The Viscid Flow of Air in a Narrow Slot

By
G L. Shıres
Crown Copyright Reserved

The Viscid Flow of Mir in a Narrow Slot

- by -
G.L. Shıres.

SUMMrRY

The properties of the viscid flow of air in a rectangular slot having a whath large in comparison wheth its depth are investigated. The results of various tests are found to verify theoretical and empirical relationships between the pressure distribution in the slot, the air mass flow and temperature, and the slot dimensions. Both lamnar and turbulent flows are considered.
CONPENTS
Page
1.0 Introduction 1
2.0 The Equations of Viscid Flow 2
2.1 The Theoretical Equation for Laminar Flow 2
2.2 The Empirical Tquation using the Resistance Coefficient 3
2.3 Solutions for Throe Particular Cases 5
3.0 The Apparatus and the Nethod of Testing 7
4.0 The Aralysis of the Test Results 7
4.1 Case 1. Constant Cross Section 7
4.2 Case 2. Constant Depth and Increasing Width 8
4.3 Case 3. Constant id dth and Increasing Depth 9
5.0 Conclusions 10
List of Illustrations 10
Lust of Appendices 11
References 11
Appendices I to IV $12-16$
Figures 1 to 13

1.0 Introduction

The three forces affecting the flow of air in a slot are the pressure force, the force due to viscosity, and the force requared to accelerate or deccelerate the flund. If, however, the depth of the slot is very small, the vascid force and the pressure force are very laref, and in comparison the inertia force is small enough to be neglected. This being so, the viscid force 1 s equated to the pressure force and a simple theoretical equation relating the pressure distribution, the alr temperature, the nass flow and the slot dimensions is obtarned for steady laminar flow. To derive a similar equation for turbulent flow the problem is considered in

Hach ITumber

Although the above analysis is concerned with the pressure drop alone, a narrow rectangular slot the experimental results may also be expressed in tephs of hach number, wi. For this purpose the mean velocity based on mass flov, $\bar{u}=\frac{G}{0 \cdot a \cdot h}$, is taken as representative and values of it calculated from the expression -

$$
\text { IA }=\frac{\overline{\mathrm{u}}}{\sqrt{\mathrm{YgRI}}}=\sqrt{\frac{\mathrm{RT}}{\mathrm{YG}}} \cdot \frac{\mathrm{G}}{\mathrm{p} \cdot 2 \cdot \mathrm{~h}} .
$$

Over the test length the riach number was always low and variations of temperature were negligable. Hencu, over thas section,

$$
M \div \sqrt{\frac{R M_{0}}{\gamma g}} \cdot \frac{G}{p \cdot a \cdot h}
$$

where T_{0} as the reservoir tormerature. Typical curves of static pressure, p, and lich number, in, over the test length of a parallel sided rectangular slot (case 1.) are shown as full Innes in Fig. 14(a).

In the last inch of slot there is a large drop in pressure and density and hence a rapid acceleration. In this leng th the variation of temperature cannot be neglected. If adiabatic flow as assured in this part of the slot the exit wach number, H_{e}, can be calculated for case 1, from equations given by Kestin and Oppenherm. ${ }^{\text {r }}$. These can be roduced to the expression:
$\frac{\lambda L}{D}=\frac{1}{4 \gamma}\left\{\left[\frac{1}{M_{1}{ }^{2}}-\frac{r+1}{2} \log _{e}\left(\frac{1}{m_{1}{ }^{2}}+\frac{\gamma+1}{2}\right)\right]-\left[\frac{1}{M_{2}{ }^{2}}-\frac{r+1}{2} \log _{e}\left(\frac{1}{I_{2}{ }^{2}}+\frac{\gamma-1}{2}\right)\right]\right\}$
where subscripts 1 and 2 denote two positions separated by a distance L. The resistance coefficient λ is assumed to be the same all alons the slot, since the Reynolds Number is constant, and its value is calculated from measurements in the test length. The calculation of the exit inach number, i_{i}, is in effect an extrapolation of the curves of Mach number in the test leng th with the assumption of adiabatic expansion in the last inch. Such extrapolation is, of course, necessary since the prossure just inside the slot exit is not always atrospheric. lihen the slot is choked it may be muck higher as in case (b) In Fig. 14(a). Case (a) is unchoked.

When M_{e} is plotted against the rass flow, Fig. 14(b), it attains a constant value, not necessarily equal to unity, indicating that choking conditions were reached, with the four larger clearances. The fact that $M_{\text {M }}$ does not become unity may be due to it berng based on the moan velocity whereas the exit velocity profile was probably not uniforr and choking probably occurred when the naximur velocity reached the looal sonze value. If this is true then the apparent Jioch number, ite, corresponding to choking the exit is effectivoly a profile factor. The reduction of the chokang value of H_{e} with decreasing clearance seems to indicate the truth of this assumption.
\# J. Kestin, A.K. Oppenhenn - The Caloulation of Compressable Fluad Flow by the Use of a Generalised Entropy Chart (Equations 17 and 65a). - Inst. of Hiech. Eng., Proc. 1948, Vol. 159, War Zmergency Issue No. 43.
terms of the resistance coefficient, λ, and the Reynold's number, Re.
The relationship between λ and $R c$ for the flow of an inconpressible fluad in pipes and slots has been a subjeot of rosearch for many years, but little information $1 s$ avallable concorning the flow of a compressible fluad subject to large charges in pressure and therefore to large changes in density. Experiments have therefore been performed in slots of various shapes on the flow of air subject to such changes, and the results, when expressed in terms of the parameters λ and $R e$, are compared wath the reaults of experiments wath incompressible fluids carried out by Blasius (Ref. 1).

