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Summary. 
The equations of motion for supersonic flow over a symmetrical wing at zero incidence are linearised 

and the pressure coefficient at a point in the wing mean plane is expressed in terms of the finite part of 
a singular integral. The equation is modified in such a way that the finite part can be calculated analytic- 
ally, leaving a regular integral to be evaluated numerically. A method of correcting this value Of pressure 
coefficient, to enable an estimate of the value on the wing surface to be made, is discussed. Numerical 
results for three wings are given and compared with previous results and with experiment. 
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1. Introduction. 

Both in the design of supersonic wings to have a given pressure distribution (Reference 1) and in the 
calculation of the pressure distribution on an arbitrary cambered wing at incidence, an essential pre- 
liminary is to be able to calculate the pressure due to thickness on a symmetrical wing at zero incidence 
in supersonic flow. To do this exactly is a task that still lies well beyond the capabilities of even the most 
advanced digital computers, so that it is necessary to have recourse to linearised theory and then to 
correct the results whenever possible for the principal second order effects. The most important of these 
occurs in the vicinity of a leading edge that is rounded, but still 'subsonic' in planform with respect to 
the free stream velocity, and it is then reasonable to suppose that a correction method similar to that 
commonly used at subsonic speeds will give good results in the supersonic case also. 

The present Report describes a numerical method ofevaluating the solution to this problem in linearised 
theory, and suggests a possible form of leading-edge correction. 

The principal difficulty in the numerical analysis is to evaluate the finite parts of a number of singular 
integrals: a computer programme based on the analysis presented in this Report has been written in 
Algol, and values of the pressure coefficient Cp at points on various wings have been calculated. The 
same problem has been considered previously by Haines, Rollins and Osborne (Reference 2), but their 
numerical techniques are not strictly applicable to wings with rounded leading edges, so that an artifice 
has to be used to convert the rounded leading-edge shape into an equivalent sharp-edge one. Moreover 
their method differs from ours in that they calculate the velocity potential at points over the wing and 
then differentiate numerically to evaluate the velocity field and pressure coefficient. 

An appropriate expression for Cp is derived in Section 2 for the linearised equations of motion. Modifi- 
cations required in order to evaluate Cp numerically are described in Section 3. Section 4 contains details 
of the programme, the way in which the wing geometry must be specified for the programme and a dis- 
cussion of the accuracy of the calculations. Details of the calculated values of Cp for three wings are 
described in Section 5. 

2. Outline of Method. 

We wish to determine the distribution of velocity and pressure on an isolated symmetrical wing with 
rounded leading edges at zero incidence. Cartesian axes are taken as in Figure 1 so that the mean plane 
of the wing is z = 0. 

In three-dimensional linearised theory we consider the velocity field 

U = U0(r0+V ~b ) (2.1) 

where r 0 is the unit vector in the direction of the free stream velocity (Uo) and ~b is the perturbation 
velocity potential. 



Then q5 satisfies the equation 

B 02alp 02q~ O2~b =0 
~ X  2 Oy 2 OZ 2 " 

If M is the free stream Mach number then 

B 2 = M 2- 1. 

Equation (2.2) has a solution of the form (Reference 4) 

_ !  I f  ozt(~'r/) [(x_~)2_B 2 {(y-r/)2+2 2}] ~b(x,y,z) = n,J,J O~ 
y 

(2.2) 

d~dt 1 (2.3) 

where zt(~,r/) is the wing thickness distribution and E is the area in the plane z = 0 cut off by4he forward 
Mach cone from the point (x,y,z) (see Figure 1). Equation (2.3) can be written in the form 

1 I ~2~x'y'z3 
c~(x,y,z) = - -  G(x,y,z,rl) dtl (2.4) 

7CJ tlt(x,y,z) 

where 

= [ x-B., Oz,(~,rl) 
G(x'Y'Z'rl) j x,(~) O~ 

o2 = (y_ ~/)2 + z 2 

( x -  0 2 - B 2 {(y- q)2 + z2}] -½ d~, (2.5) 

ql and q2 are the roots of the equation 

xl(q) = x -  Boo (2.6) 

and xl(q) is the x co-ordinate of the wing leading edge - see Figure 1. 
Differentiating (2.4) with respect to x gives 

do 1 [,2 oG _ 1 i n .  ,o., 
. . . . . .  u~x,y,z,q o ~ x u Ox nd,,O--x --dtl n ox n 

(2.7) 

Here 

Ox ax l x,(~ ~ ~ 
- -  [ ( x - O 2 - B 2  { (y -q)2  + z2}]  -½d~ 

]_3,2 
= -jx,(,) ( x - O  c3-~- ( x - O 2 - B 2  {(Y-ti)2+z2} d~ (2.8) 

where fdenotes  the finite part of an infinite integral (see Reference 4). 
d 

Similar expressions can be found for ~ and ~-~. 

In this Report we are concerned with wings having rounded leading edges and therefore the streamwise 



slope of the wing can be written in the form 

Oz, f (a,fl) (2.9) 

where ~ and fl are the non-dimensional co-ordinates 

- sx~( l~  
- s c ( ~ )  ' # = r / / s ,  (2.10) 

s is the wing semi-span, 

sc(fl) is the local chord, and 

sx~(fl) is the x co-ordinate of the wing leading edge. 
Thus, the radius of curvature at the leading edge (R0) becomes, from (2.9) 

R°(fl~) = 2 [f(0,fl)] 2 
sc(f l)  

(2.11) 

and so near the leading edge, 

az, [ 1 [ Ro(./s)1 

As r /~  r/~ or r /~  r/2, the integrand of G becomes infinite and the range of integration becomes zero. 
Hence we have to obtain the limiting values of G as r /~  r/~ and r /~  r/2, 

lim ~R_o(r//s!l~ [ ] -' lim G(x,y,z,r/) ~ x - x ,  + B m  
~ r/, r / - - ,  r / I L - - - - 2 - J  

Ib d x  
Now a ( x -  a ) ~ ( b -  x)  ~ = n independently of a and b and so 

6 ( x , y , z , ~ h )  = ½re Lx-xt(r/O_l = ½n x ~ l )  (2.12) 

since r/l is a root of equation (2.6). Similarly 

[ Ro(fl2)1 ~ 
G(x,y,z,r/2) = ½~ x Z ~ 2 ) _  1 

Also, from equauon (2.6) we have 

c3ql 

Ox 

x - x~(r/1 ) 

( x -  xt(r/1))tan Aol "+'B2 (Y-r/l) '  
(2.13) 

wheroA0, ,s the ,eading edge  weep angle at tan 



Similarly 0r1___22 = x -  xt(rl 2) 
8x ( x -  xt(t/2)) tan Ao2 + B 2 ( y -  q2)' 

Putting z = 0, we obtain from equations (2.7), (2.8), (2.12) and (2.13) 

~cb (x ,y ,O)  
c ~  = - 2 :  ~ 

#x  

2;  2 
= -~ H(x,y,q) dtl 4 

1 

1 F R o ( . t / s ) ]  
B + t a n  Aol Lx-x,(,1)] 

1 [ R°(q2/s)l 
B + t a n  Ao2 [ x - x t ( q 2 ) J  

where 

~ Z  t 

H(x,y ,  tl) = - 
3-,(.) [ ( x -  ~)2 - B2 (q_y)2] 3/2 (2.]5) 

The forward Mach cone intersects the wing mean plane in the two straight lines 

= x + _ B ( q - y ) .  

