C.P. No. 25I
$(17,566)$
A.R.C. Technical Report

C.P. No. 25I

$(17,566)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

By
R. Fail, T. B. Owen and R. C. W. Eyre

```
U.D.C.NO. \(533.691 .152 .3: 533.6 .048 .3\)
```

Technical Note No. Aero. 2356
Jamary, 1955

ROYAL ATRCRAFT ESTABLISHMEYT

Erelumnary low speed wind tumel tests on flat plates and anr brakes: flow, woration and balance measuroments

by
R. Fail, T. 1. Owren and
R.C.T. Etre

STMARI

Flow measurchents have been ruade behind sharp edged fiat plates: (a) at 90° for va rous shapes, and (b) for a square plate over an incidence rance. The rewults of (a) show a closed bubble about 3 flate sudes long, whth a constant pressure boundary up to the maxamm ilameter, followed by maxirg, ifeburoments of velocity fluctuations were made for (b), showng that a rogular shoddang of turbuleni eddjes ocours for $e=50^{\circ}$ and over, wut stops by 40°. Targe rardom low fecquency longatudinal fluctuations are associated weth tho chedding.

Init, drag and pltching moment increncnts were measured on a square plate mounted on (a) a long cylindor and (b) near the end of several shapes of rear fuselage, to sce how the moments on opening the brake could be modificed. Voloc土ty fluctuation monsurements, at 70° only, show a mach roduce 3 loncituinal unsteadaness when the plate is in proximity to the fuselage. Comparatave tests mere made on a cascade brake 3 and show that no shedding occurs.

LIST CI CCHMENTS

Fage
1 Introduntion 5
2 Experiments wth isolated flat plates 5
2.1 Description of tests 5
2.2 Velocuty measurements 6
2.3 Kesults 7
3 Expemments with flat plates on a fuselage 9
3.1 Lift drag and putching monents due to plate 9
$3 . \approx$ Vabration 10
4 Ixperiments wath cascade brakes on a fuzelage 11
4.1 Introduction 11
4. 2 Descrigtion of tesius 11
4.3 Rosults 12
5 Discussion 13
6 Conolusions 13
List of Syimols 14
Reqerences 15

ITST OF MTIES

TableIncrementa of lirt, drag and phtching moment. Square plateon 4.50 in . dia. body (Bluff $\tan I) \frac{8}{d}=\frac{2}{3}, \frac{\text { Gap }}{\ell}=\frac{1}{5}$I
Incronents of lift, drag, and pitching moment. Square plate on 4.50 nn . dia. body (Boat tail) $\frac{\ell}{d}=\frac{2}{3}, \frac{G a p}{\ell}=\frac{1}{5}$ and $\frac{2}{5}$ II
Increments of lift, dracs, and pitching moment. Square plate on 4.50 1n. dia. boay (Faired tanl) $\frac{e}{d}=\frac{2}{3}, \frac{\text { Gap }}{\frac{e}{2}}=\frac{1}{5}$ III
Incrumits of lafさs crag and pitching moment. Square plate on $l .50$ in. dia. body (Boat $\tan 1) \frac{1}{2}=\frac{1}{2}, \frac{\operatorname{Gap}}{\ell}=\frac{1}{5}$ IV
Increments of luft, drag and pitching moment. Cascade brakes on 7 in. dia. body V

IIST OF ILIUSTRATIONS

Figure
Arrangement of apparatus - Tests on flat plates in $4 \mathrm{ft} \times 3 \mathrm{ft}$ wind tunnel 1
Plat plates - Variation of drag with incidence 2
Rectangular flat plates $\left(\theta=90^{\circ}\right)$ - Variation of drag with aspect ratio 3
Flow behind flat plates $\left(\theta=90^{\circ}\right)$ 4
Flow behind square plate 15.3 in. dowstream 5
Flow behind square plate - spectra of $\frac{u}{J_{0}}$ 6
Arrangement of square plates on 4.50 In . dia. body 7
Lift, drag and pitching moment - square plate on 4.50 in. dia. body (Bluff tail) $\frac{\ell}{d}=\frac{2}{3}, \frac{\operatorname{Gap}}{e}=\frac{1}{5}$ 8
Lift, drag and pitching moment - square plate on 4.50 in. dia. body (Boat tail) $\frac{\ell}{\mathrm{d}}=\frac{2}{3}, \frac{\text { Gap }}{\ell}=\frac{1}{5}$ 9
Lift, drag and pitching moment - square plate on 4.50 in. dia. body (Faired tail) $\frac{l}{d}=\frac{2}{3}, \frac{\operatorname{Gap}}{l}=\frac{1}{5}$ 10
Lift, drag and patching moment - square plate on 4.50 in. dia. body (Boat tail) $\frac{\ell}{d}=\frac{2}{3}, \frac{G a p}{\ell}=\frac{2}{5}$ 11
Lift, drag and pitching moment - square plate on 4.50 in dia. body (Boat tanl) $\frac{2}{\mathrm{~d}}=\frac{1}{2}, \frac{\operatorname{Gap}}{2}=\frac{1}{5}$ 12
Static pressure dustributions on 4.50 in . dia, body 13
Pitching moment about a range of assumed C.G. positiona. Square plate on 4.50 in . dia. body $\frac{\ell}{\mathrm{d}}=\frac{2}{3}, \frac{\text { Gap }}{\ell}=\frac{1}{5}$ 14
Analysis of pitching moment about mid C.G. position (Fig.13)
Square plate on 4.50 In . dia. body 15
Pitching moment about mid C.G. position (Fig.14). Effect of gap and plate size. Square plate on 4.50 nn . die. body wath boat tail 16
Flow behina square plate $\left(\theta=70^{\circ}\right)$ - Comparison of spectra of $\frac{u}{U_{0}}$ for plate on 7 in . dia. body and isolated plate 17

ILST OF MLUUSTMATIONS (Contd)

Flgure
Arrargement of brakes on 7 In . dia. body 18
Grakes on 7 In. dia. body - lirt and drag 19
Brakes on 7 in. dia. body - patching moment 20
Flow behind sheet metal cascade (3.54" $\times 3.54^{\prime \prime}$) on 7 in. dza. Vody 21
Flow behind brakes on 7 n. dia. body - spectra of $\frac{u}{U_{0}}$ 22

Introduction

Tests are beang mude an low speed wind tunnels whth the main object of providing data for the design of air brakes. The results are also of interest as a contribution to the knowledge of the flow behznd bluff bodies.

Some prelinnnary measurenente have been made of the drag and the nature of the flow behind isolated flat plates of various shapes over a range of incidence. Both the mean flow pattern and the Longitudanal velocity fluctuations have been stuadieá.

Lifit, dract and patching moment have been measured on a body fitted whth a square flat plate brake to explore the possibility of getting no change in pitching moment over a range of brake angle. One of these brakes was used for an anvestigation of vabration and showed a much steadier flow cuue to putting the brake on the body. Further work on this Is to be done.

Types of anr brakes other than simple flat plates will be tested, auch as slotted and periorated plates. From Australian tests, it appears that a cascace 3 may have adyuntages and some tests have already been made on such a brake. The results are ancluded in the present note.

