(\frac{R}{I}\right)^{2}-1$
> and (v) \quad " $\left(\frac{R}{J}\right)^{2}-1 \quad$ " $\left(\frac{R}{I}\right)^{2}+1$

Thus when J is imaginary, K_{a} and H become respectively

$$
\frac{1}{\left(\frac{R}{I}\right)^{2}-1} \quad \text { and } \quad e^{-\frac{R}{I} I \tau} \cosh I \tau
$$

These modifications also apply to the formulae in the following paragraph. Para 5 is divided into two section. s to simplify the treatment of the J and I cases within the paragraph.

4 Further quantities to te evaluated
(1) $f=-\left(\frac{\left(\frac{c \eta}{d r}\right)}{r} /\left(\frac{d n}{d t}\right)_{s}\right)$
(ii) If \bar{B} is positive then

$$
\eta_{\mathrm{s}}=\overline{r_{1}}
$$

or

$$
\frac{\mathrm{C}_{\mathrm{s}}}{\left(\mathrm{~b}_{2}-\bar{B}-\frac{\delta}{J^{2}} K_{e}\right)} \quad \text { radians, whichever as the less. }
$$

But if \bar{B} is negative then

$$
\eta_{s}=\bar{\eta}
$$

or $\frac{\mathrm{C}_{\mathrm{h}_{\mathrm{s}}}}{\mathrm{b}_{2}}$ radians, whichever is the less.
(iii)

$$
\begin{aligned}
& J \tau_{S}=\frac{i \eta_{c}}{\hat{t}\left(\frac{d \eta}{d t}\right)_{S}} \\
& \overline{\bar{I}}_{S}=e^{\frac{R}{J} J \tau_{S}} \cos e^{i} \tau_{S} \\
& {\overrightarrow{I_{s}}}_{s}=e^{\frac{R}{J} J \tau_{S}} \sin J \tau_{s}
\end{aligned}
$$

5 Formulae for maxma and the response formulae

A similar layout is used in each of the folloring sections, and where applicable, formulae are given in turn for the maxumum value of the particuiar quantity, its tume of occurrenco (to be obtained from the condition for maximum), and its response throughout the sequence of failure and reoovery. Strictly speaking the fuil response formula applies only when $J \tau$ is greater than $J_{\tau_{r}}$ and for lower vaines of $J \tau$, deletions of the sufficed auriliary functions must be made in accordance wnth the instructions ot para 3.3 above.

The maximum values of the various quantities may be determined in two ways. They may be calculated directly from the appropriate formulae, using the formulae for their timas of occurrence, or they may be obtained from the response curves. With regard to the direct calculation of the maxima, a number of graphs Figs.4-10 are antruduced to reduce the labour involved.

In para 5.2, contaning information for the treatment of the I case, the only formulae given are for the maximum values of the various quantities.

5.1 J_case

5.11 Coefficient of normal acceleration at the C.G.

Tne maximun acceleration is

$$
n^{\prime}=-D \frac{\delta}{J^{2}}\left(\frac{\eta_{\mathrm{S}}}{J \tau_{\mathrm{S}}}\right)\left(G-G_{\mathrm{S}}\right)_{J \tau=J \tau^{\prime}}
$$

where $J \tau^{\prime}$ is the furst root beyond $J \tau$ s of

$$
J \tau=\tan ^{-1}\left\{\frac{\left(\frac{R}{J}\right)_{L_{s}}-\left(\bar{H}_{s}-1\right)}{\bar{L}_{s}+\left(\frac{R}{J}\right)\left(\bar{H}_{s}-1\right)}\right\}
$$

In mos' cases n^{\prime} and Jq^{\prime} may be obtained from FIgs.4(a) and 5(a) respectively.

The complete time-history is

$$
n=-D \frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right)\left(G-G_{s}-f G_{r}\right)
$$

and n^{\prime} is obtalned when $J \tau$ is assumed equal to or greater than $J \tau^{\prime}$.

