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STHMARY

Txasting results for the wave drag of open~nose axisymmetrical
forcbodics are for bodies whose profiles sre straight lines or parabollc
Arcs. These results arc here cxtended to a famly of profiles whaich
ancludes the straight line and thz parabolic arc as special cases.
Slender body theory is employed throughoub.

* Thas work was done while Myr. Willis was on a vacation course at

the R.4.B, during July and August, 1954.
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1 Introduction

Fraenkel1 has produced results giving the wave drag of open-nose
axisyrnetrical forebodies® whose profales are siraigut lines or parabolic
arcs, the latter profiles having zero slope at the position of maxinum
eross-section. The drags were obtaincd bty use of the two forms of
Iinearaised theory, known as slender body thegr% and guasl-cylinder
thecry, described in two papers by Laighthill®’-. Fraenkel's results have
been appliied at tines to bodles of revolutaon whose profiles are nelther
straight lines nor parabelic arcs. In such a case the value cbtained for
the wave drag 1s only a crude estimate of its true value. Recently,
however, more accocurate values of the wave drag have been required. It
was decided, therefore, to extend Fracnkelfs work so as to include other
profile shapes. In this paper a family of profiailes which includes the
stroight line and parabolic arc as special cases will be considered.

Both classes of profirles in Praenkel's paper depended on two para-
meters, One of these was taken to pe the area ratio, (the ratio of the
cross-sectional arca at the nose to the maxamum cross-sectional area);
the other was the fineness ratio, (the ratio of length to maximum radius).
The extension to a larger family of profiles introduces a third parameter;
thls parameter is intimately connected with the siope of the profile at
the nose (see equation (1) bulow), The effect of varying this parameter
15 shown in Fags. 4(a) and 1(b).

In this paper slerder body theory is used taroughout. Quasi-
cylander theory applies when the area ratic 1s closz to unity. Fracnkel
found that, in this region, the application of slender body theory gave
results 1n good agrecnment with guasi-cylinder theory. In the regivn
where slender body cheory applies 1.c. where the finenhess ratio 1s
large, the application of gquasi-cylinder theory gave results which, in
general, dilfered appreciably fvom those of slender body theory. Hence,
1t was decided to dispense with quasi-cylindcr theory here and to calcu-—
late the wave drags using slender body theory alone.

In view of the revcrsibility theorem of Ref. 1, the princaipal drags
of the corresponding afterbodies, {cbtained by reversing the forebodies),
w1ll be the sane 23 the drags of these forebodies.

2 Derivation of Formmulae for Drag

The forebodies are assumed to be in a supersonic free-stream of
Mach nunber M, the darection of the free~stream velocity being parallel
t0 the axis of the bodies. The nose of a body a1s assumed to be
* = 0 and the maxuwm cross-section at x = £, X being measured along
the axis. Ro is written for the radaus of the body at x = 0, and R
for the maximum radius (occurring at x = 2).  Sp 18 written for the
cross~-sectional area at x = O, and Sy for the cross-sectional area at
= 4. The profile 1z assumed to have zero slope at the maxirum
cross-section, the straight line profilc being the only excepiion to
this. R(x) 1s the value of the radius at station x.

The faruly of profiles considered has the fcllowang equation;

R =Ry - (By - Ro) (1 =37 (0> 1), (1)

* Throughout this work 1T 1s assuméd that thé pre~entry stresm-tube
whose boundary separates the internal and external flows, 1s cylindrical.

3



The following sdbstitutions are now made:

e = & (22)
R/a = 9 {(2b)
R (20)
Y (2a)
(1) becomes
o = {1 - (1 -1 - 8" (3)
n(R -R)
Differentiation of (1) shows that the slope at the ncse is m'b ., If g
denotes the nose angle, then
tanm =nt (1 -0) . (&)

Examples of the above family of profiles are shown in Figs.1(a) and 1(b).

