

C.P. No. 14 2137.49 55 A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Determination of the Static Stability of Seaplanes

By

K. M. Tomaszewski, Inz.Lotn. (Warsaw)

Crown Copyright Reserved

LONDON: HIS MAJESTY'S STATIONERY OFFICE 1950

Price 8s. 6d. net.

Report No. Aero. 2137

June, 1916

Page

ROYLL AIRCR FT DST. BLISH II VT

Determination of the Static Stability of Scaplanes

by

n.M. Tomaszewski, Inz. lotn. (Jarsaw)

SUM ARY

This report describes graphical methods for the determination of the water performance of scaplane hulls and floats when at rest and at low taxying speeds. The methods are applied to the estimation of water lines with and without the slow and rapid application of external thrust and torque (roll) for zero wind and wave conditions.

A detailed example is given for the case of a small twin float seaplane. The method can be used for the determination of the effect of any known statically or dynamically applied forces or moments, and in any known sea and wind conditions.

LIST OF CONTRIPTS

Э. Introduction 4. 2 Method and Design Cases Considered 4 3 Determination of Buoyancy, Longitudinal moment and 4 Centre of Buoyancy, in Terms of Draft and Attitude 3.1 General Distribution of Duoyancy 4 5 3.2 Distribution of buoyancy for given later lines 6 Location of Hull or Float relative to U.J. and lings 4 7 5 Effect of Thrust Moment on attitude 5.1 Zero Water Speed. Thrust Applied Slowly 5.2 Zero Water Speed. Thrust Applied Rapidly 5.5 Low Water Speed. Thrust Applied Slowly 7 8 9 10 6 Effect of Torque on angle of Noil at Zero Vater Speed 11 7 Conclusions 12 List of Symbols 15 References

LIST OF APPINDICIS

		Appendix
A	Graphical Analytical Method for Determinin, area and	
	Farst Noment	I
A	Graphical Method of Integrating rea and First Moment	II

LIST OF TABLES

Particulars of small float scaplane 1 Calculation of cross sectional areas at float stations 2 Tabulated values of wetted cross sectional areas of float for a range of attatudes and drafts 3 Calculation of buoyancy, moment of buoyancy and centre of buoyancy for $\alpha = -3^{\circ}$ and $d = 2.5^{\circ}$ and $d = 3.5^{\circ}$ 4 (1) Calculation of buoyancy, moment of buoyancy and centre of buoyancy for $e = C^{O}$ and $\vec{a} = 1.5$ " 4 (2) Calculation of buoyancy, moment of buoyancy and contre of buoyancy for $e = 30^\circ$ and $d = 2.5^{\circ}$ and $d = 3.5^{\circ}$ 4 (3) Calculation of buoyancy, moment of buoyancy and centre of buoyancy for $\alpha = 0^{\circ}$ and d = 4.7" 4 (4) Calculation of buowancy, subsent of buoyancy and centre of buoyancy for $\alpha = 3^{\circ}$ and d = 2.5" and d = 5.5" 4 (5) Calculation of puoyincy, moment of buoyincy and centre of buoyancy for $\alpha = 6^{\circ}$ and $d = 2.5^{\circ}$ and $\alpha = 3.5^{\circ}$ 4 (6) Results of calculation of buoyancy, morent and centre of buoyancy for range of attitude and drafts Moment and centre of buoyancy for statue load on water for range 5 6 of attitude Estimation of static moment of buoyancy about C.C. for engine 7 on case Estimated air lift and drag of scaplane at 10 m. . . h. 8 Estimation of moment" due to buoyancy, thrust and drag of float for a range of attitudes 9 Calculations of angle of roll 10 Summary or trades an patch and roll for different engine conditions 11

LIST OF ILLUSTRATIONS

Figure

Taple

General arrangement of floats for a small scaplane	1
Variation of cross sectional area with draft at typical	
float section	2
Wetted cross section relative to water line and datum point F.P.	3
Location of float relative to C.C. of suaplanc	4
Location of float relative to ving and fuselage	5
Variation of wetted cross sectional areas of float with draft	6 (3Pages)
Side elevation of float showing distribution of pross	
sectional are with local draft	7
Side elevation of float showing, distribution of wetted cross	
sectional area for water lines corresponding to a range of	
drafts and attatudes	8
Location of axes for plotting distribution of wetted cross	
sectional areas at different drifts and attitudes	9
Graph of wetted cross sectional area against distance from	
F.F. along water line for attitude -30, drufts 2.5 and 3.5ins.	10 (1)

LIST OF ILLUSTR TIONS (Contd.)

Figure Graph of wetted cross sectional area against distance from F.P. along water line for attitude 0° , drafts 1.5, 2.5, 10(2)3.5 and 4.7 ins. Graph of wetted cross sectional area against distance from F.P. along water line for attitude 3°, drafts 2.5 and 10 (3) 3.5 ins. Graph of wetted cross sectional area against distance from F.P. along water line for attitude 6° , drafts 2.5 and 3.5 ins. 10 (4) Graphical derivation of float bucyancy for zero attitude and 11 draft 3.5 ins. (See Appendix II) Graphical derivation of static moment of buoyancy of float relative to F.P. for zero attitude and draft 3.5 ins. 12 (See Appendix II) Variation of buoyancy of float with attitude and draft 13 Variation of moment of buoyancy about F.P. with attitude and draft 14 Variation of static moment of buoyancy about F.P. with attitude 15 and draft for constant buoyancy 16 Variation of draft with attitude for constant buoyancy Determination of position of C.G. forward of step for a given 17 height and floating angle Location of float relative to fuselage and C.G. and water lines 18 for different engine conditions Illustration of longitudinal forces acting on seaplane at rest 19 Illustration of longitudinal forces acting on seaplane when 20 taxying 21 Illustration of transverse forces acting on coaplane at rest Graphical estimation of angle of true for full static thrust applied slowly and rapidly 22 Estimated air lift and drag for seaplone at 10 m. p. n. 23 Graphical estimation of angle of trus taxying at 10 m.p.h. 24 Front elevation of seaplane showing water lines in roll with 25 full engine torque Graphical estimation of angle of coll with engine on for a 26 range of attitudes - static condition Estimation of angle of trim with varying degrees of roll Estimation of angle of roll or relative drafts of floats for 27 28 equilibrium in pitch and roll Method for graphical integration of area (see Appendix II) 29 Method for graphical integration of moment of area (see Appendix II) 30 Method for graphical analytical integration of area and moment of area (see Appendix I) 31

1 Introduction

In the course of research and development work on the design of hulls in the R.A.E. scaplane tank an examination has been made of the methods of determining the static buoyancy and flotation characteristics. A graphical statics method has been found very useful which is not novel but is not widely applied in this country. It is considered to be as accurate and to give results more rapidly than the more arithmetical methods.

A description of the method is given in this report, it is illustrated in detail by an example of its application to the design of floats for a small twin float seaplane. No particular merit is claimed for the floats in the form used in this report, their lines being based on flying boat hull design. Relevant details of the seaplane are given in Table I, and lines and dimensions of the floats in Figure 1.

2 Method and Design Cases Considered

The method consists generally in determining the buoyancy, moment of buoyancy and centre of buoyancy of the float or hull for a series of water lines chosen to cover a wide range of attitudes and drafts. The whole determination is shown graphically after Bonjean's method so that the distribution of buoyancy is immediately available for any required water line. New various methods of obtaining the area and first moment of area under a curve are given, the usefulness of each depending on the available data and instruments, as well as the accuracy required.

Knowing the basic buoyancy characteristics, the selection of any two conditions from C.G. height above step, C.G. distance forward of step and attitude make possible the determination of the third by a simple graphical method. The corresponding draft and centre of buoyancy are then also known.

From the location of the float or hull relative to the aircraft, then the design conditions appropriate to full engine power under displacement conditions can be examined. Those chosen are,

- (1) effect of thrust on attitude, both for the static equilibrium condition and dynamic case (suddenly applied),
- (2) effect of thrust at low taxying speed,
- (3) effect of torque on angle of roll.
- All these estimates are made graphically, results being tabulated.

For practical purposes it is convenient to express all forces in terms of the equivalent volume of vater which has the same weight, taking the weight of a cu.ft. of fresh water as 62.5 lbs. This avoids any confusion of units.

3 Determination of Euoyancy, Longitudinal Moment, and Centre of Buoyancy in Terms of Attitude and Draft

3.1 Distribution of buoyancy

The method of determining the basic characteristics of buoyancy in terms of attitude and draft is that due to Bonjean, descriptions of the method are given in references 1 to 4. The variation of cross-sectional area with draft up to full immersion is plotted for each of a series of sections on a side elevation of the hull or float. Area is plotted parallel to the keel, local draft is measured normal to the keel with zero at the local keel.

The variation of area with draft for a typical section is illustrated in Fig.2, where F_z is the area at draft z. The areas can be found by use of a planimeter or analytically. The analytical derivation is given in Table 2 for the stations numbered in Fig.1. The results for the different stations are given graphically in Fig.6.

The results for all sections are collected together in the Bonjean diagram in Fig.7. The same scale is used as in the derivation in Fig.6. This is the basic figure from which the distribution of buoyancy for any possible combinations of attitude and draft may be obtained.

3.2 Distribution of Buoyancy for given Water Lines

To obtain the buoyancy distribution over a required range of attitudes and drafts, convenient water lines are drawn on a side elevation of the float in Fig.8 drawn to the same scale as in Figs.6 and 7. Fig.3 illustrates definitions of co-ordinates of the sections. The draft is measured at the step normal to the datum line, defined as the tangent to the keel at the step. The attitude is measured relative to the same datum line, positive nose up. The reference datum point at the bows, F.P., is defined as the intersection with the datum line of the normal to the datum drawn through the foremost point in the float. Distances aft of the F.P. are measured in the direction of the water lines concerned.

Atti	tude α^{0}	Draf	t ins. r	model scale			
		d]	₫2	dz	đ ₄₋		
αl	- 3		2.5	3.5			
α2	0	1.5	2.5	3.5	4•7		
α3	3		2.5	3•5			
α4	6		2.5	3.5			

The water lines chosen for the example were defined by

Their intersection with the sections together with the corresponding wetted areas F_d are shown in Fig.8. The latter are obtained by superimposing Fig.8 on Fig.7. Results are tabulated in Table 3 and plotted in terms of wetted area against distance from F.P. in Fig.10 for each water line. The co-ordinates in Fig.10 are not rectilinear because of the nature of the derivation of the results and also the requirements for centre of buoyandy calculations. To facilitate their plotting a special scale is used, as shown in Fig.9. It is there shown how the axes change because draft is measured normal to the datum line, but distance from F.P. parallel to the water line. For convenience the abscissa is given in terms of the station number, a scale of distance is provided, and for each draft a subsidiary scale is plotted for convenience in the numerical integration. The intervals "de" used in the subsidiary scales are chosen to suit the nature of the curves. Fig.10 therefore gives the distribution of buoyancy for the particular water lines chosen. From these the total lift or buoyancy Δ is represented by the area under the curve, the moment of buoyancy MA about the F.P. by the first moment, and the distance of the centre of buoyancy from the F.P. " ℓ_{Δ} ", by their quotient.

These areas and first moments may be obtained by valuation as given in Appendix I, Simpson's Rule, a method of graphical integration given in Appendix II or a planimeter. The graphical integration method is illustrated in Figs.1] and 12 respectively for area and first moment, and compared with the results of the first method tabulated in Table 4 for the water line $\alpha = 0^{\circ}$ and d = 5.5 ins. There is very good agreement. The tabulation method of Appendix I has been used for the other water lines for demonstration purposes, and the calculations are tabulated in Table.4. The stations used for the valuation method are shown in Fig.6.

Results for buoyancy, moment of buoyancy and centre of buoyancy are tabulated in Table 5 and plotted in Figs.13, 14, against draft for fixed attitude.

4 Location of Float Relative to C.G. and Wings

The following method of locating a float or hull relative to a seaplane was that used in Poland in the Experimental Aircraft Workshops, D.W.L. (R.W.D.)5.

