C.P. No. 245

$(17,694)$
A.R.C. Technical Report
C.P. No. 245
$(17,694)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Theoretical Wave Drag of Open-Nose Axisymmetrical Forebodies with Varying Fineness Ratio, Area Ratio and Nose Angle

By
J. H. Willis and D. G. Randall, B.Sc.

Technical Note No. Aero 2360
February, 1955
ROYAL ATRCRAFT ESTABLTSHMENT

The Theoretical Wave Drag of Open-nose Axisyrmetrical Forebodies wath Varying Fineness Ratio, Area Ratio and Nose Angle

by
J.H. Wコ111s*
and
D.G. Kandali B. Ac.

SUMMARY

Existing results for the wave drag of openmose axisymmetrical forcbodics are for bocies whose profiles are straight lines or paraboinc arcs. These results are here extended to a family of profiles which includes the straight line and the parabolic arc as special cases. Slender body theory is employed throughout.

* Thas work was done while kir. Wallis was on a vacation course at the R.i.E. during July and August, 1954.

IIST OF CONTENTS

Page
1 Introduction 3
2 Demvation of formulae for drag 3
3 Discussion of results 6
LIst of symbols 8
References 9

LIST OF APPMDICES

hppendix
Evaluation of some integrals
I

IIST OF ILLUSTRATIONS

	Figure
Exariples of profiles for various values of nose angle, area	
ratio and fineness ratio	$1(a), 1(b)$
Values of coefficients in arag equation	2
Drag of forebodies for various values of n	$3(a), 3(b)$,
	$3(c), 3(a)$
	$3(e), 3\left(f^{a}\right)$

Drag of forebodies for various values of n, plotted logarithmically

Drag as a function of n for various values of the area ratio and the fineness ratio
$5(a), 5(b)$,

$$
5(c)
$$

Fraenkel ${ }^{1}$ has produced results giving the wave drag of open-nose axisymetracal forebodies* whose profiles are straigit lines or parabolic arcs, the latter profiles having zero slope at the position of maxanum cross-section. The drags were obtalnod ky use of the two forms of linearised theory, known as slender body theory and quasl-cylinder theory, described in twa papers by Lighthılı, Fraenkel's results have been applied at tirnes to bodies of revolution whose profiles are net ther straight lines nor parabolic arcs. In such a case the value obtained for the wave drag is only a crude estmate of its true value. Recently, however, more accurate values of the wave drag have been requared. It was decided, therefore, to extend Fraenkel's work so as to include other profile shapes. In this paper a family of profiles which includes the straight line and parabolıc are as special cases will be considered.

Both classes of profzles in Fraenkel's paper depended on two parameters. One of these was taken to pe the area retio, (the ratio of the cross-sectional area at the nose to the maximum crossusectional area); the other was the fineness ratio, (the ratio of length to maximurn radius). The extension to a larger family of profiles introduces a third parameter; this parameter is intinately connected with the slope of the profile at the nose (see equation (1) below). The effect of varying this parameter 1s shown in Figs. 1 (a) and 1(b).

In thas paper slerder body theory is used throughout. Quaslcylindor theory applies when the area ratio is close to unity. Fraenkel found that, in this region, the application of slender body theory gave results in good agrement with quasi-cylinder theory. In the region where slender body oheory applies i.c. where the fineness ratio is large, the appincation of quasi-cylinder theory gave results which, in general, differed appreciably from those of slender body theory. Hence, It was decided to dispense with quasi-cylinder theory here and to calculate the wave drags using slender body theory alone.

In view of the revorsibality theorem of Ref. 1, the principal drags of the corresponding afterbodies, (obtalned by reversing the forebodies), will be the sane as the drags of these forebodies.

2. Derivation of Formulae for Drag

The forebodies are assumed to be in a supursonic free-stream of wach number $\overline{\text { in }}$, the direction of the free-stream velocity being parallel to the axis of the bodies. The nose of a body is assumed to be $x=0$ and the maxirum cross-section at $x=\ell, x$ being measured along the axis. R_{0} as written for the radius of the body at $x=0$, and R_{m} for the maximum radius (occurring at $x=$ h). So is written for the cross-sectional area at $x=0$, and S_{D} for the cross-sectional area at $\ddot{z}=$ l. The profile ls assumed to have zero slope at the maximum cross-section, the straight lane profile being the only exception to this. $R(x)$ is the value of the radius at station x.