2. Experiments with isolated flat plates

2.1 Description of tests

The experinents can be divided roughly into three groups:
(1) Fizeasurements were inade of the drag, and of the mean velocitzes behinü plates perpendicular to the wand. The shapes tested were a square, a circle, a 60° delta and a rectangle of aspect retio 2.15. All of the plates had an area of 25 sq .in.* and the edges were chanfered at 30° as show in Hzg .1 .
(2) Further drag measurenonts were made on plates perpendicular to the wind with aspect ratios of 5, 10 and 20 , maintaining an area of 25 sc.an.
(3) Tests were made on the square plate over an incidence range frcir 27° to 90°. Leasurements were made of the drag and of the velocity fluctuations in a plane 15.3 in . behind the plate.

AII of these experiments were made in the $4 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel at a speed of $140 \mathrm{ft} / \mathrm{sec}$. The plates were mounted on the upstream end of a rod about 3 ft long and 0.5 zn . diameter on the axis of the tunnel. The domstrean end of the rod was supnorted by struts attached to the turmel walls; the rod was also supported just behind the plate by means of three wares. A sketch of the rig is given in Fig. 1.

For drag measurements, a snall capacaty-type balance was constructed and fintted between the rod and plate as showm in Fig. 1 . In order to reduce the support anterference w th the plate at small angles, a short leneth of streamline rod was interposed between the rod and plate (as shown in Fig.1) when velocaty traverses were being made behind the plate.

[^0]Traverses behind the plates were made with pitot-static tubes and with a hot wire using the apparatus shown in Fig. 1. An elliptic section tube spanned the tunnel and carried a sliding block which could be traversed from outside the tunnel. Vertical movements were obtained by means of cranked holders, and fore and aft movements were made by moving the whole traversing gear bodily. The pitot and static tubes were kept parallel to the tunnel axis. Measurements of the reverse velocities behind the centre of the plate were made with pitot-static tubes attached to the central rod but pointing downstream.

The hot ware was arranged to be normal to the free stream direction. The associated equipment which included a vibration analyser was bascally that described in Refs. 1 and 2.

2.2 Velocyty measurements

The velocity contours shom in Fig. 4 were drawn from measurements made with pitot and static tubes set parallel to the tunnel axis in planes 3 in, 6 in, 12 in. and 24 in. domstream of the plates and also 18 in. downstream in the case of the square and rectangular plates. The contours of velocity and velocity fluctuations shown in Fig. 5 were drawn from measurements made with a hot wire set normal to the tunnel axis in a plane 15.3 in. downstream of the plate.

The measurements are therefore in error where the local stream direction is not parallel to the tunnel axis. For the particular pitot and static tubes used in these experiments, a check showed that the measured velocities exceeded the true velocities by 2% for $10^{\circ} \mathrm{misalign}-$ ment and 6% for 20° misalignment. It should be noted that misaligrments are small near the axis of the "bubble" (see para 2.3) and near the midlength of the bubble. The length and maximum diameter of the bubble are therefore fairly accurately determined. The hot wire measures velocity normal to its length; it is therefore substantially non directional in the plane normal to its length with a cosine effect in the plane containing its length. In the latter case the readings are therefore low by $1 \frac{1}{2} / 2$ for 10° misalignment and 6% for 20° misaligrment.

The measurements are also subject to errors due to the fluctuating nature of the flow. In order to investigate this effect, comparative traverses have been made with hot wires and with the pitot and static tubes in a plane 18 in. behind the plate. The results which are shown in Fig. 4 g give some indication of the accuracy of the present measurements. Corrections have been applied to the hot wire measurements for the effect of velocity fluctuations; the discrepancy between the velocities given by normal and inclined wires suggests that these corrections are inadequate. The pitot-static measurements are uncorrected and lie above the hot wire measurements. The maximum difference between hot wire measurements and patot-static measurements amounts to about 20% of the local velocity or 10,0 of the free stream velocity.

Heasurements of the longitudinal velocity fluctuations were made as follows. Measurenents of the mean square of the analyser output, $\left(\frac{u_{A}}{U}\right)^{2}$, were made over a range of frequency, f. With the analyser out of circuit, measurements were made of the mean square of the total output, $\left(\frac{u}{u}\right)^{2}$. The spectrum function, $F(f)$, is defined so that $F(f) d f$ is the contribution to $\left(\frac{u}{U}\right)^{2}$ of frequencies between f and $f+d f$, i.e.

$$
\begin{aligned}
\left(\frac{u}{u}\right)^{2} & =\int_{0}^{\infty} F(f) d f \\
& =\int_{-\infty}^{+\infty} f F(f) d(\log f)
\end{aligned}
$$

Since the analyser bandwidth ratio, ε_{A}, is small $(=0.10 \times$ tuned frequency)

$$
f F(f)=\left(\frac{u_{A}}{U}\right)^{2} / \varepsilon_{A} \quad \text { approximately. }
$$

By rmiltiplying the values of $\left(\frac{u_{A}}{U}\right)^{2}$ and $\left(\frac{u}{U}\right)^{2}$ by $\left(\frac{U}{U_{0}}\right)^{2}$, the results are presented in terms of the free stream speed. Contours are drawn of $\frac{u}{U_{0}}$ and spectia are given of $\mathrm{fF}\left(\mathrm{r}^{r}\right),\left(=\left(\frac{u_{A}}{U_{0}}\right)^{2} / \varepsilon_{A}\right)$ plotted against $100 \mathrm{f} / \mathrm{ts}_{0}$. The latter is the frequency corresponding to a free stream speed of $100 \mathrm{ft} / \mathrm{sec}$.

The traversing gear already described was found to be unsatisfactory for holding a hot wire. The sliding block was not a good fit at all points along the elluptic tube so that a low frequency vabration of the ware may have occurred on some occasions, giving high readings of the velocity fluctuations*. A new traversing gear has been made and found satisfactory for further experinents.

Outszade the velocity wake of the plate, lateral oscallations of the flow have a negligible effect on a normal wire. Obviously lateral veloczty fluctuations may be important; an inclined hot wire is required to measure these components.

The present tests are therefore limited in scope and crude in character. Nevertheless some important conclusions can be drawn from them. Further experments are being made with normal and inclined hot wires mounted on the inproved traversing gear. An attempt will also be made to correlate hot wire measurements with measurements of the fluctuating pressures on an a.erodynamic surface.

2.3 Results

The drag measurernents** on plates at 90° gave values of the arag coefficient of 1.15 for the square plate, 1.16 for the 60° delta plate
*While measuring the spectra shown in Fig.6, the sliding block was temporarily fixed rigidly to the tube.
**The drags of 25 sq. inch plates in the $4^{2} \times 3^{1}$ tunnel have been multiplied by a factor ($1-0.03 \mathrm{C}_{\mathrm{D}}$) for blockage, using some tests on plates of duf'ferent sizes. The correction thus found is larger than was expected, and further work is being done. The correction is negligible in the $11 \frac{1}{2} f^{\prime t}$ tunnel.
and 1.13 for the circular plate. (A pressure plot of the circular plate gave a drag coefficient of 1,14).