2.0 The Equations of Viscid Flow

The theory of the steady lamanar flow of a compresiable viscid fluad in a slot the cross section of which is constant, or changing very slowly, may be developed from first principles, the method being an extension of that used in hydrodynamic theory with a function of temperature and pressure replacing the density term. For turbulunt flow use is made of the concept of the resistance coefficient, λ, where

$$
\lambda=\frac{\tau}{\frac{1}{2} p \bar{u}^{2}}
$$

τ being the "skin friction" per unit of surface area in contact with the flund, \bar{u} the spatial mean velocity, and p the density of the fluid. The relationship between λ and the Reynolds number, R_{e}, based on the hydraulic mean depth for turbulent flow is given empirically by Blasius (Ref. 1) as

$$
\lambda_{T}=\frac{0.07 c}{R_{e} e^{\frac{1}{2}}}
$$

and this value can be used to develop an equation corrcsponding to that obtained theoretically for laminar flow.

The assumptions made in the derivation of the equations of flow are the same in both cases. The force requircd to socelerate or deccelerate the fluad is assumed to be negligible: the pressure distribution over any cross section is assumed to be uniform, and the temperature of the air as it flows along the slot is assumed to be constant.

2.1 The Theoretical Equation for Laminar Flow

Consider an elementary volume of the fluia, as show in Fig.1a, situated at a point in the slot.

The inertia term being neglected, the resulting forces acting on the element in the direction of the x-axis, which is the arection of flow, are:-

The viscid force $=\frac{\partial s}{\partial y} \cdot \delta y \cdot \delta x \cdot \delta z$ and
The pressure force $=-\frac{\partial p}{\partial x} \cdot \delta x \cdot \delta t \cdot \delta z$, where s is the shearing stress in the fluid, p is the absolute pressure, p is the density, and u is the velocity in the x direction.

By equating these forces we obtain the relationship

$$
\frac{\partial p}{\partial x}=\frac{\partial s}{\partial y}
$$

which, since $s=u \cdot \frac{\partial u}{\partial y}$ and $\frac{\partial s}{\partial y}=\mu \cdot \frac{\partial^{2} u}{\partial y^{2}}$, may be written as

$$
\begin{equation*}
\frac{\partial p}{\partial x}=\mu \cdot \frac{\partial^{2} u}{\partial y^{2}} \tag{1}
\end{equation*}
$$

for the flow of a compressible fluid in a slot having two closely adjacent walls it is assumed that

$$
\frac{\partial p}{\partial y}=\frac{\partial p}{\partial z}=0
$$

For the narrow slot, therefore, equation (1) becomes

$$
\begin{equation*}
\frac{d p}{\partial x}=\mu \cdot \frac{\partial^{2} u}{\partial y^{2}} \tag{2}
\end{equation*}
$$

Integrating this with respect to y we obtain

$$
u=\frac{1}{2 \mu} \cdot \frac{d p}{d x} \cdot y^{2}+c_{1} \cdot y+c_{2}
$$

The depth of the slot is h, where h is a function of x, and, since $u=0$ when $y=0$ or $y \approx h$, we have

Hence

$$
C_{1}=-\frac{h}{2 \mu} \cdot \frac{d p}{d x} \quad \text {, and } C_{2}=0
$$

$$
\begin{equation*}
u=\frac{y^{2}-h y}{2 \mu} \cdot \frac{d p}{d x} \tag{3}
\end{equation*}
$$

and this is a parabolic form of velocity profile.
The mean velocity at any cross section as

$$
\overrightarrow{\mathrm{u}}=\frac{1}{\mathrm{~h}} \cdot \int_{0}^{h_{0}} u d y
$$

$$
\begin{align*}
& =\frac{1}{h} \cdot \frac{d p}{d x} \cdot \int_{0}^{h} \frac{y^{2}-h y}{2 \mu} \cdot d y \\
& =-\frac{\partial p}{d x} \cdot \frac{h^{2}}{12 \mu} \tag{4}
\end{align*}
$$

If the wath of the slot be denoted by a, where a is a function of x, the mass flow along the slot is then given by

$$
\begin{aligned}
G & =? \cdot a \cdot h \cdot{ }^{3} \\
& =-\frac{3 \cdot a \cdot h^{3}}{12 h i} \cdot \frac{d p}{d x}
\end{aligned}
$$

From which we have

$$
\frac{d p}{d x}=-\frac{12 \cdot \mu \cdot G^{G}}{2 \cdot c \cdot h^{3}}
$$

and, substituting in this equation the value ? $=\frac{p}{R T}$, we obtain

$$
\begin{aligned}
\frac{d p}{d x} & =-\frac{12 \mu \cdot \mathrm{RT}^{2} \cdot G}{p \cdot a \cdot \mathrm{~h}^{3}} \\
\text { or } \mathrm{p} \cdot \mathrm{dp} & =-\frac{12 \mu \cdot \mathrm{RT}^{\prime} \cdot G}{a \cdot \mathrm{~h}^{3}} \cdot d x
\end{aligned}
$$

\qquad
If T, $"$, and h are known functions of x, this equation can be integrated and the theoretical pressure distribution so obtained.
2.2 The Ropirical Eruation usine, the eesstance Coeficient

Fig. 1 b shows an elementar: volume 0° the fluld ketween tine two plates, ats leneth in the x durection being infunatesimall; small and uts wath in
the z direction being unity. When consadering the forces acting on this element the assumptions made are that:-

1) The kinetic energy changes anvolved are negligible,
2) $\frac{\partial p}{\partial y}=\frac{\partial p}{\partial z}=0$.