The famzly of profiles considered has the followng equation;

$$
\begin{equation*}
R=R_{m}-\left(R_{m}-R_{0}\right)\left(1-\frac{x}{\ell}\right)^{n},(n \geqslant 1) . \tag{1}
\end{equation*}
$$

Throughout this work it is assumed that the pre-entry stream-tube whose boundary separates the internal and external flows, is cylindrical.

The following substatutions are now made:

$$
\begin{align*}
x / \ell & =\xi \tag{2a}\\
R / \ell & =\theta \tag{2b}\\
R_{m / \ell} & =\tau \tag{2c}\\
R_{0 / R_{m}} & =\sigma \tag{2d}
\end{align*}
$$

(1) becomes

$$
\begin{equation*}
\theta=\tau\left\{1-(1-\sigma)(1-\xi)^{n}\right\} \tag{3}
\end{equation*}
$$

Differentiation of (1) shows that the slope at the nose $1 s \frac{n\left(R_{m}-R_{0}\right)}{\ell}$. If n denotes the nose angle, then

$$
\begin{equation*}
\tan \eta=n \tau(1-\sigma) \tag{4}
\end{equation*}
$$

Examples of the above famaly of profiles are showm in Figs.1(a) and $1(\mathrm{~b})$.
If $\ell^{2} S(\xi)$ is the cross-sectional area at station ξ, the wave drag of a body, accoraing to slender body theory, is given by

$$
\begin{gather*}
\frac{D}{\frac{1}{2} p T^{2} e^{2}}=-\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}\left(\xi_{1}\right) S^{\prime \prime}\left(\xi_{2}\right) \log \left|\xi_{1}-\xi_{2}\right| d \xi_{1} d \xi_{2} \\
-2 n \sigma(1-\sigma) \tau^{2} \int_{0}^{1} S^{\prime \prime}(\xi) \log \xi d \xi+2 \pi n^{2} \sigma^{2}(1-\sigma)^{2} \tau^{4} \log \frac{2}{B \sigma \tau} \cdot \tag{5}
\end{gather*}
$$

In this formula, which is true only if $n>1, D$ is the wave drag of the body, ρ and U are the density and velocity respectively of the free-stream and B is written for $\sqrt{M^{2}-1} \cdot \xi_{1}, \xi_{2}$ are variables of integration and dashes denote dufferentiation with respect to the independent variable. If $n=1$ the formula to be usea is

$$
\begin{align*}
\frac{D}{\frac{1}{2} \rho U^{2} e^{2}}= & -\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}\left(\xi_{1}\right) S^{\prime \prime}\left(\xi_{2}\right) \log \left|\xi_{1}-\xi_{2}\right| d \xi_{1} d \xi_{2} \\
& -2(1-\sigma) \pi^{2} \int_{0}^{1} S^{\prime \prime}(\xi) \log \xi d \xi+2(1-\sigma) \tau^{2} \int_{0}^{1} S^{\prime \prime}(\xi) \log (1-\xi) d \xi \\
& +2 \pi\left(1-\sigma^{2}\right) \tau^{4}\left\{\log \frac{2}{B \tau}+\sigma^{2} \log \frac{2}{B \sigma \tau}\right\} \tag{6}
\end{align*}
$$

(5) and (6) can be derived easily from equation (17) of ref. 1 From (3),

$$
\begin{equation*}
S(\xi)=\pi \tau^{2}\left\{1-(1-\sigma)(1-\xi)^{n}, 2\right. \tag{7}
\end{equation*}
$$

Introducing C_{D}, the drag coefficient based on maximum cross-sectional area, where

$$
C_{D}=\frac{D}{\frac{2}{2} P U^{2} l^{2} \pi \tau^{2}}
$$

trien. If $n>1$, (5) and (7) give
$\frac{\sigma_{D}}{\tau^{2}}=-2 n^{2}(1-\sigma)^{2} \int_{0}^{1} \int_{0}^{1}\left[\left(n-1\left(1-\xi_{1}\right)^{n-2}-(2 n-1)(1-\sigma)\left(1-\xi_{1}\right)^{2 n-2}\right]\right.$

$$
\begin{aligned}
& {\left[(n-1)\left(1-\xi_{2}\right)^{n-2}-(2 n-1)(1-\sigma)\left(1-\xi_{2}\right)^{2 n-2}\right] \log \left|\xi_{1}-\xi_{2}\right| d \xi_{1} d \xi_{2}} \\
& +4 n^{2} \sigma(1-\sigma)^{2} \int_{0}^{1}\left[(n-1)(1-\xi)^{n-2}-(2 n-1)(1-\sigma)(1-\xi)^{2 n-2}\right] \log \xi d \xi
\end{aligned}
$$

$$
\begin{equation*}
+2 n^{2} \sigma^{2}(1-\sigma)^{2} \log \frac{2}{B \sigma \tau} \tag{8}
\end{equation*}
$$

