N. A. E. Library.

C.P. No. 15 2454 49.429 A.R C. Technical Report

Mith wind the

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Hydrodynamic Design of Seaplane Floats

By

K. M. Tomaszewski, Inz.Lotn. (Warsaw)

Crown Copyright Reserved

LONDON: HIS MAJESTY'S STATIONERY OFFICE

1950

Price 5s. 6d. net.

ι. • • ł

ADDENDUM

Subsequent to the publication of this report a better method of afterbody design was evolved consisting in essence of fitting the afterbody to the calculated wake shape to provide adequate ventilation in the planing condition. This method was applied to the R.A.E. floats described in this report and an improved version of the floats produced. A summary of this method of afterbody design with the results obtained on the R.A.E. floats was presented at the 7th International Congress of Applied Mechanics and is reported in the Proceedings.

* Proceedings of the 7th International Congress of Applied Mechanics, 1948.

"Some Aspects of the Flow Round Planing Seaplane Hulls or Floats and Improvements in Step and Afterbody Design." - K.M. Tomaszewski and A.G. Smith.

-

.

۱

C.P. No.15 (10,429)

Report No. Aero 2154

November, 1946

ROYAL AIRCRAFT ESTABLISHMENT

Hydrodynamic Design of Seaplane Floats

by

K.M. Tomaszewski, Inz. Lotn. (Warsaw)

SUMMARY

A generalised float form together with its attachment to the seaplane is designed on the basis of existing data and tank tests.

It is shown that a good compromise can be achieved between design for water stability, trum, spray, seaworthiness on waves, good aerodynamic form, buoyancy and case of manufacture.

Much stronger afterbodies can be used for floats than for hulls without loss of porpoising stability and are necessary for good stability and trim at the hump speed.

The final form evolved should prove a useful basis for the design of floats for any particular purpose.

LIST OF CONTENTS

Page

1	Introduction	4
2	Design of float geometry	4
	2.1 First version forebody shape	5
	2.11 Forebody length	5
	2.12 Bow height	6
	2.13 Keel height	6
	2.14 Forebody deadrise angle	6
	2.15 Forchody shape in plan view	7
	2:16 Forebody bottom shape	7
	2.2 - Finst version afterbody shape	7
	2.21 Afterbody length	7
	2.2.2 Afterbody keel angle to forebody keel	8
	2.2. Afterbody deadrise angle	8
	2.24 Afterbody length with rudder	9
	2.525 Afterbody shape in plan view	9
	2,26 Afterbody bottom shape	9
	2.27 First version step form and keel height	9
	2.28 Afterbedy chine height	9
	2.3 Float deck design	9
	2.4 Float attachment	10
3	Description of model for testing floats	10

LIST OF CONTENTS (Contd)

Page

•

4 5	Characteristics of first version floats 4.1 Trim and porpoising stability 4.2 Spray characteristics Modifications and their effect on trim, porpoising	10 10 11 11
	stability and spray on calm water 5.1 Modification "A" 5.2 Modification "B" 5.3 Modification "C"	11 12 12
6	Seaworthiness with modification "C" 6.1 Take-off in waves 6.2 Aft taxying	12 12 13
7 8	Modifications and their effect on buoyancy Conclusions List of Symbols References	13 14 16 18

LIST OF TABLES

Table

Float dimensions in terms of beam (first version) Float dimensions in terms of beam (modification "C")	L II
List of modifications II	ΓI
Comparison of floats tested and some details of relative	
water performance	Ľν
Seaworthiness in waves	V
Aft taxying performance	٧I

LIST OF ILLUSTRATIONS

Fig.

The geometry of the forebody expressed non-dimensionally	1.1
Forebody deadrise distribution	1.2
Determination of the bottom of the float	1.3
The forebody bottom curve	1.4
The geometry of the afterbody expressed non-dimensionally	1.5
Afterbody deadrise distribution	1.6
General arrangement of float attachment	1.7
General arrangement light seaplane on R.A.E. floats	2
R.A.E. float lines - first version and mod. "A" and "B"	3.1
R.A.E. float lines - modification "C"	3.2
Porpoising stability during landing and take-off, R.A.E.	
floats - first version	4
Porpoising stability during take-off, R.A.E. floats -	
modifications "A" and "B"	5
Porpoising stability during landing and take-off, R.A.E.	
floats - modification "C"	6
Attitudes with the stick central during take-off at overload	7A
Stability limits during take-off at overload without	
disturbance	7B
Stability limits during take-off at overload with 7°	-
disturbance	7C
Comparison of angles of elevator at stability limits with	
disturbance	8A
Comparison of elevator sensitivity at stability limits with	
disturbance	8 B
•	-
2. "	*
e ta dest	

LIST OF ILLUSTRATIONS (Contd)

.

Spray characteristics on calm water during landing at light load 1720 lb A.V.W. R.A.E. floats - first version	9
overload 1920 lb R.A.E. floats - first version	10
Wave test conditions (zero wind)	11
Spray characteristics in waves, height = 1.25 ft,	
length = 25 ft, Zero wind conditions. R.A.E. floats -	
modification "C"	12
Spray characteristics in waves, height = 2.1 ft,	
length = 84 ft, Zero wind conditions. R.A.E. floats -	
modification "C"	13
Proposed lines of R.A.E. float	14-
Variation of reserve of buoyancy with static beam loading	
cocfficient	15
Variation of draft with attitude and static beam loading	,
coefficient .	16
Variation of distance of buoyancy from F.P. for constant	
static beam loading coefficient ($C_{\Delta} = 1.5$).	17
-0	

1 Introduction

The purpose of this report is to examine the geometry of seaplane floats and their position relative to the C.G. for porpoising stability, spray clearance and seaworthiness.

A pair of floats and their attachment to a small seaplane have been designed and tested in the R.A.E. seaplane towing tank, to illustrate the principles involved. The design features are however set out in a non-dimensional form for general use.

Tests with float-seaplanes have shown¹ that design for porpoising stability is more severe for flying-boats, than float-seaplanes. It is necessary to design for much deeper steps, higher and smaller afterbodies for the former. For this reason the shape of the floats was based in the first place on flying-boat hull design and later changes were made by strengthening the afterbody to improve stability and trim in the hump region. The design layout was chosen as a compromise between manufacturing requirements and theoretical design.

The water characteristics of the twin-float-seaplane are determined by six main parameters: (1) static load on the water (beam of the float and total weight of seaplane), (2) geometry of the float in terms of the beam, (3) position of the step of the float relative to the C.G. of seaplane, (4) wing setting relative to the float, (5) aerodynamic characteriscies and (6) track of float (distance between the centres of floats). The float design for good porpoising stability and seaworthiness is a series of compromises between these parameters.

In this report the parameters (2) and (3) are investigated for constant values of the parameters (1), (4), (5) and (6). The beam of the float was chosen for a static beam loading coefficient $C_{\Delta} = 1.5$

and has been kept constant. At this beam loading the volume of the float was chosen to give reserve buoyancy of 110% on the original form. It was increased to 140% for the final proposed form.

0.

The position of the float relative to the C.G. of the seaplane was first fixed for static stability² and then modified to satisfy the results of the true and stability tests on a powered-dynamic model. For all tests the wing setting relative to the float datum was kept constant² at 5.8° . A powered-dynamic model of the Auster V was used, so keeping the aerodynamic characteristics constant for all the modifications. The track of the floats was the same as for the Auster V with "Queen Bee" floats but observation of spray conditions during the tests show that better results may be obtained if the track be increased. This will also improve the lateral stability. The increase is however limited because seaplanes with large tracks are difficult to keep on a straight course when landing on one float. C.A.G.I. recommended that the track of floats be 15 to 20% of the wing span².

Stability and scaworthiness tests were made both in calm water and waves.