5.12 Net aerodynamic load on tne tailplane

Tho maxima should be considered.
(a) $P_{1}{ }^{\prime}, \frac{\text { which occurs ai } J \tau_{1}{ }^{\prime}}{(\text { a downlond if' negative) }}$

$$
E_{1}{ }^{\prime}=P_{w_{1}}{ }^{\prime}+P_{r_{1}}{ }^{\prime}
$$

where

$$
\begin{aligned}
& P_{\mathrm{w}_{1}}^{\prime}=-\operatorname{DFB} \frac{\delta}{J^{2}}\left(\frac{\eta_{\mathrm{S}}}{J \tau_{\mathrm{S}}}\right)\left(\mathrm{G}+C_{1} \mathrm{~K}\right)_{J \tau=J \tau_{1}} \\
& F_{\eta_{1}}^{\prime}=D F r_{2}\left(\frac{\eta_{S}}{J \tau_{\mathrm{s}}}\right) J_{1}{ }^{\prime}
\end{aligned}
$$

and $\mathrm{J} \tau_{1}{ }^{\prime}$, exrrcssed in radians, is either the furst positive root of

$$
\cos J \tau+Q_{1} \sin J \tau=T_{1} e^{\frac{R}{J} J \tau}
$$

or $J \tau_{s}$ whichever of the two 1 s less. The last equation may be solved graphically with the aid of Fig. 6 (putting $N=\frac{1}{T_{1}}$ and $N=\frac{Q_{1}}{T_{1}}$) as follows: draw a circle through the origin with co-ordinates of its centre ($\frac{1}{2}$ m, $\frac{1}{2}$ It $)$ and then draw a straight line from the origin to the point of intursection of the circle and the appropriate $\frac{R}{J}$ curve, extending it to the peripheral scale; the requured value of $J \tau_{1}$ ' (in degrees) may be read directly from this scale. If there is no point of intersection then $J \tau_{1}{ }^{\prime}=J \tau_{s}$; if there are tio intersections, the one ecrresponding to the lowest value of $J \tau$ should be considered as the requared root of the equation. Figs. 7 and 8 may be used to evaluate G and K at $J \tau=J \tau_{1}{ }^{\prime}$.
(b) $P_{3}{ }^{\prime}, \frac{\text { which occurs at } J \tau_{2}{ }^{\prime}}{\text { (an upload if positive) }}$

$$
F_{3}^{\prime}=P_{v_{2}}^{\prime}+P_{v_{1}}^{\prime \prime}+P_{n_{2}}^{\prime}+P_{\eta_{1}}^{\prime \prime}
$$

where

$$
\begin{aligned}
& P_{\mathrm{V}}^{2}, \quad, \quad-\operatorname{DFB} \frac{\delta}{J^{2}}\left(\frac{n_{\mathrm{S}}}{J \tau_{\mathrm{E}}}\right)\left(G-G_{\mathrm{S}}+C_{1}\left(\mathrm{~K}-\mathrm{K}_{\mathrm{S}}\right)\right)_{J \tau=J \tau_{2}}, \\
& P_{W_{1}} \prime \prime=\operatorname{DFB} \frac{\delta}{J^{2}} \rho\left(\frac{\eta_{S}}{J \tau_{\Sigma}}\right)\left(G+C_{1} K\right)_{J \tau=J \tau_{1} \prime \prime} \\
& P_{\eta_{2}} \cdot=\mathrm{DFa}_{2} \eta_{s} \\
& P_{\eta_{1}} \prime \prime=-\operatorname{DFr}{ }_{2} f\left(\frac{n_{s}}{J \tau_{\varepsilon}}\right) J \tau_{1}{ }^{\prime \prime}
\end{aligned}
$$

$J \tau_{2}{ }^{\prime}$. expressed in radians is the inst root beyond $J \tau_{s}$ of

$$
\left.J \tau=\tan ^{-1}: \frac{\hat{Q}_{1} \bar{I}_{S}-\left(\overline{H_{H}}-1\right)}{\left(\overline{\bar{L}}_{s}+Q_{1}\left(\bar{H}_{s}-1\right)\right.}\right\}
$$

and $J \tau_{1}^{\prime \prime}$ is occul to $J \tau_{1}{ }^{\prime}$ (see (a) above) or ${ }^{-\eta_{r}} /\left(\frac{r_{S}}{J \tau_{s}}\right)^{\text {a }}$ whichever of the two is less.

