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Summary. 

A theoretical investigation is made of the effects of dispersion in neutral gases on the formation of 
white-light fringes in an ideal Mach-Zehnder interferometer. It is found that the shift of the brightest 
fringe is determined by the change of the group refractive index at an effective mean wavelength of the 
white light. However, the white-light fringe technique may be used to measure changes of the phase 
refractive index, provided that an allowance is made for the drift of the brightest fringe caused by the 
effects of dispersion. Such allowance is needed whenever the fringe shift exceeds about 10. 
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1. Introduction. 

In the literature on Mach-Zehnder interferometry frequent references are made to the use of white- 
light fringes in situations when it is impossible to follow monochromatic fringes across discontinuities. 
In most cases it is tacitly assumed, and sometimes it is explicitly stated, that the 'central' white-light 
fringe corresponds to zero difference between the optical paths in the two beams of the interferometer 
ffor instance, see Reference 5). However, this can be true only if the optical path difference is independent 
of the wavelength of light, that is, if the effects of dispersion in the two beams are exactly equal. There 
are two ways in which dispersion may have differen~ effects in the two beams: first, because of imperfect 
matching of glass components and, second, due to differences in density of the gaseous media traversed 
by the beams. 

The effects of dispersion caused by glass have been considered in some detail by Tanner 7 ; they can 
be eliminated by proper matching of the optical components, and even when present are fairly innocuous 
since they normally remain unchanged in a given optical set-up and are unlikely to lead to errors in the 
interpretation of interferograms. 

The effects of dispersion arising from differences of gas density are inevitable. They have long been 
recognised in refractometry z'3 but appear to have been ignored or glossed over in the literature on 
interferometry in aerodynamics. This is probably due to the fact that common gases have low dispersion, 
and it does not seem to have been generally appreciated in the past that changes of density of such gases 
corresponding to fringe shifts of only 10 to 20 produce significant effects of dispersion on white-light 
fringes, and may cause errors in the evaluation of discontinuous density changes. Recent interferometric 
studies of ionized gases have led to a wider recognition of these effects, because of the high dispersion 
in plasmas. Alpher and White ~ used arguments based on the group velocity of light to discuss the 
behaviour of white-light fringes in plasmas and gave a qualitative description of the effects of dispersion 
in neutral gases. Glass and Kawada 4 attempted a more detailed investigation of white-light fringes in 
plasmas but their treatment is incorrect for reasons stated in the footnote to Section 4.1. 

In the present Report we investigate the formation of fringes in an ideal Mach-Zehnder interferometer 
with a point source of light. We begin by considering the light of a single wavelength and obtain a 
relation between the refractive index in a two-dimensional disturbance in one of the beams and the 
location of a particular monochromatic fringe on the screen. This relation is used to deduce the displace- 
ment (or shift) of the brightest fringe when the light source contains a narrow band of wavelengths, and 
we find, as expected, that this fringe shift is related to the change of the group refractive index. In Section 3 
we postulate a representative spectrum of a blue-rich source of white light (extending over the whole of 
the visible spectrum) and calculate the corresponding distribution of intensity in white-light fringes in 
the absence of dispersion; the spacing of the brightest three fringes, and the shift of the central fringe 
are found to be just those that would be obtained with monochromatic light of wavelength equal to an 
effective mean wavelength of the white light (very nearly equal to the median wavelength of the source). 
Finally, in Section 4 we examine the effects of dispersion in neutral gases and find that the spacing of 
the brightest three fringes is unaffected by dispersion and that the shift of the brightest fringe is deter- 
mined by the change of the group refractive index at the effective mean wavelength of the source. This 
demonstrates the validity of group-velocity arguments in a situation in which one might not expect 
such arguments to hold, and provides a guide to the unambiguous evaluation of white-light inter- 
ferograms. 

2. Monochromatic Fringes. 

The layout of a typical Mach-Zehnder interferometer is shown in Fig. 1; for simplicity, we have 
omitted the camera lens which focuses the working section onto the screen. Throughout  this paper, 
the interferometer plates, windows and any other optical components are regarded as perfect, refraction 
is neglected and the light source is assumed to be a point. 