Rerlacing $\left(1-\xi_{1}\right)$, $\left(1-\xi_{2}\right)$ and $\left(1-\xi_{)}\right)$by other variables, and using integrals lusted in the appendix, (8) becomes

$$
\begin{equation*}
\frac{C_{D}}{\tau^{2}}=2(1-\sigma)^{2} n^{2}\left(a_{n}+\beta_{n} \sigma+\gamma_{n} \sigma^{2}+\sigma^{2} \log \frac{2}{B \sigma \tau}\right) \tag{9}
\end{equation*}
$$

where, if n is an integer,

$$
\begin{align*}
& \alpha_{n}=\sum_{r=1}^{r_{n}-1} \frac{1}{r}+\frac{1}{2(n-1)}+\sum_{r=1}^{2 n-1} \frac{1}{r}+\frac{1}{2(2 n-1)} \\
& \tag{10a}\\
& -\frac{2}{(3 n-2)}\left[1+(n-1) \sum_{r=1}^{2 n-1} \frac{1}{r}+(2 n-1) \sum_{r=1}^{n-1} \frac{1}{r}\right] \tag{10b}\\
& B_{n}= \\
& \frac{2}{3 n-2}\left[1+(n-1) \sum_{r=1}^{2 n-1} \frac{1}{r}+(2 n-1) \sum_{r=1}^{n-1} \frac{1}{r}\right]-\frac{1}{(2 n-1)}-2 \sum_{r=1}^{n-1} \frac{1}{r},
\end{align*}
$$

and

$$
\begin{equation*}
r_{n}=\frac{1}{2(2 n-1)}-\sum_{r=1}^{2 n-1} \frac{1}{r} . \tag{10c}
\end{equation*}
$$

The formula for the wave arag when $n=3 / 2$ was also worked out. Using integrals evaluated in the appendix, and applyang (8), it may be shown that this formula is of the same form as (9), but the coeficicients are given by

$$
\begin{align*}
& \alpha_{3 / 2}=\frac{3}{20}+\frac{6}{5} \log 2 \tag{11a}\\
& \beta_{3 / 2}=\frac{1}{10}+\frac{4}{5} \log 2 \tag{11~b}\\
& \gamma_{3 / 2}=-\frac{5}{4} \tag{11c}
\end{align*}
$$

α_{n}, β_{n}, and $\gamma_{r_{0}}$ are plotted against n in Fig. 2.
When $n=1$ a similar process applied to (6) and (7) yields the following result for the drag coefficient:

$$
\begin{equation*}
\frac{C_{D}}{\tau^{2}}=2(1-\sigma)^{2}\left\{-\frac{1}{2}+\sigma-\frac{1}{2} \sigma^{2}+\left(1+\sigma^{2}\right) \log \frac{2}{B \tau}-\sigma^{2} \log \sigma\right\} \tag{12}
\end{equation*}
$$

The difference in form between (9) and (12) arises because of the extra discontinuzty in slope of the straight line profile at the position of maximum cross-section.

3 Discussion of Results

The above equations for the drag are of the form

$$
\begin{equation*}
\frac{C_{D}}{\tau^{2}}=f\left(\sigma, B_{\tau}, \mathrm{n}\right) \tag{13a}
\end{equation*}
$$

This equation can be written as

$$
\begin{equation*}
\frac{C_{D} \ell^{2}}{R_{m}^{2}}=\mathrm{f}\left(\frac{\mathrm{~S}_{0}}{\mathrm{~S}_{\mathrm{m}}}, \mathrm{~B} \frac{\mathrm{R}_{\mathrm{m}}}{\ell}, \mathrm{n}\right) \tag{13b}
\end{equation*}
$$

by using (2c) and (2d).
The results obtanned are plotted in Figs. 3 to 5 using the form of (13b). For $n>1$ the curves of Fig. 3 all have the same general shape as those for the parabolic profile, $(n=2)$. The main effect of an increase in n is an ancrease in the drag, ceteris paribus; for this reason the vertical acale has had to be compressed for the larger values of n. For $n=1$ the curves have a dufferent
shape. In particular they do not pass through a common point when $S_{0} / S_{\mathrm{rl}}=0$ as they do for the other values of n. This is due to the presence of the extra discontinuity in slope at the maximum crosssection. The same curves are plotted logarithnincally in Fig. 4; these curves should be used for reading off required drags.