2 Design of float geometry

In the design of a float for good porpoising stability and seaworthiness it is convenient to consider three different conditions on the water; (1) at rest or at low speed (the displacement region), (2) during transition from displacement to planing flow (the hump region) and (3) planing on the forebody (the planing region). These three different conditions depend on (a) forebody geometry, (b) geometry of step, (c) geometry of afterbody and (d) location of floats relative to the seaplane. From available information on existing designs of floats and hulls for a given static beam loading coefficient (C_{Δ}) the

geometry of the required float may be solved non-dimensionally in terms of the beam and from static stability considerations the floats may be located relative to the seaplane.

Floats designed in this manner still require testing in a towing tank in order to obtain the best final form for any given operational requirements.

The lines of the first version of the float design are given in Fig. 3.1 and the dimensions in terms of the beam in Table I. The derivation is as below.

2.1 First version forebody shape

The shape of the forebody affects conditions on the water during take-off, landing and taxying. A long forebody with a fine bow gives good spray clearance and high static trim in the displacement region. A low forebody deadrise angle is better for resistance and lower limit porpoising stability, and a high deadrise for impact and spray characteristics. In the planing region a flat bottom (small deadrise) with constant beam and no keel rise is necessary to obtain the maximum normal force with the minimum wetted area.

2.11 Forebody length

There are in existence several empirical rules giving forebody length $(\ell_{\rm F})$ in terms of beam (b) for a given static beam loading coefficient (in our case $C_{\Delta} = 1.5$) required to satisfy spray conditions and static stability. o

Parkinson gives the formula4

$$e_{\rm F} = b. \sqrt{\frac{O_{\Delta}}{K}}$$

where K = constant.

Then for K = 0.0525, (very light spray), $\ell_{\rm F} = 5.35.b$ K = 0.0675, (satisfactory spray), $\ell_{\rm F} = 4.71.b$ K = 0.0825, (heavy but acceptable for overload), $\ell_{\rm F} = 4.26.b$ K = 0.0975, (excessive spray), $\ell_{\rm F} = 3.92.b$

Locke⁵ gives the forebody length in terms of beam and static beam loading coefficient to provide flotation at rest and to prevent nosing under when taking-off or alighting as

$$\ell_{\rm F} = 3.5.{\rm b.C}_{\Delta_{\rm O}} \frac{1}{3}$$
.

For $C_{\Delta} = 1.5$, $\ell_{F} = 4.b$.

All the existing rules for the forebody length are very empirical and must be used very carefully.

In the preliminary design of the floats the forebody length was chosen as $\ell_{\rm F}=4.7.{\rm b}$.

2.12 Bow height

If the forcbody length is short a high bow reduces the buoyancy and hydrodynamic lift of the forebody at low speeds so increasing the resistance and spray severely.

In rough water a low bow gives rise to very severe spray. If the forebody is lengthened sufficiently and at the same time the bow is raised, the entrance into the water is less abrupt and the spray characteristics are improved. A high bow with large forebody length might be more favourable even in smooth water. For the large forebody length of $\ell_{\rm F}$ = 4.7.b, the height of the boy was chosen as $h_{\rm b}$ = 0.75.b, for good spray conditions on calm and rough water.

2.13 Keel height

In the planing region the best results are obtained with no keel rise. For this reason the keel line is made straight for a distance $\ell_c = 1.7.b$ forward of the step. This assumes that this is the maximum weiled length of the keel during planing. From $\ell_c = 1.7.b$ to the bow the keel line rises as an ellipse with semi-major axis $(\ell_F - \ell_c) = 3.b$ and semi minor axis $h_b = 0.75.b$. An elliptical shape with a large bow deadrise angle gives reasonable air drag and good buoyancy at rest. The keel line designed in this way is drawn in Fig. 1.1. Heights are given in terms of the beam.

2.14 Forebody deadrise angle

It is necessary to be very careful in choosing the forebody deadrise because the various requirements conflict with one another.

To give efficient lifting characteristics in planing, a flat bottom is the best form for the forebody (deadrise angle zero) but such design gives very large impact forces during landing and bad spray characteristics. The increase of deadrise angle reduces these forces and spray severity but raises the lower limit of stability and causes deterioration in planing characteristics. Increase in the angle of deadrise from the step to the bow gives a slight reduction of the resistance before the hump speed and improves the cleanness of running in waves. At the hump speed the part of the float affected by this change of deadrise angle is completely clear of the water in calm conditions. It appears, therefore, that from the design point of view the forebody deadrise angle may be considered in two parts. The forward half of the float forebody, designed from the point of view of the low-speed rough water characteristics, and the after half, from the point of view of the hump resistance, lower limit porpoising stability, good planing characteristics impact and spray conditions. In designing the forward part of the forebody to reduce spray over the windscreen and inco the propellers, care should be taken to select a form which will give easy entry into waves encountered head-on. By

raising the bow the force of the impact with the oncoming waves is reduced. It appears that satisfactory bow-spray characteristics may be obtained without compromising the planing characteristics and any change which softens the impact between float and waves tends to reduce the spray. American tests show⁶ that increasing the angle of deadrise at the bow has little or no effect on the minum air drag or angle To obtain a low lower-limit of porpoising stability, of minumum drag. good planing characteristics and reasonable forces due to impact when landing, the deadrise angle at the main step was chosen as $\theta_m = 25^{\circ}$ and kept constant for $\ell_c = 1.7.b$. To obtain the best spray formation especially on waves the deadrise angle increased smoothly from $\ell_{c} = 1.7.b$ to the bow. The change of deadrise angle with the fore-body length was chosen from the spray analysis and is represented in Fig. 1.2. The increase of deadrise angle at the bow was considerably greater than had normally been used in the past.

2.15 Forebody shape in plan view

For planing the breadth of the part of a float wetted should be constant. The breadth of the float is therefore kept constant $(b_x = b)$, from the step forward to $\ell_c = 1.7.b$. From $\ell_c = 1.7.b$ to the bow the plan view is part of a "Standard" streamline form⁸ with a maximum diameter corresponding to the beam at $\ell_c = 1.7.b$ (40% of the total length of a streamline). Such a form should give good planing characteristics and low air drag. Fig. 1.1 gives the local beam of the forebody in terms of beam at main step.

2.16 Forebody chine height

The forebody chine line may be obtained for each transverse plane of the float as an intersection of the local deadrise with the chine half breadth, the latter being obtained from the forebody plan view of the float. Fig. 13 shows the method of obtaining the chine line and Fig. 1.1 the height of the chine in terms of the beam along the forebody length.

2.17 Forebody bottom shape

Concave curvature at the forebody bottom improves the spray conditions and reduces impact forces but makes for some complication in manufacturing the floats. Constant curvature of the bottom reduces this complication a little. For this reason the curvature of the forebody bottom was chosen as a constant symmetrical parabola between keel and chine for all transverse sections of the forebody. Fig. 1.4 represents the shape and method of drawing this parabola and Fig. 1.3 gives the location of this curvature relative to keel or chine lines of the float.

2.2 First version afterbody shape

The design of the afterbody is very closely connected with the design of the main step. Some information is given in references 5 and 10 on the effect of dimensions and proportion of the afterbody on the water characteristics of the hull or floats.

2.21 Afterbody length

At low and medium speeds (hump speed) the afterbody serves to provide aft buoyancy and prevent the attitude from becoming too high at the hump speed. At high speeds (when planing) the length of the afterbody should be as short as possible. A long afterbody leads to porpoising on the upper limit of instability. Near the hump speed a strong afterbody lowers the lower limit of instability. The requirements for the length of the afterbody are therefore conflicting - long at low speeds and short at high speeds. Smith and white¹¹ recommended that the length of afterbody for boat seaplane be 2.5 to 3.0 of beam with a pointed rear step.

Locke4 gives a formula for the average length of the afterbody,

$$\ell_{a} = 2.5 \cdot C_{\Delta}^{3} \cdot b,$$

for

$$C_{\Delta} = 1.5, \ell_a = 2.9 \cdot b.$$

The R.A.E. tests with float-seaplanes show, that floats with afterbodies up to 3.8 times the beam and pointed rear steps have large stable ranges at both hump and planing speeds. For this reason the length of afterbody for the first tests was chosen as $\ell_a = 3.2$.b.