The variation of drag with incidence for the square and delta plates is show in Figs.2a and 2b. The square plate stalls at about $\theta=36^{\circ}$, the drag coefficient falling abruptly from 0.80 to 0.60 . There is a considerable hysteresis loop at the stall 4 which could not be investigated during the present tests since it was not possible to vary the incidence with wind on. The drag is reduced as the plate stalls since the roduction in Induced drag is greater than the ancrease in profile drag. The delta plate shows a similar but less marked break in the drag curve,

The variation of drag with aspect ratio for rectangular plates at 90° is shown in Fig.3. The two-dzmensional value for C_{D} is about 1.84 (Ref.5). The present results show that between $A=1$ and $A=10$, the drag coefficient increases only from 1.15 to 1.27. At values of A above 10 , the drag increases more rapidly; at $\mathrm{A}=20$ (the highest tested) the drag coefficzent was 1.47.

Velocity distributions behind the low aspect ratio plates at 90° are shown in Fig.4. It as possible to define a closed "bubble boundary" by saynng that, within thas boundary, the total axial flow across any section perpendrcular to the axis of the plate is zero. These boundaries are shown chain dotted in Figs. 4 amd. The "wake boundary", defined by saying that outside this boundary there is no loss of total head, lies outside the bubble boundary. Along the wake boundary the static pressure coefficient is constant and equal to -0.42 from the edge of the plate to about the midlength of the bubble. The corresponding velocity is $1.2 \mathrm{U}_{0}$. The mean velocity is negative near the centre of the bubble and positive near the outside; the flow is very unsteady. The pressure coefficient on the downstream face of the circular plate was found to be constant and equal to -0.42 . The static pressure coefficient falls to 0.0 three inches behind the plate and to -0.6 sax inches behind (FIg.4f). At twelve inches pressure recovery has begun and the coefficient is -0.35 . By eighteen inches, pressure recovery is complete. At any one distance behind the plate the static pressure appears to be constant within the bubble (Fig.4e) although it varies as stated with distance from the plate, and there is a static pressure gradient between the bubble boundary and the wake boundary.

Velocity distributions in a single plane behind the square plate over a range of incidence were obtained from hot wire readings and are given on the right hand side of Fig.5. These measurements were made 15.3 in. downstream of the plate, ב.e. Just behind the bubble at $\theta=90^{\circ}$. At $\theta=90^{\circ}$ the wake is nearly circular in section with minimum velocities of about $0.3 \mathrm{U}_{0}$ in the centre. At $\theta=60^{\circ}$ the wake is similar in character although distorted and displaced downwards due to the downwash behind the plate. Detailed traverses were not made at $\theta=50^{\circ}$ but analysis of the velocity fluctuations at a single point (see below) suggests a flow similar to that at $\theta=90^{\circ}$ and 60°. At $\theta=40^{\circ}$, Just above the stall, the wake is fundaraentally changed. There are two separate regions of low velocity. At $\theta=36^{\circ}$, just below the stall, the wake is again of this type.

Contours of velocaty fluctuation are shown on the left hand side of Fig.5. There is a change from a ring of high velocity fluctuations at 90°, to a crescent shaped region at 60° (and probably 50°) and finally to two regions at 40° and 36°.

Analyses of the velocity fluctuations over the inczdence range at a single point* (indicated in Fig.5) are shown in Fig.6. This point was chosen to have large velocity fluctuations over the inczdence range and the hot wire was fixed rigidly to avold vibration. The spectra are of two types. At the hagher angles ($\theta=90^{\circ}, 60^{\circ}$ and 50°) each spectrun includes a hagh peak value** of $f F(f)$ at a particular frequency (which varies with incidence) superimposed on a continuous spectrum. This is due to the shedding oi' turbulent eddies in a regular manner. At $\theta=40^{\circ}$ and 36° the spectra are contınuous with no peaks, and with large random fluctuations mainly at relatively high frequency. It appears that large randon fluctuations at low frequency are associated with a regular shedding.

3 Experinents mith a plate on a fuselace

3.1 Lift, drag and pitching moments due to plate

It has been found that a sangle aur brake mounted behind the wing under a fuselage can, in general, only be in trim at one angle; below this angle there is a nose down moment, and above it, a nose up moment. Experiments were made to find what variables affect this behaviour.

A cylndrical body 4.5 nn . diameter with faired nose was tested in the $4 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel:
(a) cut off with a bluff end of full dameter,
(b) with a faired tail cut off with a bluff end of 0.59 times the full diameter,
(c) with a fully faired tail.

These are called "bluff", "boat tall" and "faired tall" (Fig.7).
The pressure distributions on the bodies without brakes (Fig. 13) agree until near the modufied rear ends.

The brakes used were square flat plates similar to those tested alone, and could therefore only be used at farcly large angles when on the body. For most of the tests the length of the sade of the brake, l, was $2 / 3$ of the body diameter. The hange line was tangential to the body, and the gap, measured from the hinge was normally 0.2ℓ. Two further tests were made on the body with boat tail:
(a) with a larger gap $(0.4+)$
(b) with a smaller broke ($\ell=\frac{1}{2}$ body dianeter) and the normal gap.

It was found that adding the pointed tail to the boat tail does not alter the fore and aft position where the major change in pitching moment of a brake occurs (Figs. 9 and 10), so it is consıdered more convenient to keep the same reference point for these two bodies. Brake positions are

[^1]specified by giving the distance of the brake hinge from the end of the bluff or boat toil bodues and, in the case of the body with faired tail, the distance of the brake hinge from the posation on the faired tail comesponding to the end of the boat tail (Fig.7).

Lift, drag and pitching moment ancrements due to the larger plate with gap $=\ell / 5$ are given in Tables I-IV and Figs. $8-10$ in the form of coefficients based on the brake dimensions, the moments being about the brake hinge. These results show that if the brake is more than about 3ℓ forward of the end of the body (or the datum described above in the case of the body with faired tail) the lift and drag ancrements are unchanged by further forward movement. The moments at large angles are also unchanged but at small angles the moments change in a nose down direction with forward movement. As the brake $2 s$ moved back, beyond the position 3ℓ forward of the end of the body, the lift increases, the drag increases to a smaller extent and the moments at large angles decrease rapidly. The details of these changes depend on the shape of the rear body.

In Figs. 14-16 the moments are shown recalculated about various assumed positions of the centre of gravity, the mid position on the body with boat tail corresponding roughly to the layout of a Hunter. The second scale ($0 f \Delta \mathrm{C}_{\mathrm{m}}$) which has been added to Figs. 14 and 16 expresses the moment changes in terms of Hunter dimensions, taking the body diameter as the connecting variable, i.e. the model is assumed to be $1 / 11.67$ scale. Fig. 14 shows the small effects of moving the centre of gravity and varying the shape of the rear body. An analysis of the pitching moment about the centre of gravity is gaven in Fig. 15 showing ats dependence on IIft. In all cases the brakes give zero trim change at an angle near 70°.

The effect of a change in gap from $l / 5$ to $2 \ell / 5$ is shown by comparing Figs. 9 and 11 and in Fig.16. The drag is a little less with the bygger gap and the moments arc in trini at a slightly bigger brake angle (about 73°).