The maximum value of $B R_{m} / l$ for which the wave drags were evaluated decreases as n increases. This is because, for linearised theory to give physlcally plausible results, the Mach angle μ must be greater than the nose angle. Hence,

$$
\tan \mu>n \frac{R_{m}}{l}(1-\sigma)
$$

i.e.

$$
\frac{1}{B}>n \frac{R_{m}}{\ell}(1-\sigma)
$$

or

$$
\frac{B R_{m}}{\ell}<\frac{1}{n(1-\sigma)}
$$

The curves in Figs. 3 and 4 are arawn only for those values of $\mathrm{BR}_{\mathrm{I}} / \ell$ for which this inequality is satisfied. The inequality may be taken as a rough indication of the limit of applicability of the theory.

The minlmum value of the right-hand side occurs wher $\sigma=0$; hence

$$
\begin{equation*}
\frac{B R_{m}}{\ell}<\frac{1}{n} \tag{14}
\end{equation*}
$$

This maximum value of $\frac{B R_{m}}{\ell}$ decreases as n increases.
In Fig. (54) $e^{2} \mathrm{C}_{\mathrm{D}} / \mathrm{R}_{\mathrm{m}}^{2}$ is plotted against n , $(\mathrm{n}>1)$, for $\mathrm{S}_{\mathrm{o}} / \mathrm{S}_{\mathrm{m}}=0$, i.e. for bodies whth poanted noses only one curve occurs sance from the form of equation (17) of Ref. 1, it follows that the drag of such bodies is independent of Mach number. This is not true af $n=1$ since the discontanuity in the slope at the position of maximum cross-section still occurs.

In Figs. (5b) and (5c) $\ell^{2} C_{D} / R_{m}^{2}$ is plotted against n, for varıous values of $B R_{m} / l$, for two values of $\mathrm{S}_{\mathrm{d}} / \mathrm{S}_{\mathrm{m}} .\left(\mathrm{S}_{0} / \mathrm{S}_{\mathrm{m}}=0.3\right.$ and $\left.\mathrm{So}_{\mathrm{o}} / \mathrm{S}_{\mathrm{m}}=0.7\right)$. Thas shows the general efrect on the drag of a variation of $n, 3 . e$. of a variation of the slope at the nose. All the curves of Fig. 5 have a minimum between $n=1$ and $n=2$. However if n is very close to 1 , the profile has an extremely rapid change of slope near the position of maximum cross-section. The drags of such unrealistic profiles have no physical significance and the curves of Fig. 5 are of no practical use for values of n very close to 1 . Nevertheless, a few values of the wave drag for $n=5 / 4$ wore calculated by a smalar method to that of section 2 and these serve to indicate the theoretical behaviour of the curves when n approaches 1. The maxamum of the curve for $\mathrm{R}_{\mathrm{m}} / \ell=0.2$ in Fig. 5 c at $\mathrm{n}=5.5 \mathrm{is}$ almost certainly spurious. It appears because (14) does not hold in the region and so linearised theory is tenaing to break down.

As regards the accuracy of the results obtained in this paper, it can be stated with confidence that the drags for bodies with sufficiently small values of $B R_{\mathrm{m}} / \ell$ will be correct, on the basis of Innearised theory, since slender body theory holds for such bodies. The phenomenon shown in Fraenkel's work, (agreement of slender body theory with quasi-cylinder theory in regions where the latter but not the former would be experted to hold), suggests that, even for comparatively large $\mathrm{BR}_{\mathrm{If}} / \ell$, the results are probakly still quite close to the correct results based on linearised theory. When $\mathrm{BR}_{\mathrm{m}} / \ell$ approaches $1 / \mathrm{n}$, however, linearised theory itself breaks down and results in this region should be viewed with caution.