The force, F, resisting the motion of the fluld may be considered as due to the friction acting at the surface of contact between the fluid and the walls. If the "skin friction" per unit area of "wetted surface" be denoted by τ, then
1.e.

$$
\begin{aligned}
& F=\tau \cdot(\mu E) \cdot \cos \theta+\tau \cdot(C D) \cdot \cos \phi \\
& F=2 \tau \cdot \delta x .
\end{aligned}
$$

The pressure force acting in the darection of motion is given by

$$
\begin{aligned}
&\left.\left.u=p \cdot h+\left(p+\frac{1}{2} \frac{d p}{d x} \cdot \delta x\right) \quad \right\rvert\,(A B) \sin \theta+(C D) \sin \phi\right\} \\
&-\left(p+\frac{d p}{d x} \cdot \delta x\right)\left(h+\frac{\partial h}{\partial x} \cdot \delta x\right) \\
&=p \cdot h+\left(p+\frac{1}{2} \frac{d p}{d x} \cdot \delta x\right)\left\{\frac{\partial h}{\partial x} \cdot \delta x\right\}-\left(p+\frac{d p}{\partial x} \cdot \delta x\right)\left(h+\frac{\partial h}{\partial x} \cdot \delta x\right)
\end{aligned}
$$

Which reduces to

$$
P=-h \cdot \frac{d p}{\partial x} \cdot \delta x
$$

Equating these two forces F and P we have

$$
2 \tau \cdot \delta x=-h \cdot \frac{d p}{d x} \cdot \delta x
$$

or $\quad \frac{d \rho}{d x}=-\frac{2 \tau}{h}$
Now $\tau / \frac{1}{2} \rho \bar{u}^{2}$ is the resistance coefficient, λ, and hence

$$
\begin{equation*}
\frac{d p}{d x}=-\frac{\lambda \cdot f \cdot \bar{u}^{2}}{h} \tag{6}
\end{equation*}
$$

The coefficient, λ, is dependent on the Reynolds number, Re, apertainang. For laminar flow the value of λ_{L} whoch gives an equation identioal with (5) in section 2.1 is

$$
\lambda_{L}=\frac{24}{R e}
$$

For turbulent flow NT is glven empirically by Blasius as

$$
\lambda_{T}=\frac{0.072}{R_{o^{\frac{1}{4}}}}
$$

Substituting λ_{L} in equation (6), we have

$$
\frac{d p}{d x}=-\frac{24}{R e} \cdot \frac{2 \cdot \bar{u}^{2}}{h}=-\frac{24}{R e} \cdot \frac{G^{2}}{0 \cdot c^{2} \cdot h^{3}}
$$

where

$$
\operatorname{Re}=\frac{2 \mathrm{~h} \cdot \overline{\mathrm{u}} \cdot \underline{\rho}}{\mu}=\frac{2 G}{a \cdot \mu}
$$

Hence

$$
\begin{aligned}
\frac{d p}{d x} & =-\frac{12 \mu \cdot G}{c \cdot h^{3} \cdot \beta} \\
\text { or } p \cdot d p \quad & =-\frac{12 \mu \cdot R^{\prime} \cdot G \cdot d x}{C \cdot h^{3}}
\end{aligned}
$$

Whach $1 . s$ the same as equation (5).
To obtain the corresponaing equation for turbulent flow we substatute in equation (6) the value of $\lambda_{\text {I }}$.

$$
\begin{aligned}
& \frac{d p}{d x}=-\frac{0.079}{R e^{\frac{1}{4}}} \cdot \frac{2 \cdot \bar{u}^{2}}{h}=-\frac{0.079}{R e^{\frac{1}{4}}} \cdot \frac{G^{2}}{\theta \cdot a^{2} \cdot h^{3}} \\
&=-\frac{0.079}{(2)^{\frac{1}{4}}} \cdot \frac{\sigma^{\frac{1}{4}}}{G^{\frac{1}{4}}} \cdot \mu^{\frac{1}{4}} \\
& p \cdot a^{2} \cdot h^{3} \\
&=-\frac{0.067 \mu^{\frac{1}{4}} \cdot G^{\frac{7}{4}}}{\frac{7}{1}}
\end{aligned}
$$

$$
\begin{equation*}
\text { or } p \cdot d p=-\frac{0.067 \mu^{\frac{1}{4}} \cdot R^{\frac{7}{2}} \cdot G^{\frac{7}{4}}}{a^{\frac{7}{4}} \cdot \mathrm{~h}^{3}} \cdot d x \tag{7}
\end{equation*}
$$

2.3 Solutions for three Particular Cases

The general equations, (5) and (7), can be integrated if σ, h, and T are known as functions of x. For the three types of slot illustrated in Fig. 2 the integrations have been performed on the assumption that the temperature, T, is constant along the slot.

Case 1. a and h constant

The integration of equation (5) gives in this case the following result for steady laminar flow.

$$
\begin{align*}
\mathrm{p}^{2} & =\text { oonstant }-\left(\frac{24 \mu \cdot \mathrm{RT} \cdot \mathrm{G} \cdot \mathrm{x}}{a_{1} \cdot \mathrm{~h}^{3}}\right) \tag{3}\\
\text { or } \mathrm{p}_{1}^{2}-\mathrm{p}_{2}^{2} & =\frac{24 \mu \cdot \mathrm{RT}^{2} \cdot \mathrm{G}}{\left.\sigma \cdot \mathrm{n}_{2}{ }^{3}-\mathrm{x}_{1}\right)} \tag{2}
\end{align*}
$$

On integrating equation (7), we obtain for turbulent flow

$$
\begin{equation*}
p^{2}=\text { constant }-\left(\frac{0.133 i^{\frac{1}{4}} \cdot R T \cdot G^{\frac{7}{4}}}{a^{\frac{7}{4}} \cdot h^{3}} \cdot x\right)^{10} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } p_{1}^{2}-p_{2}^{2}=\frac{0.133-\frac{p^{\frac{1}{4}}}{\frac{7}{\frac{7}{4}}} \cdot \mathrm{ET}^{a^{3}} \cdot \mathrm{G}^{\frac{7}{4}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)}{} \tag{11}
\end{equation*}
$$

Case 2. h constant and $e=\alpha x$
If the frictional effect of the two sude walls is negleoted, the filow in this case is analogous to the radial flow between two uniformiy spaced circular flat plates and by symmetry the pressure at any radius is constant.