Figs.4, 5,7 and 8 may pe usad to evaruate $t_{2}{ }^{\prime}, P_{w_{2}}$, and G and K at $J \tau=J \tau_{1}{ }^{\prime \prime}$ respectively.

The comrlete time-history is
$P=P_{v}+F_{\eta}$
where

$$
P_{W}=-\operatorname{DFB} \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J_{s}}\right)\left\{\left(G_{4}-\tilde{N}_{s}-f G_{r}\right)+U_{1}\left(K-K_{e}-f K_{r}\right)\right\}
$$

and

$$
P_{\eta}=D \mathrm{Fa}_{2}\left(\frac{\eta_{S}}{J \tau_{s}}\right)\left\{J \tau-J\left(\tau-\tau_{s}\right)-f J\left(\tau-\tau_{\underline{r}}\right)\right\}
$$

and the maximn $P_{1}{ }^{\prime}$ and $P_{3}{ }^{\prime}$ art obtanced when $J \tau_{x}=J \tau_{2}^{\prime}-J \tau_{1}^{\prime \prime}$ (see (b) above).

5.13 Coefficuent of normal accelvrition at the tall

The acceleration associated wht P_{3}, is

$$
\begin{aligned}
n_{t}^{\prime}= & -D \frac{B}{J^{2}}\left(\frac{n_{s}}{J \tau_{s}}\right)\left(G-G_{S}-f^{\prime} G_{r}\right)_{J \tau=J \tau_{2}} \\
& +D \frac{\delta}{J^{2}}\left(\frac{n_{s}}{J \tau_{s}}\right)^{\prime}\left(\frac{2 J^{2}}{\mu a}\left(L-L_{s}-f I_{r}\right)+\frac{J}{\mu}\left(K-K_{s}-f_{r} K_{r}\right)\right)_{J \tau=J r_{2}}
\end{aligned}
$$

wher $\Rightarrow J \tau_{r}=J \tau_{2}{ }^{\prime}-J \tau_{1}{ }^{\prime \prime}$.
For the value of $J \tau_{2}{ }^{\prime}$ and $J \tau_{1}^{\prime \prime}$, sec para 5.12 (b). Figs.7. 8 and 9 may be usca to eve luate G, G_{s} etc. it $i^{\top} \tau=3 \tau_{2}{ }^{\prime}$.

Je, 2^{\prime}, expresscd in radiuns is the farcis root beyond ur is of

$$
J \tau=\tan ^{-1}\left\{\left.\frac{\hat{\bar{q}}_{1} \bar{I}_{s}-\left(\bar{E}_{s}-1\right)}{\mid \bar{I}_{s}+Q_{1}\left(\bar{H}_{s}-1\right)} \right\rvert\,\right.
$$

Figs. $2,5,7$ and 8 nay we used to evaluate $J \tau_{2}, F_{i r_{2}}{ }^{\prime}$ ana G and K at $J \tau=J \tau_{1} \prime$ respectively.

The complete time-history as

$$
P=P_{W}+P_{\eta}
$$

whero

$$
P_{W}=-\operatorname{DFB} \frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right)\left\{\left(G-G_{G}-f G_{r}\right)+C_{1}\left(K-z_{E}-f \tilde{n}_{r}\right)\right\}
$$

and

$$
P_{\eta}=D{ }^{\prime} a_{2}\left(\frac{n_{S}}{J \tau_{S}}\right)\left\{J \tau-J\left(\tau-\tau_{S}\right)-f J\left(\tau-\tau_{r}\right)\right\}
$$

and the mixma P_{1}^{\prime} and $P_{3}{ }^{\prime}$ are obtamed when $J \tau_{r}=J \tau_{2}{ }^{\prime}-J \tau_{1}{ }^{\prime \prime}$ (see (b) above).