In general these lines cut off an area which can be divided into five regions (see Figure 2). Regions 3 
and 4 disappear for those points (x,y) through which the Mach lines do not intersect the trailing edge. 
In this case Region 5 adjoins Region 2. 

Now if we express everything in the non-dimensional co-ordinates e and fl we obtain 

(x,y,O) - (X,Y,O) 

x - s x t ( Y )  
where X = sc(Y)  ' Y = y / s .  

The Mach lines become 

~ 1 ~ 2 ,  

where 1 
oq = - ~  [ X  c(Y)+ x;(Y)- x;(fl)] 

and o~ 2 = B ( f l -  Y)/c(fl) 

Thus. 

B + t a n A o l  L x ~ f l , ) J  4 B+tanAo2 

F Ro(fl2) ½ 
(2.16) 



where ct* = e l - e 2  in Region 1 

= el +e2  in Regions 2 and 5 

= 1 in Regions 3 and 4. 

This is a non-dimensional form of equation (19) in Reference 1. 
From (2.16) it is possible to calculate C v. However, the double integral is not suitable for numerical 

evaluation in this form as the integrand has a square root singularity at ~ = 0 and behaves like 
(e  I ____~2--~) -3/2 at • = cq +-~2. One of the singularities at ~ = cq _+~t 2 always lies outside the range of 
integration with respect to • but in the course of the spanwise integration e2 --* 0 as/3 ~ Y and hence 
e l - e 2  ~ ~ + ct2. Thus, in this case, as ct approaches the Mach line, these two singularities combine to 
form a pole of order three. 

Before a numerical procedure can be used, it is necessary to remove these singularities from the inte- 
grand and evaluate their finite parts analytically, leaving only regular functions to be calculated 
numerically. The necessary analysis is described in Section 3. 

3. Analysis. 
In this Section we describe a method of converting the double integral in equation (2.16) into a form 

which is suitable for numerical evaluation. It can be expressed as the sum of a double integral having only 
square root singularities and a number of single integrals. The analysis will be considered in detail for 
Region 1 (Figure 2). For  the other regions, the analysis is similar and is outlined in Appendix 2 

The double integral is replaced by 

f.6'2 fat ~2 :It H 1 (a,/3) d • d/3, 
dO~ do 

where 

~I --0( 

Hi* (a,fl) = c(fl) ~ (~l - ~ 2 -  ct) 3/2 (°~1 "]- ~ 2 -  ~)312 

x [ f(ot,/3)-f(ot 1 - -  ~2,/3) 

X (Kl(fl) Q~l~-~2~2)½"bK2(/3)(~) (~l"b°~2-°t) I k 2ct 2 ) 

K 1(/3) ~1(0~1 _(~-~1~2) 3/-,2 -[" 0~2)( (~l _ (x2)fa (~1 _ ~2,/3) 1 f(0~l __ 0~2,fl))] (3.1) 

and 

Here K~(fl) and K 2 ( f l )  a r e  weighting functions with the following properties: 

Kx([3)+K2(fl) = 1, 

K~(/3) ( a l - a 2 )  - 3 n  - - ,0  as " l  - ~2--,  0, 

Kt(/3)~ 1 as ~2 ~ 0 ,  

K2(/3) ~2 -~  --' 0 as "2 --' 0, 

K2(3) --, 1 as ~t -c~2 -~ 0. 

(3.2) 



H~*(a,fl) is the integrand of(2.16) except for certain terms that  have been subtracted in order  to ensure 
that  it contains only integrable singularities in the region of  integration. These terms have been ~hosen 
so that  they can be integrated analytically with respect to a. 

We shall show that  H~*(o~,fl) is regular in Region 1 except when ~ = 0 or a = a , - a 2 ,  where it has 
square root  singularities. Consider  the chordwise integration at the general section fl = fl*. As ~ ,  - ~2, 

al --~ If Hl*(a'fl*) "~ c(fl*) u ½ (aa - a2 - a)3/2 (aa + 0~2 - -  00 3/2 (~,fl*)--f(aa -- 0~2,fl*) 

Since 

and 

C -)  
K l (fl*) a ½ ( ~ - ~ 1  +Ct2) × ~l. K l ( f l* )+K2( f l* )?  - -  

Ka(fl*) + K2(fl*) = l, 

K~( f l* )  (cq - a 2 ) -  a/z __, 0 as ~, - ~2 -* 0 

f (~ , f l* ) - f (a~-~u , f l* )  is 0 ( ~ - ~ ,  +~2) 

it can be seen that Ha*(a,fl* ) is regular apar t  from a square root  singularity at a = aa - a 2 .  

It is necessary also to consider two special cases. As fl* ~ M[1]  (i.e. the fl co-ordinate  of the intersection 
of the Mach line and the leading edge), a l - c t  2 -~ 0, K~(fl*) (~--~2)-3/2--+ 0 and K2(fl* ) --~ 1. Then 

H,*(a,fl*) ~ ~,(fi,} ~ (a, - a z - ~ )  3/2 (al + a 2 - a )  312 f ( a , f l * ) - f ( a l  -~2,fi*) , 

as ~ ~ ~ - ~ 2  and it can be seen that H~*(~,fl*) is regular apart  from a square root  singularity at 
~--- 0~l--~2" 

Also as fl*--* Y, e2 ~ 0, K2(fl* ) ~2-}-- .  0 and K l ( f l * ) ~  1. Then as e + e l - a 2 ,  

C(fl*) (~1 --  ~) 3 h ~-~ o~ ½ ~x~l - ~2 ] 

( f a  (~1 -- 0¢2,fl*) l f (~ l  -- ~2,fl*) ] 
+~2) 

("1-"2)  ~ ~ ("1-~2)  3/2 - '  

The  expression in square brackets is 0 [ ( ~ - ~  + ct2) 2] and so in this case Hl*(cqfl*) is regular at a = 
tZ 1 --rA 2. 

The weighting factors K1(3) and K2(fl) are necessary because the functions subtracted from the inte- 
grand to give it the required behaviour  near  fl = Y are singular at fl = M[1]  and vice versa. 

A transformat ion can be defined which maps the square root  singularity on to  a point  outside the range 
of integration. Consider  the integral 

o ~ ( ~ t l - a 2 - ~ )  ~'  

and make the t ransformation 

a = 0"25 (al - a z )  (1 + 0  2 ( 2 - 0 .  (3.3) 



Then the integral becomes 

(4--~2) ½ 

and the integrand is regular in the range of integration. 
Applying this transformation to 

I ~'-~ Hi* (~,fl)d a, 
0 

we obtain 

where 

f l 3(0q - ~ )  F t (a,fl) d 
c(fl) ( 4 -  ( 2 ) ,  (~1 - ~2  - o~) (a i + ~2  - ~ ) 3 / 2  

(3.4) 

Fa (o~,fl) = f (o : , f l ) - f (~ -a2 , f l )  I( l K 2 

(~l +(X2 --(X) 2 ~2 312 t 

(~1 --~X2) 3/2 (3.5) 

fli2 f~|-a2 
Now the double integral HL* (a,fl) d a d fl can be evaluated numerically provided that the 

lil 
method used does not require the value of H ~*(a,fl) at points where ~ = a t -~2.  At these points, although 
H~*(u,fl) is regular it is numerically indeterminate because both numerator and denominator are zero. 
We use a Gaussian integration formula which overcomes this difficulty because it does not use the end 
points of the range of integration. 