Consider first the situation when all the mirrors are parallel, the working section of width w contains 
air at atmospheric conditions, the optical paths in the two beams are equal and the light is monochromatic 
(of wavelength 2). Then, whatever the value of2, the light arrives at the screen in phase. If the density of 



air in the working section is disturbed, a fringe pattern will appear on the screen. Suppose that the 
disturbance is two-dimensional and let r be the density of air at any point in the working section and 
r o be the ambient air density. 

Along any bright fringe, the difference between the optical paths in the two beams must be an integral 
multiple n of the wavelength of light used, i.e. 

l = n 2 .  

The optical path is defined as the integral along a ray of the refractive index, #, of the medium through 
which the light is passing. For dilute gases, # is given by the Gladstone-Dale law 

# =  l + K p / p o  . 

In neutral gases the factor K is a weak function of 2, approximately of the form 

K (2) = A + B / 2  z . 

For air # ,  = 1 + K ,  r / r  o 

so that in our case 1 = w [(1 + K ,  r / ro)- (1  + K~ ro/ro) ] 

r 
= w K,  ( - - -  1). 

ro 

r n2 
Thus, - - -  1 - 

r o . K  a w 

and if we had a means of identifying a particular fringe (i.e. ascribing to it the appropriate value of n), 
r/r  o could be determined at the position of the various fringes. 

Consider next the situation when air in the working section remains at ambient conditions but the 
mirror M 4 is rotated through a small angle e/2 about an axis parallel to the y-axis. As a result the 
emergent beam II (or wavefront II) is rotated through the angle c~ about the same axis : 

~ X 

\ (x - Xo) 

\ 

W Z and screen 

~ Z  



At the screen there is then a 9eometrical path difference between the two wavefronts  given by 

c~ ( x -  Xo), 

where x - Xo defines the intersection of I4') and Vv}r A translat ion of the mirror  M 3 along its normal  
would shift W u to a new position, say Wi t. This would simply alter the value of Xo and the geometrical  
path difference would become [~ ( x -  Xo) + T], or, c~ ( x -  x;). The  corresponding optical path difference is 

l, = (1 + Ka) c~ (x-x{~).  (1) 

The suffix i denotes that  the path difference is due to the adjustment  of the inte@,rometer. For  air 
K ~ 0.0003, therefore in (1) K,  may  be neglected by compar i son  with 1 and wc write 

1, = c~ ( x  - x ; )  

= :~ ( X - X o ) + Z .  (2) 

Instead of writing l, in absolute terms, we can express it as a multiple N~ of a wavelength it., 

I i ---- N i i t "  

= c~ ( x -  x;)  (3) 

The number  N, (which is not  necessarily an integer) is thus a non-dimensional  path  difference. 
If e and z were known precisely, l, or N, would be known at any point  on the screen. However ,  c~ and 

z are too small to be accurately measurable  by ordinary means, so that  even with a perfect ins t rument  
the only practicable way of determining l, or N, would be to take a m o n o c h r o m a t i c  interferogram. If 
the wavelength of light used for this purpose  is )-m, then alon9 any brightfi'inge (suffix f )  

l, = l,y = integer ,  it,, 

= r t ,  ~ 'm  • 

Hence by (3), 

n i 2,. = c~ (x I -  Xo), (4) 

which may  be regarded as an equat ion for the lines on the screen where the non-dimensional  path  
difference Ni takes integral values n i, that  is, where the fringe number  is nv Since the path difference at 
points  which do not fall on a fringe may  be determined by interpolat ion,  we can revert to the form of 
equat ion (3) and write 

li - ;t., N i  = ~ ( x -  x'o). (5) 

In a real instrument  the ideal straight line fringe pat tern would be somewhat  distorted by the imper-  
fections and we would have 

li =-- itm N i  -'- F (x, y).  (5a) 

Note  that  1, is independent  of  it,., but  N, is not. 



Consider next the effects of: 

(a) Uniform change of density of air in the working section. 
If the density of air in the working section has a value r, which is uniform but different from ro, the 

path difference becomes 

2m N'~ = I~(2)= l~+wK~(2)(rt@o-l~ (6) 

= 2m N~ + 6 ~ l~ (2) 

At 2 = 2m, Ii (2m) : 2m N~ + fi i [i (Am)" 

If an interferogram is taken with 2m, then, along bright fringes 

r~ (2.,) = 11: (2m) = ' L  nl 

-- F (x, ~j + cons t .  