The effect of a smaller brake is shown by comparing Figs. 9 and 12. The change in patohing moment slope as the brake approaches the end of the body agrees if the distance from the end of the body is measured in terms of the brahe dimensions, and the moment coefficients of the brake about its hange are more positive. In Fig. 16 the moments are compared in terms of an assumed wing area and C.G. position and the brake angle to trim is about 66°.

The result is that a single brake under a fuselage is in balance at about 70° and gives varnations in pitching moment as it is opened agreeing with those found in practice. It is not at all apparent how to vary this except by putting the brake just ahead of the centre of gravity (which means under the wing, when these results are not applicable) or by putting it near the end of the body where it can be in trim at a larger angle but has an increased variation as it is opened and closed.

3.2 Vibration

A 5 m . square plate was tested at 70° on a 7 in . diameter body in the $4 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel (Fig.18). The resulting spectrum is compared whth that measured behind an isolated plate at 70° in Fig.17. (The latter spectrum was produced by interpolation from Fig.6). Although both spectra include peaks due to a regular shedding of turbulent eddies, the amplitude of the fluctuations is reduced by the presence of the body and the shedding frequency is increased. This suggests that the angle below which shedding does not occur may be higher when the plate is mounted on a body and further experiments will be made to investigate this.

4 Experiments with cascade brakes

4.1 Introduction

The use of a cascade as an anr brake has been suggested by the Aeronautical Research Laboratory, Lielbourne ${ }^{3}$ as giving higher arag, and probably less vibration, than a flat plate. It was thought worth while to follow up this suggestion and to investigate the velocity fluctuations in the wake of a cascade.

The first cascade brake was made from an existing wind tunnel comer cascade an which the vanes were of an aerorionl section designed to leave passages of constant area between thom. It was tested (with a flat plate for comparison) under the body of a Javelin roodel just forward of the trailing eage of the wing. Ihaxinum arag coefficients of 1.67 for the flat plate (at 90°) and 1.82 for the cascade (at 60°) were measured. It was clear that the high drag of the flat plate was due to interference wath the wing, and it seemed likely that the interference due to the cascade brake was much smaller. The cascade brake might therefore have a greater advantage in drag on a body, clear of the wing field. The tests described below were made to check this conclusion.

4.2 Description of tests

The model used in section 3 was of too small a scale for making cascado prakes conveniently, particularly as two brakes of half the flat plate aroa were required. A body of maximum diameter 7 In. was therefore made (Fig.18). It represents a fighter fuselage with a shortened nose. A fin was fitted but no wing or tailpiane. If the model is regarded as of $1 / 7.5$ scale, the 5 in . square flat plate represents roughly the Thunter under fuselage brake and it was fatted in a corresponding position relative to the C.G. and fin.

The brakes are also shown in Fig. 18. The 5 mn . square plate was used as a basis for comparison and the following cascade brakes were tested.
(a) The brake already mentioned, made from a wind tunnel comer cascade. This will be referred to as the "aerofoll cascade". The dimensions ($6.54 \mathrm{in} . \times 5.75 \mathrm{in}$.) were chosen to give a reasonable nomber (7) of vanes and span.

The other cascade brakes, described below, were all of the sheet metal construction showm in Fig. 18 and had vanes of smaller chord than the aerofoil cascade.
(b) A brake of approximately the same dimensions as the aerofoil cascade, to afford a direct comparnson between the two types of construction.
(c) A brake approximately 5 in. square for durect compamson with the flat plate.
(d) A pair of brakes (on opposite sides of the body) with a total area approximately the same as the 5 in . square brake.

Mifeasurements of the lift, drag and pitching moment increments due to these brakes over a range of angles were made in the No. $111 \frac{1}{2} \mathrm{ft}$ tunnel at $120 \mathrm{ft} / \mathrm{sec}$ with the body at zero inczdence.

The body with the pair of sheet metal cascade brakes was then mounted in the 4 ft $\times 3 \mathrm{ft}$ tumnel and measurements of the velocity and velocaty fluctuations in a plane 15 in . downstream of the brake hinges vere made with a normal hot wire. This plane corresponds roughly to the fore and aft position of the Hunter tail plane.

4.3 Results

Values of the lift, drag and pitching moment increments due to the brakes are given in Ib and Ib . ft at $100 \mathrm{ft} / \mathrm{sec}$ in Table V. It is considered that the vamous brakes are best compared by forming coefficients of lift and drag based on the gross area of each brake, S_{B}, i.e. the area of cut-out requared to stow the brake. The results are given in this form in Fig.19. The pitching mowent increments given in Fig. 20 are expressed in terms of Hunter dimensions, assumng the model to be $1 / 7.5$ scale.

Fig. 19 b shows that the cascade brakes produce maximum drag at about 50° compared with 90° for the flat plate. The maximum values of $\triangle C_{B}$ are given in the following table whach also gaves the values of S_{B} on which the coefficzents are based.

Type of Brake	Wadth (in)	No. of vanes	Nominal length (in)	$\left(S_{B} . f t\right)$	θ	$\triangle C_{B}$
Flat plate	5	-	5	0.174	90°	1.28
Aerofozl Cascade	5.75	7	6.54	0.304	50°	1.76
Sheet Metal Cascade	5.75	20	6.73	0.280	50°	1.41
Sheet Metal Cascade	5	15	4.95	0.180	50°	1.44
Sheet Metal Cascade	3.54	11	3.54	0.188	50°	1.47

In the absence of a wing the flat plate compares less favourably with the aerofoil cascade since the interference drag of the flat plate is much reduced. The sheet metal cascades are considerably less effective than the aerofoil cascade but still have some advantage over the flat plate.

Lift ancrements due to the brakes are plotted in Fig. 19a. It will be seen that around $\theta=50^{\circ}$ the cascades produce about as much lift as drag, while the flat plate produces maximm lift at about $\theta=30^{\circ}$ and zero lif"t at $\theta=75^{\circ}$. This is in good agreement with the results obtained on the 4.5 in. diameter body (FIG.10) the value of X / ℓ for the tests on the 7 in. diameter body being 3.87 .

Pitching moment increments are show in Fig. 20. The flat plate gives a maximum trim change at $\theta=30^{\circ}$ and zero trim change at $\theta=73^{\circ}$. These results are also in good agreement with the measurements made on the 4.5 in. body and given in Fig. 14. The cascade brakes give very large trim changes so that it would always be necessary to use them in pairs.

The results of the measurements with a normal hot wire in a plane 15 in. downstream of the brake hinges are shown $1 n$ Figs. 21 and 22. Fig. 21 shows that the wake of the cascade brake (at 50°) is split into two regions of low velocity; Fig. 22 shows that the longltudinal velocity fluctuations are entirely random. One analysis of the longitudinal velocity fluctuations behind the square flat plate at 70° was made in a position (show in Fig. 22) where the fluctuations are a maximum. The resulting spectrum is show in Fig. 22. This clearly shows the regular shedding of turbulent eddies with associated random low frequency fluctuations larger than those behind the cascade.