2.22 Afterbody keel angle to forebody keel

The angle of the afterbody keel to the forebody keel at the stop has a large effect on trim, water resistance, porpoising stability and skipping of the seaplane. At low speeds, including the hump speed, increase in the afterkeel angle reduces the buoyancy and the hydrodynamic lift of the afterbody. To compensate for this reduction in lift the floats tend to assume a higher trim. At very low speeds this increase in trum is small and the change in resistance is negligible. The maximum effect is at the hump speed at which increase in afterkeel angle causes a large increase in trum and accompanying large increase in free-to-trim resistance. At planing speeds however, it lowers the resistance and improves the stability. A low afterkeel angle gives cleanest running but gives a lower upper limit of stability just above the hump speed. According to American tests $^{12_+}$ the low afterkeel angle provents skipping especially in rough water. For the first tests the afterkeel angle was chosen as 9° and the keel line made straight. If the results of tests with such a high afterkeel angle show that free-to-trim angles at the hump speed are large the afterkeel angle could be reduced to 7° as proposed by Smith and White¹¹, for the minimum afterkeel angle (for flying boats) giving satisfactory porpoising stability at planing speeds.

2.23 Afterbody deadrise angle

A larger deadrise angle on the afterbody than on the forebody at the step position improves the ventilation of the afterbody bottom. This causes improvement in the ventilation of the forward half of the afterbody, improvement in the upper limit of porpoising stability in the planing region and alleviates skipping. The aft half of the afterbody controls the upper limit of porpoising stability near the hump speed. A more pointed rear step generally gives an improvement in stability¹⁴. Increasing the angle of deadrise aft on the afterbody decreases the lift of the afterbody and therefore increases the trim and reistance at the hump. Most of this increased resistance is due to the higher trim. Full scale aft taxying tests with floats having decreasing aft deadrise in the afterbody show dangerous diving tendency even at very low taxying speeds. This tendency to dive is mainly because of the suction on the after part of the afterbody bottom which occurs when the chine is immersed. If the deadrise angle is increased towards the rear step diving can be eliminated.

The selected distribution of deadrise angle is given in Fig. 1.6.

2.24 Afterbody length with rudder

To improve control on the water at low speeds the afterbody length was increased to 3.5.b to accommodate a water rudder.

2.25 Afterbody shape in plan view

The plan view of the afterbody is the after part of the "Streamline" form⁶ used on the front of the forebody. Maximum diameter corresponds to that at the step position and the trailing edge of the streamline occurs at 3.2.b from the step. Because of the rudder the end of the streamline form was modified as shown Fig. 1.5.

2.26 Afterbody bottom shape

For the first series of tests the sides of the afterbody bottom were made flat, Fig. 1.3 and Fig. 3.1.

2.27 First version step form and keel height

At speeds below and at the hump a small depth of step is desirable for low resistance. At high speeds the water resistance decreases as the depth of step is increased due to a greater clearance of the afterbody from the water (better ventilation of the afterbody bottom). For constant value of the afterkeel angle the water resistance decreases as the depth of step is increased up to a certain depth beyond which no further reduction is obtained. This value of the step depth depends on the afterbody keel line. For shallow steps when the attitude of the float is such that the afterbody keel is nearly horizontal, the flow from the step suddenly tends to cover the entire afterbody planing surface and the resistance and draft are suddenly increased. This is accompanied by longitudinal instability. Increasing the depth of step removes the tendency toward instability. American tests show⁶ that a 75% increase in depth of step (from 2.5% to 4.4% of the beam) caused a very small increase in aerodynamic drag and very marked improvement in stability.

For the first tests the depth of step was chosen as 7.7 percent of beam at main step. The step was faired in elevation to a distance approximately four times the step depth.

The height of the keel line is given in Fig. 1.5. To reduce forces on the rudder when landing on two steps the afterkeel angle of the rudder is raised to 10° .

2.28 Afterbody chine height

The afterbody chinc height may be obtained by the same method as for the forebody chine height. Fig. 1.5 shows the height of the chine line in terms of beam along the afterbody length and Fig. 1.3 the method of obtaining this height.

2.3 Float deck design

The shape of the deck was designed for low air drag. The top line of the deck from the bow to $\ell_x = 0.9$.b is an ellipse and then a

straight line parallel to the datum line of the float and ending as a part of a "Standard" streamline form⁷. The radius of the float body was taken as half the breadth of the float. The deck line and the height of the radius centre above datum is given in Fig. 1.5 in terms of the beam at main step.

2.4 Float attachment

The float attachment was designed in a trouser leg form for minimum air drag and maximum strength. This form also has minimum interference with the spray formed by the floats. The leg can be varied in transverse angle as required relative to the float. The upper end of the streamline leg can be attached to any reasonable part on the fuselage or wing.

Data and illustrations are given in Fig. 1.7 in terms of the beam at main step.

5 Description of Model for Testing Floats

To examine trum, stability and spray formation of these floats on calm water and waves the floats were fixed to a 1/5th scale powereddynamic model of the Auster V. The full scale beam of the float was chosen for a normal take-off weight of the aircraft (1820 lb),

$$b = \frac{3}{\sqrt{\frac{\Delta_{o}}{C_{\Delta_{o}} \cdot W}}}$$

where $\Delta_0 = \frac{1820}{2} = 910$ lb = static load on the water $C_{\Delta_0} = 1.5 =$ static beam loading coefficient

 $W = 62.5 \text{ lb/ft}^3 = \text{density of fresh water}$

b = 26 inches

The general arrangement of seaplane is given in Fig. 2, and the float dimensions in Fig. 3.1.

4 <u>Characteristics of First Version Floats</u>

4.1 Trum and porpoising stability

The results are given in Fig. 4 for take-off at overload ($C_{\Delta_0} = 1.58$) and landing at light load ($C_{\Delta_0} = 1.42$). The model has a poor lower limit of stability, being unstable without disturbance at all speeds above 20 knots when left free to trum with elevator neutral. This instability becomes less severe as the take-off speed is reached.

The attitude, when the model is left free-to-trim with elevator neutral, increases sharply with speed as it approaches the hump (15.9 knots) and then decreases rapidly, giving a large variation of trim with speed.

It is not possible to increase the attitude sufficiently to reach an upper limit of stability despite ample clovator power. With slipstream, the elevator is very effective even at the hump speed.

4.2 Spray characteristics

Spray characteristics are shown in Fig. 9 for landing at light load ($C_{\Delta_O} = 1.42$) and in Fig. 10 for take-off at overload ($C_{\Delta_O} = 1.58$):

The propeller and windscreen are clear of spray at all take-off and landing speeds.

At low speeds (up to 10.6 knots) the floats are very clean and no part of the scaplane is affected by the spray. In the hump speed range the spray, due to interference between the two floats, wets the undersurface of the central and aft parts of the fuselage. At planing speeds the floats are again very clean and no part of the scaplane is affected by the spray.

5 <u>Modifications and their effect on trim, porpoising stability and</u> <u>spray on calm water</u>

To improve the lower limit of stability and decrease the attitude at the hump speed three modifications were made. First the fairing was removed from the step - Mod. "A". Second the step was moved forward 21% of the beam at main step (step depth at keel reduced to 4.21% of beam at main step) - Model "B". Third the afterbody was strengthened -Mod."C". Table II gives the dimensions of the float in terms of the beam at the main step for modification "C" and Fig. 3.2 represents the float lines.

The effect of the modifications are summarised in Table III and illustrated in Figs. 4 to 6. A comparison of the different floats is made in Table IV. Fig. 7 gives a comparison of attitudes with the stick central and stability limits with and without disturbance during take-off at overload. Fig. 8 compares the different stick positions which make the float unstable and also the rate of change of attitude with elevator angle on the stability limits.