= F' (x, y), say, 

(where 2,, N~ is still given by (5a)). 
The additional term ~ 1 I~ is independent of the position on the screen and represents a bodily translation 
of the monochromatic fringe pattern, or, an increment to the path difference at any point. The change 
of optical path difference between one point and another (or the change of the fringe number) is therefore 
unaffected by a uniform change of density of air in the working section. 

(b) Substitution of another gas. 
If air in the work]~ng section is replaced by a different gas with uniform density d and Gladstone-Dale 

factor Ka (2), we have 

m-'i - li'(2)= I i+w K d(2) K,(2) 

= Ii+6 2 1 t(2). (7) 

As far as the monochromatic interferogram is concerned this, again, amounts to a shift of the fringe 
pattern, and with 2 = 2,, we would have 

2m NI' = l~' (Am) = li (x, y)+62 l~ (Am) 

= F" (x, y ) .  (8) 

(c) Disturbed test gas. 
Suppose now that the working section contains a gas with density p (x, y) and Gladstone-Dale factor 
K (2). Then, the path difference at wavelength 2 is 

l(2)= l~+w [ K ( 2 ) P - K ~ ( 2 ) ]  (9) 



If a monochromatic interferogram were taken at wavelength 2, then along bright fringes 

l I(2)= 2n= li+w [ K(2) p~-K~(2)]Oo (9a) 

where n is an integer and 2 is constant. 

Therefore, p 2 n -  Ii . Ka (2) 
Po - w K (2) + - K ~ - '  along a fringe. (10) 

Here li = F (x, y) [c.f. equation (5a)] where the values of x and y are those corresponding to the fringe 
I = 2n. Denote the relation between x and y along this fringe by x = f ,  (y). Then li = F [y ,  f ,  (y)]. 

Suppose that we want to evaluate (10) by obtaining l~ from a monochromatic undisturbed inter- 
ferogram taken under conditions (2). Then, dropping the double-dash superscript we have from equation 
(8) 

I i = 2,, N i [y, f~ (y)]-~5 2 I i (2,,) 

and from (10), along a fringe, 

p )Ln--2mNi--6211()~m) K~(2) 
Po wK(2)  q K ( 2 ) '  (11) 

where the t e r m  (~2 li is independent o f x  and y. 
To obtain an absolute measure of P/Po, we,would need to know (~2 li (~'m) and n. However, if we are 

only interested in the diffi, rence between the density p at any point on a fringe and its known value p~, 
say, at another point on the same fringe, then from (11) 

P - P 1  2,, 
- [ N i  (y, f .  ( y ) ) -  (N i ) l ]  • (12) 

Po w K (2) 

The difference between the terms in the square brackets is the displacement or shift of a distorted 
fringe corresponding to the density disturbance (p -p~) ;  this shift is expressed in terms of fringe numbers 
of the undisturbed monochromatic fringes of wavelength 2,,. We stress this particular definition because 
some confusion exists in the literature as to the precise meaning of the term 'fringe shift'. 

The evaluation of a distorted monochromatic interferogram, using equation (12), is straightforward 
if individual fringes can be everywhere identified without ambiguity. If discontinuous or very steep 
density disturbances are present, it is usually impossible to follow a particular fringe across the disturbance 
and the evaluation of such interferograms requires the knowledge of reference densities on either side 
of the discontinuity. The chief aim of the white-light technique is to dispense with the need for delcrmining 
such reference densities by making one fringe distinguishable from the others. 

3. Nearly-monochromatic FrhTges. 
Since for a fixed y there is a unique relation between x and N/along a fringe, the values of y and N, 

may be used as co-ordinates of a point on the screen, rather than the values of y and x at that point (see 
Fig. 2). Therefore, if we substitute for li in (9a) from (8), 

2n = 2'n Ni-b211(2m)+ w [K (2) P (Y)- Ka (2) ] 

along a fringe. 
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This may be regarded as an equation for N~ as a function of y, i.e. an equation describing the location 
of  the nth fring e in the (Ni, y) co.ordinates: 

2n 6zIi('2,,) w [-__(2)p(y)_K,,(2)-] . 
N, = -,- +;m L PO IK J 

(13) 

• Wlaen white light is used, each wavelength of the source produces a fringe System described by (13). In 
the absence of dispersion (constant K and K,) all such systems would reinforce at the n = 0 fringe (since 
(13) would then be independent of 2). Away from the fringe corresponding to n = 0, the fringe systems 
produced by the various wavelengths of the source would fail to overlap, so that the intensity of light 
would be highest at the central fringe (n = 0) corresponding to zero path difference for all wavelengths. 
• With dispersion, when K and Ko depend on 2, there is, in general, no position on the screen where the 
optical path difference is the same for all wavelengths and the position of the brightest fringe cannot 
be determined without a more detailed investigation. 