The longitudinal fluctuations rill not directly affect the aeroplane except via fluctuating forces on the brake 2 tself; the lateral fluctuations have not yet been measured, though work on this is now in hand. On the assumptions that the lateral fluctuations vary directly with the longltudinal fluctuations and that low frequency vabrations are the most important, the cascade brakes look very promaing.

If two flat plates, of the same total area, had been used on either side of the body, the spectrum would have been moved to the raght by $\log \sqrt{2}$ and the fluctuation maxima would have been beyond the trailing edge of each broke, extending over the width of the brake, in much the same way as for the cascade brakes. At $100 \mathrm{f} / \mathrm{U}_{0}=10$ the relative values of $f F(f)$ would have been 0.002 for the flat plates against 0.0008 for the cascacies.

If the fluctuations affect the tailplane, the single flat plate may have an advantage in having its maximum fluctuations below the aircraft and further away from the tall.

5

Discussion

The present results suggest that considerable amprovements in low frequency vabration due to flat plate aur brakes would result from using the brakes at smaller angles than is usual. A single under fuselage brake has been considered because it interferes least with a tailplane if this is above the fusolage. Such a brake used at small angles suffers from two disadvantages: in order to manntain the same drag a greater area is required, and it is impossible to avold large tmm changes. A possible solution is to use a pair of brakes (on opposite sides of the body, for example) but this will generally bring the wakes of the brakes nearer to the tailplane and increase the blockage effect on trim and elevator hinge moment, and also increase vabration. From stability considerations, tajl planes behind swept wings should be low and an obvious solution would be extending the jet pape and carrying a symmetrical arrangement of brakes behind the tail. When symmetrical arrangements of brakes are consudered, cascades offer the advantages of high drag coeffccients with relatively small low frequency velocity fluctuations.

6 Conclusions

The nature of the wake behind an isolated square flat plate changes In character between $\theta=40^{\circ}$ and 50°. At larger angles there is a regular shedding of turbulent eddies which gives large velocity fluctuations in the wake at a single frequency. Large random low frequency fluctuations are associated wh this shedding. At smaller angles there is no regular shedding and the largest random fluctuations occur at relatively high frequency.

Results obtained with a square plate on a body suggest that under these conditions the argle at whach the flow changes is greater than that for the isolated plate.

A single brake undcr a body can give zero trim change only at an angle of about 70°. At angles much different from 70° It is necessary to use a pair of braker.

A cascade brake has a higher maximm arag coefficient than a flat plate and there is no regular shedding. The lift on a cascade brake produces large changes of trim unless a pair of brakes is used.

List of Symbols

θ		Incidence of plate (or brake) relative to free stream or body axis (degrees)
¢	$=$	Length of side of square brake
d	$=$	Maximum diameter of body
W	$=$	Width of cascade brake
X		Distance of brake hinge plane from end of body or in the case of the body rath faured tall, the distance of the brake hange plane from the datum shown in Fig. 7
x_{4}	$=$	Distance of C.G. from end of body or, in the case of the body with faired tail, the distance of the C.G. from the datum show in Flg. 7
X	$=$	Distance from end of body, or, in the case of the body with faired tall, the distance from the datura show in Fig. 7
Z	$=$	Distance of brake hinge below body axis
S_{B}	$=$	Area of plate or brake (see para 4.3) sq.ft
C	$=$	Cross sectional area of tunnel wroring section (sq.ft)
A	$=$	Aspect ratio of plate
U_{0}	$=$	Tunnel speed (uncorrected for blockage) ft/ses
U		Local mean longitudinal velocity ($\mathrm{ft} / \mathrm{sec}$)
u	$=$	r.m.s. value of longitudinal velocity fluctuation (f (t/sec)
ΔL_{100}		Lift increment due to plate or brake (lb at $100 \mathrm{ft} / \mathrm{sec} \mathrm{M.S)}$.
ΔD_{100}	$=$	Drag increment due to plate or brake (lb at $100 \mathrm{ft} / \mathrm{sec}$ M.S.)
$\Delta \mathrm{M}_{100}$	$=$	Pitching moment increment due to plate or brake (Ib it at $100 \mathrm{ft} / \mathrm{sec}$) li.s.
$\Delta \mathrm{C}_{\mathrm{I}_{\mathrm{B}}}$	$=$	Lift increment coefficient $=\frac{\Delta I}{q S_{B}}$
$\Delta C_{D_{B}}$	$=$	$\text { Drag increment coefficient }=\frac{\Delta D}{q S_{B}}$
$\Delta \mathrm{C}_{\mathrm{M}_{B}}$	$=$	$\text { Pitching moment increment coefficient }=\frac{\Delta M}{\mathrm{qS}_{\mathrm{B}} \ell}$
f^{\prime}	$=$	Frequency (cycles/sec)

Iist of Symbols (Conta)

$\frac{100 \mathrm{f}}{U_{0}}=$ Frequency corresponding to tunnel speed of $100 \mathrm{ft} / \mathrm{sec}$
$F(P)=$ Spectrum function such that

$$
\left(\frac{u}{U_{0}}\right)^{2}=\int_{0}^{\infty} F(f) d f=\int_{-\infty}^{\infty} f F(f) d(\log f)
$$

REFERENCES

No.

Author
R.H. James and
J.H. Mitchell
H. Schuh and
K.G. Wanter
P.B. Atkins and
R.W. Murphy

Von O. Flachsbart
A. Fage and
F.C. Johansen
E. C. Maskell

Iitle, etc.
Turbulence Measuring Apparatus
R.A.E. Tech Note No. Inst. 949 March, 1946
R.A.E. $4 \mathrm{ft} \times 3 \mathrm{ft}$ Experimental Low

Turbulence Wind Tunnel
Part II Measurements of longitudinal intensity of turbulence
R.A. E. Report No. Aero. 2285 August, 1948 ARC 11829

Low Speed wind tunnel tests on a new type of alr brake suitable for Vampire aircraft Aeronautical Research Laboratories, Australia. Aero Note 106 August, 1952

Messungen an Ebenen und Gewalben Platten Ergenbisse der Aerodynamischen Versuchsanstalt zu Gottingen IV Leaferung 1932 p. 96

On the flow of air behind an inclined flat plate of infinite span
R \& M No. 1104 February 1927
Modern Developments in Fluid Dynamics Vol.I para. 111

Pressure distributions illustrating flow reattachment behind a forward mounted flap C.P. 211 March 1954

TABIE I

Increments of lift, drag and pitching moment
Square plate on 4.50 in . dia. body (Bluff tanI) $\frac{\ell}{a}=\frac{2}{3}, \frac{\text { Gap }}{l}=\frac{1}{5}$