If 828(§) is the cross-sectional area at station § , the wave drag of a
body, accoraing to slender body theory, i1s gzven by

i 1
D 4 " anf = o -
%5 = ——5;,;[[ s'(g,) 8°(&,) log &) - &| ag; 45,
zPU &
5 ‘o
11
-2n o{4 - 0012 jﬂ sM(g) log E dE + 2% n® 52(1 - c)z o log E%E . (5)
o

In this formula, which 1s true only 1f n > 1, D 1s the wave drag of the body,
P and U are the density and velocity respuctively of the free-stream and B is

written for v M2*1. €1, gz are varianbles of integration and dashes dencte

d1fferentiation with respect to the independent variable. If n = 1 the
formula to be used 1s

1 1

Tz E [ [ e e e - gl g g
1 1
—2(1 - ﬂﬂzl 5"(g) log £ ag + 2 (1 - cr)fczf $"(2) log (1 - £)ak

2y, b 2 2 2
+ 2 (1 - 97 {log ==+ ¢ log g— } (6)
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(5) and (6) ccn be derived easily from equation (17) of ref.? From (3),
2 )
s(8) = n7 01 - (1- 00 - %% (7)

Introducing CD’ the drag coefficient based on maximum cross—secticonal avea,

where

tnen. 1f n > 4, (5) and (7) give

—9 = =20 (1-—6) /f [(n—‘]L‘E-—E, ) =2 (211—1)(1-0‘)(1-—5 )2n"2]

2n-2

[(n=1)(1-8,)" 2 (201) (1=0) (1-2,) "] 10g |g, - &,| g, ag,

2n-2
JRE

1
s o(1-5) f [(n=1)(4-8)""%= (2n~1)(1~0)(1-E) og & dE

22 2 2
+2n7¢" (1-¢)" log oy (8)

Replacing (¢~§1), (1—52) and (1-E) by other variables, and using integrals
listed 1n the appendix, (8) becomes

C
D 2 2 2 2 2
2 - 2(1=0)“ n (}n + B o+, o +0 log Bsw) s (9)

where, 1f n 1s an integer,

.~ 2n-1
~ i 1 SN 4, i
@, = TG D 2_1 T 2i2n—1§
r=1 =1
n—1
T—)' 1+ {n=1) L = + {(2n=1) \ ] (102}
2= n-1 n=4
e (1 )N L) N A2y 1, (10w
n  Jn-2 r r (2n="1) r ?
=1 r=1 r=1
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Zn-1
1 1
T T R (10e)
r=]

The forrula for the wave drag when n = 5/2 was also worked out. Using integrals
evaluated in the appendix, ard applying (8), it may be shown that this formula
ig of the same form as (95, but the coefficients are given by

R T -

a = + = log 2, (41a)
%2 205

B, = 35+ % leg 2, (17p)
72

= -2 (1

Y = . c)

/o &

@ s ﬁn, and Tr are plotted ageinst n in Fig.2.

When n = 1 2 similar process applied %o {6) and (7) yields the following
result for the drag coefficient:

¢

—-‘% = 2(1—0‘)2 [—- T+ - o + (1+o‘2) log -E% - log 0'}. (12)
T

The difference in form between (9) and {12) arises because of the extra
discontinuity an slope of the straight line profile at the position of maximum
Cross-sectlon.

3 Discussion of Regults

The above equations for the drag are of the form

%
—E:f(o‘,BT,n)o (133)
T

This equaticn can be written as

2

C.2 S R

D < hios

————-=f--—,B--—,n> (13)
Rmz (sm 2

by using {2¢c) and (2a).

The results cbtained are prlotted in Figs.3 to 5 using the form of (13b).
For n » 1 the curves of Fig.3 all heve the same general shape as those for the
parsbolic profile, (n = 2). The main effect of an increase in n 1s an increase
in the drag, ceteris paribus; for this reason the vertical acale has had to be
compressed for the larger wvaiues of ne For n = 1 the curves have a dafferent
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shape. In particular they do not pass through a common point when
SC/Sm = 0 as they do for the cther wvalues of n. Thas is due to the
presence of the extra discontinuity in slope at the maxamum cross-—
section. The same curves are plotted logarithmically in Fig. 4; these
curves should be used for reading off reguired draga.

The meximam value of BRy/¢ for wailch the wave drags were evaluated
decreases as n 1ncre=ases, This 1s because, for linearised theory to give
physically plausible results, the Mach angle p must be greater than the
nose sngle. Hence,

R

tanp>n-§-{1 - o)

1,020

or

BR 4
m
Z “a(l-a)

The curves in Figs. 3 and 4 are drawn only for those values of
BRp/% for which this inequality 1s satisfied. The inequality may be
taksn as a rouzh indication of the limit of applicebality of the theory.

The minnmum value of the right-hand side occurs when o = O; hence

ER

m 1
7 <% (1%4)
BR
. it
This maximun value of *zw decreascs a8 1 1ncreases.