Provided, therefore, that the divergence is small the pressure in any plane perpendicular to the axis is approximately constant and equations (5) and (7) may be applied. By substituting in these equations $a_{0}=\alpha$. x, we obtain for laminar flow

$$
p \cdot d p=-\frac{12 \mu \cdot R T \cdot G}{\alpha \cdot h^{3}} \cdot \frac{d x}{x}
$$

which when integrated becomes

$$
\begin{equation*}
p^{2}=\text { constant }-\left(\frac{24 \cdot \frac{\mathrm{RT}}{\alpha \cdot G} \cdot \log _{\mathrm{e}} x}{\alpha \cdot h^{3}}\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } p_{1}^{2}-p_{2}^{2}=\frac{24 u \cdot R T \cdot G}{\alpha \cdot n^{3}} \cdot \log _{e} \frac{x_{2}}{x_{1}} \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and, for turbulent flow, } \\
& \qquad p \cdot d p=-\frac{0.067 u^{\frac{1}{2}} \cdot R I \cdot G^{\frac{7}{4}}}{\alpha^{\frac{7}{4}} \cdot h^{3}} \cdot \frac{d x}{\frac{7}{1}}
\end{aligned}
$$

$$
\begin{align*}
& \text { which when integrated becomes } \\
& \qquad \mathrm{p}^{2}=\text { constant }+\left(\frac{0.178 \mu^{\frac{1}{4}} \cdot \mathrm{RT} \cdot \mathrm{G}^{\frac{7}{4}}}{\frac{7}{4} \cdot \mathrm{~h}^{3}} \cdot \frac{1}{\frac{3}{4}}\right) \tag{14}
\end{align*}
$$

or $p_{1}{ }^{2}-p_{2}^{2}=\frac{0.178 \mu^{\frac{1}{4}} \cdot \mathrm{RT}^{2} \cdot \mathrm{G}^{\frac{7}{4}}}{\alpha^{\frac{7}{4}} \cdot n^{3}}\left\{\frac{1}{\frac{3}{x_{1}}}-\frac{1}{x_{2} \frac{3}{4}}\right\}$

Case 3. Constant Width and Increasing Depth

As the deviation of the two plane surfaces is very small, the components of velocity perpendicular to the axis of the slot must also be very small, and the pressure distribution over any cross section is, therefore, assumed to be uniform.

For laminar flow, by substituting $h=\beta . x$ in equation (5), we obtain

$$
p \cdot d p=-\frac{12 \mu \cdot R T \cdot G}{G \cdot \beta^{3}} \cdot \frac{d x}{x^{3}}
$$

and when integrated this becomes

$$
\begin{equation*}
\mathrm{p}^{2}=\text { constant }+\left(\frac{12 \mu \cdot \mathrm{RT} \cdot \mathrm{G}}{\alpha \cdot \beta^{3}} \cdot \frac{1}{x^{2}}\right) \tag{16}
\end{equation*}
$$

or $p_{1}{ }^{2}-p_{2}{ }^{2}=\frac{12 \mu \cdot R T \cdot G}{a \cdot \beta^{3}}\left\{\frac{1}{x_{1}} 2-\frac{1}{x_{2}} 2\right\}$
By the same substitution in equation (7) we have, for turbulent flow,

$$
p \cdot d p=-\frac{0.067 \mu^{\frac{1}{2}} \cdot R T \cdot G^{\frac{7}{4}}}{a^{\frac{7}{4}} \cdot \beta^{3}} \cdot \frac{d x}{x^{3}}
$$

$$
\begin{align*}
& \text { which when integrated gives } \\
& \qquad \mathrm{p}^{2}=\text { constant }+\left(\frac{0.067 \mu^{\frac{1}{2}} \cdot R T \cdot \mathrm{c}^{\frac{7}{4}}}{c^{\frac{7}{4}} \cdot e^{3}} \cdot \frac{1}{x^{2}}\right) \tag{18}\\
& -6-
\end{align*}
$$

3.0 The Apparatus and the an thod of Tosting

The apparatus, as shown in Fig. 3, consisted essentially of two flat steel platus separated by thin strips of steel arranged so as to form a passage of the required shape. The two plates were made $\frac{7^{\prime \prime}}{8}$ thick to prevent any appreciable bending, and, after the upper one had boen case hardenod, the surfaces forming the hurizontal walls of the slot were carefully ground and tested against an optical "flat". The maximur deviation fron the plane, as estimated by counting the interference fringes, was about 50 . 10-6 inches. Between the two plates the slut was bounded on each side by strips of steel, which in the case of the slots of constant depth wure of single thickness but which for slots of varying depth were overlapped in the form of steps. When the block was assembled and firmly clamped together a sealing compound was applicd externelly to a.ll the joints.

During the tists compresaud aur at a recorded temperature, \mathbb{T}, passed through a metcring scction and into the sharp edged rectangular reservoir in the upper plate. From there it flowed along the rectangular passage between the two plates to atmosphere, the static pressure being recorded at intervals of $\frac{1}{C "}$ alorg the axis. A line of 7 prussure tappings across the slot at right angles to the 2×15 was used 2 s a check upon the setting of the block, since any inclination of the tro surfaces in a plane perpendicular to the axis would result in an essymutrical pressure distribution over these 7 points. The pressure distribution at thas cross section was found to be uniform as assumed in the thecry.

The procedure for ench test was the same ond consisted of two parts. The first was the rocording of the $2 x a l$ pressure distribution for various values of the reservoir prossure, po, and the analysis of these results. It was invariably found that the pre"sure distribution over the central 3" length of slot confurmed to the correspondang theoretical form and that thas length could be conszdured as a suitable test length. The second part of the procedure involved on investigation of the relationship between the air mass flow, G, in the slot and the pressures p_{1} and p_{2}, where p_{1} denotes the pressure at the upstrean end and p_{2} the pressure at the downstrean end of the test length.