Before attempting such an investigation in the next part of the Report, let us examine briefly the 
formation of non-monochromatic fringes on the assumption that the light source covers a narrow band 
centred on a mean wavelength 2. One can then argue that fringes produced by the different wavelengths 
of the source will reinforce when dNi/d2 = 0. Differentiating (13) with respect to 2 and setting dN~/d2 = 0 
leads to 

= (dKo pdK) 
nma x W\ d2 Po d-2 ~=~ 

Again, in the absence of dispersion this gives nma x = 0, SO that all'the fringe systems overlap at the fringe 
corresponding to zero path difference. 

In terms of the group Gladstone-Dale factor defined by 

Kg = K - 2  dK (14) 
d2 

the above equation becomes 

wE;0 nmax = ~- (-~o--/~) --(-Kag-ga) (15) 

This equation asserts that, with dispersion, the fringe systems produced.by wavelengths close to ,~ 
reinforce at the position on the screen where the path difference is l = nmax.~ , or, where 1-nmax2 = 0. 
Using the form (9a) for I and substituting for nm, x from (15) we find 

0=  l--nmaxZ = l~+w(~ ° K 0- K..).  (16) 

The right-hand side of this equation is the optical path difference based on the group refractive index. 
Thus, in the presence of dispersion, the fringes produced by a light source with a narrow band of wave- 
lengths reinforce where the group rather than the phase path difference is zero. It will be shown in the 
next Section that this is also so in the case of fringes produced by white light with a spectrum extending 
over the whole visible region, provided that one ascribes to the white light an effective mean wavelength 
corresponding to the wavelength ,~ of the nearly-monochromatic source considered in this Section. 



4. White-liqht Frimles. 
4.1. The Expression for the Intensity at the Screen. 

Let 1, i (2) be the intensity of light, per unit wavelength, arriving at a point on the screen via each beam 
separately. Then, it can be readily shown that the total intensity I is given by 

I = 2 i (),) cos 2 d2 ; 

= Io 1 + Io cos d2 
),1 

where /(~) is, as before, the optical path difference at the point in question, 

(17) 

I o = i (2) d2 (18) 

is the total intensity in the absence of interference, and the spectrum extends between the limits ).~ and 2 2. 

This result can be obtained by combining, according to Young's principle of superposition, two 
simple-harmonic wave trains of equal amplitudes but different phases, squaring the resultant amplitude 
to obtain the instantaneous intensity per unit wavelength*, averaging the result over a time interval 
large by comparison with a representative periodic time and. finally, integrating over the spectrum 
from ,:: to 2:. 

4.2. The Intensity Distribution Function i(2). 

The variation of i with 2 depends not only on the emission spectrum of the source but also on the 
transmission characteristics of the optical system. The fringe pattern is usually recorded photographically 
and the final effect produced by the light arriving at the screen with a particular distribution of i (2) is 
also dependent on the sensitivity of the photographic emulsion. It is obviously convenient to think of 
thc transmission characteristics of the optical system and the spectral response of the photographic 
emulsion as lnodifications of the source spectrum and we shall regard i(2) as the effective emission 
spectrum of the source. 

In this Report we are concerned mainly with short-duration sources of light provided by spark and 
flash-tube discharge. It is difficult to make general statements about the spectra of such sources, because 
their detailed spectral characteristics depend on the gas in which the discharge takes place and on the 
material of the electrodes. In most cases, however, the emission from such sources (especially from 
spark discharges in argon or air) is relatively much richer in violet and blue light than is sunlight or the 
light from tungsten filaments. A typical spectrum of light from spark sources was given by North and 
North ~ and is reproduced here in Fig. 3. This is, clearly, a simplified distribution in which all the emission 
is represented by continuum radiation. More recently, some spectra of an argon spark discharge were 
obtained by Mr. Townsend of the Aerodynamics Division, NPL (private communication from Dr. K. C. 
Lapworth, 1963). These show a large amount of continuum radiation interspersed with many strong 
argon emission lines: most of these lines lie in the violet, blue and green parts of the spectrum. No 
quantitative measurements have yet been made, but the general appearance of the spectra confirms the 
conclusion that spark sources are rich in the violet and blue light and that the distribution suggested 
by North and North is a reasonable representation of their spectra. 