5.13 roefficient of normal rece luration at the tall

The acceleration asscoiated whti P 3 " $1 s$

$$
\begin{aligned}
& n_{t}{ }^{\prime}=-D \frac{\delta}{J^{2}}\left(\frac{n_{S}}{J_{\tau}}\right)\left(G-G_{S}-f G_{r}\right)_{J_{\tau=}=J_{\tau_{2}}}, \\
& +D \frac{\delta}{J^{2}}\left(\frac{\eta_{S}}{J \tau_{s}}\right)\left(\frac{\partial T^{2}}{\mu Z}\left(L_{S}-L_{S}-f L_{S}\right)+\frac{J}{\mu}\left(K-K_{S}-f K_{T}\right)\right)_{T \tau=T T_{2}}
\end{aligned}
$$

Where $J \tau_{r}=J \tau_{2}{ }^{\prime}-J \tau_{1}{ }^{\prime \prime}$.
For the value of $J \tau_{2}$, and $J \tau_{1} \prime \prime$, see para $5.12(\mathrm{~b})$. Fiss.7, 8 and 9 may be used to evaluate G, G_{G} etc. at $J \tau=J \tau_{2}{ }^{\prime}$.

The complete time-history is

$$
n_{t}=n+\bar{n}
$$

where

$$
n=-D \frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{s}}\right)\left(G-G_{s}-f G_{r}\right)
$$

and

$$
\bar{n}=D \frac{\delta}{J^{2}}\left(\frac{\eta_{s}}{J \tau_{g}}\right)\left(\frac{2 J^{2}}{\mu a}\left(I_{1}-I_{s}-f I_{r}\right)+\frac{J}{\mu}\left(K-K_{s}-f K_{r}\right)\right)
$$

5.2 I Case
5.21 Ocefficient of normal acceieration at the C.G.

The maximum is

$$
n^{\prime}=-D \frac{\delta}{I^{2}} K_{a} n_{s}
$$

K_{a} may be estimated from Fig. 10 (n ' occurs after an infinite time)

5.22 Aerodyname load on the tallplane

The maximé are
(i) $P_{i}{ }^{\prime}$ (which occurs at $I \tau_{1}{ }^{\prime}$)

$$
P_{1}^{\prime}=P_{w_{1}}^{\prime}+P_{\eta_{1}}
$$

where

$$
\begin{aligned}
& P_{W_{1}}^{\prime}=-D \frac{\delta}{I^{2}}\left(\frac{\eta_{S}}{I \tau_{S}}\right)\left(G+G_{1} K\right)_{I \tau=I \tau_{1}} \\
& P_{n_{1}}^{\prime}=D F a_{2}\left(\frac{n_{S}}{I \tau_{S}}\right) I \tau_{1}^{\prime}
\end{aligned}
$$

and $I \tau_{1}^{\prime}$, expressed in radıans, is the furst positive root of

$$
\left(\frac{1+Q_{1}}{2}\right) e^{I \tau}+\left(\frac{1-Q_{1}}{2}\right) e^{-I \tau}=T_{1} e^{\frac{R}{I} I \tau} s
$$

or Ins whichever of the two l.s the less.
(ii) P_{3} (which occurs after an infinite time)

$$
P_{3}^{\prime}=P_{i \pi_{2}}^{\prime}+P_{i \pi_{1}}^{\prime}+P_{\eta_{2}}^{\prime}+P_{\eta_{i}}^{\prime \prime}
$$

where

$$
\begin{aligned}
& P_{W_{2}}^{\prime}=-D F B \frac{\delta}{I^{2}} K_{a} \eta_{s} \\
& \bar{r}_{w_{1}}^{\prime \prime}=D F B \frac{\delta}{I^{?}} f\left(\frac{r_{s}}{I \tau_{s}}\right)\left(G+C_{1} K\right)_{I \tau=I \tau_{1} \prime \prime} \\
& P_{\eta_{2}}^{\prime}=D F a_{2} \eta_{s} \\
& I_{\eta_{1}}^{\prime \prime}=-D F a_{2} f\left(\frac{\eta_{s}}{I \tau_{s}}\right) I \tau_{1}^{\prime \prime}
\end{aligned}
$$

and $I \tau_{1} "$ is equal to $I \tau_{1}$, or $-\eta_{S} /\left(\frac{\eta_{S}}{I \tau_{S}}\right)$ whichever of the two is the
less.
5.23 Coefficient of normal acceleration at the tall associated with $\xrightarrow{\mathrm{P}_{3}}$

$$
n_{t}=n^{\prime}+D \frac{\delta}{I^{2}} r\left(\frac{\eta_{S}}{I \tau_{S}}\right)\left(\frac{2 J^{2}}{\mu a} I+\frac{J}{\mu} K\right)_{I \tau=I \tau_{1}^{\prime \prime}}
$$

6 Numerical example

In this example use is made of the formulae and charts of para 5. The data is contained in Table I.