5.1 Modification "A"

The results of porpoising stability tests are given in Fig. 5A for take-off case at overload ($C_{\Delta_O} = 1.58$). Comparison of the first version with modification "A" shows that removing the fairing from the step gives:

- (1) A reduction of hump attitude of about $\frac{10}{2}$ ($\eta = 0^{\circ}$),
- (2) a lowering of the stability limit of about 2⁰ in the speed range just above the hump,
- (3) an improvement of elevator sensitivity on the stability limit,
- (4) a more central stick position on the stability limit below 40 knots,
- (5) a farther back stick position on the stability limit above 40 knots,
- (6) a slight improvement in spray characteristics at the hump speed probably due to a lower attitude,
- (7) a reduction of buoyancy 0.3% relative to the first version.

5.2 Modification "B"

The results of porpoising stability tests are given in Fig. 6B for take-off at overload ($C_{\Delta_O} = 1.58$). Comparison of modification "A" with "B" shows that moving the step forward gives:

- (1) no change of attitude at hump speed,
- (2) a lowering of the stability limit of about l_2^{10} at speeds just above the hump,
- (3) a worse elevator sensitivity on the stability limit,
- (4) a more central stick position on the stability limit.
- (5) a reduction of buoyancy 0.7% relative to the first version.
- 5.3 Modification "C"

The results of porpoising stability tests are given in Fig. 6 for landing and take-off at overload ($C_{\Delta_0} = 1.58$). Comparison of modifications "B" and "C" shows that strengthening the afterbody gives:

- (1) a reduction of hump attitude $(\eta = 0^{\circ})$ of about $l_{\overline{2}}^{10}$ (about 2° when compared with first version of floats),
- (2) a lowering of the stability limit of about $\frac{10}{2}$ (about 3.7° when compared with first version of floats) just above the hump speed,
- (3) a wider stable range of speeds and attitudes without disturbances,
- (4) a more constant elevator sensitivity on the stability limit,
- (5) a slight improvement in spray characteristics in the hump speed range,
- (6) an increase of buoyancy 0.7% relative to the first version.

It is expected that even in rough water conditions (with large disturbances) the floats will be stable during take-off at attitudes above 6° due to the fact that the unstable range with disturbances is very narrow and during accelerated motion the scaplane passes through the unstable region just above the hump so quickly that instability has no time to build up.

6 Seaworthiness with modification "C"

6.1 Take-off in waves

Tests have been made with four different systems of waves¹⁵ and, in zero wind conditions. Fig. 11 shows the wave test conditions, Fig. 12 the spray characteristics obtained for waves 1.25 ft height and 25 ft long, Fig. 13 the spray characteristics for waves 2.1 ft height and 84 ft long. Table V summarises the results of the tests in waves and calm water.

These tests show that small waves up to 0.8 ft (wave height: float beam = 0.37) improve the spray characteristics in hump region by reducing the interference between the two floats. With larger waves up to 2.1 ft (wave height: float beam = 0.99) the floats are very clean at low speeds but in the hump speed range the spray due to the blister interference between the two floats hits the undersurface of the fuselage slightly. This occurs when the seaplane runs at very small and very large attitudes due to the effect of the waves. At medium attitudes the floats are very clean. At speeds just before take-off the model starts to bounce at higher attitudes.

6.2 Aft taxying

4

Full scale experience shows that float scaplanes can be lost because of a very dangerous tendency to dive when taxying in an aft direction. Aft taxying tests were made in R.n.E. Seaplane Tank with R.A.E. floats - modification "C". The model was free to pitch and rise abouts its C.G. at overload. Tests were made at speeds up to 15.9 knots (full scale) without disturbances and with small and large disturbances. The results of tests are tabulated in Table VI. These tests show that in aft taxying on calm water (no disturbances) there is no tendency to dive. Up to a speed of about 8 knots the seaplane runs similarly to normal forward taxying and no part of the aircraft is affected by the spray. At speeds higher than 10.6 knots the scaplane runs bow down and at a speed of 13.2 knots and above it runs with the rear step clear of the water but spray hits the propeller. When small disturbances were applied the seaplane behaved in the same way as without disturbances up to a speed of 8 knots. At a speed of 10.6 knots and above there is a slight tendency to dive (bow up) which starts to be dangerous at a speed of 15.9 knots. Large disturbances causing complete submerging of the aft part of the float do not affect stability up to a speed of 6.6 knots, but at a speed of 8 knots there is a slight tendency to dive (bow up) and at a speed of 13.2 knots and above the seaplane dives (bow up).

These tests show that up to a speed of 6.6 knots the aft taxying condition is very safe even when large disturbances are applied. It is expected that in practice the aft taxying performance will be much better because the model was pulled through its C.G. position.

7 <u>Modifications and their effect on buoyancy</u>

M.A.E.E. tests of the Auster with "Queen Bee" floats showed that the floats were just satisfactory for buoyancy and stability in calm conditions but at overload and in disturbed sea conditions the buoyancy was on the low side.

Table IV gives a comparison of the buoyances of the "Queen Bec" and the various R.A.E. floats. Fig. 15 shows the variation of reserve of buoyancy with static beam loading coefficient for the first version, modification "C", "Queen Bee" and proposed floats. It can be seen that at overload the "Queen Bee" floats have only 8% reserve buoyancy, whereas that of the R.A.E. floats tested is 100% to 104% and that of the proposed floats 12%. For the same static beam loading coefficient the total buoyancy of the R.A.E. floats tested is 1 to 3 percent smaller than that of the "Queen Bee" floats. The total buoyancy of the proposed floats is 10 percent greater than that of the "Queen Bec" floats.

Fig. 16 gives the variation of draft with attitude and static beam loading coefficient for the first version and the proposed R.A.E. floats. This figure shows that for the same values of C_{Δ_O} and attitude the draft is smaller for the proposed floats than for the first version floats. The difference in draft between these two floats is greater at higher attitudes and higher static beam loading coefficients. For $C_{\Delta_O} = 1.5$ the difference in draft would be as follows:

nttitude degrees	Percentage Reduction
-3°	·
6 ⁰	8,1

Fig. 17 gives the variation of the distance of the line of buoyancy from the F.P. for constant static beam loading coefficient $(C_{\Delta_0} = 1.5)$ for the first version and proposed R...E. floats. Comparison of the two floats shows that for the same position of C.G. the static floating angle will be smaller for the proposed floats. For constant height of C.G. above the float datum the difference in floating angle increases when the C.G. is nearer the step.

8 Conclusions

The interesting features of the float design considered in this report are (1) the greater freedom of design permissible compared with hull design which results from the possible use of strong afterbodies and shallow steps, (2) the good stability, trin and sea-worthiness achievable at a high beam loading.

No upper limit of perpensing stability is present, and the floats are very well behaved in waves up to a height equal to the beam. In addition the floats can be towed in an aft direction without diving, even when subjected to a tail down disturbance.

The lower limit of stability is very high at the hump speed on the floats tested with weak afterbodies, so that poor stability resulted for the first version which was based on beat scaplane hull design. This stability was considerably improved by use of a strong afterbody without the introduction of an upper limit at high speeds, a solution not possible with beat scaplane hulls.

The requirements for good spray conditions are shown to be a fine entry combined with a high bow, ample reserve buoyancy forward and an overall reserve buoyancy of at least 100 percent. To avoid interference between the floats the track (distance between them) should be at least 3.2 sines the beam at the main step.

It is considered that further improvement of the float form "C" may be obtained by lowering the afterbody so that the step depth is reduced from 7.7 to 5 percent of the beam, as shown in Fig. 14. Thus is based on the following reasons:

- (1) at speeds below and at the hunp speed a smaller depth of step reduces the resistance.
- (2) In the hump speed range the float with stronger afterbody has a lower free-to-true attitude and lower limit of stability.
- (3) The tests of the Auster V on the "Queen Bee" floats with a depth of step of 2.38 percent of the beam show that floats with such small depth have quite a reasonable lower limit of stability and no upper limit despite ample alevator power.