In the static condition, for a float seaplane of all up weight of A, and distance of C.G. aft of F.P. ℓ_w , it is necessary that for each float,

Buoyancy Δ_1 = $A/_2$ Moment of buoyancy = $A/_2$. ℓ_w Centre of buoyancy ℓ_w = ℓ_Δ

The distances $\ell_{\rm W}$ and ℓ_{Δ} are neasured parallel to the water line from the F.P. position (see Fig.19). In practice in a float seaplane, the floats are normally designed for a total buoyancy equal to twice the all up weight, i.e. a reserve buoyancy of 100 per cent. From the distribution of buoyancy and moment of buoyancy given in Figs.13 and 14, assuming a required buoyancy corresponding to 202 inches³ of water, the variation of moment and draft with attitude is plotted in Figs.15 and 16 respectively.

Determination of the setting of the float relative to the C.G. can then be made graphically as follows.

Plot as in Fig.17 the vector distances of the centre of buoyancy from the F.P. point for the chosen attitudes of -3° , 0° , 3° and 6° . Then if the distance of the C.G. above the step be defined by propeller clearance as 12.4 ins. model scale, and the floating angle of the float is similarly chosen to be 4° , the distance of the C.G. forward of the step for equilibrium can be immediately deduced to be 3.18 ins., and the draft 2.93 ins. model scale. Similarly, use of this method will give the height of the C.G. for a predetermined distance forward of the step, or the floating angle for a given C.G. position. The last case is the one usually required.

The location of the float datum line with that of the seaplane is determined by the requirements of hydro and aerodynamic characteristics of the seaplane in take off, landing and cruising flight^{1,2,6}. The

aerodynamic characteristics of the small seaplane considered are illustrated in Fig.5. In the absence of knowledge of the trim angles in take off and landing, it is useful to define an angle of security which is the difference between the angle at which the seaplane wing stalls and that corresponding to the two step landing case. If this angle $\alpha_{sec} = 3^{\circ}$, the angle between the wing chord and float datum required is given by

 $\alpha_p = \alpha C_{L_{max}} - \alpha_1 - \alpha_{sec} = 6^{\circ}$

where $\alpha C_{L_{max}}$ = stalling angle of wing relative to heel to heel line of the float, 19°

and α_1 = heel to heel angle of float, 10°

The required fuselage to wing datum angle is then

$$\alpha_{\rm f} = \alpha_{\rm p} - \alpha_{\rm w} = 3^{\circ} 10^{\circ}$$

where α_{w} = wing setting to fuselage datum = 2° 50'.

The float setting has therefore been taken as 3° nose down to the fuselage datum.

The final float location on the seaplane is shown in Fig.18, together with the static water line.

5 Effect of Thrust Homent on Attitude

The chosen cases have been stated to be (1) the effect of full engine thrust moment on attitude at zero speed whether applied slowly or rapidly (2) the attitude at a low taxying speed. The method of solution, once the generalised buoyancy quantities are known, is to equate moments for static equilibrium and work done by moments for dynamic equilibrium. The angles to trim are obtained graphically. All moments due to air forces are neglected.

5.1 Zero Water Speed, Thrust Applied Slowly

To satisfy static equilibrium conditions, Fig.19, it is necessary that 1,2

$$\Delta_1 = 4 \sqrt{2} - T_{v_1} \cdot \sin \frac{3}{3} + \alpha \tag{1}$$

$$M_{\Delta_1} + M_{T_{v_1}} + M_{A_{2}} = 0$$
 (2)

where T_{v_1} is propeller thrust for one float in cu ins. of water.

a is incidence of float datum

 ${\rm M}_{T_{\rm ext}}$ is moment due to thrust for one float in ins.4 of water.

 $M_{1/2}$ is moment due to weight of aircraft per float in ins.⁴ of water.

Taking moments about the C.G., for the small scaplane

$$T_{v_1} = 08.0 \text{ ms}.^3$$

 $M_{T_{v_1}} C.G. = 92.6 \text{ ms}.^4$
 $M_{\Delta_1} C.G. = \Delta_1 \left(e_{v_1} - e_{\Delta_1} \right)$

where $\prod_{\Delta_1 \in G_*} G_* G_*$ is moment of buoyancy about the C.G. position,

 ℓ_w and ℓ_Δ are respectively the distances of the buoyancy and l weight aft of the F.P., measured along the water line.

 $\ell_{\rm W}$ may be found graphically from Fig.18 for all values of α .

$$\ell_{\Delta} = \frac{\Delta_{1}}{\Delta_{1}}$$

 \mathbb{M}_{Δ_1} is obtained for a range of α from Fig.15, and Δ_1 for the same range, from Fig.13, satisfying condition (1) above. The resulting values of ℓ_{Δ} are given in Table 5, and values of \mathbb{M}_{Δ_1} C.G. in Table 7.

The buoyancy moment with respect to the C.G., M_{Δ_1} C.G., is plotted in Fig.22 against α for the thrust case, and the intersection with the thrust moment gives the required angle of trum. For the seaplane considered, the thrust moment depresses the attitude from 4° to 3° 3' nose up, the draft changing to d = 2.78 ins. (Fig.16). The resultant vater line, is shown in Fig.18.

5.2 Zero Water Speed, Thrust Applied Rapidly

For equilibrium, it is now necessary that the work done by the thrust moment in the resulting movement, from static equilibrium engine off, be equal to the work done by the moment of buoyancy¹,². This assumes that moments of inertia, aerodynamic and hydrodynamic damping forces are negligible.

Then
$$\left(\int_{V_{1}}^{V_{1}} C_{\cdot}G_{\cdot} \cdot d\alpha \right) = \left(\int_{M_{1}}^{M_{1}} C_{\cdot}G_{\cdot} \cdot d\alpha \right)$$
 (3)

where $\mathbb{M}_{\mathrm{Tv}_1}$ C.G. is thrust moment about C.G.

 $\mathbb{M}_{\bigtriangleup_{T}}$ C.G. is buoyancy moment about C.G.

 d_{α} is change of attitude.

The values of the integrals are plotted against attitude in Fig.22. The attitude decreases from 4° to 2° 31' nose up, the draft to 2.755 ins. (Fig.16). The water line is shown in Fig.18. In practice the resultant attitude will be between 2° 30' (dynamic case) and 3° 3' (static case) because of the assumptions made.

5.3 Taxying at 10 m.p.h., Thrust Applied Slowly

Since conditions are steady¹, equilibrium conditions are the same as for the case of no forward speed, if the added forces due to air lift and drag, and water drag be included. It is assumed that the floats or hull are still in the displacement region, or that the water forces are still predominately hydro-static. Inen, from Fig. 20

$$F_{v_1} \cdot \cos 3 + \alpha = D_{v_1} + R_{v_1}$$
 (4)

$$\Delta_{1} = \frac{1}{2} - T_{v_{1}} \cdot \sin \frac{3^{\circ} + \alpha - L_{v_{1}}}{3^{\circ} + \alpha - L_{v_{1}}}$$
(5)

$$^{M}\Delta_{1} C_{*}G_{*} + ^{H}T_{v_{1}} C_{*}G_{*} + ^{H}L_{v_{1}} C_{*}G_{*} + ^{H}D_{v_{1}} C_{*}G_{*} + ^{M}R_{v_{1}} C_{*}G_{*} = 0$$
(6)

where R_w is water resistance per float.

 D_{V_1} is air drag of seaplane per float. L_{V_1} is air lift of seaplane per float.

Neglecting moments of air forces about the C.G.

$$^{M}\Delta_{1}$$
 C.G. + $^{M}T_{v_{1}}$ C.G. + $^{M}R_{v_{1}}$ C.G. = 0 (7)

Approximately, in this condition, for the fifth scale seaplane considered.

$$R = 0.1 A$$

$$\ell_{\rm R}$$
 = 11.2 inches (distance of R_v from C.G.)

Therefore

$$R_{v_1} = 20.2 \, (\text{anches})^3$$

$$M_{R_{v_{1}} C.G.} = 226 (inches)^{4}.$$

The assumed air lift and drag per float is tabulated in Table 8, and plotted in Fig.23 for the small seaplane considered. Then the thrust required for steady taxying is

$$T_{v_1} = \frac{D_{v_1} + R_{v_1}}{\cos 3^\circ + \alpha}$$

The calculated values of the lift, drag and moments are given in Table 9 for a range of attitudes and the moments plotted in Fig.24. The resultant taxying attitude is 1° 12' nose up, and draft 2.672 ins. Fig.16, and the corresponding water line is shown in Fig.18. In practice the attitude will be more nose up than this because of the presence of some hydrodynamic lift.

6 Effect of Torque on Angle of Roll, at Zero Forward Speed

The final design case considered for hydrostatic stability is the angle of roll produced, at zero speed, by the engine torque at full thrust. This is done graphically, using the basic information on lifts and moments with known applied thrust and thrust moment. For a twin float seaplane, for equilibrium, from Fig.21,

$$\Delta_1 + \Delta_2 = A - T_v \sin \frac{3^\circ + \alpha}{3^\circ + \alpha}$$
 (8)

$$M_{T_{v C.G.}} = M_{\Delta_1 C.G.} + M_{\Delta_2 C.G.} = M_{\Delta C.G.}$$
(9)

$$Q = \Delta_2 \cdot a_2 - \Delta_1 \cdot a_1 \tag{10}$$

where Δ_1 , Δ_2 are respective lift on the two floats,

- M is the moment for two floats,
- Q is the applied torque,

a₁, a₂ = respective distances of the centres of buoyancies of the two floats from the C.G. of the seaplane,

and

$$a_1 = L_1 \cos \beta - \theta$$

$$a_{2} = L_{1} \cos \beta + \theta$$
 (see Fig.21).

and

The estimation consists in

- (a) determining the relationship between the drafts of the two floats to satisfy the condition of total buoyancy for a range of attitudes,
- (b) determining the rolling moment due to the different drafts of the two floats for a range of attitude,
- (c) deducing the angle of roll, for the applied engine torque, in terms of attitude,
- (d) deducing the equilibrium attitude for the design conditions.

The geometry is given in Figs.18, 21 and 25. Step by step calculations are set out in Table 10. The angle of roll for equilibrium is deduced in Fig.26 for attitudes of 0° , 3° and 6° in terms of the respective drafts of the two floats. The resultant total water moments are plotted in Fig.27 against attitude and equilibrium attitudes deduced in terms of draft. Finally Fig.28 gives the required attitude for trum at the equilibrium angle of roll by the superimposition of the draft attitude relationship required for longitudinal and rolling moments respectively. The angle of roll is 34', angle of trum 2° 57'. The consequent transverse water line is given in Fig.28.

7 <u>Conclusions</u>

The graphical methods described give a complete picture of the nature of the buoyancy forces in a form immediately useful to any design problem in the displacement region, i.e. low taxying speeds. The method does not involve the calculation of metacentric heights.

Its application to the case of a small twin float seaplane shows how the more usual calculations for trum can be made of attitude and roll under different engine conditions in zero wind and wave conditions. The layout of tables and graphs is a useful guide to the application of the method.

The cases of wind and waves can be simply considered using the same basic data, if suitable design conditions be defined. Information on the sea and wind conditions found in practice is given in references 8 to 14. Fairly complete data are also required on the aerodynamic forces and moments in yaw and roll for a range of attitudes with ground interference.

The use of the energy principle enables calculations to be made on the effect of wind gusts, anchor and towing loads, which must be considered as of a transient nature.

List of Symbols

Angles		
i ⁰	н	incidence of mean chord
α°	=	attıtude (trım)
αl°	н	angle between float datum and heel to heel line
αw ^o	Ξ	setting of mean chord of wings relative to fuselage datum
$\alpha^{\circ C}L_{max}$	11	incidence of mean chord for maximum coefficient of lift
α ⁰ sec	Ŧ	angle of security for take-off and landing
۵°p	=	angle between mean chord and float datum
α ⁰ f	Ħ	angle between fuselage datum and float datum
θo	11	angle of roll due to engine torque
β ^ο	=	see Fig. 21
Lengths		
ē	=	wing mean chord
z	11	local draught
đ		draught
h _{C.G.}	=	height of C.G. above float datum
^s C.G.	=	distance of C.G. from step
еД	11	distance of buoyancy from F.P.
l _w	=	distance of weight of aircraft from F.P.
r_{T}	=	distance of thrust from C.G.
r_{R}	Ξ	distance of water resistance from C.G.
r_L	=	distance of air lift from C.G.
r _D	=	distance of air drag from C.G.
$\ell_{\mathbf{f}}$	11	distance between floats
l _{xn}	=	see Fig.3
Xn	=	see Fig. 3
al	=	lateral distance from Δ_1 to C.G.
² 2	=	lateral distance from Δ_2 to C.G.
Ll	=	see Fig. 21

-12-

List of Symbols (contd.)