Fig. 4 can be used for a profile which does not exactly correspond to any member of the family considered here but the probaile error in the wave drag in so doing is dafficult to estmate. It is possible that profile shapes wath Identical fineness ratios, area ratios and nose slopes may have wave drags differing considerably from one another. If this were the case, a still laxger fomily of profile shapes incorrorating at least one more paraneter would have to be considered. The calculation of the wave drags of this family would inevitably be tedious. The only statement that can be rade with certainty is that the wave drag of a profile not belonging to the family defined by (1) will be estimeted which much more accuracy by the use of Fig. 4 than by the use of the two sets of curves in Fef. 1.

	Lust of Symbols
B	$B=\sqrt{I^{2}-1}$
$C_{\text {D }}$	Drag coefficient, based on maximum cross-sectional area
D	Wave drag of body of revolution
ℓ	Length of body
M	Free-strean Mach number
n, n	Arbitrary indices in integrals evaluated in Appendix I
n	Parameter of family of profiles defined by equation (1)
$R(x)$	Radius of body at x
R_{0}	Radius of body at $x=0$
R_{m}	Maxluum radius of body, always occurring at $x=\ell$
$S(\mathrm{x})$	Cross-sectional area of body at x
S_{0}	Cross-sectional area of body at $\mathrm{x}=0$
$S_{\text {m }}$	Cross-sectional area of budy at position of maximan radius, ($\mathrm{x}=\ell$)
t, u	Variables of integration used in the evaluation of integrals Appendix I

List of Symbols (Contd)

U	Free-stream velocity
x	Distance along axis of body measured from nose
$\alpha_{n}, \beta_{n}, \gamma_{n}$	See equations (10) and (11)
7	Nose angle
θ	$\theta=\mathrm{R} / \ell$
μ	Semz-angle of Hach cone at the nose of the body
ξ	$\xi=x / \ell$
ξ_{1}, ξ_{2},	Variable of Integation in equation (5)
ρ	Free-stream density
σ	$\sigma=R_{0 / R_{m}}$
τ	$\tau=R_{m / l}$
	Dashes denote differentiation with respect to the andependent variable.

References
No. Author
Tutle ets.

1 L.E. Fraenkel

2 N.J. Lighthill

3 M.J. Tighthall

The theoretical wave drag of some bodies of revolution. $R \& M 2842$

Supersonio flow past bodies of revolutzon. R\&N2003, 1945

Supersonze flow past slender bodies of revolution the slope of whose meridion section 1 s discontinuous. Quarterly Journal of Mechanics and Applied lathematics, Vol. 1, Part 1, March 1948

Appendix I

Evaluation of some Integrals

1.

$-\int_{0}^{1} x^{n} \log (1-x) d x$
$=\int_{0}^{1}\left\{\left(\frac{1}{n+1}-x^{n}\right) \log (1-x)-\frac{1}{n+1} \log (1+x)\right\} d x$
$=\left[\left(\frac{x}{n+1}-\frac{x^{n+1}}{n+1}\right) \log (1-x)\right]_{0}^{1}+\int_{0}^{1}\left(\frac{x}{n+1}-\frac{x^{n+1}}{n+1}\right) \frac{d x}{1-x}+\frac{1}{n+1}[(1-x) \log (1-x)-(1-x)]_{0}^{1}$
$=\frac{1}{n+1} \int_{0}^{1} \sum_{r=1}^{n} x^{r} d x+\frac{1}{n+1}=\frac{1}{n+1} \sum_{r=1}^{n+1} \frac{1}{r}$
2.

$$
-\int_{0}^{1} \int_{0}^{1} x^{n} y^{m} \log |x-y| d x d y
$$

Consıder

$$
-\int_{0}^{1} y^{m} \log |x-y| d y
$$

Thas is the same as

$$
\begin{aligned}
& -\left[\frac{y^{m+1}}{r+1} \log |x-y|\right]_{0}^{1}+\int_{0}^{1} \frac{y^{m+1}}{m+1} \frac{d y}{y-x} \\
& =-\frac{\log (1-x)}{m+1}+\frac{1}{m+1} \int_{0}^{1} \frac{y^{m+1}-x^{m+1}}{y-x} d y+\frac{x^{m+1}}{m+1} \int_{0}^{1} \frac{d y}{y m} \\
& =-\frac{\log (1-x)}{m+1}+\frac{1}{m+1} \int_{0}^{1} \sum_{r=1}^{m+1} x^{r-1} y^{m-r+1} d y+\frac{x^{n+1}}{m+1}[\log |y-x|]_{0}^{1} \\
& =-\frac{\log (1-x)}{m+1}+\frac{1}{m+1} \sum_{r=1}^{m+1} \frac{x^{r-1}}{m-r+2}+\frac{x^{m+1}}{m+1} \log (1-x)-\frac{x^{m+1}}{m+1} \log x
\end{aligned}
$$