*Glass and Kawada 4 consider the formation of white-light fringes with dispersion, but their analysis 
is incorrect, for they fail to distinguish between amplitude and intensity and between instantaneous 
and time-averaged quantities. They operate with a quantity to which they refer variously as 'amplitude', 
"intensity' and 'brightness' and which is, in fact, quite meaningless, because it represents the instantaneous 
resultant amplitude integrated over the spectrum. The light of different wavelengths is not coherent 
and it is the intensity and not the amplitude that should be integrated over the spectrum. 



As regards the transmission characteristics of the optical system and the sensitivity of the photographic 
emulsion, the important effects are, on the one hand, the absorption of the ulta-violet radiation (of 
wavelength below, say, 0.41~) by the large total thickness of glass usually present in the optical system 
and, on the other hand, the toss of sensitivity of panchronmtic emulsions in the deep-red and infra-red 
(beyond about 0-65 to 0.7/x). 

In view of these considerations, we have chosen to represent the intensity distribution i(2) by the 
function (also plotted in Fig. 3): 

i(2) = k/).2, - 21 ~ 2 ~< 22 

= 0 , - - 2  < 2 1 , - - 2  > 22 (19) 

where 21 = 2/'5/~, 22 = 2/3 # and k is a constant. Substituting in (18) we can relate k to I o, the intensity 
at the screen in the absence of interference : 

21 22 
k -  I o 

).2 - 2 1  

so that k = I 0, when 21 = 2/5 and ).2 = 2/3. 
The main virtue of this dependence of i on 2 is that it provides a reasonable quantitative description 

of a typical wavelength distribution of intensity whilst making the evaluation of 17) particularly easy. 
In fact, in terms of the wave number* v = 1/2 equation (17) becomes 

1 ~'1 i(1/v) 
I 1 + ~  - -  cos  (2 n l v) dv 

1--£ = oJv~ v2 

and substituting i (1 /v )  = I o v 2 / ( V l -  V2) , we have 

I 1 + cos (2 ~z I v) dv (20) 
Io vt - v23,.2 

Of course, our choice of i(2), equation (19), amounts to assuming a rectangular distribution of the 
intensity per unit wave-number, j (v) : 

j ( v )  = I o / ( V l - V 2 ) , - v 2  <~ v <~ v 1 . 

= 0, v < V2,--V > v 1, 

where Y1 = 2'5/x- 1, v2 = 1"5 # -  1. 

4.3. W h i t e - l i g h t  F r i n g e s  in the  A b s e n c e  o f  Dispers ion .  

When there is no dispersion or, more correctly, when the dispersion in the two beams is exactly equal, 
the optical path difference 1 is independent of v and equation (20) yields 

I 1 
- -  = 1 sin (~ 1 A v) cos (2~ l ~), (2 I) 
I o + ~- -~v  

where A v  = vl  - v 2 ,  

and 5 = ½ (vl + v2). (22) 

*For numerical convenience we define the wave number as the reciprocal of the wavelength measured 
in microns. 



The value of 2 corresponding to i~ is 

= 241 42/(41 +22)  (23) 

and it is easy to verify that  

i(2) d,~ = i(2) ct2, 
21 

that  is, 2 is the /nedian wavelength of the intensity distr ibution equat ion ('19). As we shall see later, ,{ 
may  be regarded as an effective mean wavelength of the white light. 

It will be more  convenient  to write (21) in the form 

I 1 
- -  = 1 + ~ sin (n Lv) cos (2n L) (24) 
I0 

where L = I/2 (25) 

is the path  difference in terms of the median wavelength 2, and 

v = Av/~ (26) 

is the intensity band-width  expressed as a fraction of the median wave-number  ~. 
It is clear that  the variat ion of intensity with L can be regarded as an oscillation of unit period abou t  

the average intensity* I 0, modula ted  with the period 2/v and decaying like (Lv) -  1 ; the ampl i tude  o f  the 
oscillation is m a x i m u m  at L = 0 and is equal to Io. 