Areas		
Fd	=	"wetted" cross sectional area relative to the water line
Fz	Ħ	"wetted" cross sectional area at draught z
S	=	wing gross area
Speed		
v	=	forward speed of aircraft
v_{tax}	=	taxying speed
Density		
θω	Ħ	62.5 lb/ft^3 density of fresh water
ρ	=	0.002378 slugs/ft ³ density of air
Forces		
W	=	all up weight of aircraft in 1b
A	=	all up weight of aircraft in volume of fresh water
T	=	thrust in 1b
T _v	=	thrust in volume of fresh water
^T v ₁	H	thrust in volume of fresh water for one float
R	=	water resistance in 1b
R_v	=	water resistance in volume of fresh water
Rvl	=	water resistance in volume of fresh water for one float
L	=	air lift in lb
L _v	=	air lift in volume of fresh water
Lvl	=	air lift in volume of fresh water for one float
D	=	air drag in 1b
D _v	=	air drag in volume of fresh water
D _{vl}	-	air drag in volume of fresh water for one float
Δ	=	buoyancy in volume of fresh water
∆l	=	buoyancy of first float in volume of fresh water
∆ ₂	=	buoyancy of second float in volume of fresh water
$\Delta_{\mathbf{h}}$	=	hydrodynamical buoyancy

-13-

List of Symbols (contd.)

Moments

*

۲

8

.

9

^M Tv C.G.	=	moment of thrust relative to C.G. in (inches)4
^M Tv _l C.G.	=	moment of thrust for one float relative to C.G. in (inches) ⁴
^{MR} v C.G.	=	moment of water resistance relative to C.G. in (inches)4
M _R v _l C.G.	=	moment of water resistance for one float relative to C.G. in $(nches)^4$
M _D , C.G.	ŧ	moment of air drag relative to C.G. in (inones)4
M _{Dv1} c.g.	=	moment of air drag for one float relative to C.G. in (inches)4
M _L , C.G.	н	moment of air lift relative to C.G. in $(inches)^4$
M _{Lv} , C.G.	Ħ	moment of air lift for one float relative to C.G. in (inches) ⁴
^M ∆ C.C.	Ξ	moment of buoyancy relative to C.G.
MA F.P.	=	moment of buoyancy relative to $F_* \mathbb{P}_*$
MAL C.C	Ħ	moment of buoyancy for one float relative to C.G.
^M ∆ ₂ C.G.	=	moment of buoyancy for second float relative to C.G.
MA1 F.P.	=	moment of buoyancy for one float relative to F.P.
^M Δ ₂ F.P.	=	moment of buoyancy for second float relative to F.P.
Power		
P	=	engine power during take-off in B.H.P.
n	H	maximum permissible r.p.m. during take-off
Non-dimens:	lona	al
cL	=	coefficient of air lift
c_{D}	=	coefficient of air drag
Res	=	reserve of buoyancy in %
General		
W.L.	-	water line
C.G.		centre of gravity
F.P.	H	forward position of float on float datum

-14-

REFERENCES

.

Ł

.

ŧ

*

<u>No</u> ,	Author	Title etc.
1	C. A. G. I.	Manual of Aero-design. Tom II Hydromechanics of Seaplane. C.A.G.I. Moskwa 1938
2	Kosourov	Manual of hydro-aviation. LM. 1937
3	W.F. Durend	Aerodynamic Theory. Vol. VI. Institute of Technology, California. January, 1943
4	Bénoit, E.	Le tracé des carenes d'hydravions L'Aerotechnique, Vol.4, No.42 and Vol.8, No.85, Faris 1926
5	Tomaszewski, K.	Seaplanes and their design Warsaw Tech. University Fublication, 1939
б	Perring, W.G.A.	The effect of wing setting on the water performance of seaplanes. A.R.C. R. and M. 1934. November, 1939
7	Andrews, E.W.	The theory and Design of Structures. London, Chapman and Hall, 1943
8	Szokalski, J.M.	Physical Oceanography L.1933
9	Szulejkin, W.W.	Physics of the Sea. Vol. I-M-L. 1933
10	Bieleskin, W.A.	Tides and Waves - L.1932, 310 pp.
11	Bieleskin, W.A	Elements of waves in Finland Gulf. "Hydrographics Notes" 1931, vol. LXV.
12	Thorade, H.	The problem of water-waves. Hamburg, H. Grand 1931, 219 p.
13	Förster, E.	Johow - Förster - Handbook of ships- engineering, Vol. I. B.J. Springer, 1928, 990 p.
14		S.S.S.R. Seas. Hydrographical publica- tion of Leningrad Government.

.....

Appendix I

A Graphical Analytical Method of Determining Area and First Moment

This method is described in many publications^{1,2,3} and is an accurate and useful method when suitable planimeters are not available.

Given the curve AB in Fig.31, suppose we wish to know the area S under this curve and its first moment M about x = 0. Then

$$S = \int_{i}^{B} f(x) dx$$
 (1)

$$M = \int_{A}^{B} \mathbf{f}(\mathbf{x}) \mathbf{x} d\mathbf{x}$$
(2)

Dividing A_1B_1 the projection onto the x axis, into a sufficient whole number of equal parts of length d, the equations (1) and (2) may be replaced by

$$S = \tilde{a}. \sum_{A} f(x)$$
(3)

$$M = \tilde{a} \cdot \Sigma f(x) \ell_{x}$$
(4)

Calculations are then made in tabular form, the necessary ordinates being measured off the curves.

and and the set of the set

-16-

- -

, , ,

Appendix II

Graphical Integration of Area and First Moment

This method has been described generally⁷ and is quite accurate if the drawing is done with precision.

Suppose we have area A_1 BB₁ Fig.29. Draw thin strips of the area parallel to the y axis and let their centre lines have lengths f_1, f_2 ... From the ends of these centre lines on curve A. B_1 draw perpendicular lines to the y axis and join the intersections of these lines with the y axis to a point O_1 . Draw for each strip parallel lines to $O_1 l_1$, $O_1 2_1$ as in Fig.29.

From similarity of triangles

$$f_{1} \times dx = y_{1} \times \ell$$

$$f_{2} \times dx = y_{2} \times \ell$$

$$f_{3} \times dx = y_{3} \times \ell$$

$$f_{n} \times dx = y_{n} \times \ell$$

$$\boxed{f_{n} \times dx} = y_{n} \times \ell$$

but

If	sca	ale	of		f (x)	Ξ	l: n
					x	=	l:m
sce	lc	of	area			H	l:m.n

Then area $A_1ABB_1 = m \cdot n \times \ell \times B_1 B_2$.

The method of graphical integration of the static moment of area M_1ABB_1 relative to the y axis is shown in Fig. 30. From the ends of the centre lines of the strips on curve A.B. draw perpendicular lines to a line parallel to the y axis, yy'. Join the intersections of these lines with line yy' to 0, and mark on the centre lines the intersections with these lines, $l_2, 2_2$ From points $l_2, 2_2, 3_2, \ldots$ draw perpendicular lines with

the y axis, l_3 , 2_3 , 3_3 ,.... are jouned to point O_1 . For each strip draw parallel lines to O_1 l_3 , O_1 2_3 , O_1 3_3 as in Fig. 30.

From similarity of triangles

		$\mathbf{f}_1 \times \mathbf{r}_1 = \mathbf{Z}_1 \times \mathbf{h}$		$Z_{l} \times dx = y_{l} \times \ell$
7 1		$\mathbf{f}_2 \times \mathbf{r}_2 = \mathbf{Z}_2 \times \mathbf{h}$		$Z_2 \times dx = y_2 \times \ell$
,	(A)	ويور هوا اول وي جو شد به مه مه خله هم وي وي وي	(B)	بین کہ ہے اور میں شرقہ میں بار اور میں میں میں میں میں میں میں
		$f_n \times r_n = Z_n \times h$		$Z_n \times dx = y_n \times \ell$

From (A) and (B)

$$f_{1} \times r_{1} \times dx = \ell \times h \times y_{1}$$

$$f_{2} \times r_{2} \times dx = \ell \times h \times y_{2}$$

$$f_{n} \times r_{n} \times dx = \ell \times h \times y_{n}$$

$$\mathbf{M} = \int_{A}^{B} \mathbf{f}(\mathbf{x}) \times \mathbf{r}_{\mathbf{x}} \times d\mathbf{x} = \ell \times \mathbf{h} \times \sum_{A}^{B} \mathbf{y} \mathbf{x}$$

but

If scale of

$$f(x) = 1:m$$

$$x = 1:n$$
scale of

$$M = 1 \cdot n^{2}m$$
and

$$M = n^{2}m \times \ell \times h \times B_{1}B_{2}.$$

Table 1

Particulars of small float seaplane

Setting of wing mean chord to fuselage datum	$\alpha_{\omega} = 2^{\circ} 50^{\circ}$
Wing incidence for maximum lift coefficient	$\alpha C_{L_{max}} = 19^{\circ}$
Angle between float datum and heel to heel line	α ₁ = 10 ⁰
Angle of security during take off and landing	$\alpha_{sec} = 3^{\circ}$
(Defined as difference between $\alpha C_{L_{max}}$ and maximum	wing incidence in take

off and landing.)

	Full Scale	Fifth Scale
Wing mean chord č	61.5 ins.	12.3 ins.
Height of C.G. above float datum h _{C.G.}	62.0 ins.	12.4 ins.
Distance between float centre lines ℓ_{f}	77.5 ins.	15.5 ins.
Height of thrust line above C.G. ℓ_{T}	6.75 ins.	1.35 ins.
Wing area gross S	185 feet ²	106.5 ins. ²
All up weight W	1820 іъ	14.6 1b
Maximum take off thrust T	620 1ъ	4.96 lb
" " power	131 BHP	
Maximum nose down pitching moment for take off thrust M _{T C.G.}	349 lb ft	6.70 lb ins.
Maximum nose down pitching moment for take off torque Q	246 ld ft	4.73 lb ins.
Forces and Moments expressed in terms volume of water (62.5 1b per ft ³)	erms of	
All up weight - per float model scale	202 ou in	ns.
	-7- 60 6	•

Maximum thrust on take off - per float model scale 68.6 cu ins. Maximum pitching moment for thrust - per float model scele 92.6 $(ins)^4$ Maximum torque moment for thrust - per float $131 (ns)^4$ model scale 440 cu ins. Total buoyancy per float

Wt. 2078. CP14.K3. Printed in Great Britain

an interesting a state of the state of the state

-

Check controller with a stations	CALCULATION	OF	CROSS	SECTIONAL	AREAS	AT	FLOAT	STATIONS
----------------------------------	-------------	----	-------	-----------	-------	----	-------	----------