The contribution from Region 1 to the integral of (2.16) can be expressed in the form 

f a~ ~ t 3(a I - ~z) F l (~,fl) d~ dfl 

J_ li, ~ e(fl) (4-~2P ( ~ -  ~2-~)(~ +~2 _~)3:2 

Ili~ ~"-~:  K l (fl) Ozl-~x2)f(~zl-~2,fl)d ~xdfl 
j l i , j o  c(fl) (~1 - ~ 2 )  ~ ( ~  - ~ 2 -  ~) 312 (~1 + ~ 2 -  ~) 3/2 

( #~_~ ~'~-~'~ K2 ( f l )a2f (cq-a2 , f l )da  dfl 
- _ ~)312 (2 ~2)  3:2 

fp2 f ~,- a2 K (fl)(a, - a 2 )  [(ai - a2 ) f~  (a, - a2 , f l ) -½f (a ,  -~2,fl)] d a dfl + 1 
.]lit ~ J 0 C(fl) (Oti--O~2)3/2 (O~1--(X2--O~)'~ (O~l-[-~2 -0t)3/2 



where fli = Y and f12 = MI l l .  
It can be shown that 

j~"-~2 (al - a )  d ~ _ 1 
Jo (al - a 2 - a ) a / 2  (~, + a 2 -  a) a/2 (~2-~221~ 

.~,-<<2 (oh_a) do ~ =log[(~ _~2)½+(%+~2)½12 _¢al-~2kl½ 
(l~ 1 --tX 2 --~)~- (¢t I + 0~2-- ~X) 3/2 2 ot 2 \ ~l +°~2 / 

and 

Hence 

I i 

a~ (a~ - 0~2 - ~)3/2 = 0  

p2fi  3(off -o0 FI (e,fl) d ( dfi 
. j , , . j _  ~ c(/~) ( 4 -  (2)~ (oq - o ~ 2 -  ~) (~1 + ~2 - ~)3/2 

J,, j , ,  

--½f(0~l --0~2'fl) } × { lOg [(~I - ~2)* + (0~i + 0 ~ 2 ) ~ ] 2 2  a2 

_ ( ~ 1 - ~ 2  ) ~ 
\ :q  +~2 / }dfl. (3.6) 

The last integral in (3.6)has a logarithmic singularity at 0t 2 = 0 (a2 ~ 0 as fl ~ Y). 
This is treated by rewriting the integral in the following way: 

f & K1 ( (O~l _O~2)f ~ (ott _~2,fl)_½f (o~l _O~2,fl) } 
p, c(fl) (~  ~-c<~) ~l~ 

& K1 1 

c(Y) X3/2 Xf~(X,Y)-½f(X,Y) logc--~dfl+ (fl-Y) log(fl-Y)-fl . 
. & PJ 

The second integrand in the above expression ,-~ o~ 2 log 2 ~2 as ~2 -~ 0 and so is regular. 
Thus, we obtain 



I1 = _ f l :  
f l 3 (~l_c¢) Fl (a,fl)d~ dfl 

1 c([3) ( 4  - -  ~2)~ (0~1 - -  O~ 2 - -  0~) ((X 1 + O~ 2 - -  00  3 /2  

+ d e ,  C(fl)(tX 1 --~2)(9(1 q-~2) = 

q" 0(2)3/2 (Oq--g2)f=(g'--~2'fl)--½f(gl--O~2'fl) I~, c ( f l )  ( ~  ~ - 

//I C(B) (0~1 -- 0~2) 3/2 C(Y) X3/2 

& 2B & 

(3.7) 

For Region 1, the contribution to the integral of(2.16) can be evaluated from (3.7) where ~ is defined 
by (3.3) and F 1 (~,fl) by (3.5). The formulae used to calculate the contribution from the remaining regions 
are given in Appendix 2. 

Finally, we note that the calculated value of Cp is at a point in the wing mean plane, whereas in an 
experiment the value measured would be that on the surface. This means that some correction should 
be made to the calculated results before direct comparison with experiment is made. This problem is 
discussed in Section 4.4 of this Report. 

4. Computation. 

4.1. The Programme. 

The computer programme has been written in Algol and developed using an English Electric KDF 9 
computer. A flow diagram of the programme and details of the input information required appear in 
Appendix 1. 

The integrations are performed using Gaussian Integration formttlae and the coefficients for both 
the 10 point and 20 point formulae are built into the programme. In each region the double integral is 
ewduated as a repeated integral in which integration in the 9( direction is followed by integration in the 
fl direction. Clearly if the 10 point formula is used, the integrand has to be evaluated at 100 points in each 
region. 

With the Kidsgrove Algol fast compiler using the Gaussian 10 point integration formula, the time taken 
to calculate Cp at a point involving only Regions 1, 2 and 5 is approximately 15 seconds and for a point 
involving all five regions approximately 25 seconds is needed. 

4.2. Wing Sections. 

In this Report we consider wings having rounded leading edges. The wing slope in the free stream 
direction can be expressed in the form, equation (2.9), 

~Z t 
~X = ~ -  ~ . f ( ~ , f l )  

10 



With ~ defined in this way, we obtain 

z ,  = s c ( ~ ) g ( ~ , # ) ,  

where 

g(~,/~) = ~-~f(~,B) d~. 

If the thickness-chord ratio of the wing sections at different chord stations is constant, then f(~,fl) 
will be independent of fl and all wing sections will have the same slope at points where the lines ce = 
constant cut them. 

A large class of wings have 'similar' sections and for these, f(e,fl) can be expressed in the form 

f(~,fl) = f l  (~)f2(fl). 

The polynomialfz(fl) defines the variation of thickness-chord ratio along the span. The three wings 
considered in this Report have 'similar' sections; two based on the RAE 101 aerofoil and one based on 
the RAE 103 aerofoil. In the programme, the functionft(c0 may be expressed either in the form 

or (ii) 

(i) ft(~) = ~ i a i  
i = 0  

f l ( a )  = a_ 1 + a E a i  a; • 
i = 0  

For more general wings, the programme is arranged so that f(a,fl) is specified by a function of c¢ for 
a number of values of fl and an interpolation procedure is used to calculatef(cc,fl) at intermediate values 
of ft. The position and number of these fl-points wheref(cc,fl) is defined, may be specified arbitrarily. 

• OZ t 
In our calculations, f l (a)  is an approximation to a* ~ and can be derived from values o f ~  at discrete 

points, by standard curve fitting procedures. Polynomial representations of type (i) have been calculated 
for the RAE 101, and 103 aerofoils using the method of least squares. The coefficients are given in Appendix 
3. It was found impossible to cover the whole range 0 ~< c¢ ~< 1 accurately with a single polynomial, so a 
number of polynomials are used. These have been arranged so that together they define a curve which 
is a piecewise continuous approximation to the given aerofoil. In general, f,(a,fl) will be discontinuous 
at points where the curves represented by the polynomials join. However, it is unlikely that these dis- 
continuities will have a significant effect on the calculation because.f,(~,fl) i~ evaluated at only a few 
points on either the Mach lines or the trailing edge of the wing. Also the Gaussian integration has the 
effect of smoothing out any discontinuities in the integrand. Nevertheless, it would seem desirable to 
have the smallest number of polynomials consistant with an approximation of given accuracy. 