4.0 The Analysis of the Test Results

The aim of the teats nas to check the valldity of the formulae developed in sections 2.1 and 2.2 , and, where possible, to determine the relationship between the resistance cotfficient, λ, and the Reynold's number, Re. Since the cquations involve both the wath, α, and the depth, h, as variables, it was necessary is an overall check to use three types of slot, one with a constant cross section, one with a varying wiath, and one with a varying depth. Equations (8) to (19) apply to the three types of slot used and are compared in the following pages with the test results obtained.

4.1 Case 1. Constant Cross Section

Tosts were made with six slots having a width, a, of $1.75^{\prime \prime}$ and a depth, h, of approximately $0.0020^{\prime \prime}, 0.0030^{\prime \prime}, 0.0040^{\prime \prime}, 0.0050^{\prime \prime}, 0.0053^{\prime \prime}$, anã $0.0093^{\prime \prime}$.

Fig. 4 shows the axial pressure distributions as recorded for two of the slots, the distributions obtained with the other four slots being of the same form. Then the square of the absolute pressure, p^{2}, is plotted against the axial dzstance, x, a serles of strazght lines are obtained over the central $3^{\prime \prime}$ longth of the slot, the form of the theoretical rolationship botween p and x being thus vorified.

The slope of each of these stralght lines $\left(\frac{\rho_{1}^{2}-p_{2}^{2}}{x_{2}-x_{1}}\right)$, is a measure of the rosistance to flow and is plotted logarithnically against the corresponding mass flow, G, in Fig. 5. Here, the six curvos represent the results
for the six slots investigatcd and, since utside the transition zonc each set of results can be represented by two straight lines, the relationship betwcen the pressure drop and the mass flow is clearly of the form

$$
\frac{p_{1}^{2}-p_{2}^{2}}{x_{2}-x_{1}}=\text { Constant } \cdot G^{n} .
$$

The constant in this equation is different for laminar and for turbulent flow as is also the index n, which for lammar flow $1 s 1.0$ and for turbulent approximately 1.75. The non-linear part of the curve represents the transition from lamanar to turbulent flow.

The experimental results arc also shown as points in Fig. 6, together with the theoretical curves cbtaned by substituting in equations (9) and (11) the slot dinensions and the alr temporature. The difeerence between the correspondung calculated and neasuréa values of $\left(\frac{p_{1}^{2}-p_{2}^{2}}{x_{2}-x_{1}}\right)$ as a percentage of the measurcd value, is with one excoption less than for laminar flow and less than 10% for turbulent flow. The larger overall discrepancy in the case where $h=0.0030^{\prime \prime}$ is probably due to a small error in the measurement of h.

To conplete the picture a graph 1 s glven in Fig. 7 of the resistance coefficient, λ, against the Reynold's number, Re, where λ and Re are calculated according to the equations derived in Appondix II. For laminar flow the points lie on the theoretical curve, $\lambda_{T}=\frac{24}{R e}$, but for turbulent flow the erpirical expression, $\lambda_{T}=\frac{0.079}{G_{T}}$, as steted by Blasius gives velues of the resistance coefficient luwer than those calculated from the test results. The experimental points for turbulent flow lie close to tho two curves, $\lambda_{\mathrm{T}}=\frac{0.087}{\operatorname{Re}^{\frac{1}{4}}}$ and $\lambda_{\mathrm{T}}=\frac{0.031}{R e^{\frac{1}{2}}}$, the first fitting the results for $\mathrm{h}=0.0093^{\prime \prime}$ and the second the results for $h=0.0058^{\prime \prime}$ and $h=0.0040^{\prime \prime}$. Except for the case where $h=0.0050^{\prime \prime}$, the results indlcate that the smaller the value of h the closer lie the points to the emparacal curve, $\lambda_{T}=\frac{0.079}{\mathrm{Re}^{\frac{7}{6}}}$.

The transition fron laminar to turbulent flow takes place over a range of Re which is slightly differont for each slot. These ranges are given in Appendix III, the average values of Re at the boganning and at the end of transition being 2,120 and 3,810.

4.2 Case 2. Constant Depth and Incrcasing rizdth

Two slots were used, each having a constant depth, h, and an increasing wath given by $a=\mathcal{C} . x$. The depth in each case was $0.0036^{\prime \prime}$, and the values of o were 0.1 an 0.2 .

The axial pressure distributions are shown in Fig. 8. The analysis reveals that these are of the form

$$
p^{2}=A-B \cdot \log _{0} x \quad \text { for lamnar flow }
$$

and.

$$
p^{2}=C+D \cdot \frac{1}{3} \quad \text { for turbulent flow }
$$

A, B, C, and D are constants, and x is the axial distance from the imaginary point of antersection of the two side walls. In thas case the analysis is not su accurate as for case 1 and, although a straight line $2 s$ obtained by plutting p^{2} against $x^{-0.75}$, this figure cannot be taken as exact since a similor straight line may be obtained by plottina p^{2} against x^{n}, where n ranges fron 0.70 to 0.80 . The slight scatter due to errors in the readngs of p is sufficient to mask the small deviations from the linear obtained whth the variatuon of n over this range.

In the first ${ }^{3}$ " of slot length there was an appreciable divergence from
the theorotical form of prossure distribution and a central 3" length was therufore chosen as the tust length. A series of ruadings of p_{1}, p_{2} and G were taken for cach slut, where p_{1} and p_{2} were respuctively the pressures at the upstrean and at the downstroan end of the test length. The values of $\left(p_{1}{ }^{2}-p_{2}{ }^{2}\right)$ are plotted lugarathmoally against the corresponding values of G in Fig. 9 and the results are soen to lie on two inclined straight lincs, thus indicating the relationship

$$
P_{1}^{2}-p_{2}^{2}=\text { Constant } \cdot G^{n}
$$

The indox n is 1.0 for laminar flow, but for turbulent flow it differs in the two sluts, being 1.85 when $c<=0.1$ and 1.60 when $\alpha=0.2$. Alss shown in Fig. $;$ are the corresponaing theoretical curves obtained from equations (13) and (15). The theuretical curves for laminar fluw are identical wh the test results.