Ĕ	\odot	$\overline{2}$	3	④	6	6	\bigcirc	8	9		(1)	@	1	Ð	(5)	(16)	Ī	B	1	@		22	3	•	(25)	(6)	Ø	@	ต
atia	a .	<u> </u>	a2	b <u></u>	0,	b,	a4	Б	R	Ð	2× 0	()+D	③ +€	6-7	101	5×4	34% (I)	1×G	© - <i>G</i>	® 0	\odot	•••	190	6.8	Tx (1)	6) @	8:8	(E)+(P)	(2)+(²)
ぶ	uches.	inches	inches	inches	Inches	inches	Inches	inches	inches	(*)	(*)	inches	in chas	lunkes	linches	tediese		linches		Inchest	[Inches]2	(inches)*	(inches)2	linchest	linches	(mches)2	funche j2	limbers	{inchas} ²
FR																1—								·					······
	0.27	0.42	0.57	0.42	0.5T		0.33	0.19	0 57	36'30'	730	0.84		9 50	0 324	1 2741	0.9563	0.162	03178	0.0514	01132	0.353		01710		0.6662		0.8312	0 8596
$\overline{\mathbf{c}}$	041	0.59	N 81	0.59	0.81		0.47	0 2 9	0 84	36*30'	73*	122		128	0.656	4 2741	0.9563	0.328	0.3178	0.1941	0.2418	8.588		0.3710		1.2258		1 6 008	17+45
3	¢.32	0.54	0 69	0 54	1 13	0 54	075	0.36	1 13	41*30	83*	101	1 82	1.88	1.276	14483	4.9925	0.638	0.4560	0.2302	0 1730	0.546	0.982	0.6760		07190	1703	2 377	2 6672
•	0.43	0.71	0.95	0 71	1.56	0 70	1 21	0.42	1 56	50*	1000	138	2 51	1.71	2414	17454	0.9848	1217	07606	0 9130	0 20 30	0 880	1755	11630		1283	3 038	4 201	51140
(5)	049	0 76	1 10	076	185	Q.76	155	0.46	1 85	57-30	115°	i 55 -	295	3.40	3422	2 0070	0 9 0 63	1 74	1 09 07	1 8450	9.3720	1.210	2.240	15620		4529	1 129	* 244	7 94 90
6	0 57	0.74	125	0.72	2 08	0.72	195	0.37	2 08	70*20'	14040	182	833	4 03	4.330	24550	0.6338	2-165	1 82(2	3 9400	0.4210	9 3 10	2 400	1 4300		1784	4 1 31	5 691	
$\overline{\mathbf{O}}$	0 62	0.68	1 33	0.66	2.25	0 66	2.24	0 11	225	85°30'	171.	195	3 58	449	5 060	2 9834	2.1564	2 5 30	2 6210	7 16 0 0	0.4210	1 130	2 360	04940		1551	3.911	4405	11 5650
8	0.65	0 60	141	Q.59	2 38	0.59	238	0.22	2 38			2 06	379	478	5.660			2.830			0 2300	1 215	2 2 2 5	4 0450	8 86	4 605	3 640	4 995	13 9650
9	0 64	0.52	144	0 54	2.48	0.54	2.48	046	248			2 08	3 92	4.96	6.150	—		2.075			0.3325	1.824	2 115	2.2800	970	14135	2 51 15	5 0 4 95	
9	0 66	0.4T	148	0.46	2 54	0.46	2 54	0 69	2 54	—		214	4 02	50B	6.450			3.225			0.3160		4 850	3 5 10	10 20	1994	3 144	6 6 54	45 8540
⊕	0.69	0.44	150	0.42	2.59	042	2 59	079	2 55			219	4 09	5 It	6720			3 360			0.304+	0 9 9 6	4 790	4 090	10 55	1994	2 944	7.034	10 0010
l	0 71	0.42	1.47	1.40	2 60	0.42	2 60	0.86	2.60			2.18	407	520	6.760			3 3 80			9 2980	0 812	1710	A 476	10 60	4476	2 830	7 3 5 0	47 5500
8	0.71	0.42	147	0.40	2.60	0.41	2.60	0 86	2 60			2 18	4 07	520	6.760			3310			0.2510	6-812	1716	4.410	10.65	4 470	2 380	1 350	1 4 640
8	58.0	0.44	1 52	0.43	2.55	0.43	2 59	0 53	2 59			2.34	44	5.18	6 12 0	_		3 3 60			3.6 100	4003	4 176	2750	10.55	1 366	3136	5 9 96	16 4 360
8	2 56	128	—		256		2.56	0.20	2 56	_				112	6.560			3280			39800			1 0 22	10 30			4 3 0 3	4 6010
2	245	128	-	—	2 49	—	2 49	0 01	2.49				<u> </u>	4.91	5.210			3,105			3 1990			0.850	\$ 15			1 2 4 8	12. 1100
23	2.40	128	—		2 40		2 33	0 37	2.40	77•	1540			473	5 760	2.6878	0.4384	2 880	2 24 94	6 4 60	3.87.04			1150				A	14 9858
24	2 24	128			2 24		2 19	0.28	2 24	75°	150-			443	5 920	2 6780	0 5000	2510	2 17:80	5.4 60	2 8620			1240				4105	9 5670
(3)	.2.02	126			2 02		1 96	0.29	2 02	74°	148°			3.98	4 085	2.5834	0.6233	1 044	2 0531	4 910	9 8788			4 1 5 5				3 7 2 4	7.4.400
8	175	1,18	—		1.75		1 51	0 18	175	78°	1560			3.26	3.010	1.1228	0 4067	1515	23161	3 650	2 0320			0.917				3 1 30	54690
ন্দ্র	341	102	-		141		141	0.03	1.41					2.82	1390			0.995			14300			0.025				1 819	44454
23	1 04	075		_	1 04		1 04	0.33	1.04					2.08	1.4 80			0741		·	0.1344			N 687	0 10			1.315	70300
(3)	0.61	0.47	-1		0 61	_	0 61	079	0 61					1.21	0.372			0186			0 9000							1.507	3 8210
9	0 21	0 16	-1		0 21		0.51	113	021					4.43	0.044			0 0 2 2			0.0124			0 476	756.0	<u> </u>		1.245	1 97.40
	╘─────┛								-									• • • • •			A-4714	- 1		A.2.15	0 002			#2010	0.2110

 $F_i = \alpha_i x b_i = (2)$ for all stations $F_{1} = (\alpha_{1} + \alpha_{2}) \times \tilde{D}_{2} = (22)$ for stations (1) till (20) $F_2 = (a_2 + a_3) \times b_3 = 23$ for stations 3 till 20 $F_4 = (Q_3 + Q_4) \times D_4 = (24)$ for all stations $F_{s}^{1} = \frac{R^{1}}{2} x (2\pi \Theta_{ha}^{2} - \sin 2\Theta) = (20)$ for stations (1) till (7) and (23) till (26) $F_5^{\mu} = \frac{T_1 \times R^2}{2} = (25)$ for stations (8) till (22) and (27) till (30)

TABLE 2

TABLE

3

TABUL/	ATED	VALUE	ES	OF	WE1	TED	CROSS	SEC	CTION	AL	AREAS
OF FL	DAT	FOR	Α	RAN	NGE	OF	ATTITUC	DES	AND	DF	RAFTS,

¥

_			1 1	<u>// </u>			<u></u>	TUUL	<u></u>		<u>VAC 13</u>
	'n.	3	3	32	3	3	35	36	37	38	39
-	atio	, oć 1	-3'		oK 2	= 0°		 ح	3.	¢.	- 6•
	\$t	dz = 2.5"	d ₃ =3 5"	d ₁ =1 5"	d1=2 5"	d ₃ =3.5"	d4=4.7"	d,=25"	d3=35"	d2=25"	d ₃ = 3.5"
	(P)										
	(1)	0.40	0.8886			0.15	0 8886				—
	2	i. 00	1 7049	<u> </u>		0 65	1.7049				
	3	1.50	2 6672		0 10	110	26672		0 05		
	4	280	5.00		0 50	2.50	5.1140		040		
ļ	5	4 30	7 0 5	0.15	1 30	4 15	7.249	0 15	1 2 5		010
	6	6 i 0	9 10	0 45	2 50	6 25	9 561	0.50	270	—	0 5 5
	\bigcirc	740	10.90	0 8 5	3 9 5	7.80	11 565	105	4 4 5	015	1 35
	8	9 10	12.65	1.60	5.65	9.85	13.765	2 30	6.70	0.475	3.10
	9	10.40	14 20	2 4 0	Tio	11 60	15 5085	370	8.45	1.60	5.10
	(1)	11.30	15.45	3 30	8 35	12.95	16.854	5.25	10.10	2.28	7.05
•		11 55	15 70	4.25	8.15	13.55	17.584	650	11 05	3 80	8.60
	(2)	11.70	i5 85	4 30	9.50	14 00	17 950	7 15	11.95	480	978
1	(13)	11.30	15.55	4.30	9 50	14.00	17.950	7.40	12.20	5.40	10 30
2	(4)	11 09	15.30	4.30	9.50	14 00	17 950	765	12 45	595	10 80
	(15)	10 80	15.10	4 20	9 50	14.00	(7.950	8.00	12.70	6 55	11.32
•	(16)	10.65	14 95	4 30	9.50	14 00	17.950	835	13 10	7 2 5	11.95
	(1)	10 15	14 65	4.30	9 50	14.00	17.950	8 50	13 20	7.60	12 32
	(18)	9 95	14.45	4 30	9 50	14 00	17, 950	8 85	13 30	8 30	12 90
	(19)	9.65	14 30	4.30	9.50	14.00	17 950	9.15	13 70	870	13 46
	20	9.50	14 00	4 30	9.50	14.00	17 950	9.50	14.00	950	14.00
	20	8.30	12 95	2 45	8 50	13 10	16 436	840	13 15	870	13.15
	21	5.60	10.55	2.10	610	41.00	14 602	640	11.15	6 80	11.45
	22	3.80	8.70	i 45	4.85	9 50	12 89	5 5 5	10 00	635	10 55
	23	245	6 50	0.75	3.20	7.65	11.285	4 30	8 55	5,4 0	9 45
	24)	116	4 60	0 15	2.40	6.00	9.562	340	7 15	4.75	810
	25	070	2 90		160	470	7 94	2.50	6.05	3 95	7 15
	26		1,70		0 90	3 15	6.169	1.80	4.65	3.15	5.85
	27		090		0 4 0	200	4.635	1.25	3 4 5	2.40	4. 635
	28		0 35			1.30	3 827	0 15	290	210	3.817
1	29					0.70	1 8 2 9	0 45	1, 55	1.25	1 829
	30					0.25	0 5176	0 25	0 60	0 50	0 5776
	31										

 $(ALL VALUES IN THIS TABLE IN (INCHES)^2)$

CALCULATION OF BUOYANCY, MOMENT OF BUOYANCY, AND CENTRE OF BUOYANCY FOR

a(=-3°; d=2.5"

a =-3"; d = 3 5""

. <u>.</u>	(10)	(41)	(# <u>?</u>)		(H)	(45)
ctu	42 5 b	Fén	here.	Fasta	Faxdl	Farlingxdl
Se	inckes	(Inches) ^a	inakes	[inches] ³	(inches) ⁵	(inches) ⁴
(1)	10		0.806		0425	0 2143
2	10	130	1 36	1 17	— —	_
3	10	2.15	2 36	5 07		
4	10	3.10	3 36	1840		
5	10	4 00	4 36	1740		
6	10	4.92	5 36	26.40		
$\overline{\mathcal{O}}$	40	2 90	6 36	37 50		
8	10	6.80	7 36	50 00		
9	fa	270	8 36	64 4 0		
9	10	8.70	9 36	8140		
9	10	9.55	10 36	98.80		
(2)	10	18.35	11 36	117 50		
3	10	ar et	12 36°	13810		
۲	10	1140	13.36	191 50		- <u></u>
6	4.6	<u> </u>	14 36	167.40		
	i,o	11 10	1536	181 20		
	Ła	11 65	16.96	18+ 30		
	1.6	14 30	17 26	196.00	——————————————————————————————————————	
	LÓ	16.05	18.36	252 00		
Ð	1.0	10.25	15.36	202.00		
£ 1	10	10 50	20 36	213 50		· -
<u>(88</u>	1.0	1036	21 36	tto ae		
23	LO	10 05	22 36	214 50		
	10	3 25	23:36	230 80		
Ø	0.9	8 65	24 29		8.69	241 00
26	C!	930	24 69		0.93	21 9B
প্র	19	760	2536	192 30		
23	10	5 30	26 36	139 40		
(19)	io	4.10	17 36	442.00		
30	ŁO	3.87	2 8 36	98.00		
3	1.0	2 55	29 36	74 20		
32	40	1 70	30 36	\$1 60		
33	10	140	31 36	31 36		
H	10	072	32 36	23 28		
35	10	0 45	31 86	15 00		
39	03		33 94		0 30	1017
		124.47		336478	1 9 075	13118