In order to assess the effect of the choice of polynomial representation of thickness on the calculation, 
an alternative set of polynomials was used for the RAE 101 aerofoil and values of Cp on Wing 1 cal- 
culated again• The two sets of results are compared in Table 3 and are within 1 per cent of each other 
for most points• 

4•3• Accuracy. 
For a general wing, the overall accuracy of the calculation is difficult to assess• In theory, the range 

of integration can be continually subdivided until any reqtaired order of accuracy is achieved, but this 

11 



would require such a large amount  of computing time that it is impracticable. 
The computed results for Wing 1 agree satisfactorily with the analytical results obtained by Weber 

(Reference 2). Further, the results obtained by the method described in this Report have been compared 
with experimental results available for the wings considered in Section 5. We conclude that the overall 
accuracy of our calculation is satisfactory in the cases we have considered and since there is no reason to 
suppose that the accuracy of the calculation will be significantly different for other wing shapes, we believe 
that the method described here will produce satisfactory results in general. 

The accuracy of the evaluation of the single integrals and the integration in the chordwise direction 
of the double integrals can be checked by any simple integration procedure in which the interval is 
progressively subdivided until the results converge. Wherever it seemed necessary, this checking pro- 
cedure has been carried out using a Simpson integration formula and is described in Section 5. 

In addition, a check on the accuracy of the chordwise integration has been carried out for the case of 
a parabolic wing section (f(0{,fl) = 1) which allows an exact solution of the integral in terms of complete 
elliptic integrals (Reference 3). 

From equation (2.16), we have for the chordwise integration in Region 1, 

~ ' - ~ (~ l - e) f (cqfl) da 
I = , C ( [ ~ ) 0 ~ ½ ( 0 { l _ _ 0 ~ 2 _ _ 0 0 3 t 2 ( 0 ~ 1 . . [ _ 0 { 2 _ _ { 2 ) 3 / 2  • 

Integrating by parts gives, 

I = finite part [ f ( e ' f i )  (~1 -°~2- :~)  -½ (RI +0{2 - ° 0  -½ ] ~' ~: 

; ~ '  - ~ o~ f ~(~,fl) - ½f  (~,fl) d:~ 

J 0 c(fl) ~ /2  ( ~  -:~2-0{)~ ( ~  + ~,--~x)~ " 

The term in square brackets is infinite at both limits and so the finite part is zero. Puttingf(~,fi) - 1 
gives 

l _ ~ '  ~" d~ 
l - 2 c(fl)Jo '0{3/2 (0{1-- ~2 -- (X)½ (0{1-}- ~2 -- ~)~ 

This integral can be expressed in elliptic integrals. It can be shown (see Reference 5, Section 234.04) 
that 

0{3/2 (~1 -- 0~2--00 ½ (0{1 ~- 0{2--00 ~ = (0~1 --0{2)(0{1 "4- 0{2) ½ dc 2 u d u ,  u 0 

f o r ~ > O  

(~1 "~" ~2)(0{ 1--~2 - 9 0  
where s,, 2 ,,, = ( ~ 1 ~ 2 ) ( ~ , + 0 { 2 _ ~ )  

and modulus k = ( 0{t0{1~22/-~2 

Also f Ul de 2 U du = F ( ~ 5 , k l -  E ( c ~ , k } + d n  ut tlz ul , 

o 

where sin q5 = sJ~ u~ 

12 



Thus, in the limit ~ ~ 0 (q~ ~ n/2), the last term is infinite and the finite part has the value ( K ( k ) - E ( k  
where K(k) and E(k) are the complete elliptic integrals. 
Henee 

1 1 I 1 I = c(fl) ( (~1--~2)(~1--~2)  ½ E ( k ) - K ( k )  

If we write 6 = a-2 = B ( f l -  Y) 

x c (r )  + xT(Y) - ' 

then I* = - -C(f l )~l  3/2 1 - E ( k ) - K ( k )  
(1 -6) (1  +6) ~' 

and (1 - 6 ~  ~ 
k = \ 1 + 6  ] • 

In Legendre's notation, writing k = sin 0 then gives 

1 - sin 2 0 

1 + sin / 0 

We are particularly interested in the chordwise integration near the point (X, Y) where the singularities 
on the two Mach lines combine i.e. small values of 6(0 ,,~ n/2). Values of I* for 0 = 85 °, 87 °, 88 °, 89 ° are 
given in Table 2. 

Now we have to express equation (3.7) in a similar form. Putting f(~,fl) = 1, f,(~,fl) = 0, K~ = 1, 
K2 = 0, a = ~17 and ~2/~ = 6 then gives for the chordwise integration, 

f, I* = --C(~)~1 3/2 I = 3 (1-7)  _ 
1 ( 4 -  -~2) ~ (1 - 6 - ; ) ( 1  + 3 - 7 )  3'̀ 2 

× 1 -  j a ;  

+ 
1 [ ( 1 - 6 ) i + ( 1  + 6 ) q  2 

(1 - -6 )  3/2 log  26 

1--6 
where 7 = ~ (2 + 3 ~ -  _53). 

I* has been calculated from this equation using Gaussian 10 point integration and compared with the 
exact solution in Table 2. It can be seen that our numerical calculation for this simple case is extremely 
accurate.. 

4.4. Surface Velocity Correction. 

It is well known that simple linearised theory - in  which the boundary conditions are applied and the 
velocity calculated, both in the mean plane of the wing- is  invalid near a rounded leading edge however 
thin the wing may be. It is necessary therefore to make some form of leadim~-edge correction. There are 
a number  of equally plausible possibilities; the one suggested below is based on the proposal~ of ttaines 
et al (Reference 2), which is equivalent in concept to the 'Riegels rule' used in subsonic two-dimensional 
calculations. At the same time it is convenient to make some allowance for the lateral component  of 
velocity 
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v r = U o ~ " 

Although this makes only a second order contribution to the total velocity on the wing surface, it is known 
that improved accuracy can often be obtained by including a rough approximation for it. 

Suppose that the perturbation velocity vector (v~,vy) in the plane z = 0 has been calculated using 
linearised theory. The resultant velocity makes an angle 0 = tan-  t ( _  viva) with the x-axis. Define new 
axes ~,r/in this direction and perpendicular to it. The velocity components along these axes then become 

V¢ = Uo cos O + vx sec 0 

V. = Uo sin ~V. 

Now we assume (by analogy with two-dimensional subsonic theory) that in going from the plane 
z = 0 to the wing surface, the component V, is unchanged, but the component V: is multiplied by the 
factor 

[l + k~ )2 
ez, ez, o -Oz'  where O~ - ~xx cos ay sin O, the wing slope in the ~ direction. Thus V¢ becomes replaced by 

[~zA 2 ]-~ 
V , ' =  V¢ 1 + ~,~-)  , 

and hence the total velocity V' is given by 

(V ' )  2 = U o  2 sin 2 Oh 
V~ 2 

(az,)2 

Now define 0 by 

t a n O -  Oz, /~z, Oy/~3x 
so that for an untapered wing 0 is equal to the sweep angle A. 
Then 

Oz, Oz, c o s ( 0 - 0 )  
O~ Ox cosO 

and hence 

= sin2 O 4 

Vx 2 (cos O+vv-, sec O) 
Uo 

1 + \ ~x] c°s2 ( 0 -  ~ sec 2 0 
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This can now be used with the exact pressure-velocity relation, to calculate Cp' (the corrected value of 
Cp), where 

CP '=~- -~2{ (  l+-~--~M2 I 1 - ( ~ ) 2 ] )  ~---~-1 t (4.1) 

Here M is the free stream Mach number and 7 is the ratio of the specific heats of air (approximately 1-4). 
The above equation reduces, in linearised theory to 

- -  

but it is probab!y better to use the exact equation when possible. 
This analysis requires the knowledge of both vx and v~, but our computer programme is designed to 

calculate only vx. Although vy could be calculated in a similar manner, the computing time required 
would be increased significantly. We feel that the extra effort needed to obtain values of v r is not really 
worthwhile. 