The intensity distr ibution represented by equat ion (24) is symmetr ic  about  the m a x i m u m  corresponding 
to zero path difference (L = 0). The actual  fringe pat tern on the screen would, of course, depend on the 
manner  of variat ion of I with the posit ion on the screen. For  the purpose  of the present  discussion we 
shall assume that  l is p ropor t iona l  to the distance from a straight reference line (where I = 0) on the 
screen, so that equat ion (24) with L propor t iona l  to the distance f rom the central fringe will also represent 
the spatial distr ibution of intensity, Fig. 4 shows the variat ion of I / I  o with L for v = 0.5. Two impor tan t  
features of  the white-light fringes are immediately  apparen t  : 

(I) The fringe 'visibility'  (defined as the ratio of  the adjacent max ima  and min ima  of I) decreases so 
rapidly with L that  one would expect to see clearly only 3 bright fringes (L = 0 and L ~ + 1), 

(2) The spacing of the central fringe and its two immedia te  neighbours  is very nearly the same as would 
be obtained with monoch roma t i c  light of  wavelength ~.; this suggests a method for the exper imental  
determinat ion of the median wavelength. 

To  obtain accurate  posit ions of  the max ima  and min ima  of I we differentiate (24) with respect to L 
and set dI /dL  = 0. This leads to 

2n L tan (2n L) = n Lv  cot (n L v ) -  1 (27) 

which is of  the form 

y t a n y = x c o t x - 1 .  

£ oo 

*It can be verified that  I dL  = Io, which satisfies the conservat ion of energy. 
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For  a given v, equation (27) has an infinite number of roots 

L = Ln /2 ,  n = 0 ,  -{- 1 . . . . . . . .  4-  oo  , 

with L0 = 0 and L(_,/2) = L~,/2). We have determined the variation of L1 and L2 with v for 0 ~< v ~< 0.9 
(the values of v greater than 0.5 are of no practical interest, except for optical systems sensitive to the 
infra-red or ultra-violet as well as to the visible light); these are shown as dotted lines in Fig. 4. As v 
is increased from 0 to 0-5, La varies only from'l  to 0.98. Thus the positions of the 3 white-light fringes 
of highest contrast (corresponding to L o, L1 and L_ 1) are practically independent of the band-width 
of the source for v ~< 0.5 and differ by not more than 2 per cent of the fringe width from the locations 
that would be obtained using monochromatic light of wavelength 2; this wavelength may be regarded 
as an effective mean wavelength of the white light. 

It is interesting to note that a similar conclusion is reached if we assume that the relative band-width 
v is small. To the first order in Lv, equation (27) reduces to 

2n L sin (21r L) = 0,  

whose roots are 

L =  +n/2, n = 0 , 1 , 2  . . . . .  

provided nv ~ 1. 
Carrying the approximation a stage further, it can be shown that to the second order in Lv, equation 
(27) reads 

1 
2n L tan (2n L) = - 3  (n Lv) 2 

whence it follows that 

L+I = __.l-T-iv 2, (28) 

i.e. the effective mean wavelength of the light is 

(, 
Thus, although 2e is, formally, independent of the band-width only to the first order in v, the coefficient 
of the second-order term in (29) is so small that the first approximation is very accurate even for v as 
large as 0.5 and the second approximation to L_+I (equation (28)) is so accurate that for v ~< 0.5 it is 
practically indistinguishable from the exact solution plotted in Fig. 4. 

4.4. White-light Fringes with Dispersion. 
In general, dispersion in the two beams of the interferometer is not equal and 1 depends on 2. Then, 

as we saw in Section 1 (equation (9)), the optical path difference is 

l(2)= li+w [K(2 )P-Ka(2 )  (30) 

where li is the path difference due to the adjustment of the interferometer. We recall that li is, to a very 
high accuracy, independent of the refractive index and, therefore, independent of 2. 

1 1  



In the visible par t  of  the spectrum, dispersion in most  neutral  dilute gases is low and the Glads tone-  
Dale factors of such gases may  be represented very accurately by the approx imate  Cauchy formula  

wlaida ~mt\ I-,c \\ Htlcn iJ~ the iornl 

K A ~ 13 ~ 

(,~) + B 1 1 

= K ( 2 ) + B g  (2). (31) 

Th roughou t  the visible spectrum, Bg (2) amoun t s  to no more  than a few per cent of K (.~), and we shall 
find it convenient  later to approx ima te  g (2) by the straight line 

2(1 
This line has the same slope at 2 = ~. as g (2) in equat ion (31). Determining the constant  c by the least- 

2 2 
squares method we find that  c = 0.283 for ~ ~< 2 -%< ~ ; the two forms of g (2) are compared  in Fig. 5. 