- (4) A stronger afterbody and forebody will reduce the tendency to nose up and down in waves and by causing the floats to run at medium attitudes at the hump speed will reduce the spray.
- (5) Floats with a stronger afterbody will not reach such high attitudes when planing on waves and will have loss tendency to bounce.

In conclusion it is considered that the dynamic design features discussed in this report, together with the static design features described in reference 2, will enable a designer to achieve a good float design for any desired operational condition. Any such float form should be tank tested if possible.

ъ.,

2

LIST OF SYMBOLS

. £.

α _k ο	= attitude relative to the forebody keel at the step
no	= clovator angle
α°a	= afterkeel angle
φ	= heel to heel angle
β ⁰	= overall deadrise angle
θ_k^{o}	= deadrise angle at keel
θa ^o	= deadrise angle at chine
θm ^o	= mean deadrise angle
ъ	= beam at main step
$\mathtt{b}_{\mathbf{x}}$	= local beam
$\iota_{\mathbf{x}}$	= distance aft from F.P. along datum line of the float
€ _c	= maximum wetted length of the keel of the forebody during planing (assumed)
$\ell_{ m F}$, = the forebody length
ℓ_{a}	= the afterbody length
$\iota_{\mathrm{a_R}}$	= the afterbody length with rudder
h_k	= keel height above float datum
h _c	= chine height above float datum
hb	= bow height above float datum
$h_{ m R}$	= height of radius centre above float datum
R	= radius of the float body
h_{D}	= deck-height above float datum
s _{C.G.}	= distance of C.G. from step along float datum
h _{ong}	= height of C.G. above float datum
۲.	= track (distance between the centres of floats)
a	= wave height (crest to trough)
λ.	a wave slength
e_{Δ}	= distance of buoyancy from F.P.
	α_{k}^{0} η^{0} α_{a}^{0} ϕ β^{0} θ_{k}^{0} θ_{c}^{0} θ_{m}^{0} b b_{x} ℓ_{x} ℓ_{c} ℓ_{F} ℓ_{a} ℓ_{a} ℓ_{a} k h_{b} h_{k} h_{b} h_{R} R h_{D} S_{C} .G. h_{C}^{m} ℓ_{A}

Speed:

	• •
v	= forward speed of aircraft
v _h	= hump speed ,
vt	= take-off speed
v _b	= landing speed
Vtax	= taxying speed

•

Density:

 $W = 62.5 \text{ lb/ft}^3$ density of fresh water

Forces:

Wo	=	overload weight
Wn	=	normal weight
WL	=	light weight
Δ _o	Ξ	static load on the water

Acceleration:

g

ų

<u>Coefficients:</u>

$$C_{v} = \frac{V}{\sqrt{g.b.}} = \text{velocity coefficient (Froude Number)}$$

$$C_{\Delta_{o}} = \frac{\Delta_{o}}{\sqrt{w.b.^{3}}} = \text{static beam loading coefficient}$$

$$\frac{d\alpha}{d\eta}$$
 = elevator sensitivity

General:

ļ

C.G.	= centre of gravity
F.P.	= forward position of float on float datum.

,

ı

.

REFERENCES

2

٤.

î

.

No.	Author	Title, etc.
1	S. Raymond K. Tomaszewski	Tank tests on the porpoising stability characteristics of a single engine float seaplane (Auster V). R.A.E. Report No. Aero.2088 November, 1945. A.R.C.9335 (unpublished)
2	K. Tomaszewski	Determination of the static stability of seaplanes. R.A.E. Report No. Aero 2137 June, 1946. A.R.C. Current Faper No. 14
3	C.A.G.I.	Manual of Acro-design. Tom II Hydrodynamic of Seaplane. C.A.G.I. Moskwa 1938.
4.	J.B. Parkinson	Design Criterions for the Dimensions of the forebody of a long range flying boat. N.A.C.A. ARR. 3K00, R.D.T./d 545 Nov. 1943
5	F.W.S. Locke	A correlation of the dimensions, proportions and loading of existing seaplane floats and flying-boat hulls. N.A.C.A. ARR. RDT/C/404.
6	J.B. Parkinson R.E. Olson E.C. Draley A.A. Luoma	Acrodynamic and hydrodynamic tests of models of flying-boat hulls derived from a stream- line body. N.A.C.A. model 84 series. N.A.C.A. ARR. No. 3115, RDT/1/c/ No. 500 September, 1943
7	F.W.S. Locke H.L. Bott	A method for making quantitative studies of the main spray characteristics of flying- boat hull models N.A.C ARR. No. 3Kll, R.D.T./c/554.
8	E.P. Warner	Airplanc design. Performance Mc.Graw-Hill Book Company, New York and London, 1936
10	N.S. Land C.J. Lina	Tests of a dynamic model in N.A.C.A. Tank No. 1 to determine the effect of length of afterbody, angle of afterbody keel, gross load, and a pointed step on landing and planing stability. N.A.C.A. ARR. R.D.T./C/398 March, 1943
11	A.G. Smith H.G. White	A review of the Porpoising Instability of Seaplancs. M.A.E.E. Report No. H./RES/173 February, 1944R.C. 7741 (to be published)
14	F.W.S. Locke	Analysis of the skipping characteristics of some full size flying boats, N.A.C.A. A.R.D. Report No. M-31 November, 1944
15	H.M. Garner	Recent full scale Model Research on Sea- planes. Lecture of the Liliontal-Gesellschaftt. für Luftfahrtforschung. 14 October, 1938.
16	C.H.E. Warren W.D. Tye	Calibration of the wave-maker in the RE. towing tank. RE. Technical Note No. Aero. 1764 March, 1946 A.R.C. 9770 (unpublished)

Wt. 2078.CP. 15.K3. Printed in Great Britain

TABLE I

.

FLOAT DIMENSIONS IN TERMS OF BEAM

(First Version)

FOREBODY									<u>.</u>		 				
Station	F.P.	l	2	3	4	5	6	7	8	9	10	11	12	13	12;.
(l _x :b) • 100%	0	7.5	15	30	60	90	120	150	180	210	240	270	300	<u>44</u> 9	470
· · · · · · · · ·	55 ⁰	55°	557	55 ⁰	53.5°	51°	47°	42°	37 ⁰	32.5°	29 ⁰	26 ⁰	25 ⁰	25	25 ⁰
(h _k :b) · 1007	75	58.5	51.5	42.3	30	21.5	15	10	6.2	3 . 5	1.5	0.4	-	0	0
(h _c :b) • 100%	75	74.6	74.2	73•5	70,8	65.4	56.9	48.5	1 ₄ 0•1 ₁ .	33,8	28.3	25.0	23.8	23.8	23.8
(b _x :b) • 100,1	0	22.0	31.2	43.4	60	71.2	80.0	86.5	91.6	95.4	97.6	99.6	100	100	100
(h _R :b) • 100%	75	69•4	67.9	64.2	59.2	54.0	49.8	46.7	44.2	42.3	41.2	40.2	40.0	40.0	40.0
(R:b) · 100%	0	11.0	15.6	21.7	30.0	35.6	40.0	43.3	45.8	47•7	48.8	49.8	50.0	50.0	50.0
(a:b) • 100/	0 T	⁻ 9.8	13.8	19.0	25.2	28.2	29.2	29.0	28.8	28.5	27.9	27.9	27.9	27.9	27.9
					• • • • • •			<u> </u>		 					

TABLE I (Contd)

-

FLOAT DIMENSIONS IN TERMS OF BEAM (First Version)