Accordingly, the simplifying assumption is made that, except near the root or tip, ~, = 0 = A, the 
local angle of sweep. For an untapered wing, A is just the leading (and trailing) edge sweep angl.e, but 
for a tapered wing it is less obvious what value should be taken. Since the main effect of the correction 
is near the leading edge, it is desirable that at least A,should take its local value (tan-1 dxt/dy) there. 
We therefore suggest defining A by 

dxt x -  x~ dc 
t a n A = ~ y - 1  c dy '  

thus allowing A to vary along the chord in an appropriate manner. 
We must also allow for the fact that vy is zero at the root (and probably also at the tips) of the wing. 

This can be done crudely by following the analogy of the corresponding subsonic theory (Reference 6), 
in which A is replaced by A*, defined by 

A* = ( 1 - K )  A, 

where K is a function of y. For want of any other evidence we define K as in subsonic theory by 

K = K , + K t  

where K, = 0.068 -0.122(y/c~) for y/c, < 0"557 
0.068 + y/c, 

= 0 for y/cr >i 0"557 

0"073 - 0"098 s - y 
and K t =  ct for s - y  < 0.745 

0"104-t s -  y c~ 
¢t 

= 0 for s - y  >~ 0.745. 
Ct 
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Here c, is the root  chord and c, is a representat ive tip chord. For  a tapered wing, use the actual tip chord 
or 0-1 times the root chord, whichever is the larger. For  a planform haxing a ctu'xcd edge ~t Ihe lip. this 
representat ive tip chord may be taken as 0.4 times the chord at y/s = 0.75. 

With this definition of A* we then have 

(COS A* + t!-_'5 sec A*) 2 
( V_,..']2 sin2 A * +  Uo 

\Uo / 1 + scc  ?'* 
(4.2) 

° which, when inserted in equat ion (4.1), gives the value of Cpl.  At the root  (fl = 0) this reduces to 

as it should. 
Alternatively, in view of what is known about  the leading edge correct ion in subsonic flow (Reference 

~zt 
6), it may be preferable to replace 7c5x by 

#z, (1 - M 2 cos 2 Ao)- '~ 
?x 

Here we have used A 0 (the leading-edge sweep angle) in place of A* to avoid the possibility of 
1 - M 2 cos 2 A becoming  negative near  the root  or tips. 

This gives 

( v ' y  = 
Oo ] 

l ;  x 
(cos A* + 77- sec A*) 2 

sin 2 A* + 2_ ~Osec 2 A* 

1   cos2Ao 

(4.3) 

which when inserted in equat ion (4.1) gives the value of Cr2. 
It should be noted that  for highly swept wings of the type we consider, since l , , .~v x tan A, then v~, 

may be numerically greater than v,. Thus  it is not justifiable lo ignore r, q_!. unless wc a!so ignore {r~/Uo). 
Hence it is not  appropr ia te  to use equat ions 8a and 8b of Reference 2. 

5. Calculated Examples. 

5.1. Wing 1 - Constant Chord, 55 ° Swept Wing of  RAE I01 Section. 
This wing (wing A of Reference 2) is shown in Figure 3. It was chosen so that a compar i son  of our 

numerical  results could be made with the analytical results of Weber  and the numerical results of Haines,  
Rollins and Osborne.  I lowever ,  the wing lha! we use has the true rounded leading edge of lilt_" RAE 101 
aerofoil, whereas the results obta ined by Haines et al and Weber  are for a sharp leading edge approxi-  
mat ion  to the RAE 101 aerofoil. Some disagreement  in the results near the leading edge is therefore to 
be expected. The results are compared  in Figure 4. 

On the centreline (Y = 0), apar t  from near  the leading edge, there is good agreement :  and the same 
is true at Y = 0-25 aft of about  X = 0.3. The discrepancies near the leading edge are of course consistent 
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with the difference in the shapes of the assumed sectio~as, a~ explained in the previous paragrapr~. 
A detailed investigation of the numerical calculation ft~r this wiJag has been made. The results obtained 

by using the 10 point and the 20 point Gaussian integration formulae are compared in Table 1. The 
values obtained with the 10 point integration formula are within 2 per cent of those obtained using the 
20 point integration formula for most points and the extra time needed to carry out the calculation using 
the 20 point formula does not seem to be justified in general. 

The point (0.9, 0"3), where the difference is 9 per cent of the (small) value given by the 20 point formula, 
was chosen for closer study. A detailed print out of all stages of the calculation was obtained and graphs 
of the various integrands were examined. A selection of these graphs are shown in Figures 5a, b, c and 
d. It was found that most of the curves were smooth and well behaved like those in Figures 5a and b. 
The results obtained by the Gaussian and Simpson integration procedures agreed very closely. Even 
in the worst case, Figure 5d, the difference was only 6 per cent of a small quantity, for the 10 point in- 
tegration formula. In Figures 5c and d the violent oscillations that occur are caused by discontinuities 
jnf~(~,/?) where two polynomials join (see Section 4.2). 

5.2. Win9 2 - Tapered, Swept Win9 with a Curved Tip. 

The planform of this wing (Wing B in Reference 2) is shown in Figure 6. The leading edge was approxi- 
mated by the following polynomials. 

0 ~< r/~< 0-5417, 

0.5417 ~< q ~< 1, 

x t ( r / )  = 1-680857. 

xt(rl) = - 14.6769 + 71.4511 t / -  109.9240r/2 + 57-5232 ~/3. 

The results are compared with those of Haines et al in Figure 7. 

5.3. Win9 3 - N.P.L. 55 ° swept win9 of RAE  103 section. 

The planform of this wing is shown in Figure 8. The leading edge was approximated by the following 
polynomials. 

0 ~< q ~< 4.2013, 

4-2013 ~< r/~< 9"4207, 

xz(q) = 1.428148t/ 

x~(r/) = 2252"205702- 2947-567216 q + 1672" 146280 q2 

- 536.267867r/3 + 106'396215 r/4 - 13.373899 q 5 + 1.040336r/6 

- 0.45801 r/~ + 0"000874 r/8 

9.4207 ~< q ~< 9.5158, xt(t/) = 19324"89767-4093"73936%l+217'004967r/2 

A half-model of this wing has been extensively tested in the 20 in. square transonic tunnel at the N.P.L. ; 
a comparison of experimental and calculated pressure distributions at four spanwise positions is shown 
in Figures 9 to 12 for a range of Mach numbers from 1.1 to 1.4. Near the root (y/s = 0.22) the agreement 
is good at all Mach numbers, and also at the tip (y/s = 0.88) at M = 1.1 and 1.2. Even at these Mach 
numbers the calculations slightly undere~tHnate the peak velocity in the middle of the half wing (y/s = 
0'66), and at higher speeds a shock wave appears and moves outward and rearward as the Mach number 
increases; and under these circumstances there is naturally poorer agreement between theory and ex- 
periment. Bearing this in mind the overall picture seems reasonably satisfactory, although there is 
insufficient evidence to assess the relative merits of the two leading-edge corrections, equations (4.2) 
and (4.3). 
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LIST OF PRINCIPAL SYMBOLS 