	46	(I)	49	(1)	.50	Ø
tion	dt	F.	ha	Faxla	Fa × dl	Faxlantdt
Sec	inches	(inches) ²	inches	(inches)3	(inches)3	(inches)4
(1)	te		0 246		0 975	0 249
2	to	270	1 280	3 558		
3	fo	3 90	2 18	\$ 830		
$\textcircled{\begin{tabular}{c} \bullet \end{array}}$	10	5 10	3 2 8	16 720		
5	10	6.25	4 28	26 800		
6	10	7 45	5 28	39 30		
\bigcirc	1.0	8 60	\$,28	54 00		
8	10	9 50	7 28	71 23	— <u> </u>	
9	40	10 55	8 18	90 75		· · · · · ·
(1)	10	12 01	9 28	08 F11		
	10	13 02	10 28	134 20		
(12)	1.0	14 00	11 28	158 00		
<u>(</u>]	to .	14 70	12 2 8	1 80 50		
•	10	1526	12 18	202 20	—	
()	La	1560	14 28	292 60		
6	10	1575	15 14	240.80		
\Box	10	15 18	16.18	288 70		
®	10	1561	17 18	170 00		
. (9)	10	1540	18-28	2 \$1 30		
20	Ło	1510	19 28	2 93 90		• • • • • •
2	10	1500	20 2.8	30460		<u> </u>
æ	(0	14 78	2(98	314 50		
8	10	14 55	22 2 8	324 20		
24	10	14 35	23 28	334 50		
(1)	10	14 16	24 28	344 00		
25	015	14 00	24 855		2 40	52 30
<u></u>	0 85	13 10	25 355		11 13	282 00
23	Ło	10 7 5	26 28	282 50		
(1)	1.0	935	27 2 5	255 20		
30	1.0	8 35	18 28	236 00		
31	10	720	29 28	240 50		
32	LO	570	30 28	112 40		
<u> </u>	40	430	34,28	1 34 20		
<u>(1</u>)	4.0	3 2 5	32 28	105 00		
<u>(15)</u>	{0	2 \$3	33 2 8	77 60		
<u>(5)</u>	10	167	34 28	57 25		
0	10	110	35.28	38 85		
	10	070	36 2 8	25 40		
	10	0.40	37 28	14 80		
£	4 (0		38 146		0154	5 26
		345 16		5902 17	* 14 16	339.80

BUDYANCY $\Delta_d = 234.5 \text{ (INCHES)}^3$ MOMENT OF BUDYANCY $M_\Delta = 3800 \text{ (INCHES)}^4$. About F.P. CENTRE OF BUOYANCY $\mathcal{L}_{\Delta} = 16.4$ INCHES FROM F P

TABLE

BUOYANCY $\Delta_{d} = 359.6$ (INCHES)³ MOMENT OF BUOYANCY $M_{\Delta} = 6242$ (INCHES)⁴ About FP CENTRE OF BUOYANCY $L_{\Delta} = 17.36$ INCHES FROM FP

 $\alpha = 0^{\circ}$, $d = 2.5^{\circ}$

TABLE 4 SHEET 2

 $c(=0^{\circ}, d=15^{\circ})$

	<u>®</u>	53	6	S	<u></u>	জ
tio	dl	Fdu	Lan	Fixton	F _h ×dt	Finelsoxdl
ise.	Inches	(inches) ^a	inches	(inches) ³	{inches} ³	(inches) ⁴
(1)	06		3.8		0 015	0 0 57
2	10	0 10	45	0 45		
3	10	0 25	55	1 375		
•	10	0.45	65	2 9 2 2		
⑤	10	0.75	75	5.625		
G	10	£45	8 5	9780		
\bigcirc	10	1 65	5 5	15 69		
	10	248	10 5	22 90		
	io	2 75	44.5	3t 65		
()	10	3 30	(2 5	41 25		
	10	3 90	12 5	52 60		
(12)	10	4 26	14 5	61 70		
(13)	10	4 28	15.5	66 40		
(8.2	430	20 2		35 26	112.00
(15)	02	320	24 5		0 64	15 68
	02	260	24 ग		0 52	12 84
(1)	ŌÌ	240	24 9		048	44.90
(18)	10	2 2 5	25 5	57 40		
0	10	190	26 5	5040		
8	10	4 55	27 5	42 60		
2	10	1 10	28 5	<u>91 40</u>		
2	10	0 10	29. 5	20 60		
23	10	0 35	30 5	10 66		
1	45		31 15		0 045	1.40
þ <u>æ</u> ær að _s a skrift sem	M	46.82		52540	36.96	765 88

 $\Delta = 83.78$ (INCHES)³ Md = 1281 (INCHES)⁴ $L_{\Delta} = 15.32$ INCHES,

	ß	69	60	6	ഌ	6
tion	<u> </u>	Fdh	han	Fdy×lxx	Filexat	Fuxlmxdt
š	inches	(inches) ²	inches	(inches) ³	(Inches) ²	(inches)4
Ð	09		11		0 045	0 0765
2	10	0 35	25	0815	· · · · · · · · · · · · · · · · · · ·	
3	10	0 70	35	2 4 5 0		
4	10	115	4 5	15 17 5		
5	10	170	55	8 350		
6	10	2 60	65	16900		
1	10	3.60	75	27 000		
8	10	4.68	85	39 800	· · · · · · · · · · · · · · · · · · ·	
9	10	570	95	59 100		
(1)	10	670	40 5	70400		
	10	7 68	48 5	88 400		
®	10	8 40	12.5	105 000		
(3)	10	8 95	43 5	120 800		·
(4)	ło	9 30	14 5	134 800	· · · · · · · · · · · · · · · · · · ·	
(15)	10	9 48	(55	147 000	· <u> </u>	
(6)	8.4	9 50	20 2		79 8¢	1610 00
(1)	06	8 65	24 7		5 19	128 00
(18)	10	7 25	25.5	184 8		
(1)	10	6 0 5	265	160 0		
20	10	505	27 5	138.8		
(2)	to -	4 2 0	28 5	149 6	· · · · · · · · · · · · · · · · · · ·	
(22)	10	8 4 5	29 5	101 5		
23	10	275	30 5	13 8		
24	fa	2 15	31 5	61 1		
(1)	10	1 65	32 5	536		
26	10	1 20	33 5	40 2		
Ð	10	0 85	34 5	293	·	
28	10	0 55	35 5	19.5		
	10	025	36 5	9.41		
29			t	1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		37 233		0 0 3 5	1304
89 30	10	103.34	37 233	180547	0035 8507	1 304

TABLE 4.

SHEET 3.

d=0°; d=35"

	64	65	66	ୌ	68	69
tion	41	Fdn	ban	Fan×ban	Fuxeli	Fin xtnx xdt
Şeç	.inches	(inches) ²	inches	(inches) ³	(inches) ³	(inches)4
(1)	0 9		07		0 2 7	0 (89
2	10	105	15	1 51		
3	10	1.95	25	488		
4	10	190	3.5	10 1 5		
5	10	395	4 5	1775		
٢	10	540	55	28.05		
\bigcirc	10	6.35	6. 5	4120		
	10	7 60	75	57 00		
9	10	8 85	85	75 20		
(10)	10	1010	95	96 00		
	10	1125	10 5	145 00		
(12)	10	4 2 45	11 5	139.50		
(13)	10	12 95	12 5	162 00		
(14)	10	13 50	13 5	182 20		
(15)	1.0	1385	14 5	201 00		
(6)	to	13 58	15 5	216 50		
1	84	14 00	20 2		117 50	3442 000
(18)	0.6	1320	24 7		7 92	195.000
(19)	10	11 90	255	304 00		
20	10	10,60	26.5	28100		
(21)	10	9 50	27 5	261 00		
22	10	8 50	28.5	242 90		
23	1.0	7 50	29.5	221 00		
24)	10	6 55	30. 5	199 50		
25	10	5, 60	31 5	176.50		
26	10	470	32 5	152 75		- <u></u>
87	10	3 90	33 5	130.50		
28	10	310	34 5	106 80		
<u>(</u> 9)	10	2 4 0	35 5	85 20		
30	10	1 85	36 5	67 50		
31	10	140	37 5	52.50		
32	10	1 00	38 5	38 50		
33	10	010	39 5	27 65	·	
34	10	040	40 5	16 20		
35	10	020	44 5	8 30		
36	01		42 233		0 0 3 5	1 478
<u></u>		330 65		372 2 34	0 30	3638 66

 $\Delta = 3310 (INCHES)^3 M_d = 7361 (INCHES)^4$ $L_0 = 218 INCHES$ $d = 0^{\circ}; d = 47^{\circ}$

TABLE 4.

SHEET 4.

	6		æ	73	A	ß	76	$\overline{\mathcal{D}}$	78	\bigcirc	80	8)	(82)	(83)
				(1)+(12)	±×13	@×4		2×12	(1)+(1)	18:13	\$x70	(7)×60	81+76	(T5)× (82)
scti	તા	Ę	F ₂	Fi+F1	$\frac{1}{2}(F_1 + F_2)$	stlf+5}dt	hes.	2F2	$2F_{1} + F_{1}$	<u>25+5</u> 5+5	fal			
Ň	inches	(inches) ²	(inches)2	(inches) ²	(inches)2	(inches) ³	inches	(inches) ²	(inches) ²		inches	inches	inches	(inches) ⁴
	04		1 00		0 50	0 2 5	+					0 153	0 133	0 0 3 9 2
2	06	100	2.00	3 00	1 50	0 90	040	4.00	500	£ 665	-0 20	0 333	0733	0.6600
3	10	200	3 40	5 40	270	2.70	1.90	6.80	880	1 63	0.333	0 543	1,543	4 170
4	72	340	13 62	17 02	8 51	61 20	2.00	27 24	30.64	1 80	2 40	4 32	6 32 0	316 500
5	9.0	13.62	14 60	28 22	54 15	11.29	920	2.9 20	42 82	1 5 1 5	0266	0 404	9 604	108 800
6	10	14 60	15 64	30 24	15 12	1512	10 00	31 28	45 88	153	0 333	0.505	10 530	159 000
\overline{O}	10	15 64	16 56	32 20	46 ID	1610	11 00	33 12	4876	4 54	0 333	0 504	11 504	185 500
€	1.0	16 56	17 20	3376	16 88	16 88	12.00	34 40	20 96	1 505	0 333	0 504	12 504	244 500
9	iO	17 20	17 64	34 14	17 42	17 42	13 00	35 28	52 48	1 505	0 3 3 5	0 500	13 500	235 500
()	£ O	17 64	17 90	35 54	{7 57	1751	14 00	3580	53 44	1 505	0 333	0 500	14 500	255 000
	10	17 90	17 85	35 85	17 925	17 925	15 00			<u> </u>		0 500	15 500	278 000
(12)	8.4	17 95	17 95		17 95	151.00	16 00					4 2 00	10 200	3050 000
(3)	04	17 55	16 6D	34 6 5	17 275	6.91	20.40	33 20	51 15	148	0 133	C 4975	20 597	142 000
(1)	04	16 60	1575	32 35	16175	641	20 80	31 50	41 10	1.485	0 133	0 1 9 8	10 998	135 400
(15)	0.4	15 75	15 075	30 325	15424	64	24 28	30 15	45 30	1 488	0 133	0 158	24 398	131 800
(16)	0.4	15 015	14 65	29 7 25	14 862	5 95	2460	2930	44 375	1490	0 133	0 498	21 798	129 500
(7)	80	14 650	6.45	24 100	10 55	8440	30 00	12 90	27 55	1.31	2 660	3.490	33 4 9 0	2830 000
(18)	20	6 4 5	4 55	14 00	5 50	11 00	34 00	\$ 10	15 55	1.415	0.666	0 942	34 942	384.000
(1)	20	4.55	2 80	6 35	8 175	6 35	36 00	E 60	10 15	1 60	0 666	1062	37 062	235.000
29	i. 0	2 80	2 05	4 85	2 4 2 5	2 4 2 5	38.00	4 10	6 50	1 4 8 5	0 3 3 3	0 47 8	38 478	93 500
21	1.0	2 05	1 35	340	1700	110	39 00	2 7 0	4 7 5	1 3 9 5	0 333	465	39 4 65	67,100
22	1.0	1 35	0.75	210	1 0 5 0	1 05	40.00	1 50	2 8 5	1355	0 333	452	40.451	42 400
(23)	10	0 7 5	0 30	1 95	0 525	0.525	41 00	0 60	1.35	1285	0 333	428	41 428	24 700
•	07	030				0.105	42.00					4 67	42 467	4 450
		-			-	440 41								<u>900i 5</u>