	AFTERBODY											
Station	14	15	16	17	18	19	20	21	22	23	24	25
(l _x :b) • 100%	470	502	534	566	598	630	662	694	726	758	790	820
$\theta_m^{\mathbf{O}}$	26 ⁰	26 ⁰	26.75°	28 ⁰	30 ⁰	32 ⁰	34 ⁰	36 ⁰	37 . 25 ⁰	37•75 ⁰	38 ⁰	38 ⁰
(h _k :b) • 100%	7.7	12.7	17.7	22.7	27.7	32.7	37.7	42.7	47•7	52.7	57•7	65.8
(h _c :b) • 100%	32.1	36.7	41.7	47.1	52.5	56.7	60.4	62.3	62.9	61.7	60.8	65.8
(b _x :b) · 100%	100	98 . 4	95.8	92.3	86.1	77.7	67.3	54.2	40.0	23.4	8.0	0
(H _R :b) • 100%	40.0	40.2	42.1	43.8	46.9	51.2	56.2	62.7	69.6	76.9	82.5	83.7
(R:b) • 100%	50.0	49.2	47•9	46.2	43.1	38.8	33.7	27.1	20.0	11.7	4.0	0
(a:b) • 100%				S	traight	Line	-	_				

b = beam at main step

 $b_{\rm X} = local$ beam

 ℓ_x = distance aft from F.P. along datum line h_k = keel height above datum line h_c = chine height above datum line

hR = height of centre above datum line

R = radius of body a = distance from centre of planing bottom curve

TABLE	II
-------	----

FOREBODY														
Station	F.P.	1	2	3	4	5	6	7	8	9	1.0	11	12	13
$(\ell_{x}:b) \cdot 100\%$ θ_{m}^{0} $(h_{k}:b) \cdot 100\%$ $(h_{c}:b) \cdot 100\%$ $(h_{c}:b) \cdot 100\%$ $(h_{R}:b) \cdot 100\%$ $(R:b) \cdot 100\%$ $(a:b) \cdot 100\%$	0 55° 75 75 0 75 0 75 0	7.5 550 58.5 74.6 22.0 69.4 11.0 9.8	15 55° 51.5 74.2 31.2 67.9 15.6 13.8	30 550 42.3 73.5 43.4 64.2 21.7 19.0	60 5 3. 5° 30 70.8 60 59.2 30.0 25.2	90 510 21.5 65.4 71.2 54.0 35.6 28.2	120 47° 15 56.9 80.0 49.8 40.0 29.2	150 42° 10 48.5 86.6 46.7 43.3 29.0	180 37° 6.2 40.4 91.6 44.2 45.8 28.8	210 32.5° 2.5 33.8 95.4 42.3 47.7 28.5	240 29° 1.5 28.3 97.6 41.2 48.8 27.9	270 26° 0.4 25.0 99.6 40.2 49.8 27.9	300 25° 0 23.8 100 40.0 50.0 27.9	449 25° 0 23.8 100 40.0 50.0 27.9

- - - - -----

FLOAT DIMENSIONS IN TERMS OF BEAM (Modification "C")

	AFTERBODY												
Station	13 ^A	14	15	16	17	18	19	20	21	22	23	24	25
$ \begin{pmatrix} \ell_{x}:b \end{pmatrix} \cdot 100\% \\ \theta_{m}^{0} \\ (h_{k}:b) \cdot 100\% \\ (h_{c}:b) \cdot 100\% \\ (b_{x}:b) \cdot 100\% \\ (h_{R}:b) \cdot 100\% \\ (R:b) \cdot 100\% \\ (R:b) \cdot 100\% \\ (a:b) \cdot 100\% $	449 26° 7.7 32.1 100 40.0 50.0 27.9	470 26° 10.4 34.6 100 40.0 50.0 27.9	502 260 14.3 36.2 98.4 40.8 49.2 27.5	534 260 18.3 41.5 95.8 42.1 47.9 26.7	566 260 22.3 45.0 92.4 43.8 46.2 25.8	598 26.2 48.1 88.4 46.9 43.1 24.4	630 26.25° 30.2 50.4 80.8 51.2 38.8 22.7	662 27° 34.2 52.7 73.1 56.2 33.7 20.6	694 280 38.1 54.4 61.6 62.7 27.1 17.3	726 29,5° 42.1 55.4 47.7 69.6 20.0 13.7	758 33.5° 46.0 55.8 30.8 76.9 11.7 9.00	790 45° 50.0 55.8 2.4 82.5 4.00 4.20	820 55.8 55.8 0 83.6 0 0

.`

1

TABLE III

LIST OF MODIFICATIONS

· · · · · · · · · · · · · · · · · · ·		
Modification	Nature of Mcdification	Effect of Modification
п [¥] п	Step fairing removed (Step depth at keel : beam = 7.69%)	 Reduction of hump attitude (n=0°) about 1°/2. Just above the hump speed the lower stability limit is lowered about 2° and elevator sensitivity on stability limit improved. Below 40 knots for instability position of stick more central, above this speed more aft.
1 [.] B.1.	 (1) step moved forward 21,5 of beam (2) step depth at keel reduced (step depth at keel: beam = 4.21,5) 	 (1) Hump attitude the same as modification "A" (η=0°) (2) Just above the hump speed the stability limit is lowered 1¹⁰/₂ relative to modif. "A" but elevator sensitivity on stability limit worse than modific. "A". (3) On stability limit position of stick more central than modification "A".
- "C"	 (1) Step depth as modification "A" (2) Position of step as modification "B" (3) After keel angle to forebody keel reduced from 9° to 7°. (4) Afterbody bottom curve as forebody curve 	 (1) Reduction of hump attitude (η=0°) about 12° relative to modif. "B". (2) Just above the hump speed the stability limit is lowered 2° relative to modific. "B" (3.7° relative to first version) (3) wider range of stable speeds without disturbances. (4) More constant elevator sensitivity on stability limit.

ß

TABLE IV

COMPARISON OF FLOAT TESTED AND SOME DETAILS OF RELATIVE WATER PERFORMANCE

	Queen Bee	Bee R.A.E. Floats						
	Floats ~	First Version	Modific- ation "A"	Modific- ation "B"	Modific- ation "C"	Proposed		
Beam (ft) Longth of forebody * beam Length of afterbody * beam Total length of float * beam Height of float * beam Step depth at keel * beam ½ C.G. (Distance forward of step, parallel to keel datum * beam Height above keel datum * beam Track of floats * beam Maximum cross sectional area * beam x height of	2.035 4.28 3.85 8.13 0.85 2.38 0.40 2.62 3.11	2.17 4.70 3.50 8.20 0.90 With fair- ing 0.61 2.38 2.98	2.17 4.70 3.50 8.20 0.90 7.69 0.61 2.38 2.98	2.17 4.49 3.71 8.20 0.90 4.21 0.40 2.38 2.98	2.17 4.49 3.71 8.20 0.90 7.69 0.40 2.38 2.98	2.17 4.70 3.71 8.41 0.90 5.00 0.40 2.38 3.20		
float Forebody deadrise at step After keel angle to forebody keel Keel angle to fuselage datum Angle of mean chord to fuselage datum C _A at (Light weight (1720 lb) O (Overload weight (1920 lb) Reserve of (Light Weight (1720 lb)). Buoyancy at (Overload weight (1920 lb) $(C_{AO} = 1.5$ Volume of float \div (beam) ³ Forebody volume \div afterbody volume Volume of float \div max. cross sectional area x total length	0.71 25° 5.75° -4.5° 2.8° 1.59 1.78 106% 83% 118% 3.26 -	0.74 250 9° -30 2.8° 1.42 1.42 1.58 124% 102% 112% 3.18 2.74 0.584	0.74 250 9° -30 2.8° 1.42 1.58 123% 101% 111% 3.17	0.74 25° 9° -3° 2.8° 1.42 1.58 122% 100% 110% 3.16 2.24 0.58	0.74 250 7° -30 2.8° 1.42 1.58 126% 104% 114% 3.20 2.17 0.586	0.74 250 7° -3 2.8° 1.42 1.58 154% 12% 12% 140% 3.60 1.83 0.642		

23.