$x / 2$	$2 / 2$	θ°	$\Delta C_{I_{B}}$	${ }^{\Delta C_{D}}$	$\triangle^{M_{M}}$
7.183	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.639 \\ 0.370 \\ -0.045 \\ -0.458 \end{array}$	$\begin{aligned} & 0.611 \\ & 0.864 \\ & 1.161 \\ & 1.303 \end{aligned}$	$\begin{array}{r} -0.436 \\ 0.043 \\ 0.970 \\ 1.325 \\ \hline \end{array}$
4.950	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.584 \\ 0.360 \\ -0.037 \\ -0.446 \end{array}$	$\begin{aligned} & 0.610 \\ & 0.872 \\ & 1.183 \\ & 1.342 \end{aligned}$	$\begin{array}{r} -0.297 \\ 0.073 \\ 0.909 \\ 1.302 \end{array}$
4.167	0.767	90	-0.507	1.353	1.289
3.583	0.767	$\begin{array}{r} 30 \\ 50 \\ 50 \\ 70 \\ 90 \\ 110 \\ 130 \end{array}$	$\begin{array}{r} 0.558 \\ 0.292 \\ 0.298 \\ -0.116 \\ -0.509 \\ -0.788 \\ -0.856 \end{array}$	$\begin{aligned} & 0.625 \\ & 0.895 \\ & 0.892 \\ & 1.213 \\ & 1.338 \\ & 1.213 \\ & 0.969 \end{aligned}$	$\begin{array}{r} -0.254 \\ 0.227 \\ 0.277 \\ 1.061 \\ 1.264 \\ 1.080 \\ 0.491 \end{array}$
3.450	0.767	90	-0.522	1.339	1.311
2.667	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	0.584 0.224 -0.145	$\begin{aligned} & 0.642 \\ & 0.931 \\ & 1.187 \\ & 1.308 \end{aligned}$	$\begin{array}{r} -0.207 \\ 0.389 \\ 1.057 \\ 1.149 \\ \hline \end{array}$
2.083	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.510 \\ 0.233 \\ -0.017 \\ -0.368 \end{array}$	$\begin{aligned} & 0.679 \\ & 0.953 \\ & 1.207 \\ & 1.294 \end{aligned}$	$\begin{array}{r} -0.164 \\ 0.44,4 \\ 0.903 \\ 1.008 \\ \hline \end{array}$
1.500	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.542 \\ 0.467 \\ 0.271 \\ -0.128 \\ -0.120 \end{array}$	$\begin{aligned} & 0.697 \\ & 0.979 \\ & 1.300 \\ & 1.359 \\ & 1.355 \end{aligned}$	$\begin{array}{r} -0.107 \\ 0.326 \\ 0.590 \\ 0.691 \\ 0.716 \end{array}$
0.910	0.767	$\begin{array}{r} 30 \\ 50 \\ 70 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 0.829 \\ & 0.962 \\ & 0.804 \\ & 0.346 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.818 \\ & 1.327 \\ & 1.613 \\ & 1.573 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.251 \\ & 0.651 \\ & 0.902 \\ & 0.793 \\ & \hline \end{aligned}$
0.323	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.960 \\ & 1.187 \\ & 1.062 \\ & 0.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.800 \\ & 1.401 \\ & 1.714 \\ & 1.798 \end{aligned}$	$\begin{aligned} & 0.545 \\ & 0.734 \\ & 0.965 \\ & 1.165 \\ & \hline \end{aligned}$

PABLE II

Increments of I工ft, drag and pitching moment Square plate on 4.50 in. dia. body (Boat tarl) $\frac{\ell}{d}=\frac{2}{3}, \frac{\operatorname{Gap}}{\ell}=\frac{1}{5}$ and $\frac{2}{5}$

$x / 2$	Z/e	θ°	$G \operatorname{tap} / 2=1 / 5$			Gap/e $=2 / 5$		
			${ }^{\Delta} \mathrm{C}_{\mathrm{I}_{B}}$	$\triangle_{D_{B}}$	$\triangle^{\triangle} \mathrm{M}_{\mathrm{B}}$	$\Delta^{\mathrm{I}_{\mathrm{B}}}$	$\Delta^{\Delta \mathrm{D}_{\mathrm{B}}}$	$\triangle^{31}{ }_{B}$
8.707	0.767	30	0.689	0.611	-0.757	0.872	0.673	-1.231
		50	0.455	0.844	-0.317	0.519	0.868	-0.664
		50	0.447	0.851	-0.299			. 0.664
		70	-0.016	1.141	0.870	0.074	1.105	0.258
			-0.445	1.285	1.391	-0.373	1.242	0.930
8.123	0.767	90	-0.441	1.274	1.286	-	-	-
		110	-0.674	1.153	1.000	-	-	-
		130	-0.859	0.929	0.615	\cdots	-	
6.363	0.767	30	0.667	0.624	-0.470	0.894	0.683	-1.008
		50	0.433	0.878	0.030	0.500	0.872	-0.405
		70	-0.010	1.165	0.985	0.046	1.113	0.546
		90	-0.425	1.298	1.373	-0.381	1.256	0.959
4.040	0.733	30	\checkmark	,	-	0.895	0.722	-0.793
		30	0.633	0.632	-0.278	0.892	0.720	-0.771
		50	0.416	0.919	0.440	0.467	0.891	-0.062
		70			-	0.066	1.166	0.868
		70	0.031	1.236	1.109	0.064	1.165	0.857
		90	-0.370	1.356	1.432	-0.316	1.306	1.009
		90	-0.364	1.350	1.383	-	-	-
		110	-0.657	1.196	1.128	-	\cdots	-
		130	-0.848	0.982	0.565	-	-	-
2.357	0.663		0.716	0.667	-0.198	0.917	0.764	-0.634
		50		-		0.491	0.916	0.037
		50	0.451	0.954	0.410	0.486	0.923	0.013
		70	-	-	-	0.272	1.201	0.451
		70	0.226	1.231	0.793	0.266	1.208	0.442
		90	-0.138	1.328	0.884	-0.098	1.320	0.694
		90	-0.121	1.333	0.906	-	-	-
		110	-0.519	1.175	0.809	-	-	-
		130	-0.761	0.929	0.206	\sim	-	
1.007	0.567	90	0.371	1.510	0.309	-	-	-
		90	0.387	1.510	0.289			
		110	-0.040	1.290	0.382			
		110	-0.033	1.290	0.359			
		130	-0.490	0.820	0.173	-	-	-
		130	-0.487	0.834	0.217	-		
0.867	0.547	30	0.873	0.753	-0.010	1.056	0.824	-0.451
		50	1.018	1.257	0.008	1.001	1.220	-0.420
		70	0.812	1.492	0.132	0.807	1.536	-0.245
		90	0.449	1.526	0.167	0.432	1.597	-0.133