In Fag. (54) E?CD/RmE is plotted against n, (r > 1), for So/Sm = 0,
l.e. for bodies with puanted noses- only one curve occurs sance from the
form of equation {17) of Ref. 1, 1t follows that the drag of such bodies is
independent of Mach number. This is not true 1f n = 1 since the discentin-
ulty in the slope at the position of maximum cross-section still ccours.

In Figs. (5b) and (5¢) ¢? m2 is plotted against n, for various
values of BR /¢, for two values of S /S . (8o/Sp=0.3 and 5o/8;=0.7). Thas
shows the general eflect on the drag of a variaetion of n, 1.e. of a
variation of the slope at the nose. All the curves of Figse b have a
minimum between n = 1 and n = 2.  However 1f n is very close to 1, the
profile hag an extremely rapid change of clope near the position of
maximum cross-section. The drags of such unreaslistic profiles have no
physical signifacance and the curves of Fig. 5 are of no practical use
for valuss of n very clese to 1. Nevertheless, a few valuss of the
wave drag for n = 2/L were calculated by a samilar method to that of
section 2 and these serve to indicate the theoretical behavicur of the
curves when n approaches 1. The maximur of the curve for Rm/& = 02 in
Fig. 5c at n = 5.5 "s almost certainly spurious. 1t appears because (14)
does not held in the region and so linecarised theory is tending to
break down.
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As wegards the accuracy of the results cbtained in this paper, 1t can be
stated with confidence that the drags for bodies with sufficiently small values
of BRp/¢ will be correct, on the basis of linearised theory, since slender body
theory holds for such bodies. The phencmenon shown in Fraenkel's work, (agree-
ment of slender bedy theory waith quasi-cylinder theory in regions where the
latter but not the former would be expected to hold), suggests that, even for
comparatively large BRp/&, the results are probatly still quite close to the
correct results based on linearised theory. When BRm/f, approaches 1 /n, hcwever,
linearised thecry itself breaks down and results in this region should be viewed
with caution.

Fig. 4 can be used for a profile which dces not sxactly correspond to any
merber of the famly considered here bhut the probadle error in the wave drag in
so doing 1s dafficult to estimate. It is possible that profile shapes with
zdentical fineness ratiocs, area ratics and nose sicpes may have wave drags
differing considerably from one ancother. If thrs were the case, a still
larger family of prefile shapes 1ncorvorating at least one more paraneter would
have to be considered. The calculation of the wave drags of this family would
inevitebly be tedious. The only statement that can be made with certainty 1s
that the wave drag of a profile not belonging to the family defined by (1) will
he estimeted wich much nmore accuracy by the use of ™1g. 4 than by the use of the
two sets of curves in Ref. 1.

List of Synbols

B B = U’Iﬁz -1

CD Drag coefficient, based on maximum cross-sectional srea

D Wave drag of body of revelution

& Length of body

M Free~stream Mach number

i, n Arbitrary indices in integrals evaliated in Appendix T

n Parameter of family of profiles defined by egaation (4)

R(x) Radius of body at x

RO Radius of body at x = 0

Rm Maxi.nam radius of bedy, always occurring at x = £

s(x) Cross-sectional area of body at x

So Crossa~sectional area of body at x = 0

Sm Cross=-sectional area of budy at position of maximim radius,
(x = ¢)

t,u Variables of integration used in the cvaluation of wntegrals in
Appendix I
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List of Syrbols (Contd)

U Free~stream velocity
X Distance along axis of body measured from nose
a ,B Y, ~ See equations (10) and (14)
T Nose angle
6 o = Re
i) Semi-angle of Mach cone at the nose of the body
g E = x/¢
&9s8ys Variable of integiation in equa*ion {5)
p Free-stream denzity
R
G o= o/Rm
T T = Rm/f'
Dashes denote differentiation with respect to the
independent variable,
References
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Appendix I

Evaluation of scme Integrals

1.