 $l_{\Delta} = 20.5$ inches from FP $\Delta = 440.41$ (inches)³ $M_{\Delta} = 900i$ (inches)⁴ about FP

∝=3°; d=25"

(×	3• ;;	d = 3	5"
<u> </u>			

	84	85	86	87	83	(89)
ectio	dt	Fan	l _{xn}	Fixth	Exdl	Franklonxdl
ۍ ۲	inches	(inches) ^L	inches	(inches)3	[inckes] ³	(inches)4
•	01		3 827		0 028	0 107
$\textcircled{\begin{tabular}{ c c c c c } \hline \hline$	10	045	4 56	0 684		
3	40	0 30	5 56	1 665		
•	10	0 50	6, 56	3 135		
5	fð	1 01	7, 56	7710		
6	10	168	8 36	t4 380		
1	10	2 50	9 5 6	24 100	<u> </u>	
8	10	3 45	10 56	35.405		
9	10	4 12	11 86	41 700		
()	10	490	42 56	61 600		
0	10	5 55	13.56	75 250	<u> </u>	
(2)	(0	620	14.56	90,300	·	
(1)	10	\$75	45 56	105.000	·	
•	10	7 2 2	16.36	121 200		
(6)	10	730	17 56	136.200		·
••	10	810	18.56	i Sazoo		
1	10	\$ 70	1956	162 200		
(13)	10	8 52	20 56	175 000		
0	10	8 80	21.56	489 506		
20	10	3 10	22.56	295 200	<u> </u>	
20	0.7	940	23 41		4 580	154 00
æ	53	925	23.95		2 760	66 80
23	10	750	24 56	194 000		
2)	10	6 55	25 56	167 200		
25	10	5 20	26 56	154 000		
26	10	5.30	27 56	146000		
27	10	4 75	28.56	135 000		
23	10	4 20	29 56	124 000		
3	{0	370	30 56	113 900		
30	40	3 15	31 56	99300		
1)	10	260	32 56	84 506		
32	1.0	2 05	33 56	62 650		
33	10	160	14 56	55 200		
3	10	130	35 56	46 150		
35	10	100	36, 86	36 560		
30	10	0 20	37 56	30 000		
জ	40	0 60	38 56	21.400		
9	10	040	39,25	15 250		
3)	10	0 {5	40 56	6 080		
(1)	1.7		44 627		0 0 54	2 100
		147 01		311 8 66	9419	12 2 1

,

 $\Delta = 1564 (INCHES)^3$ Md = 3341 (INCHES)⁴ $\hat{Z}_A = 214$ INCHES

.

	<u></u>	<u>(ii)</u>	(2)			
tion	dt	E			5	
Seci	inches	(inches)2	(nehas	finakoa)3	Finebash3	- dax tan Xdl
6	l 0.55		4 9 817	(Incass)-	(incres).	(INCRES]"
 	10	0 7.6	9 59	A 340		00417
 	10	0 6 0	3.59	2455	<u> </u>	
- Č	1.0	120	4 59	5 F J A		
Ő	16	200	5.5	11440		
 	10	3.05	6 53	50 NPh		
À	10	4 20	1 59	34 870		- <u> </u>
(1)	10	5 65	R 34	48.530		
	10	745	9.59	68 500		<u> </u>
 	40	8 45	10 59	84400		
 	10	9.55	11 54	TED EAD		
 @	10	10.50	49 59	(19 000		
	10	44.2.8	13.59	452 040		
	10	1475	14.59	174 500		
<u> </u>	10	19.48	18 59	100500	ļ	
	4.0	49.45	16 53	300700		
 	10	12 10	19 64	198 100		
	10	19 68	103	526 344		
		(2.60	10 57 *	1 84 OUV		
 	10	1300	19 39	234 340		
 	10	1315	10 07	210 000		
	1 N	10.07	21 37			
<u> </u>	, uu 	1 13-93	11 24	248 840	£ 85	
	0.5	13.50	84.84		6 93	162 00
 	10	13.40	94 55	115.0.04		
<u></u>	4.0	1/ 10		995 300		
	10	1030	16 59	\$74 0AD		
	10	8 ch	84 65	364 508		
	10		41.33	246 506		
	10	9 02 S 08		218 000		
	10	0 va 11 24	47 77 28 86	952 500		
 	1.0	1 94 C 80	21 FG	745 EAA		
	10	S En	31 37	141 TEA		
	(0	5 05	12 81	169 508		
		4 30	34 54	14 8 58D		
	10	3 45	35 59	128750		
	10	215	36 51	116 500		
 	10	9.90	37 54	109 000		
		2 55	28 53	91 300		
<u> </u>	10	2.00	31 59	75480		
	10	100	40 59	40 550		
<u> </u>	10	0.20	41 59	19 ALN		
	67		45 384	·A 700	0 0 20	14400
					4 4 5 5	7 7800
		286.62		596174	1381	325 5

 $\Delta = 300.4 \text{ (INCHES)}^3 \text{ Md} = 6287 \text{ (INCHES)}^4$ $\mathcal{L}_{A} = 20.9 \text{ INCHES}$

TABLE4.SHEET5.

∝*= 6°; d=2.5"

d'= 6 , d=35"

ę	36	§ ¶	91	9	(1)	6
ct.e	dl	Ę.,	l _m	FaxLan	F, xdl	Extrate
Š	inches	(inches) ²	Inches	(inches) ³	(inches) ³	(inches)4
1	10		7 746		a lo	9,7746
2	10	0.30	8 58	268		
3	10	0.60	9 58	5 74		
٠	10	1075	10 52	11 36		
\bigcirc	1 0	1735	11 58	2010		
6	10	270	12 58	33 98		
\bigcirc	10	3 65	f3 58	49.60		
8	i o	436	14 58	67 68		
9	40	500	43. 58	77 30	<u></u>	
\odot	10	5 60	16 5\$	93 40		
	10	6.15	17 58	108 10		
	10	670	18.51	124 30		
(1)	10	720	18 56	141.00		
()	{ D	780	20 53	160.30	·	
(5)	fo	8,15	14 58	120 00	· · · · · · · · · · · · · · · · · · ·	
(6)	16	1 92	22.58	201 00	·	
0	04	935	23 2 8		374 ,	\$7.4s
•	06	5.00	23 78		540	12820
•	10	00 B	24 58	196 50		
10	10	7 07	15 58	10 80		
\odot	10	6 50	24 52	172 50		
<u></u>	f D	6 05	27 58	166 50		—
	10	5.60	18 55	160 00		<u> </u>
2	to	548	19 58	153 00		 -
	15	472	30 58	144 00		
ß	10	4.30	31 58	135 50		
(FT)	10	390	37 58	126 88		
(23)	10	3 45	33 18	115 60		
2	10	2.95	34 88	101 80		
30	10	250	35 5\$	18 10		
$\textcircled{\blue}{\blue}$	10	2.30	36 58	84 10		
<u>.</u>	10	210	87 58	71 50		
33	10	1 60	39 58	61 10		<u> </u>
<u>(</u>	10	1 10	39 58	43 50		
35	10	0 65	40 58	24 35		
30	10	027	41 58	10 80		
37	44		42 441		0.0826	9 202
		138.02		3219 24	8,32	219 5