B 

c(/~) 

Cp 

C . '  

Cvl 

Cv2 

f (a,fi) 

f l  

f2 

f~ = 

F1 ( ot,fl) 

G(x,y,z,tl) 

H(x,y,rl) 

H1"(~3) 

I, I* 

11 

K1, K2 

M 

M[1], M[2] 

Ni l ] ,  n [2]  

r 0 

Ro 

s 

u 

U 

Uo 
/) 

I)  x 

I)y 

V¢, V n, V', V¢ 

x 

X 

(M 2 - 1) ~, see equation (2.2) 

The length of the chord at the point (a,fl) 

The pressure coefficient at a point 

A corrected value of Co for a point on the wing surface 

The corrected value of Cp using equation (4.2) 

The corrected value of Cv using equation (4.3) 

A function used in evaluating the wing slope, see equation (2.9) 

See equations (A1.2) and (A1.3) 

See equation (AI.1) 

(~f(a,fi) 

See equation (3.5) 

See equation (2.5) 

See equation (2.15) 

See equation (3.1) 

Expressions for integrals appearing in Section 4.3 

The contribution from Region 1 to the integral in equation (2.16) 

Weighting functions defined by equations (3.2) 

Free-stream Mach number 

The fl co-ordinates of the intersections of the Mach lines with the leading edge 

The fl co-ordinates of the intersections of the Mach lines with the trailing edge 

Unit vector in free-stream direction 

Radius of curvature at the leading edge, see equation (2.11) 

Semi-span of wing 

Perturbation velocity component in streamwise direction 

Velocity vector 

Magnitude of free-stream velocity 

Perturbation velocity component in spanwise direction 

u 

t) 

See Section 4.4 

Co-ordinate in streamwise direction 

Non-dimensional x co-ordinate 
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x,Irl) = sx;(/~) 

y 

Y 

Z 

z,(x,y) 

O~ 1 = 

fl 

l~, ,1~ 

1~* 
o/ 

O =  

4~ 

4,= 
A 

Aol 

Ao2 

Z 

¢ 

// 

r/l,r/2 

O )  = 

x co-ordinate of leading edge 

Co-ordinate in spanwise direction 

Non-dimensional y co-ordinate 

Co-ordinate in vertical direction 

ltalf-wing thickness at point Ix.y) 

Non-dimensional co-ordinate in streamwise direction. See equation (2.10) 

' /c([~) [Xc(Y) + x~( Y ) -  x~(l~)] 

B(I~- Y)/c(l~) 

Non-dimensional co-ordinate in spanwise direction 

Limits of integration in spanwise direction 

A particular value of/~' 

Ratio of specific heats (l.4) 

tan- ~ C_?z, //?:, 1 
\ ~?), i ? x  I 

Perturbation velocity potential 

t an-  1 [ - r Urx) 

Angle of sweep 

Leading-edge sweep angle at fl = M[1] 

Leading-edge sweep angle at fl = M[2] 

Area of integration 

Dummy variable of integration in x direction 

Dummy variable of integration in y direction 

Roots of equation (2.6) 

Transformation variable, see equation (3.3) 

(~' ' tl 2 + _2 
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APPENDIX I 

Details ~/ lhe Programme. 

1. Wing Geometry. 

(a) Leading Ed,qe. 
A polynomial approximation to the leading edge is used in the programme. A procedure l(tl) is used 

to evaluate ~ at a point on the leading edge corresponding to a given value of t,/. In practice there may 
be more than one polynomial to cover the range 0 ~ r/~< s. The curve defined by the polynomial is a 
representation of the leading edge in cartesian co-ordinates (~,r/) with axes as shown in Figure 1. The 
coefficients of the polynomial are automatically adjusted within the programme for use with the non- 
dimensional co-ordinates (a,fl). The input information required to define the leading edge is: 

nl, the number of polynomials defining different sections of the leading edge, 

ml, the degree of the polynomial of highest order, 

bl[ i] ,  the t /co-ordinates of the points at which the curves represented by the polynomials join, 
i = 1,2 . . . . . . . . .  nl - 1. If nl = 1, then no values are supplied. 

AI[i,0] . . .  Al[i,ml], the coefficients of the i'th polynomial, i = 1,2 . . . . .  nl. 
Then 

nl 

= x t ( t l ) = ~ ' A l [ i j ] t l  j ,  i =  1,2 . . . . .  n l .  

j = O  

It should be noted that if any of the polynomials is of degree p < ml then the coefficients of r/k where 
k = p +  l, p + 2  . . . . .  ml must be read in as zero. 

(b) Trailing Edge. 
The trailing edge is defined in a similar way to the leading edge and the value of ~ at a point on the 

trailing edge corresponding to a given value of t/is calculated using a procedure tr(rl). The input informa- 
tion required to define the trailing edge is: 

n2, the number of polynomials defining different sections of the trailing edge, 
m2, the degree of the polynomial of highest order, 
b2[i], the ~/ co-ordinate of the points at which the curves represented by the polynomials join, 

i = 1,2 . . . . .  n 2 -  1. If n2 = 1, then no values are supplied. 
A2[i ,0] . . .  A2[i,m2] the coefficients of the i'th polynomial. 

Then 
m2 

= tr(tl) = ~ ' A 2 [ i j ]  t/j, i = 1,2 . . . . .  n2. 

j = 0  

(c) Chord. 
The length of chord at a point 1,/is calculated using a procedure c(tl) where 

c(~) = tr(~)-l(q). 

(d) 14qng Slope. 
As explained in Section 4.2, we use for the wing slope the expression 

~z,~ = _ ~ f ( ~ , f l )  = _ ~ . f ,  (~),f2(fl)- 
~E~c 
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In the programme we definef2(fl) so that 

m4 

f2(fl) =ZA4[i ,  k] flk 
k = O  

and we definefl(~ ) so that either 
m3 

f l(o 0 = ZA3[i j ,  k ] ~k, 
k = 0  

(AI.1) 

(A1.2) 

o r  

m3 

f a(oO = A3[ij,- 1] + ~ZA3[i j ,  k] ~,  
k = O  

(A1.3) 

where 

i = 1,2 . . . . . .  n3 andj  = 1,2 . . . . . .  n4. 

In order to obtain accurate representations of a wide variety of surfaces, the programme has been 
arranged so that different parts of the wing plan form can have the slope represented by different functions. 
The wing planform is divided into n4 areas by the lines 

fl = constant = b4[i] ,  i = 1,2 . . . . .  n 4 - 1  

and then each of these areas is subdivided into n3 sub-areas by the lines 

= constant = b3[ij] , j  = 1,2 . . . . .  n 3 -  1 . 

giving a total of n3 x n4 sub-areas. For each sub-area (defined by i and j) the coefficients A3[ij, k], where 
k = 0,1 . . . .  m3 must be given so that values o f f l (~)  may be calculated. If equation (A1.3) is used to 
evaluatefl(~) then an extra coefficient A3[ij,- 1] is required. For  each area (defined by the parameter 
i) the coefficients A4[i,k] where k = 0,1 . . . .  m4 must be given so that values off2(fl) may be calculated. 
In practice not all the areas defined by the lines fl = b4[i] may need to be subdivided into n3 sub-areas. 
Suppose area p needs subdividing into q sub-areas where q < n3. Then we put b3[p,j] = 1 for q ~<j ~< n3 
and the coefficients A3[pj, k] associated with the sub-areas for which q < j  ~< n3 are made equal to zero. 
These coefficients are never used but are required by the input procedure. An example of how a wing 
planform might be divided up is shown in Figure 13. For the wings described in Section 5 only one area 
was ever used. 