Tho Keynolds number, Re, being a function of the w dth, c, varies along the slot for any given value of G and it is not possible, therefore, to express the results as a graph of λ against $R e$. For the sarne reason, the change from laminar to turbulent flow does not take place at the saree value of G in both slots, but is determined instead by the conditions at the entry where the Reynulds number is highest. The valuos of Re at the entry corresponding to the beginning of the transition are 2,760 and. 3,020 for $c y=0.1$ and $\alpha=0.2$ respectively. The critical value for a parallel slot of the same depth is estinated from the values in Appendix III as 2,400.

4.3 Case 3. Constant Tiddth and Increasing Depth

Two slots of constant width equal to $1.83^{\prime \prime}$ were used, each having a depth gaven by $h=\beta \cdot x$, where β was $0.5 \cdot 10^{-3}$ in one test and $0.67 \cdot 10^{-3}$ in the sther.

Fig. 10 shovis the pressure distributions, which when analysed over the central length are found t b be of the form

$$
\mathrm{p}^{2}=\Xi+\mathrm{w}^{2} \cdot \frac{1}{\mathrm{x}^{2}}
$$

for woth laminer and turbulunt fluw, where E and F are constants and x is the axisl distance from the laginary line of intersection of the t.o planes. As in the other cases, there ls a conslderable divergence from the theoretical relationship in the first $\frac{3}{2}$ " of the slot and a contral $3^{\prime \prime}$ length was agan chosen as the test section. Readings of ρ_{1}, p_{2}, and G wero taken and these are pluttod logarithmically on Fiz. 11 as $\left(p_{1}{ }^{2}-p_{2}{ }^{2}\right)$ against G. As in the previous cases the rulationship between the pressure drop and the nass flow is of the furm

$$
p_{1}^{2}-p_{2}^{2}=\text { Constant } \cdot G^{n}
$$

The andex n is 1.0 for laminar flow and 1.75 for turbulent flow.
The theoretical and emparical curves ubtained from equations (17) and (19) are also show in FIE. 11. The discrepancy between the test results and the theoretical curves for lomınar flow is unexpected, since all previous lamnar results have been in close agreement wath the theory. For thas reason an error in the calculation of E was suspected and it is shown in Appenaix IV that a difference of 10% in the theoretical value of $\left(p_{1}{ }^{2}-p_{2}{ }^{2}\right)$
may be due to a difference in ξ of less than 4%. The discrepency may, therefore, be due to an error in the measurement of h of only $0.0002^{\prime \prime}$, an error which is quite possible with the stopped shims used in this case. The laminar results vere accordingly assumed to be oorrect and new values of β calculated.

Using the corrected valuos of β, λ_{T} and $R \in$ were calculated from the equations in Appendix III and are plottod in Fig. 12. The turoulent results Ine on two curves, $\lambda_{T}=\frac{0.063}{\operatorname{Re}^{\frac{1}{4}}}$ and $\lambda_{T}=\frac{0.067}{R^{\frac{1}{1}}}$, for $\beta=0.64 \times 10^{-3}$ and
$f=0.49 \times 10^{-3}$ respectuvely. It appears that the constant $\left(\lambda_{T}, R^{\frac{1}{4}}\right)$ may be dependent upon the alut divergence and so it is plotted aganst \mathcal{E} in『ig. 13. Since the nean depth of the two slots used, in this case was less than $0.006^{\prime \prime}$ (see section 4.1.), the value of ($\lambda_{\mathrm{T}} . \mathrm{Re}^{\overline{4}}$) corresponding to $E=0$ (Case 1.) wes taken as 0.081 . Fig . 13 shows that the three pounts lie appraxinately on a stralght line, thus indaoating a possible relationship between λ_{T}, Re, and f of the $f u m$

$$
\lambda_{T}=\frac{0.81-28 \beta}{R e^{\frac{1}{4}}}
$$

However, further tests wall be necessary to vurify this hypothesis.

5.0 Conclusions

The comparison of the test rosults with the corresponding theoretical and empirical relationships shows that these relationships hold approximately for the flow of air in any narrow alut, provided that the davergence is small and that the length considered does not lie within about $\frac{3}{4}$ " of the slot entry or the slot exit. Winth these provisions the forces due to the changes in kinetic energy are nogliglble, so that the sssumption nade in developing the theury is valid.

The results also indicate that the the retical equations may be used to give an accurate quantitative duscription of laminar flow. The only serious discrepancy bitwcen the theory and the test results was in the case of the slots with incruasing depth and here the arror was assumed to be in the measurement of the divergence.

For turbulent flow the emparical rolationships basca on the value of the resistance coefficlent Given oy Blasins, $\lambda_{T}=\frac{0.079}{R e^{\frac{1}{4}}}$, are not in general applicable. The investagation shows that for slots of cunstant cross scotion the actual value of λ_{T} as larger, belng 0.087 for the slot of depth $\mathrm{Ro}^{\frac{1}{4}}$
$h=0.0093^{\prime \prime}$ and $\frac{0.081}{\operatorname{Re}^{\frac{1}{4}}}$ for $h=0.0058^{\prime \prime}$. For sluts of increasing depth the product $\left(\lambda_{T} \cdot R^{\frac{1}{4}}\right)^{4}$ appears tu be a constant, the value of which depends upon the rate of divergence, β, of the walls.

List of Illustratiuns

FIg. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
FIE. 6
Fig. 7
Fg. 8
F2g. 9
FIg. 10
F'Ig. 11
Pir. 12
F $+\hat{6} .13$
$\mathrm{I}^{\prime} \mathrm{Ig} .1_{4}$

Viscad Flut Theury.
The Tyres of Siut Considered.
The Test Block.
Pressure Distribution in the Slot (Case 1).
Effect of Prussure Drop on Mass Fiow (Case 1).
Comparison with Thoory. (Case 1).
Scale Effect in Case 1.
Pressure Distrabution in the Slot (Case 2).
Effoct of Pressurc Drop on Hass Flow (Case 2).
Pressure Distrabution in the Slot (Case 3).
Effect of Pressure Drop on Mass Flow (Case 3).
Scale Effect in Case 3.
The Effect of Slot Divergence.
Mach Number Variation

Llst of Appendices

Appendix I	Last of Symbols Used.
Appendix II	The Calculation of λ and Re.
Appendix III	Transition Values of Re.
Appendix IV	The Effect of Errors in the Measurement of β.