6.1 Prom the data in Table I (of para 4)

(I) $f=4$
(11) $\frac{C_{h_{s}}}{b_{2}}=-0.1265$ radians, i. ϵ. Less than $\bar{\eta}$ so that

$$
\eta_{s}=-0.1265 \text { radıans }
$$

(iii) $J \tau_{s}=2.6178$ radians.

6.2 Miaximum normal acceleration (of para 5.11)

From Fig. 4 (a), with $\frac{R}{J}=0.815$ and $J \tau_{s}=2.6178=0.833 \pi$,
$\frac{n^{\prime}}{D \frac{\delta}{J^{2}} \eta_{s}}=-0.625$ and $\quad \frac{n^{\prime}}{D}=-\frac{35.93}{3.816^{2}} \times(-0.1265) \times 0.625=0.195$
finally $\quad n^{\prime}=14.75 \times 0.195=2.88$.

From Fig. $5(\mathrm{a})$
$J \tau^{\prime}=293^{\circ}=4.939$ radians so that the maximum occurs after
$\frac{4.939 \times \hat{t}}{J}$ secs, i.e. 1.83 secs.

6.3 Maxima of the acrodymame tall plane load (cf para 5.12)

(i) $P_{1}{ }^{\prime}$
 required root of the equation $\cos J \tau+Q_{1} \sin \operatorname{jic}=T_{1} e^{\frac{R}{J} \tau}$ is $J \tau=56^{\circ}$, i.e. less than $J \tau_{s}$ so that $J h_{1}^{\prime}=56^{\circ}=0.917$ rattans.

From Figs. 7 and 8 K and G at $J T=56^{\circ}$ are 0,27 and $0.1 C$ respectively. Thus

$$
\begin{aligned}
\frac{P_{W_{1}}^{\prime}}{D F} & =-2.39 \times \frac{35.93}{3.816^{2}} \times\left(-\frac{0.1265}{2.6178}\right)(0.10+0.511 \times 0.27) \\
& =0.069
\end{aligned}
$$

$$
\frac{P_{n_{1}}^{\prime}}{D P}=2.7 \times\left(-\frac{0.1265}{2.61 / 8}\right) \times 0.977
$$

$$
=-0.123
$$

and

$$
\frac{\mathrm{P}_{1}^{\prime}}{\mathrm{DF}}=+0.069-0.128=\underline{-0.059}
$$

so that $P_{1}^{\prime}=23850 \times 0 . C 591 b=141010 ; i t$ occurs after $\frac{0.972 \hat{t}}{J} \operatorname{secs}$, i.e. 0.36 secs.
(il) $P_{3}{ }^{\prime}$
Py Enterpolation of FIE. 5(a), wath $C_{1}=0.51$:

$$
J \tau_{2}^{\prime}=243^{\circ}=4.241 \text { redians }
$$

By interpolation of Fig. 4 (a)
$\frac{P_{W_{2}}{ }^{\prime}}{D H 3 \frac{\delta}{J^{2} \eta_{s}}}=-0.64$ an $\frac{F_{w_{2}}}{L T}=-2.39 \times \frac{3 E_{0} .93}{3.816^{2}} \times(-0.1265) \times 0.64=0.178$
nt the caine time

$$
P_{n_{2}}^{\prime}=+2.7 \times(-0.1265)=-0.342
$$

Sunce

$$
/^{-\eta_{r}}\left(\frac{\eta_{s}}{J_{s}}\right)=52.1^{\circ}, J \tau_{1}^{\prime \prime}=J \tau_{1}^{\prime}=56^{\circ}
$$

and

$$
\frac{P_{V}{ }^{\prime \prime}}{D F^{1}}=-f \frac{P_{W}{ }^{\prime}}{D F}=-4: 0.069=-0,276
$$

also

$$
-\frac{P_{n_{1}}{ }^{\prime \prime}}{P_{n_{1}}{ }^{\prime \prime}}=-\mathrm{P} \frac{D^{2}}{}=4 \times C_{4} 128: \underline{0.512}
$$