In the programme two integers SI[i] and $2[i] are associated with each of the areas defined by the 
lines fl = b4[i]. These integers are chosen by the user and act as switches within the programme. If the 
wing sections within the area are 'similar', then SI[i]  must be positive and in this case the wing slope 
will be calculated using f~(ct)fz(fl) at the point (~,fl). If S1 [i] is made negative, then the wing slope will 
be calculated by interpolating between the values off1(:t)f2(fl) at the points (~, b4[i- 1]) and (~, b4[i]). 
If $2[i] is made positive, thenf l (~  ) is calculated using equation (AI.I) and if $2[i] is made negative, then 
f1(~) is calculated using equation (A1.2). 

The input information required to define the wing slope is : 
n3, the maximum number of sub-areas within an area, 
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n4, 
/t13, 
m4, 

h4[i] , 

SI[ i ] ,  

s 2 [ q  , 

A3[io,k] , 
A4[i,k] , 

the number of areas of wing planform, 
the degree of the polynomial of highest order associated with,/'l(~) in a sub-area, 
the degree of the polynomial of highest order rcpresentingfz(fl) in an area, 
the 7 co-ordinates of points where the sub-areas adjoin (~ee notes above), 
the fi co-ordinates of points where the areas adjoin if only one area then no value is 
supplied, 
switch, integer determining whether interpolation is used to calculate the value of wing 
slope, 
switch, integer determining whetherf~(e) is calculated from equation (A 1.1) or equation 
(AI.2). 
coefficients of f~(:0 in each sub-area 
coefficients of/2(fi) in each area 

2. Other Procedures. 

(a) Mach Lines. 

The value of~ on the Mach lines, corresponding to a given value of/3 is evaluated using the procedures 
PI(/3) and P2(/3) where 

and 
Pl(fl) = ~1(/3)-~2(/3') 

P2(/3) = ~l(fl)+ ~2(fi), 

The expressions :g(/3) and %(/3) are defined in Section 2 of this Report. 

(b) Wei,qhtin,q fimctions. 

The weighting functions Kl(/3) and K2(/3) have the properties described in (3.2). In the programme 
K 1(/3) is defined as follows 

where 
Kl(fl) = 10t 3 -  15t4+6t s 

t = ( M E 1 ]  -/3)/(M[1] - Y) 

t = (/3 - M[2])/(N[2] - M[2]) 

in Region 1, 

in Region 5, 

and t = 1 in all other r e g i o n s  

A typical graph of K 1(/3)is shown in Figure 14. 

(c) lnlersc~ liot~. 

In the non-dimensional co-ordinates (~,fl) the leading edge is given by ~ = 0 and the trailing edge by 
-= 1. The procedure intersection calculates the values/~ = M[I ]  and fl = M[2] where the Mach lines 

intersect the leading edge. It also tests to see whether the Mach lines intersect the trailing edge and if 
they do, it then calculates the values/3 = U[1] and/3 = N[2]. 

(d) Integration procedures. 

These procedures calculate the integrand of the various integrals in equation (3.7), for use in the 
G,mssian integration formula. The modified Gaussian points are evaluated using the relations 
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where 

2f(x) dx = }(b-a) fllf*(},) dy 

n 

= ½(b - a 2 G j f * ( 9  j) 
j = !  

n 

= ½(b - a E G  i.f(e~) 

i = 1 

f(x)  = f*(y) ,  

x = ½ [ ( b - a ) y + a + b ] ,  

Gj are the Gaussian weight factors 

and gj are the Gaussian points. 

Then the modified Gaussian points are 

Programme Symbol 
Z 

$3 

nl 

n2 

n3 

n4 

ml 

m2 

m3 

m4 

b 

B 

W 

bl[1]: } 

bl[nl - 1] 

e~ = ! [ ( h -  a/~/j + a * h] 

INPUT DATA 

Explanation 
An integer representing the output device on the computer (line printer = 30) 

The number of Gaussian points used {either l{I or 20) 

The number of polynomials defining sections of the leading edge 

The number of polynomials defining different sections of the trailing edge 

The maximum number of sub-areas within a region of the wing planform 

The number of areas of wing planform 

The degree of the leading-edge polynomial of highest order 

The degree of the trailing-edge polynomial of highest order 

The degree of the polynomial of highest order associated with fl(e) in a sub-area 

The degree of the polynomial of highest order representing f2(fl) in an area 

The value of the wing semi-span 

(M 2 - 1) ½, where M is the Mach number of the free stream 

The number of points at which Ct, is required 

The co-ordinates of points at which the leading-edge polynomials change. If 
nl = 1 then no values are supplied 
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Programme Symbol 
b211]: } 

b2D2-  l] 

h3[I,l]: } 

b3[1,n3- 1] 

h3[n4,1]: } 

b3 [n4,n3 - 1 ] 

h4[ ]i l 
b4[n4 1] 

Sill]: } 
S1 [;74] 

S2[l]: t 
S2[M] Al[l,0]: } 

Al[1,ml] 

Al[,:l,0] } 
A l[nl,ml] 

A2[ I'0l } 

AZ[l,m2] 

A2[n2,0] 

A2[n2,m2] } 

...... A3[ii-i ]~ 1 ] A3[lil,m3] A3[I: ,1,0] t 

A3[l ,n3,-I]  1 
A3[l,n3,0] 

A3[1,n3,m3] 
A4[l: ,0] } 

A4[I ,;*74] 

Explanation 
The co-ordinates of points at which the trailing-edge polynomials 
n2 = 1 then no values are supplied 

change. If 

The c~ co-ordinates of points at which the functions representing fl(~z) change in 
area ! (see Appendix l Section l(d)) 

The ~ co-ordinates of points at which the functions representing fl(~) change in 
area n4. These points define the limits of each sub-area 

The fl co-ordinates of points at which the functions representing f2(fl) change. 
These points define the limits of each area 

Switch for each area. If Sl[i] is positive then polynomial evaluation off(e,fl) in 
area i. If SI [i] is negative then interpolation 

Switch for each area. If $2[i] is positive then fl(e) is calculated from (AI.2) in 
area i. If $2[i] is negative then fl(~) is calculated from (A1.3) 

The coefficients of the leading-edge polynomial in the first section of the leading 
edge 

The coefficients of the leading-edge polynomial in the nl section of leading edge 

The coefficients of the trailing edge polynomial in the first section of the trailing 
edge 

The coefficients of the trailing edge polynomial in the n2 section of the trailing 
edge 

The coefficients off~(c~) in sub-area (1,1) 

The coefficients offl(~z ) in sub-area (l,n3) 

The coefficients ofJ 2(fl) in area I 
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A3[n4,1-1] t A3[n4,1,0] 

A3[n4,1,m3] 
% 

A3[n4,n3,-1] / 
A3[n4,n3,0] 

A3[n4,n4,m3] 
Aa[n4,0]: } 

A4[n4,m4] 

R 

X 

Y 

The coefficients offl(ct) in sub-area (n4,1) 

The coefficients offl(ct) in sub-area (n4, n3) 

The coefficients off2(fl) in area n4 

Switch. If R is positive then all intermediate steps of the calculation are output. 
If R is negative then no intermediate steps are out,put 

W values of (~.fl) where the value of Cp is required 

X 

Y 
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( J  3~ 

B e g i n  

Chapter flow diagram for calculation of pressure coeff icient 

Input data for 
wing geometry, 
Mach number, 
co-ordinates 
('X, Y) etc. 