Referonces
No. Author Sitle

1. N.A.V. Piercy Aerodynamics: pp. 278; E.U.P.: 1937.

APFFENDIX I

List of Symbols Used

p	$=$	absolute pressure
p	$=$	density
T	=	absolute temperature
μ	$=$	coefficient of absolute viscosity
v	$=$	coefficient of kinematic viscosity
a	$=$	width of slot
h	$=$	depth of slot
1	=	length of test section
G,	$=$	mass flow
Q	$=$	volume of flow
\vec{u}	$=$	$\text { nean velocity }=\frac{Q}{c \cdot h}$
τ	$=$	surface friction
λ	$=$	$\text { resistance coeffizont }=\frac{\tau}{\frac{\rho \bar{u}^{2}}{2}}$
Re	$=$	Reynolds number $=\underline{2 \cdot h \cdot \bar{u}}$

The Calculation of λ and Fe

The oulculation of the Reynolas number, Re, fron the test results is based on the formula

$$
\operatorname{Re}=\frac{4 \mathrm{~m} \cdot \overline{\mathrm{u}}}{v}
$$

where $\mathrm{m}=$ the mean hydraulic depth,
$\bar{u}=$ the rean velocity,
and $v=$ the kinematic viscosity.
FCr a slot of rectangular cross section where h, the depth, is naglagible compared with a, the width,

$$
\begin{aligned}
\mathrm{a} & =\frac{\text { Area }}{\text { Perineter }}=\frac{\mathrm{a} \cdot \mathrm{~h}}{20}=\frac{\mathrm{h}}{2} \\
\text { and } \mathrm{Re} & =\frac{2 \cdot h \cdot \vec{u}}{v}
\end{aligned}
$$

Also the mass flow, G, is ghven by

$$
\begin{aligned}
G & =p \cdot \vec{u} \cdot a \cdot h \\
\text { and } v & =\mu / p
\end{aligned}
$$

Therefore $R e=\frac{2 p \cdot h \cdot \bar{u}}{\mu}$
That is \quad Re $=\frac{2 G}{a \cdot \mu}$

Fron consideration of an elenertary volume of air between the two plates equation (6) is derived in votion 2.2. This gives

$$
\frac{d p}{d x}=-\frac{\lambda \cdot r \cdot \hat{u}^{2}}{h}
$$

which, since $G=p, \bar{u}, a, h$, becomes

$$
a p=-\frac{\lambda \cdot G^{2}}{3 \cdot a^{2} \cdot h^{3}}
$$

and, replacing ρ by $\frac{p}{k T}$, io have

$$
\begin{equation*}
p \cdot d p=-\frac{\lambda \cdot R T \cdot G^{2}}{\sigma^{2} h^{3}} \cdot d x \tag{21}
\end{equation*}
$$

Assumang that λ can be expresscd as a function of Re, which is independent of x when α is constant, and that the temperature, T, is constant this equation can be integrated to give

$$
p_{1}{ }^{2}-p_{2}^{2}=\frac{2 \lambda \cdot R I \cdot G^{2} \cdot\left(x_{2}-x_{1}\right)}{\mathrm{o}^{2} \cdot h^{3}}
$$

and hence

$$
\begin{equation*}
\lambda=\frac{p_{1}^{2}-p_{2}^{2}}{x_{2}-x_{1}} \cdot \frac{a^{2} h^{3}}{2 R T \cdot G^{2}} \tag{22}
\end{equation*}
$$

For case 3, in which the depth of the slot $1 s$ increasing, we can obtain a corresponding equation for λ by substituting $h=f x$ in equation (21) and by integrating.

$$
\text { This is } p \cdot d p=-\frac{\lambda \cdot R T \cdot G^{2}}{a^{2} \beta^{3}} \cdot \frac{a x}{x^{3}}
$$

and

$$
p_{1}^{2}-p_{2}^{2}=\frac{\lambda \cdot R_{1} \cdot G^{2}}{a^{2} \beta^{3}}\left(\frac{1}{x_{1} 2}-\frac{1}{x_{2}^{2}}\right)
$$

Hence

$$
\begin{equation*}
\lambda=\frac{p_{1}^{2}-p_{2}^{2}}{\left(\frac{1}{x_{1}^{2}}-\frac{1}{x_{2}^{2}}\right)} \cdot \frac{\alpha^{2} \cdot \beta^{3}}{R T \cdot G^{2}} \tag{23}
\end{equation*}
$$

The range of mass flow over which transition fron lamanar to turbulent flow takes place is slightly different for each slot.

The following table gives the approximate transition range of mass flow for each test, together wh the corresponding range of R_{e} calculated fron the relation

$$
\operatorname{Re}=\frac{2 \cdot G}{a \cdot \mu}
$$

Depth, h inches.	Range of G lbs. $/ \mathrm{sec}$.	$1 \mathrm{~b} / \mathrm{f}^{\mu}$. sec.	Range of Re
0.0030	$(22.9-) \cdot 10^{-4}$	$1.189 \cdot 10^{-5}$	2,640-
0.0040	$(20.0-28.8) \cdot 10^{-4}$	$1.198 \cdot 15^{-5}$	2,290-3,290
0.0050	$(16.6-37.2) \cdot 10^{-4}$	$1.201 \cdot 10^{-5}$	1,890-4,250
0.0058	$(17.38-36.3) \cdot 10^{-4}$	$1.198 \cdot 10^{-5}$	1,990-4,150
0.0093	$(15.9-31.6) \cdot 10^{-4}$	$1.225 \cdot 10^{-5}$	$1.780-3.540$

The rean values of Re for the beginning and the end of transition are 2,120 and 3,810 respectively.
${ }^{3}$ With the available air supply it was not possible to obtain turbulent flow in the slot having a depth of $0.0030^{\prime \prime}$ and the higher limits of transition cannot, therefore, be given in this case.