\therefore By using $I(1),-\int_{0}^{1} \int_{0}^{1} x^{n} y^{m} \log |x-y| d x d y$ may be written as
$\frac{1}{(\pi+1(n+1)} \sum_{r=1}^{n+1} \frac{1}{r}+\frac{1}{(m+1)} \sum_{n=1}^{m+1} \frac{1}{(m-r+2)(n+r)} \cdot \frac{1}{(m+1)(m+n+2)} \sum_{r=1}^{m+n+2} \frac{1}{r}+\frac{1}{(m+1)(m+n+2)^{2}}$.
$=\frac{1}{(m+n+2)}\left(\frac{1}{m+1}+\frac{1}{n+1}\right) \sum_{r=1}^{n+1} \frac{1}{r}+\frac{1}{(m+1)(m+n+2)} \sum_{r=1}^{m+1}\left(\frac{1}{m-r+2}+\frac{1}{n+r}\right)-\frac{1}{(n+1)}\left(\frac{1}{m+1}-\frac{1}{m+n+2}\right)^{m+n+1} \sum_{r=1}^{r} \frac{1}{r}$
$=\frac{1}{(m+n+2)(n+1)} \sum_{r=1}^{n+1} \frac{1}{r}+\frac{1}{(m+n+2)(m+1)} \sum_{r=1}^{m+1} \frac{1}{r}+\frac{1}{(m+1)(n+1)(m+n+2)}$

Some numerical values of this integral are given in the following table.

$$
\underline{\text { Values of the integraI }-\int_{0}^{1} \int_{0}^{1} \frac{x^{n} y^{m} \log |x-y| d x d y}{}}
$$

n	0	1	2	3	4
0	1.5000	0.7500	0.4861	0.3542	0.2761
1	0.7500	0.4375	0.3056	0.2326	0.1867
2	0.4861	0.3056	0.2222	0.1736	0.1418
3	0.3542	0.2326	0.1736	0.1380	0.1142
4	0.2761	0.1867	0.1418	0.1142	0.0953

3.

$-\int_{0} x^{-\frac{1}{2}} \log (1-x) d x$
Put $x=t^{2}$. The integral becomes

$$
\begin{align*}
& -2 \int_{0}^{1} \log \left(1-t^{2}\right) d t=-2 \int_{0}^{1}\{\log (1-t)+\log (1+t)\} d t \\
& =-2[-(1-t) \log (1-t)+(1-t)+(1+t) \log (1+t)-(1+t)]_{0}^{1} \\
& =4\left(1-\log ^{2}\right) \tag{3}
\end{align*}
$$

4.

$$
-\int_{0}^{1} \int_{0}^{1} x^{-\frac{1}{2}} y \log |x-y| d x d y
$$

Fut $x=t^{2}, y=u^{2}$. The integral becomes
$-4 \int_{0}^{1} \int_{0}^{1} u^{3} \log \left|t^{2}-u^{2}\right| d t d u$

$$
--4 \int_{0}^{1} \int_{0}^{1} u^{3}\{\log (t+11)+\log |t-u|\} d t d u
$$

$$
=-4 \int_{0}^{1} u^{3}[(t+u) \log (t+u)-(t+u)+(t-u) \log (t-u)-(t-u)]_{0}^{1} d u
$$

$$
\begin{equation*}
=-4 \int_{0}^{1} u^{3}[(1+u) \log (1+u)+(1-u) \log (1-u)-2] d u \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{\text {Now }}\left(u^{3}+u^{4}\right) \log (1+u) d u=\left[\left(\frac{u^{4}}{4}+\frac{u^{5}}{5}\right) \log (1+u)\right]_{0}^{1}-\int_{0}^{1}\left(\frac{u^{4}}{4}+\frac{u^{5}}{5}\right) \frac{d u}{1+u} \\
& =\frac{9}{20} \log 2-\frac{1}{20} \int_{0}^{1}\left[4 u^{4}+u^{3}-u^{2}+u-1+\frac{1}{u+1}\right] d u \\
& =\frac{9}{20} \log 2-\frac{1}{20}\left[\frac{4}{5}+\frac{1}{4}-\frac{1}{3}+\frac{1}{2}-1+\log 2\right]=\frac{2}{5} \log 2-\frac{13}{1,200} \quad I(5)
\end{align*}
$$