Δ	=	147	4	(11	i CHES) ³		Ma =	3439	(INCHES) 4	
				Là.	=	23	3	INC	HZS	-	

$\frac{1}{23}$ $\frac{1}{120}$ $\frac{1}{5a}$ $\frac{1}$		(R)	(19)	(M)	63	(m)	67
$\overline{3}$ Inclus Inclus Inclus Inclus Inclus 1 1 $$ 4748 $$ 013 0617 3 10 020 566 1705 $$ $$ 3 10 120 763 9240 $$ $$ 6 10 235 869 7040 $$ $$ 6 10 380 948 55806 $$ $$ 6 10 860 1068 122200 $$ $$ 6 10 855 1368 152200 $$ $$ 6 10 8158 14220 $$ $$ $$ 6 10 8158 142200 $$ $$ $$ 6 10 1448 1758 135000 $$ $$ 6 10 1418 1758	ctio	dl	F ₀	L.,	5.12	Exdl	Exhed
1 1 $4748 -$ 013 0617 2 40 030 566 1705 3 19 060 648 4005 3 19 120 763 92% 4 10 120 763 92% 6 10 380 548 1575 7 10 560 1365 55760 7 10 561 1559	ŝ	liches	[inches]"	inches	(inches) ³	(inches) ³	(mches)4
3 4 0 0 30 5 66 4 105	(1)	13	<u> </u>	4 748 +		013	713 0
3 ℓ_0 0 60 6.62 4.62 4 005 6 10 120 765 9 146 6 10 2 35 8 69 10 600 6 10 2 35 8 69 10 600 7 40 9 60 10 635 50 700 7 40 9 60 12 200 9 10 8 05 12 200 10 10 8 05 14 68 19 2 200 11 10 8 05 14 68 19 2 200	٤	10	0 3 0	5 68	1 705		
4 1 0 1 120 763 9 <th>3</th> <th>10</th> <th>0 60</th> <th>6.68</th> <th>4 005</th> <th></th> <th></th>	3	10	0 60	6.68	4 005		
S i 0 2 35 3 48 20 400	•	10	1 20	7 68	5 248		
(a) 10 3 80 9 43 36 750	5	10	2 35	8 68	10 400		
7 10 360 1063 5070 $$ 8 10 806 1263 8020 $$ 10 806 1263 10240 $$ 10 806 1263 10240 $$ 10 10 895 1643 112200 $$ 11 10 895 1643 112200 $$ 11 10 895 1643 112200 $$ 11 10 1445 14200 $$ $$ 11 10 1126 1754 153000 $$ $$ 11 10 1146 1253000 $$ $ $	•	10	3 80	5 68	36 750		
(3) 1 0 6 87 1 1 68 8 0 200	1	10	5 60	10 68	50 800		
3 40 806 12 65 10 2 800	8	10	6 87	11 68	80 200		
(1) 4 0 8 35 13 68 12 2 200 (1) 1 0 10.15 14 65 14 2 200 (1) 1 0 10.15 14 65 14 2 200 (1) 1 0 10.15 14 65 14 2 200 (1) 1 0 10.75 14 65 14 0 00 (1) 1 0 11.25 11.65 11.00 (1) 1 0 11.25 11.65 21.8 100 (1) 1 0 11.45 20.69 261.000 (1) 1 0 11.45 20.69 261.000 (1) 1 0 11.45 20.69 261.000 (1) 1.0 11.55 21.463 215.000	9	10	8 06	12 68	101 ##0	——	
ii) i 0 9 T0 14 65 14 2 26 ii) i 0 4 6.16 15 63 16 0 50 iii) i 0 16 10 75 16 65 17 000 iii) i 0 14 20 (T 65 193 0x0 iii) i 0 14 12 (T 65 193 0x0 iii) i 0 14 12 (T 65 193 0x0 iii) i 0 14 13 19 64 218 100 iii) i 0 14 45 20.63 262 000 iii) i 0 13 15 34 64 237 000 iii) i 0 13 15 24 63 310 140 iii) i 0 13 15 24 63 312 000 iii) i 0 13 15 24 63 315 040 iii) i 0 14 10 25 63 235 000 iii) i 0 14 50 24 53 25 000 iiii) 10 <th>•</th> <th>10</th> <th>8 95</th> <th>13 68</th> <th>122 200</th> <th></th> <th></th>	•	10	8 95	13 68	122 200		
(1) (1)	(1)	10	970	14 68	141 200		
(3) 10 1075 16.62 1700 (4) 10 1128 1762 1930ac (4) 10 1128 1762 1930ac (5) 10 1128 1762 1930ac (6) 10 1145 1263 21808 (6) 10 1145 20.63 25200 (7) 10 1145 20.63 25200 (8) 10 1315 21464 235500 (9) 10 1565 22.69 310.484 (9) 10 1555 21.69 310.484 (10) 10 155 21.69 310.484 (10) 10 16.65 12.69 280100 (11) 10 116 25.53 281500 (10) 9.85 27.58 281500 (10) 9.60 25.53 <t< th=""><th>(1)</th><th>10</th><th>10.16</th><th>15 68</th><th>140 500</th><th></th><th>—</th></t<>	(1)	10	10.16	15 68	140 500		—
14 1 <th1< th=""> <th1< th=""></th1<></th1<>	(1)	10	1075	16.65	119 000		
Image: system of the syste		10	11 20	17 63	153 000		
(i) 10 12 11 18 64 227 ave	6	10	44 68	12 68	218 105	—	
(T) 10 1145 20.43 262.000	•	10	42.11	19.64	227 000		
(6) 40 13.15 21.461 285.500 (1) 40 13.45 22.43 310.480 (1) 10 13.45 22.43 310.480 (1) 10 13.45 23.48 312.080 (1) 1.0 11.95 24.48 295.060 (2) 10 11.95 24.48 295.060 (2) 10 11.95 24.68 280.160 (2) 10 16.05 26.68 281.500 (2) 10 9.85 27.68 281.500 (2) 10 9.65 $23.52.200$ (2) 10 8.60 $23.57.200$ (2) 10 7.35 34.68 $19.57.00$ (2) 10 6.12 32.68 $2.05.75.0$ (3) 10 5.58	Ē	10	11.45	20.69	2 62 060		
(1) 4.0 15.48 22.43 310.440 $$ (1) 4.0 19.45 23.68 312.060 $$ (1) 1.0 11.95 24.68 395.060 $$ (2) 1.0 11.95 24.68 395.060 $$ (2) 1.0 11.95 24.68 295.060 $$ (3) 1.0 10.65 24.68 280.160 $$ (3) 1.0 9.85 27.68 281.500 $$ (4) 9.85 27.68 281.500 $$ (3) 1.0 9.85 27.68 285.92 $$ (3) 1.0 8.60 29.58 235.920 $$ (3) 1.0 8.60 29.58 242.900 $$ $$ (3) 1.0 6.12 32.68 242.900 $$ $$ (3) 1.0 6.12 32.68 21.9500 $$ $$ $$ $$ $$		10	13 (5	24 61	285 540		[<u> </u>
10 i 0 i 3 15 23 68 312 080 10 10 11 95 24 68 195 000 10 11 0 11 10 26 63 285 000 10 11 0 11 10 26 63 285 000 11 0 10.055 26 63 285 000 11 0 10.055 26 63 285 000 11 0 520 18 68 264 000 11 0 520 18 68 264 000 11 0 540 235 200 11 10 860 235 200 11 10 735 31 68 232 800 11 10 612 32 63 248 900 11 10 550 34.68 190 100 11 10 550 31 63 </th <th></th> <th>40</th> <th>13.68</th> <th>22 49</th> <th>840 440</th> <th></th> <th></th>		40	13.68	22 49	840 440		
1 1.0 11 75 24 68 195 000	0	10	13 (5	25 68	312 000		
10 110 110 126 6g 135 000 10 10.05 16.68 150 100 10 985 27 68 281 500 10 985 27 68 281 500 10 985 27 68 281 500 10 985 27 68 281 500 10 985 27 68 281 500 10 985 27 68 281 500 10 9860 12.55 20 687 243 900 11 10 6712 32 68 243 900 10 6712 32 68 243 900 10 6712 32 68 243 900 11 10 570 34 68 190 100 11 10 570 34 68 190 100 11 10 350 34 68 154 000 11 0 350 38 68 36 800	•	LO	11.95	24 68	195 000		
(3) 10 10.05 24.68 280,100	<u>_</u>	10	11 10	26 kg	185 000		
$\underbrace{33}$ 10 985 2768 281500 $$ $$ $\underbrace{33}$ 10 320 2868 264000 $$ $$ $\underbrace{26}$ 40 860 23.68 255200 $$ $$ $\underbrace{26}$ 40 7.95 3068 243900 $$ $$ $\underbrace{27}$ 40 7.95 3068 243900 $$ $$ $\underbrace{23}$ 40 7.95 3068 243900 $$ $$ $\underbrace{23}$ 40 7.35 3168 21282800 $$ $$ $\underbrace{23}$ 10 612 3268 2152800 $$ $$ $\underbrace{39}$ 10 610 3368 2052800 $$ $$ $\underbrace{31}$ 10 420 3663 174900 $$ $$ $\underbrace{31}$ 10 350 3168 131800 $$ $$ $\underbrace{31}$ 10 250 3868 368300 $$ $$	(3)	10	10.05	16: 68	280 100	—	
10 520 $18 68$ $264 000$	2	10	9 85	27 68	281 500		
28 10 8 60 13. 68 2 35 200	B	10	5 20	18 68	264 000		
27 4.0 7.95 30.68 243.900	20	10	8 60	29. 6g	255 200		
(3) (10) 735 3168 232700 $$ (3) (10) 672 3268 215600 $$ (3) (10) 640 3368 205100 $$ (3) (10) 640 3368 205100 $$ (3) (10) 550 34.68 190700 $$ (3) (10) 496 3568 174900 $$ (3) (10) 496 3568 174900 $$ (3) (10) 496 3568 154000 $$ $$ (3) (10) 420 3668 154000 $$ $$ (3) (10) 250 3868 96800 $$ $$ (3) (10) 250 3868 32450 $$ $$ (3) (10) 035 4168 14550 $$ $$ (3) (14) 035 4168 14550 <th< th=""><th>Ð</th><th>10</th><th>7.95</th><th>30 68</th><th>243 900</th><th></th><th></th></th<>	Ð	10	7.95	30 68	243 900		
10 672 3263 21960 $$ $$ 10 10 640 3368 205100 $$ $$ 10 10 558 34.68 190100 $$ $$ 10 10 550 34.68 190100 $$ $$ 10 496 3168 174900 $$ $$ 31 10 420 3663 154000 $$ $$ 31 10 420 3663 154000 $$ $$ 31 10 350 3168 131800 $$ $$ 35 10 250 3869 36800 $$ $$ 35 10 250 3868 60380 $$ $$ 39 10 935 4168 14550 $$ $$ 39 10 035 4168 14550 $$ $$ 39 11 $$ 4254	8	10	735	31 68	232 800		
10 10 640 33 63 205 100 10 10 5.58 34.68 190 108 10 498 33 66 174 900 10 498 33 66 174 900 10 420 36 63 154 000 10 350 31 68 131 800	<u>.</u>	10	6 7 2	32 68	2 1 3 640		
1 10 5.50 34.68 190 100 32 L0 496 35 68 174 900 31 L0 420 36 61 154 000 34 10 350 37 68 131 800 34 10 350 37 68 131 800 35 t0 250 38 68 96 800	9	10	640	33 68	205.200		
32^{-} L0 496 33° 68 174 900	<u> </u>	10	5.50	34,68	190 105		
(33) 1.0 420 3663 154000 $$ $$ (34) 10 350 37.68 $(31.800$ $$ $$ (35) 10 250 3868 96800 $$ $$ (35) 10 250 3868 96800 $$ $$ (36) 10 452 3868 60380 $$ $$ (36) 10 452 3868 60380 $$ $$ (37) 10 080 4068 32450 $$ $$ (37) 10 080 4068 32450 $$ $$ (38) 10 035 4168 14550 $$ $$ (39) 11 $$	- (B) -	LO	498	35 68	174 900		
34 10 350 37.68 131.800 35 10 250 38.68 96.800 36 10 152 38.68 60.380 36 10 152 38.68 60.380 37 10 0.80 40.68 32.450 38 1.0 0.35 41.68 14.550 38 1.0 0.35 41.68 14.550 39 1.1 42.547 0.41 4.680 247.24 617.0 57 0.24 5.287	<u>_</u>	ŁO	4 20	36 68	154 000		
(35) t 0 2 50 38 68 96 800 $$ $$ (36) 10 4 52 38 68 60 380 $$ $$ (37) 10 0 80 40 68 32.450 $$ $$ (37) 10 0 80 40 68 32.450 $$ $$ (38) 19 0 35 41 68 14 550 $$ $$ (38) 14 $$ 42 547 $$ 0 41 4 680 (39) 41 $$ 42 547 $$ 0 41 4 680 $(28T)$ 24 6170 $5T$ 0 24 5 28T	<u></u>	10	3 50	39. 68	131 800		
36 10 152 39 68 60 380 37 10 0 80 40 68 32 450 38 19 0 35 41 68 14 550 39 11 42 547 0 11 4 680 28T 24 61T0 ST 0 24 5 28T	35	ło	2 50	38 68	96 800		
(37) 10 0 \$0 40 58 32 450 (38) 10 0 35 41 68 14 550 (39) 11 42 547 0 11 4 680 28T 24 6170 \$7 0 24 5 287	<u> 66 </u>	10	1 52	39 68	60 380		
18 19 035 4168 14550 39 11 42547 011 4680 267 24 5170 57 024 5287	9	10	0 \$0	40 68	32 450		
(3) 11 42 547 0 61 4 680 267 24 6170 57 0 24 5 287	<u></u>	19	0 35	41 68	14 550		
26T 24 61T0 ST 0 24 5 28T	3)	11	—	42 549		0 11	4 680
			26T 24		6170 ST	0 24	5 287

 $\Delta = 2674$ (INCHES)³ M_d = 6176 (INCHES)⁴ $l_{\Delta} = 23.1$ INCHES

TABLE 5

	(108)	(0)	(10)	(11)	(112)
	α	d	Δ_{i}	MAFP	ls
	{•}	inches	(inches) ³	(inches)4	inches
(1)	-30	25	231 54	3799.9613	1640
2	-5	3.5	359 61	6241.9680	1736
3		15	83 780	1281 2790	15.32
4	<u>م</u> ه	2.5	188410	3543.5505	18 85
5		3.5	330 95	7361 0070	2180
6		47	44041	9001 5132	20 50
(7)	20	25	156 429	3340 8710	21.40
8	5	3.5	300.430	6287 3707	20.90
9	٤.	2.5	147 4 0	3438.78	23 30
(10)	Ö	3.5	267.450	6175 86	23 10

RESULTS OF CALCULATION OF BUDYANCY, MOMENT, AND CENTRE OF BUDYANCY, FOR RANGE OF ATTITUDES AND DRAFTS

TABLE 6.

	(13)		(15)	(16)
	ھ	MAFR	Δ_{i}	l_
	(•)	(inches) ⁴	(inches) ³	inches
(- 3°	3275	202	1620
2	0 °	3900	202	19.33
3	3•	4300	202	21.30
•	6°	4700	202	23 25

MOMENT AND CENTRE OF BUOYANCY FOR STATIC LOAD ON WATER FOR RANGE OF ATTITUDES

TABLE 7

	(11)	(119	(119)	(20)	(121)	(122	(123)	(12)	(125)
	ಹ	SIR(3*+d*)	[x sin (3+2)	$\Delta = \frac{A}{2} - [isin(3H)]$	lu	MAFP	لم	$l_{\mu} - l_{\Delta}$	MACC
				(15- (19)				12 - 123	
	(•)		(inches) ³	(inches) ³	inches	(inches)4	inches	inches	[inches] ⁴
\odot	-3*	0 0 0 0 0	000	202 00	20 45	3250	1610	4.35	878 0
2	0.	0.0523	3 5 9	19841	21 16	3850	1820	2 96	587 O
3	30	0.1045	7 17	194 83	2180	4150	21.30	0 50	974
•	6°	0 15 64	10 72	19128	2235	4470	23 38	-1.03	-198 0

ESTIMATION OF STATIC MOMENT OF BUOYANCY ABOUT CG

FOR ENGINE ON CASE

TABLE 8. ESTIMATED AIR LIFT & DRAG OF SEAPLANE AT IO M.P.H.

	(26)	(27)	(128)	(129)	(130)
	i.	<u>ر</u>	Co	L _{vi}	D _{vi}
	(•)			(inches) ³	(inches) ³
(1)	٥•	0.09	0 0 2 7	046	0.148
2	2°	025	0.028	130	0 14 8
3	6°	057	0.046	299	0240
4	10*	089	0 0 7 3	4.65	0 3 8 2
5	15°	1 2 9	0.112	6.75	0 586

TABLE 9.