APPENDIX IV

The Effect of Errors in the ineasurement of β

Fig. 13b shows a section through a slot of increasing depth, showing h^{\prime} and $h^{\prime \prime}$ the clearances which define the divergence, β. The depth, h, was assumed to be equal to the throkness of the steel shim at the point considered as measured by a micrometer.

When p^{2} is plotted against $\frac{1}{x^{2}}$ a straight line is obtained and the values of x are therefore assumed to be correct. The point 0 is then fixed, the errors which occur being in the calculation of the angle COA.

The theoretical and empirical equations for slots of this kind are
and

$$
p_{1}^{2}-p_{2}^{2}=\frac{0.067 \frac{1}{\frac{1}{4}} \cdot P T \cdot G^{\frac{7}{4}}}{a^{\frac{7}{4}} \cdot \beta^{3}}\left\{\frac{1}{x_{1}^{2}}-\frac{1}{x_{2}^{2}}\right\} \text { for turbulent }
$$

An error in the measurement of h gives a false value of β which, since it occurs in the equations at k^{3}, gives a very large error in the theoretical value of $\left(p_{1}{ }^{2}-p_{2}^{2}\right)$.

Conslder the case where the measured values of h are

$$
h^{\prime}=2.0^{\prime \prime} \cdot 10^{-3} \quad h^{\prime \prime}=6.0^{\prime \prime} \cdot 10^{-3}
$$

Then $\beta=\frac{h^{\prime \prime}-h^{\prime}}{x^{\prime \prime}-x^{\prime}}=\frac{4 \cdot 10^{-3}}{6}=0.667 \cdot 10^{-3}$

Suppose that the actual values of h are

$$
h^{\prime}=1.933^{\prime \prime} \cdot 10^{-3} \quad h^{\prime \prime}=5.8^{\prime \prime} \cdot 10^{-3}
$$

Then β^{3} (the real value) $=\frac{h^{\prime \prime}-h^{\prime}}{x^{\prime \prime}-x^{\prime}}=\frac{3.867}{6} \cdot 10^{-3}=0.645 \cdot 10^{-3}$

Hence

$$
\begin{aligned}
& \left(\frac{e}{\beta^{F}}\right)=\frac{4.000}{3.867} \doteqdot 1.034 \\
& \left(\frac{\beta}{\beta^{*}}\right)^{3} \doteqdot 1.11
\end{aligned}
$$

The resulting error in $\left(p_{1}^{2}-p_{2}^{2}\right)$ is, therefore, 11% and is due to a maximum error, $\delta h^{\prime \prime}$, of only $0.0002^{\prime \prime}$.

FIG. I.

VISCID FLOW THEORY.

(a) ELEMENTARY VOLUME OF FLUID

(b) ElEmENTARY Vollume between two plates

THE TYPES OF SLOT CONSIDERED.

(a) CASE 1 CONSTANT GROSS SECTION

$$
h=\text { CONSTANT }
$$

(b) CASE 2 INCREASING WIDTH

(6) GASE 3 INCREASING DEPTH

FIG. 3.
THE TEST BLOCK.

FIG 4.
PRESSURE DISTRIBUTION IN THE SLOT. (case I: CONSTANT CROSS sEction, $a=1.75^{\prime \prime}$)

FIG. 5.

EFFECT OF PRESSURE DROP ON MASS FLOW.

(CASE 1: CONSTANT CROSS SECTION, $a=1.75^{\prime \prime}$)

FIG. 6.

COMPARISON WITH THEORY.

(CASE 1: CONSTANT CROSS SECTION, $a=1.75^{\prime \prime}$)

FIG. 7.

SCALE EFFECT IN CASE I.

FIG. 8.
PRESSURE DISTRIBUTION IN THE SLOT.
(case 2: CONSTANT DEPTH, $h=3 \cdot 6^{\prime \prime} \times 10,0^{-3} a=\alpha \cdot x$)

(b) WIDTH INGREASING $-\alpha=02$

FIG. 9.

EFFECT OF PRESSURE DROP ON MASS FLOW.

$$
\text { CASE } 2 \text { : CONSTANT DEPTH, } h=3.6^{\prime \prime} \times 10^{-3}, a=\alpha \cdot x
$$

PRESSURE DISTRIBUTION IN THE SLOT.
(CASE 3: CONSTANT WIDTH, $a=1.83$ ", $h=\beta \cdot x$)

(a)

DISTANCE FROM RESERVOIR - INCHES
INCREASING DEPTH - $\beta=0.5 \times 10^{3}$

(b)

FIG. II.

EFFECT OF PRESSURE DROP ON MASS FLOW.

(CASE 3: CONSTANT WIDTH, $a=1.83^{\prime \prime}, h=\beta \cdot x$)

FIG. 12.

SCALE EFFECT IN CASE 3.

(gorrected values of Re)

FIG 13

THE EFFECT OF SLOT DIVERGENCE.

(b) the effect of errors in the measurement of β.

FIGI4.
MACH NUMBER VARIATION.

(b) EXIT MACH NUMBER
C.P. No. 13
(12329)
A.R C. Technical Report

PRINIED AND PUBLISHED BY HE MAJESTY'S STATYONERY OFFICE
To be purchased from
York House, Kingsway, london, w.c. 2429 Oxford Street, LONDON, w 1
P.O. Box 569, LONDON, S.e. 1

13a Castle Street, kdinburgh, 21 St. Andrew's Crescent, cardiff
39 King Street, MANChEsTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1950
Price 2_{s} 6d net
printid in orbat aritain