			R.n.E. Flo	ats	
	Queen Bee Floats	First Version	Modific- ation """	Mcdific- ation "B"	Modific- ation "C"
		Take	- off at overloa	d - Flaps 20 ⁰	
Maximum attitude (relative to keel datum) on stability limit with 7° distur. Corresponding (Speed (knots) (Incidence of mean chord Maximum attitude (relative to keel datum) on stability limit without distur. Corresponding (Speed (Knots) (Incidence of mean chord Maximum attitude (Relative to keel datum) for elevator position $\eta = 0^{\circ}$ Corresponding (Speed (knots)	7.7° 26.25 15° 7.7° 26.25 15° 9.25° 20.00	$ \begin{array}{c} 12.7^{\circ} \\ 20.5 \\ 18.5^{\circ} \\ 12.5^{\circ} \\ 21.0 \\ 18.3^{\circ} \\ 12.4^{\circ} \\ 16.0 \\ 18.2^{\circ} \\ \end{array} $	10.8° 21.0 16.6° 10.0° . 21.0 15.8° 11.8° 16.5 16.5	9.5° 21.0 15.3° 9.3° 21.0 15.1° 11.8° 17.0	9° 21.0 14.8° 6.2° 26.25 12.0° 10.4° 18.0 16.2°
(Incidence of mean chord)	16.55	10.2 Iard	17.6 ang at overload	$- 17.6^{\circ}$	16.2
Maximum attitude (relative to keel datum) on stability limit with 7 ^o distur. Corresponding(Speed (knots) (Incidence of mean chord				-	5.25° 32.0° 11.05°
Maximum attitude (relative to keel datum) for elevator position $\eta = 0^{\circ}$ Corresponding (Speed (kncts) (Incidence of mean chord					9.75 ⁰ 25.0 15.55 ⁰
	 	Land	ing at light loa	d - Flaps 200	
Maximum attitude (relative to keel datum) on stability limit without distur. Corresponding (Speed (knots) (Incidence of mean chord Maximum attitude (relative to keel datum) for elevator position $\eta = 0^{\circ}$ (Speed (knots)	6.8° 26.2 14.5° 8.0° 19.0	11.25° 21.0 17.05° 14.1°			-
Corresponding (Incidence of mean chord	15.3°	19.9°	-	-	-

٠

•

٠

-41)

TIBLE V

SEAVORTHINESS IN MAVES, CA = 1.58

	Speed knots										
//ave	0	5.3	10.6	13.2	15.9	18,5	21.2	26.5	31.8	37.1	42.4
No Jave	Very Clean	Very Clean	Clean	Clean	Spray due to blistor Glean interference between the two floats slightly bits undersurface of contral and aft part of fuselage				Very Clean	Very Clean	Very Cloan
I	ng TpcAc)20070 172	Impreven reductio floats.	uent in wn of th	spray con e interfo	ditions renoe b	duanto etwoen th	ve the	ils Abeve	ns Rocve	la lbove
II	As aleve	li⊥s µbove			S I.	bovođ			As Above	lis Above	As A∋cve
<u>111</u> (Fig. 12)	ila "jocva	115 Abeve	Clean	Clean	Spray du interfor the two hits und fuselage	to to bl rence he floats tersurfa	ister tween slightly ce of	Glean	Clean	Clean	Founding
		Photo. 1-5	Photo. 6-10	Photo. 11-15	Photo 16-20	Photo. 21-26	Photo. 27-32	Ehcto 33-38			Paoto. 39.44
IV (Fig. 13)	ils above	is Above	As Above	ins A∂⊂ v e		as bove		Slightly Wettod aft under- surface cf fusclage	la Abevo	Bouncing	ils Above
	Fhoto. 45-54	Photo. 55-60	Photo. 61-66	Phote. 67-72	Photo. 73-78	Thoto. 79-84	Photo. 85-90	Photo. 91-96	Photo. 97-102	Photo. 105-108 ,	Photo. 109-114

1

25.

IABLE VI

-

AFT TAXYING PERFORMANCE ($C_{\Delta_0} = 1.58$)

Speed Knots	Nature of taxying without disturbances	Effect of small disturbances (bow up and down)	Effect of large disturbances
2.7	Attitude of taxying similar to normal taxying	Very steady. No tendency to change attitude.	Very steady. No tendency to change attitude.
5.3	As above	As above	As above
6.6	As above	As above	As above
8.0	As above	As above	Slight tendency to dive(bow up)
10.6	Running with bow slightly down.	Slight tendency to dive (bow up).	Tendency to dive (bow up).
13.2	Running with bow down. Rear step clear of water. Spray hits propeller.	.ls above	Diving (bow up).
15.9	ns above	Dangerous tendency to dive (bow up).	Diving (bow up)

& = BEAM AT MAIN STEP.

Ex= LOCAL BEAM.

REEL HEIGHT ABOVE FLOAT DATUM.

herchine height above float datum.

R = HEIGHT OF RADIUS CENTRE ABOVE FLOAT DATUM.

RD=HEIGHT OF DECK ABOVE FLOAT DATUM.

RB=BOW HEIGHT ABOVE FLOAT DATUM = 0.75 × 6

R = RADIUS OF BODY = 0.5 × bx

ℓx = DISTANCE AFT FROM F.P. ALONG DATUM LINE OF THE FLOAT.

THE GEOMETRY OF THE FOREBODY EXPRESSED NON-DIMENSIONALLY.

SHEET FIG.I

FOREBODY DEADRISE DISTRIBUTION.

FIG. N

1

ω

*)

FIG. I.

& BEAM AT MAIN STEP

*

.

THE FOREBODY BOTTOM CURVE.

4

٠

.

THE GEOMETRY OF THE AFTERBODY EXPRESSED NON-DIMENSIONALLY.

.....

FIG. I.

AFTERBODY DEADRISE DISTRIBUTION.

.

•1

*

٠

FIG. I.

GENERAL ARRANGEMENT OF FLOAT ATTACHMENT.

•

I.

FIG. 2.

ALL DIMENSIONS IN INCHES

FIG. 3. SHEET 1.

					_		
RBC	YDC						
FO	R AL		PES (OF FL	OATS	3	
8	19	20	21	22	23	24	25
15	MOD	IFICA	TION	"c'			
20	8.50	9.80	12.10	12.40	13.70	15 00	17.10
65	j4·75	15.70	16.20	16-35	16·01	15 80	17-10.
20	10.10	8.75	7.05	5.20	3.05	1.02	
00	IFIC.		N "C	י י		'	
ΤC	M						
		E MO		SCALE			

R.A.E. FLOAT LINES

0 1 2 3 4 5 INCHES

SCALE - 1/15. DIMENSIONS GIVEN IN INCHES ; FULL SCALE.

ALL DIMENSIONS IN INCHES.

	FOREBODY.										AFTERBODY.																	
STATION E.P.IN	٧÷	EP	1	2	3	4	5	6	7	8	9	10	11	12	13	13 ^	14	15	16	17	18	19	50	S	22	23	24	25
DISTANCE AFT	2	0.00	1.95	3.90	7.80	15.60	23.40	31.20	39.00	46.80	54-60	62.40	70.20	78.00	116-50	116-50	122.00	130-30	138-60	146-90	155-20	163-50	171-80	180-10	188·40	196-50	205-00	213-00-
REEL H+ h	1 1	19.50	15.50	13-40	11 - 00	7.80	5.60	3-90	5.60	1.60	0.90	0.40	0.10	0.00	0.00	5.00	2.70	3.73	4.76	5.79	6.82	7.85	8 88	9.91	<u>0</u>	11 .97	13.00	14.50
CHINE Ht I	1-	19.50	19.40	19-30	19-10	18.40	17:00	14.80	12.60	10.50	8.80	7.35	6 50	e-so	€∙5 0	8.35	9.00	9.90	10.80	11-70	12.50	13-10	13 .70	14 15	14-40	14-50	14 50	 4 -50
CHINE HALF		0.00	1.85	4.05	5.65	7.80	9.25	10.40	11.25	11-90	12.40	12.70	12.95	13.00	13.00	13.00	13.00	12-80	12.45	12.00	11 - 50	10.50	9.50	8.00	6.50	4.00	1 - 60	0.00
HE OF CENTRU	Ě	19.50	18.05	17.45	16.70	15.40	14 25	13.10	12.25	11.60	11-10	10.80	10.55	10.50	10.50	10.50	10.50	0.70	11-05	11.50	12.30	13.40	14.70	16-35	18-10	20.00	21.45	21.75
RAD OF BOTH	R	0.00	1-85	4.05	5.65	7.80	9.25	10-40	11.52	11.90	12.40	12.70	12.95	13.00	13.00	13.00	13.00	12-80	12.45	12.00	H 20	10-10	8·75	7.05	5-20	3.05	1.05	0.00
	a	0.00	1.55	3.60	4.95	6-55	7.35	7.60	7.55	7.50	7.40	7.25	7-25	7:25	7.25	7.25	7.25	7.15	6-95	6-70	6 35	5.90	5.35	4 50	3.55	5.32	1-10	0.00

FIG. 3. SHEET 2.