The constant  c may, of  course, be absorbed in K (,~), so that (31) can be rewritten 

where 

and 

Insert ing these in equat ion (30), we have 

K = K'  (J.) + By (2) (32) 

K'  (.2.) = K (~.) + Bc 

g (2) = 2 (1 _2/~) /~2.  

= 7 + c #  (2) 

= 7 + c f  (v) 

where ? = l(2) ,  

f (v)  = g (2) = 292 (1 - 9/v). 

Substi tuting equat ion (34) into (20) 

l l+2f ilcos[2~(7+c f (v))v]dv 

(33) 

(34) 

(35) 
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and integrating*, we find that 

where 

I l + &  sin (zr Ev) cos (27z E) 
Io 

1 
= 1 + ~E-vv sin (Tr Ev) cos 27z ( E - D ) ,  

E = ?t,~, 

/2 = L, + 2C~ 3 

= E + O .  

t (36) 

(37) 

The maxima and minima of (36) occur when 

2r~/2 tan 2~z ( /2-  D) = ~/2v cot (,c Ev) - 1. (38) 

To appreciate the significance of/2, we substitute for C in (37) from (35). Then, substituting for 7 from 
(34), we have 

212 = l (20+ 2C/'22 

But (K +;@2 B) is the group Gladstone-Dale factor (see equation (14), Section 2). Therefore, 

K P - Ko~ ) 2/2= Ii + w o 7  0 

Thus, 7./2 is the optical path difference based on the group refractive-index, at the wavelength 2. 
Comparing (36) and (24), we see that in the presence of dispersion the variation of intensity with E can 

still be regarded as an oscillation of unit period, but now the modulation depends on (L + D)v rather 
than Lv. 

Detailed examination of(38) shows that when D is equal to an integer, say m, I has an overall maximum 
at/2 = E + m = 0, that is at E, = - m ,  or, J = -m2.  In other words, the brightest fringe coincides with 
the position on the screen where J, the phase path-difference at the median wavelength 2, is ( - m )  times 
this wavelength, or where the 9roup path-difference is zero. This is just the conclusion reached in Section 2, 
in the case of fringes produced by a source of narrow band-width. 

When D = m +½,/2 = 0 corresponds to the overall minimum of illumination, that is the darkest fringe; 
there are then two equally bright fringes adjacent to the darkest fringe. 

O 
* The Cauchy formula, equation (31) would lead to an integral of the form I x  -2/3 cos x dx which 

o 
would have to be evaluated numerically. 
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When D is neither an integer nor  a half integer, there is one overall maximum at L +  {D} = 0, where 
~D~ denotes the integer nearest to D. As in the case o fD  = 0, the locations of the two light fringes adjacent 
to the brightest fringe can be obtained very accurately by expanding equation (38) to the second order  
in Ev" 

tan 2~ E = _re/~u2 (39) 
6 

whence it follows that the brightest fringe is at 

and its two neighbours at 

and 

! 

where m = {D}. 

Thus, the spacing of the three brightest fringes is unaffected by dispersion and is determined by the 
median wavelength of the light, 2. 

As an example, consider the situation as D is increased from 0 to a positive value. At D = 0 the brightest 

1 v2and  f. 1 1 v2 . A t D = ½ t h e r e  fringe is located at L = 0 and its two neighbours at L = 1 - 1 2  = - + ] 2  

1 
= - 1  +214 v2, adjacent to the darkest fringe at -are two equally bright fringes at L = -} .5  /2 2 and E 

L ,=  -½. When D = 1, the brightest fringe is at E =  - 1  and its neighbours at E -  l v2 and 
12 

2 1 v2" This situation recurs as D passes through integral and half-integral values and the L = -  +12 
brightest fringe 'drifts' from /7, = 0 to L. = - 1 ,  - 2 ,  etc., its successive locations coinciding with the 
positions of monochromat ic  fringes that would be obtained with light of wavelength ,~ ; this drift of  the 
brightest fringe does not depend on the absolute value of D, but  only on the change of D. When D is 
not an integer, the position of the brightest fringe is not quite coincident with that of the corresponding 
monochromat ic  fi'inge because 

E o = --m+]--~v 2 (m--D).  