TABLE III

Increments of lift, drag, and pitching moment. Square plate on 4.50 in. dia. body (Faired tail) $\frac{l}{d}=\frac{2}{3}, \frac{\text { Gap }}{\ell}=\frac{1}{5}$

x / e	$2 / 2$	θ°	$\Delta \mathrm{C}_{\mathrm{L}_{\mathrm{B}}}$	$\Delta \mathrm{O}_{\mathrm{DB}}$	$\Delta \mathrm{C}_{M_{B}}$
8.707	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.661 \\ 0.419 \\ -0.045 \\ -0.426 \end{array}$	$\begin{aligned} & 0.618 \\ & 0.860 \\ & 1.131 \\ & 1.263 \end{aligned}$	$\begin{array}{r} -0.706 \\ -0.154 \\ 1.032 \\ 1.342 \end{array}$
6.363	0.767	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.652 \\ 0.4 .09 \\ -0.036 \\ -0.425 \end{array}$	$\begin{aligned} & 0.600 \\ & 0.869 \\ & 1.149 \\ & 1.267 \end{aligned}$	$\begin{array}{r} -0.530 \\ 0.061 \\ 1.059 \\ 1.334 \end{array}$
4.040	0.733	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.676 \\ 0.437 \\ 0.039 \\ -0.350 \end{array}$	$\begin{aligned} & 0.622 \\ & 0.891 \\ & 1.200 \\ & 1.328 \end{aligned}$	$\begin{array}{r} -0.367 \\ 0.224 \\ 1.113 \\ 1.419 \end{array}$
2.357	0.663	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.720 \\ 0.488 \\ 0.182 \\ 0.168 \\ -0.223 \end{array}$	$\begin{aligned} & 0.630 \\ & 0.931 \\ & 1.205 \\ & 1.210 \\ & 1.333 \end{aligned}$	$\begin{array}{r} -0.345 \\ 0.246 \\ 0.788 \\ 0.802 \\ 1.009 \end{array}$
0.867	0.547	30 50 70 90	0.748 0.611 0.322 -0.031	$\begin{aligned} & 0.630 \\ & 0.925 \\ & 1.189 \\ & 1.274 \end{aligned}$	$\begin{array}{r} -0.237 \\ 0.275 \\ 0.405 \\ 0.582 \end{array}$

TABLB IV
Inorements of lift, drag and pitching moment
Square plate on 4.50 In. dia. body (Boat tail) $\frac{l}{d}=\frac{1}{2}, \frac{\text { Gap }}{\ell}=\frac{1}{5}$

X/e	Z/e	e^{0}	$\Delta \mathrm{C}_{\mathrm{I}_{\mathrm{B}}}$	${ }^{\Delta O_{D}}{ }^{\text {B }}$	$\Delta \mathrm{M}_{M_{B}}$
. 11.609	1.022	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.528 \\ 0.382 \\ -0.087 \\ -0.079 \\ -0.436 \end{array}$	$\begin{aligned} & 0.577 \\ & 0.866 \\ & 1.183 \\ & 1.169 \\ & 1.295 \end{aligned}$	$\begin{array}{r} -0.757 \\ -0.165 \\ 1.565 \\ 1.516 \\ 1.976 \end{array}$
8.484	1.022	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.497 \\ 0.370 \\ -0.043 \\ -0.044 \\ -0.424 \end{array}$	$\begin{aligned} & 0.565 \\ & 0.882 \\ & 1.196 \\ & 1.195 \\ & 1.301 \end{aligned}$	$\begin{array}{r} -0.348 \\ 0.103 \\ 1.479 \\ 1.426 \\ 2.057 \end{array}$
5.387	0.978	$\begin{aligned} & 30 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.462 \\ 0.326 \\ -0.008 \\ -0.407 \end{array}$	$\begin{aligned} & 0.563 \\ & 0.925 \\ & 1.267 \\ & 1.372 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.747 \\ & 1.766 \\ & 2.120 \end{aligned}$
3.142	0.884	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 70 \\ & 90 \end{aligned}$	$\begin{array}{r} 0.531 \\ 0.370 \\ 0.365 \\ 0.099 \\ -0.282 \end{array}$	$\begin{aligned} & 0.602 \\ & 0.946 \\ & 0.958 \\ & 1.271 \\ & 1.361 \end{aligned}$	$\begin{aligned} & 0.161 \\ & 0.839 \\ & 0.841 \\ & 1.486 \\ & 1.724 \end{aligned}$
1.155	0.729	30 50 70 90	$\begin{aligned} & 0.850 \\ & 1.036 \\ & 0.872 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.766 \\ & 1.338 \\ & 1.608 \\ & 1.612 \end{aligned}$	$\begin{aligned} & 0.289 \\ & 0.605 \\ & 0.767 \\ & 0.927 \end{aligned}$

TABLE V

Increments of lift, drag and pitching moment. Cascade brakes on 7 in. dia. body

θ°	41400	ΔD_{100}	ΔM_{100}
5 in. Square Plate			
16.7	1.17	0.48	-2.35
24.4	1.72	1.00	-3.07
29.7	1.84	1.35	-3.40
33.7	1.60	1.44	-3.07
36.7	1.40	1.42	-2.59
41.7	1.33	1.54	-2.34
51.7	0.97	1.90	-1.79
71.7	0.17	2.43	-0.09
91.7	-0.58	2.64	1.19
109.7	-1.04	2.38	1.84
Sheet Metal Cascade$\left(N=5.75^{\prime \prime}\right)$			
30.3	2.20	3.66	-3.77
40.3	3.59	4.46	-6.19
45.3	4.04	4.54	-6.82
50.3	4.22	4.69	-7.42
60.3	4.14	4.32	-7.39
70.3	3.50	3.96	-6.50
90.3	2.39	3.66	-4.97

θ°	${ }^{\Delta L_{100}}{ }_{100} \Delta_{100}$	$\Delta \mathrm{M}_{100}$
Aerofoil Cascade		
(W $=5.75^{\prime \prime}$)		
30.3	$2.01 ; 4.43$	-3.58
40.3	2.865 .38	-6.43
45.3	4.915 .86	-9.02
50.3	5.956 .35	-10.61
60.3	6.426 .04	-11.43
70.3	6.625 .24	-11.89
90.3	4.072 .68	-7.53
Sheet Metal Cascade		
	$=5.00{ }^{\prime \prime}$	
40.3 2.29 2.79 -3.88		
50.3	2.813 .08	-4.89
60.3	2.562 .86	-4.97
2 Sheet Metal Cascades		
(W=3.54 ${ }^{\text {I }}$)		
40	$0.06 \mid 3.07$	0.03
50	0.023 .26	0.04
60	0.063 .08	0.03

PLATE AT $\theta=40^{\circ}$ MOUNTED ON STREAMLINE STRUT.

PLATE MOUNTED
ON DRAG BALANCE

FIG.I ARRANGEMENT OF APPARATUS.TESTS ON FLAT PLATES IN 4FT. X 3 FT. WIND TUNNEL.

FIG. 2. (a\&b) FLAT PLATES - VARIATION OF DRAG WITH INCIDENCE.

FIG. 3. RECTANGULAR FLAT PLATES $\left(\Theta=90^{\circ}\right)$ VARIATION OF DRAG WITH ASPECT RATIO.

FIG. 4 (a\&b) FLOW BEHIND FLAT PLATES

$$
\left(\theta=90^{\circ}\right)
$$

(c) 60° DELTA PLATE $\left(S_{B}=25\right.$ SQ. IN.)

(d) CIRCULAR PLATE $\left(S_{B}=25\right.$ ISQ. IN.)

FIG. 4.(c\&d) FLOW BEHIND FLAT PLATES

$$
\left(\theta=90^{\circ}\right)
$$

(e) total head, static pressure and velocity distribution $6 \operatorname{in}$. BEHIND SQUARE PLATE. ($S_{B}=25$ SQ.IN. $^{\text {. }}$)

(f) static pressure behind plates near plate axis.