RAE. FLOAT LINES - MODIFICATION "C."

SCALE :- 15

DIMENSIONS GIVEN IN INCHES FULL SCALE.

FIG. 5.

FIG. 6.

FIG.7

FIG 8.

FIG.9. (1)

40

č

KEEL 4⁰ 5-3 KNOTS

∝ KEEL 6·3[°] 10·6 KNOTS

KEEL 14 10 KNOTS (HUMP SPEED)

ELEVATOR ANGLE - ZERO IN ALL CASES SPRAY CHARACTERISTICS ON CALM WATER DURING LANDING AT LIGHT LOAD 172016 A.U.W. R.A.E. FLOATS - FIRST VERSION

α KEEL 12.8° η = -30° 21.2 KNOTS

CONSTANT SPEED

≫ KEEL 9 6 ° η = -30° 26 5 KNOTS

≪ KEEL 7 20° Ŋ= - 20° 317 KNOTS

α KEEL 6° η = - 20° 371 KNOTS

SPRAY CHARACTERISTICS ON CALM WATER DURING LANDING AT LIGHT LOAD 172016 A.U.W. R.A.E. FLOATS - FIRST VERSION

VIEW OF MODEL

α KEEL 6.10 η = 0° 10.6 KNOTS

SPRAY CHARACTERISTICS ON CALM WATER DURING TAKE-OFF AT OVERLOAD 192016 R.A.E. FLOATS - FIRST VERSION

لا الحديث المراجع ا مراجع المراجع ال مراجع المراجع ال مراجع المراجع المراج

ACCELERATION 0.15 g

CONSTANT SPEED

∝ KEEL IO·8° η = - 12° 26-5 KNOTS

≪ KEEL 10° 1= - 8° 26 5 KNOTS

SPRAY CHARACTERISTICS ON CALM WATER DURING TAKE-OFF AT OVERLOAD 192016 R.A.E. FLOATS - FIRST VERSION

WAVE	I	ш	щ	TV.
WAVE HEIGHT	05 ft	0 8 ft.	1·25 ft	2.1 ft
WAVE LENGTH	10 ft	16 ft	25 ft	84 ft
WAVE HEIGHT WAVE LENGTH	1:20	1:20	1.20	1: 40
WAVE HEIGHT FLOAT BEAM	0.53	0 37	0.28	0.99
WAVE LENGTH	0.26	0 90	1 41	4.73

WAVE TEST CONDITIONS

(ZERO WIND)

FIG. 12. (1)

6

7

8

Q

10

SPRAY CHARACTERISTICS IN WAVES, HEIGHT = 1.25 ft., LENGTH = 25 ft., ZERO WIND CONDITIONS. R.A.E. FLOATS - MODIFICATION "C".

FIG. 12. (2)

SPRAY CHARACTERISTICS IN WAVES, HEIGHT = 1.25 ft., LENGTH = 25 ft., ZERO WIND CONDITIONS. R.A.E. FLOATS - MODIFICATION "C".

FIG.12. (3)

FIG. 12. (4)

R.A.E. FLOATS - MODIFICATION "C"

FIG.13. (1)

FIG. 13. (2)

R.A.E. FLOATS - MODIFICATION "C"

ZERO WIND CONDITIONS.

FIG.13. (3)

SPRAY CHARACTERISTICS IN WAVES,

HEIGHT = $2 \cdot 1$ ft., LENGTH = 84 ft.,

ZERO WIND CONDITIONS.

R.A.E. FLOATS - MODIFICATION "C"

≪ KEEL=9·4;η=0°

SPEED = 13 2 KNOTS ≪ KEEL=6 ·2; η =0°

FIG. 13. (4)

R.A.E. FLOATS - MODIFICATION "C"

FIG.13. (5)

SPRAY CHARACTERISTICS IN WAVES, HEIGHT = $2 \cdot I$ ft., LENGTH = 84 ft., ZERO WIND CONDITIONS. R.A.E. FLOATS - MODIFICATION "C"

FIG. 13. (6)

R.A.E. FLOATS - MODIFICATION "C"

ZERO WIND CONDITIONS.

ALL DIMENSIONS IN TERMS OF BEAM AT MAIN STEP.

		\square	FOREBODY.													AFTERBODY												
STATION F.P.	N٩	F.P.	1	2	3	4	5	6	7	8	3	10	Ú	12	13	13^	14	15	16	17	18	19	20	21	22	23	24	25
DISTANCE AFT	l _x .	0.000	0.75	0.15	0.30	0.60	0.90	1.20	1.20	1.80	2.10	2.40	2.70	3.00	4.70	4.70	4.91	5.23	5.55	5.87	6.19	6.5	6.83	7.15	7.47	7.79	8.11	8:41
KEEL HT.	h _k 6	0.75	0.585	0.515	0.423	0 30	0.215	0.15	0.10	0.062	0.035	0.015	0 04	0.00	0.00	0.050	0.077	0.116	0.156	0.196	0.235	0.275	0.315	0.354	0.394	0.433	0.473	0-531
CHINE HT.	he:6	0.75	0.746	0.742	0.735	0.708	0'654	0.569	0.485	0.404	0.338	0.283	0.25	Q·238	0.238	0.304	0.319	0.335	0.388	0.423	0.454	0.477	0.500	0.517	0.527	0.231	0.531	0.531
LOCAL BEAM	6x:6	0.00	0.220	0.312	0.434	0.600	0.712	0.800	0.866	0.916	0.954	0.976	0-996	1.00	1.00	1.00	1.00	0.984	0.958	0.924	0.884	0.808	0.731	0.616	0.477	0-308	0·124	0.00
HT OF CENTRE	h _R 6	0.75	0.694	0.679	0.642	0.592	0.540	0.498	0.467	0.442	0.423	Q.412	0.402	0.400	0.400	0.400	0.400	0.408	0.421	0.438	0.459	0.512	0-562	0.627	0.696	0769	0.825	0837
RADIUS OF BODY	R: 6	0.00	0110	0.156	0.512	0.300	0.356	0.400	0 433	0.458	0.477	0.488	0.498	0.500	0.200	0.500	0.500	0 492	0.479	0.462	<u>0 4</u> 31	0.388	0:337	0 27!	0·zoc	0/117	0.040	000
	a b	0.00	0.098	0.138	0.130	0 252	0.282	0.292	0.290	0.288	0.582	0.279	0.279	0.279	0.279	0.279	0.279	0.275	0.267	0.258	0.244	0.227	0.205	0.173	0.137	0.090	0.042	0.00

0.08×6

& BEAM AT MAIN STEP

FIG. 14.

TRACK = 3.2.6

PROPOSED LINES OF R.A.E. FLOATS.

AND STATIC BEAM LOADING COEFFICIENT.

ر

J.

3

Ś

\$

C.P. No. 15 2154 A.R.C. Technical Report

PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE

To be purchased from

.

.

.

ı

,

York House, Kingsway, LONDON, W C.2, 429 Oxford Street, LONDON, W 1, PO Box 569, LONDON, S E 1, 13a Castle Street, EDINBURGH, 2 39 King Street, MANCHESTER, 2 2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST,

or from any Bookseller I.

1950

Price 5s. 6d. net

_

3 1

.