However,  even for v = 0-5, the term ]2 v2 ( m - D )  amounts  to only about  _+0.01 (because Im-Dl  < ½), 

and this is well within the accuracy with which fringe locations can be determined in practice. 
As an illustration, we have calculated the intensity distribution for D = 0-4; this is shown in Fig. 6. 

To see whether the straight-line approximat ion  to K (2), equations (16) and (17), has any significant 
effect on the fringe location, we have also calculated the distribution of intensity with K (2) approximated 
by two straight lines secant to the curve of K (2) at (21, 2) and (2, 22) (see Fig. 5). The  two intensity 
distributions for D = 0'4 are compared in Fig. 6, from which it is seen that improving the approximat ion  
to K (2) has very little effect on the predicted fringe positions. 
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It now remains for us to interpret the significance of the dispersion parameter D in terms of the density 
changes in the gas. This is most conveniently done by relating the density changes to the corresponding 
fringe shifts that would be obtained with monochromatic light of wave-length 2 (cf. equation (12)). Then, 
referring to the second equation (35), we can write 

C B ( ~ ) + B _ B , )  
w \ p o  J 

B2 
= wK" (No - N) + ( B -  B~) 

Therefore, from (37), 
= B L wK ~- 

. ,40, D = 2 ~  

As we saw above, the maximum of illumination will drift from one fringe to the adjacent bright fringe 
when D changes by unity. Therefore, the change of N that will produce such a drift is given by 

,{2 ~ w E  
A N = ½ B . w .  ] , 

o r  

Taking ,{ = 0.5 #, we have 

AN 1 )Ta - = ~ - K .  (41) 

1 K  
A N = - - -  

8 B '  

For  carbon dioxide, K" = 4.52 x 10 -4 and B = 2.85 x 10 . 6  (#-2) ,  hence (AN)co2 = 19.8. Thus, a density 
change corresponding to a fringe shift of 20 produces, in CO> a drift of the maximum of illumination 
from the 'central' white-light fringe to its neighbour which, in turn, becomes the apparent 'central' 
fringe; the drift is such that the apparent fringe shift is one more than it would be without dispersion. Of 
course, with a density change corresponding to a fringe shift of 10 ambiguity will arise, because two 
fringes will then appear to be equally bright. 

For  air, _K = 2.94 x 10 .4  and B = 1.76 x 10 -6 ,  hence (AN)a i r  = 20"9. Similar values of AN obtain 
for other common gases. 

5. Conclusion. 
The results of our investigation lead us to conclude that if the drift of the location of the brightest 

fringe is recognised and allowed for, the white-light fringe technique can be used to measure changes 
of the phase refractive index at the effective mean wavelength of white light. This mean wavelength can 
be determined experimentally by comparing the spacing of the three brightest white-light fringes with 
the spacing of the corresponding monochromatic fringes produced by a source of known wavelength. 
Such measurements will yield 2e with an accuracy of about 5 to 10 per cent; which is quite satisfactory 
because the variation of the Gladstone-Dale factor with the wavelength usually amounts to less than 
5 per cent throughout the visible spectrum. 

For most neutral gases the allowance for the drift of the brightest fringe is required whenever the 
fringe shift exceeds 10. 
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LIST OF SYMBOLS 

Constants in the Cauchy formula for the Gladstone-Dale factor. 

Quantity defined in equation (35) 

Dispersion parameter defined in equation (37) 

Functions defined in equations (31) to (35) 

Total intensity at a point on the screen 

Value of I in absence of interference 

Intensity distribution function 

Phase Gladstone-Dale factor 

Group Gladstone-Dale factor 

Value of L corresponding to a maximum of I 

Optical path difference 

Optical path difference due to adjustment of interferometer 

An integer 

Non-dimensional path difference 

Fringe number 

Density of air 

Density of ambient air 

Width of working section along light beam 

Cartesian co-ordinates (see Fig. 1) 

Increments of l~ 

Wavelength of light 

Median wavelength of white light 

Effective mean wavelength of white light 

Wavelength of monochromatic light 

Lower and upper limits of white-light spectrum 

Wave number 

Density of disturbed gas 

Reference density corresponding to ambient temperature and pressure 
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