Using $I(1)$

$$
\begin{equation*}
-\int_{0}^{1}\left(u^{3}-u^{4}\right) \log (1-u) d u=\frac{1}{4} \sum_{x=1}^{4} \frac{1}{r}-\frac{1}{5} \sum_{F=1}^{5}=\frac{77}{1,200} \tag{6}
\end{equation*}
$$

\therefore By $I(4), I(5)$ and $I(6)$

$$
\begin{aligned}
& -\int_{0}^{1} \int_{0}^{1} x^{-\frac{1}{2}} y \log |x-y| d x d y=-\frac{8}{5} \log 2+\frac{13}{300}+\frac{77}{300}+2 \\
& =\frac{23}{10}-\frac{8}{5} \log 2
\end{aligned}
$$

5.

$$
-\int_{0}^{1} \int_{0}^{1} x^{-\frac{1}{2}} y^{-\frac{1}{2}} \log |x-y| d x d y
$$

Put $x=t^{2}, y=u^{2}$. The integral becomes

$$
\begin{align*}
& -4 \int_{0}^{1} \int_{0}^{1} \log \left|t^{2}-u^{2}\right| d t d u=-4 \int_{0}^{1} \int_{0}^{1}\{\log (t+u)+\log |t-u|\} d t d u \\
& \left.=-4 \int_{0}^{1}(t+u) \log (t+u)-(t+u)+(t-u) \log |t-u|-(t-u)\right]_{0}^{1} d u \\
& =-4 \int_{0}^{1}[(1+u) \log (1+u)+(1-u) \log (1-u)-2] d u \\
& =-4\left[\frac{\left(1+u^{2}\right)}{2} \log (1+u)-\frac{(1+u)^{2}}{4}-\frac{(1-u)^{2}}{2} \log (1-u)+\frac{(1-u)^{2}}{4}-2 u\right]_{0}^{1} \\
& =-4\left[2 \log 2-1-2+\frac{1}{4}-\frac{1}{4}\right]=12-8 \log 2 \tag{8}
\end{align*}
$$

FIG. I(a)

FIG. I(b) EXAMPLES OF PROFILES FOR $\frac{S_{0}}{S_{m}}=0.49, \frac{R_{m}}{l}=0.25$, AND $n=1$ (INNER CURVE), ${ }^{3} / 2,2,3,4,5,6$, (OUTER CURVE). I.E. $\eta=0.075,0.1125,0.150,0.225,0.300,0.375,0.450$.

FIG. 2

FIG. 2 VALUES OF COEFFICIENTS IN DRAG EQUATION, (9),FOR VARYING n

FIG. 3 (a) DRAG OF FOREBODIES WITH $n=1$ (STRAIGHT LINE PROFILE.)

FIG. 3 (b) DRAG OF FOREBODIES WITH $n=3 / 2$.

FIG. 3 (c) DRAG OF FOREBODIES WITH $n=2$ (PARABOLIC ARC PROFILE.)

FIG. 3 (d)

FIG. 3 (d) DRAG OF FOREBODIES WITH $n=3$.

FIG. 3 (e)

FIG. 3 (e) DRAG OF FOREBODIES WITH $\mathbf{n}=4$.

FIG. 3 (\ddagger)

FIG. 3 (f) DRAG OF FOREBODIES WITH $n=5$.

FIG 3(g) DRAG OF FOREBODIES WITH $n=6$.

-(0)

FIG. 4(b).

FIG.4(g)

FIG.5(a)

FIG. 5 (a) DRAG AS A FUNCTION OF n WITH $\frac{S_{0}}{S_{m}}=0$ (POINTED NOSES)

FIG. 5(b).

FIG. 5(b) DRAG AS A FUNCTION OF n WITH $\frac{S_{0}}{S_{m}}=0.3$.

FIG. 5(c).

FIG. 5 (c) DRAG AS A FUNCTION OF n WITH $\quad \frac{S_{0}}{S_{m .}}=0.7$.

Crown copynght reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w.i
PO Box 569 , Londonse i
${ }_{13 \text { A }}$ Castle Street, Edinburgh 2
${ }_{109}$ St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol r
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

PRINTED IN GREAT BRITAIN
C.P. No. 245