TABLE 9.

ESTIMATION OF MOMENTS DUE TO BUOYANCY THRUST & DRAG OF FLOAT FOR A RANGE OF ALTITUDES.

				2	3	•
(31)	م ^ه	(•)	- 30	0.0	3°	6°
(32)	L _{vi}	{inches} ³	1 56	2 94	4.20	5.40
(33)	Dvi	(inches) ³	016	0.24	ö. 34	0 46
(34)	R _{vi}	(inches) ³	20 2	202	202	202
(35)	MRCG	(inches) ⁴	226 24	226.24	226.24	226 24
(36)	3° + x°	(•)	0°	30	6°	٩°
(37)	$\sin(3^{\circ} + \infty^{\circ})$		0.00	0.052	0 104	0 1 5 6
(38)	cos (3° + x+1		1.00	0 998	0994	0 98 8
(39)	R _{vi} + D _{vi}	(inches) ³	22.36	22 44	22 54	22.66
(140)	$T_{y_1} = \frac{R_{y_1} + D_{y_1}}{\cos(3^n + d^n)}$	(inches) ³	22 36	22 47	22 66	22 94
æ	$M_{T_{VIGG}} = T_{VI} \times T_{T}$	(inches) ⁴	30 1 8	30 33	30 59	30 97
(42)	$T_{v_1} \times \sin(3^\circ + d^\circ)$	(inches) ³	0 00	1 17	2 37	3 5 9
(3)	$\Delta_i = \frac{A}{2} - L_{v_i} - T_{v_i} sin(3^{\circ} + d^{\circ})$	(inches) ³	20044	197 89	195.43	193 01
(44)	Mairo	(inches) ⁴	3200	3900	4250	4600
(45)	$l_{\Delta} = \frac{M_{\Delta,FP}}{\Delta}$	inches	15 85	1945	21 30	23 20
(146)	l.,	inches	20.45	21.16	2180	22 35
(47)	$l_{W} - l_{A}$	inches	4 6 0	171	0 50	-085
148	$M_{A1CG} = \Delta_1 \times (l_W - l_A)$	(inches) ⁴	928.0	343 0	99.5	-1685
(49)	MTVICG + MRVICG	(inches)+	2 5 3 5	2536	2537	2539

CALCULATIONS OF ANGLE OF ROLL.

			0	(2)	3		5	6	\bigcirc	8	9				(13)	(14)	(15)
(53)	<u>حر</u> •	(•)			0*					3				······································			
(15)	d <u>.</u>	inches	2.6	2.7	2.8	29	3.0	27	83	2.5	30	34	27	8.5	2.9	. 30	3.1
	A	(inches) ³			404					404					404		
(53)	- hr	inches			21.1	6			-	21.8					22 3	5	
(54)	T,* sin (3*+d.*)	(inches) ³			74	8				14.34	ŀ				21 4	.4	
<u>(5)</u>	A-Ty sm(3*+4*)	(inches)3			396 8	2				3846	6			_	382 5	;4	
	Δ <u></u>	[inches]3	202	245	230	245	258	115	197 5	244	227 5	242	475	482	195	207	220
(5)	Δ _i	linches) ³	194 82	121 52	1 66 82	1 51,82	138.82	204 66	192.16	178.55	162.46	147 66	207 54	200 54	485 54	175 54	162 54
(53)	di	IRChes	2 55	2 46	2 33	2 2 2	1.9	284	. 296	166	2 54	2.42	3 0i	3.0	2 85	2.74	264
(5)	$d_x - d_x$	Inches	0 64	0 24	0.47	0.68			0.04	0 24	0.46				0 05	0 26	0.46
69	$t_{q} \Theta = \frac{d_{q} - d_{1}}{t_{4}}$		0 80451	0.0155	0.0303	0.0435			0 00268	0.0(55	0.0197		· · · · · · · · · · · · · · · · · · ·		0.00323	D 0165	0 0297
6	Marce	(inches)4	3630	3400	3050	2750	2000	3900	4054	3800	3460		400.0	4250	4310	4100	3\$20
0	Mager	(inches)4	3930	4300	4100	5050	5450	4350	4200	4520	48.28		4 850	4800	4540	4110	5100
(63)	MALLE + MALLE	[inches]+	7560	77 00	7750	7700	7450	\$2.50	8230	8320	82.80		8850	\$050	\$\$ 30	2910	8920
(4)	La = Mane + Maner	inches	19.05	1940	18 52	19 35	18 50	21 25	24 25	2140	24 22		28 15	25.65	28 95	23.59	23 28
6	lu-la	inches	24	176	1 64	1 81	2 26	0 55	o 55	0 40	0 58	· · · · · · · · · · · · · · · · · · ·	-1 71	-221	-1 00	-095	-0 94
(6)	Mace + - Frint Surfflich	(inches)4	8 37	652	650	749	8 97	214	244	155.5	116		-654	-850	-382.5	-363	-359
(1)	Ð	(*)	45'	53'	1*45'	2.30'			3 1	5%'	1*40'				·11'	381	{*40*
69	β− €	[*]	50*15'	48*577	48*45'	*48°			50*23	49*31'	48" 50"				50.13.	49*325	48*50*
	β+ 0	(*)	50*45'	51*23'	82"15"	53*			50*391	51-23'	52*10'				50°4 (?	51*28*	52*40'
(70)	cm (β-θ)		0.6394	0 6480	0 6553	0.6651			0.6360	0 6480	0.6582			···	06383	0.6410	0.6382
	$\cos(\beta+\theta)$		• 6327	0.6240	0 6122	0.6018		F	0.5531	0.6140	0 6199			i	0.6338	0 6220	0.6193
(7)	$a_i = L_i \times tor(\beta - \Theta)$	inches	78	79	8 05	8 16			775	790	8 03				7 85	79	8 03
	$d_{3} = L_{1} \times cm(\beta + \theta)$	inches	7 72	761	141	7 55			ግ የ4	7-61	7.48				774	7 60	7 48
1	$\Delta_1 \times \mathbb{S}_2$	[inches]#	1558	1635	1720	1841			1530	1604	4700				1546	1571	1645
Ē	$\Delta_i \times \mathfrak{a}_i$	(inches)4	1520	14 34	1340	1298			1440	1410	1302				44 80	1386	1305
	$\Delta_1 \times \mathfrak{A}_1 - \Delta_1 \times \mathfrak{A}_1$	(inches)4	38	201	380	610			40	194	39#				30	445	346
Ē	Q	[inches]4			131 0					181.0			··· ·· · ·		1310		
	MTLE	(inches) ⁴			185 2	· <u> </u>				185 2	<u> </u>				185,2		

FORWARD SPEED	THRUST	ح.م	0 *	dz	d,
OF SEAPLANE				INCHES	INCHES
ZERO SPEED	ZERO THRUST	4°	0°	14.65	14 65
ZERO SPEED	FULL THRUST-THROTTLE OPENED VERY SLOWLY- ENGINE TORQUE NEGLECTED	3° 3'	0°	13.91	13 91
ZERO SPEED	FULL THRUST-THROTTLE OPENED VERY SLOWLY, FULL ENGINE TORQUE	2° 57'	34'	14 3	13-53
ZERO SPEED	FULL THRUST-THROTTLE OPENED VERY QUICKLY- ENGINE TORQUE NEGLECTED	2° 31'	٥°	13 77	13.77
TAXYING SPEED V tax = 10M.P.H	ENGINE TORQUE NEGLECTED	1° 12'	٥°	13.35	13.35

SUMMARY OF TRIM ANGLES IN PITCH & ROLL FOR DIFFERENT ENGINE CONDITIONS.

٤

•

78	156	312	4 GB	6 24	7.80	9 36	SP OI	IZ 48	14-04	15 60	16 10	17-80	16 9	0005 0	0115	52 50	23 30	24 40	24 40	29 90	SC-02	27 72	29 38	31:04	32.10	3436	36.02	37 68	15-54	41 00	42 60
88 5	os 5	156	511	78	52	35	18	06	30-	00									-40	s	66	96	118	3 4 4	טידו	196	6-55	č 46	Z 74	3 00	342
3 86	3 82	368	3 40	8 96	8 58	2 10	1.16	1 47	130	1 24									1 67	1 39	191	115	2 45	e 73	2 95	314	3 24	3 27	3 81	3 16	3 4Z
81	+13	1 56	185	2 08	2 25	2 38	E 48	č 54	2 59	2-60		т	HE	SAME A	s sta L\	TION			2 60	2 60	2 5 6	2 49	£ 40	2 24	2.02	175	141	104	61	15	-00
3 49	3 34	3 08	2·85	5 6 S	Z 45	E 32	8 55	S 16	211	2 10				Q	2)				8 10	8 10	214	551	2 30	246	8 - 58	2 94	3 27	3.65	4 00	4 29	4 35
81	1 13	156	1 85	2 08	2 25	8 3B	2 48	č 54	2 59	2 60 2									260	60 5	2 56	2-49	2 40	2 24	2-02	1 75	141	1.04	61	ZI	00
72	39	1 31	1 47	1 52	151	1 50	1 48	1 45	1 45	1 45																					
					L														-												
																			NAM	C OF D	TAIL	PRO	POSED P	LONTS				SOLC N	JOB	د . مالات آ	USTER OF

R

a

64

(FP) \odot

8 1 16

(1<u>2</u>)

(sð)

20

(2B)

(29)

SCALE.)

*

_____ N the R

(**30**)

(31)

LOCATION OF FLOAT RELATIVE TO WING & FUSELAGE

VARIATION OF WETTED CROSS SECTIONAL AREAS OF FLOAT WITH DRAFT.

٤

OF FLOAT WITH DRAFT.

2

۳,

stations B

12

SECTIONAL AREAS VARIATION OF WETTED CROSS ٤ FLOAT WITH DRAFT. OF

.

SIDE ELEVATION OF FLOAT SHEWING DISTRIBUTION OF CROSS SECTIONAL AREA WITH LOCAL DRAFT

I.

FIG 7

SIDE ELEVATION OF FLOAT SHEWING DISTRIBUTION OF WETTED CROSS SECTION AREAS FOR WATER LINES CORRESPONDING TO A RANGE OF DRAFTS AND ATTITUDES

SCALE CROSS SECTIONAL AREA (FIFTH MODEL SCALE)

FIG, 8

FIG.9

FIG IO

FIG. IO. (SHEET 2)

ы

7,9'9 6 Δ₁= l×BB¹· <u>scate(Δ)</u> Δ₁= 2×6,6×25=330 αιώc inches d = 3.5" ot = 0° $\frac{1}{t}\int F_{i}\cdot dx = \int_{x}(t_{i})$ $F_{d} = f_{i}(t_{x})$ △ = FLOAT BUOYANCY. Δ, 1:25 Fa 1:5 Scale: 計算 计 计 化 化 化 化 化 ູ້ ພູ GRAPHICAL DERIVATION OF FLOAT BUOYANCY FOR ZERO ATTITUDE AND DRAFT 3.5 INS. (SEE APPENDIX II.)

FIG.11.

FIG.12

LOCATION OF FLOAT RELATIVE TO FUSELAGE C.G. & WATERLINES FOR DIFFERENT ENGINE CONDITIONS.

Ð

ILLUSTRATION OF LONGITUDINAL FORCES ACTING ON SEAPLANE AT REST.

FIG. 20.

ILLUSTRATION OF LONGITUDINAL FORCES ACTING ON SEAPLANE WHEN TAXYING.

FIG. 21,

ILLUSTRATION OF TRANSVERSE FORCES ACTING ON SEAPLANE AT REST.

*

FIG. 25

ĩ

FIG. 29,

-C.P. No. 14 2137 A.R.C. Technical Report

PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE

To be purchased from :

York House, Kingsway, LONDON, W.C.2, 429 Oxford Street, LONDON, W.1, P.O. BOX 569, LONDON, SE.1,

13a Castle Street, EDINBURGH, 21 St. Andrew's Crescent, CARDIFF39 King Street, MANCHESTER, 2.1 Tower Lane, BRISTOL, 12 Edmund Street, BERMINGHAM, 380 Chichester Street, BELFAST,

or from any Bookseller

1950

Price 8s. 6d. net

7