FIG. 4 (e \& f) FLOW BEHIND FLAT PLATES ($\theta=90^{\circ}$)

(g) VELOCITY DISTRIBUTION 18.0 IN. BEHIND SQUARE PLATE.

FIG. 4.(g\&h) FLOW BEHIND FLAT PLATES

$$
\left(\theta=90^{\circ}\right)
$$

FIG 5 (a\&) FLOW BEHIND SQUARE PLATE $15 \cdot 3$ INCHES DOWNSTREAM

FIG 6. FLOW BEHIND SQUARE PLATE.
SPECTRA OF μ / U_{0} MEASURED IN PLANE 15.3 in DOWNSTREAM
OF PLATE AT POINTS INDICATED ON FIG 5.
(SPECTRUM FOR $\theta=90^{\circ}$ MEASURED 118 in DOWNSTREAM AT POINT 5IN FROM \ddagger)

FIG. 7. (a-c). ARRANGEMENT OF SQUARE PLATES ON 4.5O IN. DIA. BODY.
\& BOOY

(a) LIFT.

(c) PITCHING MOMENT.

FIG. 8 (a-c) LIFT, DRAG AND PITCHING MOMENT SQUARE PLATE ON 4.50 in. DIA BODY (BLUFF TAIL) $l / d=2 / 3, \frac{\text { GAP }}{e}=1 / 5$.

(a) LIFT.

(b) DRAG.

(c) PITCHING MOMENT.

FIG. 9 (a-c) LIFT, DRAG AND PITCHING MOMENT SQUARE PLATE ON 4.50 in DIA BODY (BOAT
TAIL) $l / d=2 / 3, \frac{G A P}{e}=1 / 5$

(b) DRAG.

(C) PITCHING MOMENT.

FIG. IO (a-c) LIFT, DRAG AND PITCHING MOMENT SQUARE PLATE ON 4.5ON DIA. BODY (FAIRED
TAIL) $l / \alpha=2 / 3, \frac{G A P}{l}=1 / 5$

(a) LIFT.

(c) PITCHING MOMENT.

FIG 11 (a-c) LIFT, DRAG AND PITCHING MOMENT SQUARE PLATE ON 4.5On BODY (BOAT TAIL) $l / d=2 / 3, \frac{G A P}{t}=2 / 5$

(a) LIFT.

(c) PITCHING MOMENT.

FIG.I2. (a-c) LIFT, DRAG AND PITCHING MOMENT SQUARE PLATE ON 4.5Oin. DIA. BODY (BOAT TAIL) $l / d=\frac{1}{2} \quad G A P=1 / 5$.

(b) MIDCGPOSITION $\frac{x_{1}}{l}=788$

(C) AFT CG POSITION $\frac{x_{1}}{\ell}=731$

BLLIFF TAIL
BOAT TAIL
faired tail
$\triangle C_{m}$ BASED ON HUNTER WING AREA (346 SQFT) AND MEAN GHQRD (1033 FT) ASSLMING MODEL
$d=$ MAXIMUM BODY DIAMETER
$\ell=$ LENGTH OF PLATE SIDE
FIG. I4. (a-c). PITCHING MOMENT ABOUT A RANGE OF ASSUMED C.G. POSITION.
SQUARE PLATE ON 4.50 N . DIA BODY. $1 / \alpha \cdot \frac{2}{3}, 4 \pi / t=1 / 5$.

FIGI5 (a-c) ANALYSIS OF PITCHING MOMENT ABOUT MID C G POSITION OF SQUARE PLATE ON 450 in DIA BODY (SEE FIG 14)

FIG. 16 (a-c) PITCHING MOMENT ABOUT MID C.G. POSITION (FIG.I4.) EFFECT OF GAP AND plate size. SQuare plate on 4.5 INS. DIA. BODY WITH BOAT TAIL.

5 IN SQUARE PLATE ON 7 IN DIA BODY $\left(\theta=70^{\circ}\right)$ FOINT IS IN DOWNSTREAM OF HINGE (FIG 18)

ISOLATED PLATE $\left(\theta=70^{\circ}\right)$ POINT 153 N DOWNSTREAM of Plate (FIG 6)

SKETCHES SHOWING POINTS AT WHICH SPECTRA WERE MEASURED OR

FIG. 17. FLOW BEHIND SQUARE PLATE $\left(\Theta=70^{\circ}\right)$ COMPARISON OF SPECTRA OF $1 / \omega_{0}$ FOR PLATE ON 7 IN. DIA. BODY \& isOlated plate

FIG.18. ARRANGEMENT OF BRAKES ON 7 IN.
DIS. BODY.
DIM. BODY.
(CASCADE BRAKES SHOWN AT $\theta=45^{\circ}$)

(a) LIFT.

(b) DRAG
NOTE CUEFFICENTS ARE basej un area required to stow brake

FIG. 19 ($a \& b$) BRAKES ON 7 IN DIA BODY.

PITCHING MOMENT.
ΔC_{m} BASED ON HUNTER WING AREA (346 SQ FT)AND MEAN CHORD (10.33 FT) ASSLMING MODEL TO BE $\frac{1}{75}$ SCALE

FIG. 2O. BRAKES ON 7 IN DIA. BODY.

VELOCITY - CONTOURS OF $\frac{U_{0}}{U_{0}}$

VELOCITY fLUCTUATIONS - CONTOURS OF $\frac{\mu}{u_{0}}$

FIG. 2I. FLOW BEHIND SHEET METAL
CASCADE ($3.54^{\prime \prime} \times 3.54$) ON 7 IN. DIA BODY.

SHEET METAL CASCADE $\left(3.54^{\prime \prime} \times 3.54^{\prime \prime}\right) \theta=50^{\circ}$

5 IN SQuare plate e-70
SKミTCHES SHUWING POINTS AT WHICH SPECTRA WERE MEASURED I 5 N BEHIND HINGE PLANE (FIG IB)

FIG. 22. FLOW BEHIND BRAKES ON 7 IN. DIA. BODY SPECTRA OF $\frac{\mu}{u_{0}}$

C.P. No. 251

(17,566)
A.R.C. Technical Report

Crown copyright reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w.t
P O Box 569 , London S.E.I
${ }_{13 \text { A }}$ Castle Street, Edınburgh 2 ${ }_{109}$ St. Mary Street, Cardiff
39 King Street, Manchester 2 Tower Lane, Bristol i
2 Edmund Street, Burmingham 3 8o Chichester Street, Belfast or through any bookseller

PRINTED IN GREAT BRITAIN

[^0]: *ixcept for the roctangle wich was intended to be of aspect ratio 2.0 but was made in error to have an aspect ratio of 2.15 and an area of 27 sq.ins.

[^1]: *Excent that the spectrum for $\theta=90^{\circ}$ is an early measurement made 11.8 mn . domstream and 5.0 mn . fron the centre line.
 **The shapes (including the heights) of the peaks shown in Fig. 6 are determined by the characteristics of the analyser. Strictly the results should be presented in the form of the continuous spectrum and the mean square value of the velocity fluctuation at the single frequency. For the present purpose it is sufficient to recognise the existence of peaks.