Frnelly $\frac{\mathrm{F}_{3}^{\prime}}{\mathrm{DF}}=0.478-0.342-0.4,6+0.512=0.572$ ard $P_{3}^{\prime}=23860 \times 0.372 \mathrm{I}=8,900 \mathrm{IL}$. Tris maxamum oecurs after $\frac{4.241 \hat{t}}{\mathrm{~J}}$ secs, i.e. 1.57 vacs.
6.4 Acceleration at the tarl arsociated wn^{2}.h $P_{3}^{\prime \prime}$ (ci para 5.13)

From para 6.4

$$
J_{r_{r}}=J_{\tau_{2}}{ }^{\prime}-J_{\tau_{1}}^{\prime \prime}=18 \%^{\circ}=3.26 \text { radians }
$$

From Figs. 7, 8 and 9

$$
\begin{array}{ll}
K, G \text { and } L_{\text {at }} J_{\tau}=243^{\circ} & \text { are } 0.6,1.97 \text { and -0.028 respectively } y_{\sigma} \\
K_{S}, G_{s} \text { and } L_{s} \text { at } "\left(\text { ie } J\left(\tau-\tau_{s}\right)=93^{\circ}\right) & " 0.475,0.348 \text { and } 0.263 \quad "
\end{array}
$$

and $K_{r}, G_{r} " I_{r} " \quad "\left(10 X\left(\tau-\tau_{r}\right)=50^{\circ}\right) \quad " 0.27,0.10 \quad " 0.37 \quad "$ so that

$$
\begin{aligned}
\frac{n_{t}^{\prime}}{D}= & -\frac{35.93}{3.816^{2}} \times\left(-\frac{0.1265}{2.6 .78}\right)(1.97-0.348-4 \times 0.1) \\
& +\frac{35.93}{3.816^{2}} \times\left(-\frac{0.1265}{2.6178}\right)(0.492(-0.020-0.263-4 \times 0.37) \\
& +0.2943(0.6-0.475-4 \times 0.27)) \\
= & 0.146+0.137=0.283
\end{aligned}
$$

and

$$
n_{t}^{\prime}=0.283 \times 14.75=4.18
$$

PABLE I

FIGI. THE ASSUMED ELEVATOR TIME-HISTORY.

FIG $2(d-d)$

FIG 2(d-d)TYPICAL RESPONSE TO THE ASSUMED ELEVATOR TIME•HISTORY,

FIG.3(o-c). RESPONSE WHEN THE RECOVERY ACTION IS TIMED TO GIVE THE CRITICAL TAILPLANE LOADS.

FIG 3 (a\&d).

FIG3(ad)RESPONSE WHEN THE RECOVERY ACTION IS TIMED TO GIVE THE CRITICAL TAILPLANE LOADS(gont)

FIG 4 (a \& b) CURVES OF THE GREATEST ACCELERATION (n^{\prime}) AND THE P_{w} COMPONENT OF P_{2} (DUE TO THE EFFECTIVE ANGLE OF INCIDENCE AT THE TAIL)

FIG 4 (c) \& (d)

FIG.5.(a) \& (b) CURVES OF $J_{\tau}^{\prime} \& J_{\tau_{2}}$

FIG. 5.(c) \& (d)

FIG.6. CURVES FOR THE SOLUTION OF $M \operatorname{COS} \mathrm{~J}_{\tau}+N S I N \cdot J_{\tau}=e^{R \tau}$

FIG. 7.

FIG.8.

FIG, 8 .
(

FIG. IO. CURVES OF Ka .

Crown copyright reserved
Published by
Her Majesty's Stationery Ortice
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w I
PO Box 569, Londons I I
${ }_{13}$ A Castle Street, Edinburgh 2
${ }_{109}$ St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller
PRINTED IN GREAT BRITAIN