1
-[xnlog(‘!—x)dx

o
A 1 n 1
:[ [(m- >log (1 - x) - = log (1 +x):}dx
o}
1
- n+1 1 r+t 1
I - XX dx 1 - ax) = (]
- [_(nﬂ 1+ ) Log(1 x):l +[ <n+1 e+ 1ox " nel Lt x)log(1-x) (1 x)]o
° o
1 n n+1
T U N B A 1(1)
n+1 n+} n+1 r
o r=1 =1
2
44
n.m.,
o[ [# 5 208 le=yl ax
00
Consider

This is the same as

JiiTe 1 1 _med ay.
=i o8 lx“yI:L Ff m]  y-x
o
o1
f ¥

1
log{1-x) 1 L ! a £ dy
m+1 * o y—x I ¥ T g’ S
0
(1) 1md 1 ’
logh1-x 1 1  m~r+1 X
T omd] m+'lf * ay+ (log [y-x|],
(@] =
mH
| 1+ 1
_log(1-x) 4 <= X X
=T T med T et =) m-T+2 T Log(1~x) mt+1 Logx



i1
& By using 1{1), - [[xn 7 log |x -y| d&x dy may be written as

n+1 m+4 WADe+2

1 11 1 1 1 1
(et (e} Z;+ (m+1) z {m-r+2)(n+r) ~ (m+1)(mens2) Z r " (et (mene2)2
r= r=1

=1

n+1 m+ e+ 1

+
] N 1 (2 1
- (m+*x+2) m+1 n+1 r (m+'l 5fm+n+2i m-r+2 nir ) (ne1) \1ma1  man+2 r

n+1

1 T
= Tmn+23(ne1) L (mn+2)_(m+1

r=1

?

1 1 I(2)
T ¥ o ) (0 ) (ment2)

1

b
1
pacy,

Some numerical values of this integral are given in the following table.

TABLE I

14
Values of the integral - / f % ym log lx—yld.x dy

n o] 1 2 2 L
0 1.5000 | 0.7500 | C.4861 | 0.3542 | 0,2764
1 0.7500 | 0.4375 {1 0.3056 | 0.2326 | 0.1867
2 0.4861 | 0.3056 | 0.2022 | 0.1736 | 0.1418
3 0u3542 | 0.2326 | 0.1736 | 0.1380 | O.1142
1 1
3 -[x"i log (1 -x) ax

Put x = tz. The 1ntegral becomes

1 1

-2 flog(‘1—t2) at = -2! {log(1=1t)+ log (1 +t)] at

w2 [~(1-1t) log (1=t)+ (1=1) + (1+1t)log (1+t)-—(1+‘t)]1

il

4{1 - Log") 1(3)
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4.
11

y
-jf X ¢y log |x~y| ax dy
0
2 2
Put x = t7, y = uw". The 1ntegral becones

11
-k [Iuj log ltz-uzl dt du
o)

11
_ -A_lfus $log (t+ )+ log ]t-—ul ldt du
)

1

Mn}

ook [u [(b+u) Tog (t+u) -(t+u)+ (t~u) log (t—-u)-w(t-u)]o du
1
= - L;.‘[uz) [{1+u) log (1 +u)+ (1=u) log (1 ~u)=2 ]au I(y)
Now
1
\[(u +u)1og (1+u) c‘iu,_[K ‘-\'S)log (1+u1 l T 55>1+u
log?.-*- [ [14—114+u -u2+u 1+-E'!-;’-:]du
A .11 s -—3
=%1og 2 -5 %+4~3+2—-1+10g2:]_510g2 7,500 1(5)
Using I{1)

1 b
- / (u3-u!+) log (1 -u) dus= -:: Z%-% Z = ‘1‘;%5 (€)

e}

& By I(4), I(5) and I(6)

11
1
"ff" °y log |x-y| ax ay = -%log 2*%*%”
QG
=%~-§- tog 2 (7)
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11
5e . 3
..[[ x 2y % log lx-—yidxdy

Put x = t2 , ¥ = uz. The integral becomes

11 11
—L;.f[log [tz—u2|dt du:—uf/ flog (t+u)+log |t-u|} at au
o ol

it

! 1
- l;.f (t+u) log (b+u)=(t+u)+ (t-u) log |t-u} - (t-u)]o du

1
- L;.‘[[(‘H-u} log (1+u) +(1-u) log (1-u) - 2] au

fi

H

2 2 2 -
-4‘:!—1;—11—1103 (14u)-uiﬁ—%ﬁl log (‘1—u)+£—‘f—1—l -2ul
o

:-).;.i:2log2-1—~2+-}‘_—§;:l=‘12—810g2 1(8)
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FIG. Ib) EXAMPLES OF PROFILES FOR 22-0-49, R==0-25, AND
n=1(INNER CURVE), /2, 2,3,4,5 6 (OUTER CURVE).

LE.=0-0735, O°+1125, 04150, 0-225, 0-:300, 0-375, 0-450.
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