R 
Evaluate total  
integral and 
calculate Cp 

output values 
of Cp, 

I 
i 

Calculate 

corrected values 
CpI and Cp2 

output values 
Cpl and Cp2 

Output details 
of input data 

for checkin 9 
and reference. 

Evaluate integrals 
9i ' , over re o n  a 

if R~O output 
details of calculation 

O = O  + I 

~ a = 6  

= ~ , ~  

Calculate intersection 
of forward Mach lines 
(,X,Y) with leading and 
trai l ing edges. 

if R "~ 0 output details 
of the calculation 

Calculate modified Gaussian 

points to be used in the 
i nt¢ 9 rat ion over recj ion ~a ~ 
(i f  region a exists). 

if R'-O output details 
of the calculat lon. 

W = w + l [  

w=W 

End 

w-'W Read new values 

(x,¥) 



APPENDIX II 

In this Appendix we describe the analysis for Regions 2 to 5. For Regions 2 and 5 the analysis is the 
same. 

#2 1 #2 

_ f ;  3(°q-°OF2.5(c~,[3)d~dfl fKlf(~l+~z,fl)dfl 
I2,5 = C(fl)(4__(2)~(~1__~2__~)3/2 ( ~ 1 + ~ 2 _ _ 0 0  F C( /~) (a1+~2)  (~1__~2)½ 

#I - i #z 

~2 

K1 I( cq + ~2)f~(oq + o~2,fl)--lf(oq + o~z,/~) J 

X I21og((0~lq-~Z)k+(~l--~Z)½)--(~i+Ct2)~] d fl 
,] lk°(1 -o~ 2 

f12 

KI 
c(Y)X 3/2 

1 
c(Y)X 3/2 

th #2 

#z #, 

(A2.1) 

where 

~1 - -  O~Z --  ~ ~ 3/2 

- K i  (~i +c~.'.) ~ ( a - e l  -c~2) (~1 +°~z)f,(~zt + " 2 , f l ) - - l f ( ~ l  +~2,1 ~) 

(A2.2) 

and 

For Region 2: 

~t +°~2 (2 + 3~_ ~3) 
4 

(A2.3) 

~1 = N[1], ~2 = Y. 

For Region 5 : 

~, = M[23, p2 = N[2] .  
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For  Regions 3 and 4 three modif icat ions have to be made.  Firstly, the integrals in the chordwise 
direction have the range of integration 0 to 1. Secondly, in these regions ~1 +~2 is never zero and so. we 
can make  K t(fl) = 1 and K 2(fl) = 0. Thirdly, we have to replace f/o(1 + 0(2,fl) byf( l , f l )  since now ~l + ~2 > 1 
and so f(0(1 + 0(2,fl) is no longer defined. 
Then 

//2 f12 

I3,4 = c(fl) 0(~ (~1 _ 0(2 _ 0()3/2 (0(1 + 0(2 _ 0()3/2 c(fl) (0(1 + 5 2 _  1)½ (0(1 _ 0(2_ 1) ½ 
0 

f12 

C(fl) (0( 1 -[- 0(2) ½ (0(1 --  0(2) ~ 

f12 

f ,  1 1 0(a 

+ 2 l o g  ( ( a ,  (% -~2 )*  +(0(1 +0(2)~ "~ 
- 5 2 -  1)½+(al +0(2 - 1) ½ } I dfl 

(A2.4} 
where 

F3, 4 (0(,fl) = f(0(,fl)-0(~f( 1,fl)-0(½(0(- 0(1-0(2){ f~(1,fl)--½f(1,fl)} 
(A2.5) 

Here  we have used the results 

f l (0(1--0() d0( = 1 

(0(1 --0(2 __ 0()3/2 (0(1 +0(2  __ 0()3/2 (0(1 + 0 ( 2 -  1) ½ (51-0(2 - 1) ~r 
0 

(51 -F 52)  ½ (0(1 --0(2) ½ 

and 

(0(~-0(~-~}~/~ (~, +0(~-~)~ \0(, -0(~-1/  \0(,_0(~1 (0(,~-15~-4(0(, +0(--~11)~ 

The first integral in (A2.4) has a square root  singularity at 0( = 0 and at 0( = 1, 0(x + 0(2 = 1. These can be 
mapped  into points  outside the range of integrat ion by making  the t ransformat ion  

0( = 0-25 (2 + 3 ~ -  ~3) 

The double  integral then becomes  

_/~2 _1 

- I  

1"5 (~1 --  ~) (1 -- ~) F3, 4 (5,fl) d~ dfl 
c(fl) ( 2 -  ()½ (~1 - ~2 - ~)3/2 (~1 + ~ 2 -  ~)3/2 

(A2.6) 

(A2.7) 
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Also since ~1 + ~2 = I at//2 in Region 3 and at//~ in Region 4, the second integral in (A2.4) also has 
a square root singularity. 

In Region 3 make the transformation 

/ / =  0'25 [3//2 + fll +(//2 -ill)(23'3 -y32)] 

and this integral becomes 
(A2.8) 

!~ ( P ~ - / / 0  ( - ~'3) ~'3 f(1,//) 1 d 
2--~p-j" (~  +a2 " 1 )  ~' ("~ - . ~  - 17,~ 

- 1  

which is regular. 
In Region 4 make the transformation 

(A2.9) 

fl = 0.25 [3fl, + ]~2 -F (//2 --//I) (27~, + ~)42)] 

and the integral becomes 
(A2.10) 

_ f l  f(1,//) ( / /2- / / , ) (1+ 74)dy 4 
- 1 2 c ( / / )"  (~ 1 + a 2  - 1)½ ( a l  - ~2 - 1)½ (A2.11) 

Hence, 

fl! t #2  

:(',//) d, 
1 3 ' 4 = - -  C(fl)(2__~)~(0~1__~2__00312(0~1+~2__~)312+ CC~) (0~1 + ~2)*  (~ 1 - -  0~2) ½ 

P2 - 1 #1 

182 

+ f  ~ )  If,,(1,fl)- ½f(l,//) 1 

+h(fl). 

For Region 3, fll = 0, f12 = NIl ]  and h(fl) is given by (A2.9). 

For Region 4, fll = N[2], []2 = 0and h(fl)is given by (A2.11). 

+2 log (~l -~2-1)½+(cq + ~ 2 -  1) ½ 

(A2.12) 

APPENDIX III 

Aerofoil Polynomials. 

(a) R.A.E. 101 - thickness/chord ratio 0.1. 

0 <~ ~ <~ 0.28 

fl(~) = 0"061782-0'135607~-0.133082~ 2 

+ 0-738461 ~3 __ 7.994151 ~(4 + 31'611163~ 5 - 50.687233~ 6 
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0.28 <~ ct <~ 0"34 

J ' l (~ )  = 1 8 . 0 4 6 7 3 0 -  2 3 5 " 6 1 1 2 5 0 a -  1 1 5 5 ' 4 7 1 2 5 1 ~  z 

- 2 5 1 8 ' 8 1 2 5 0 2 ~  3 + 2 0 5 6 " 2 5 0 0 0 2 ~  4 

0.34 <~ x <~ t) 76 

j l ( ~ )  = 0 . 2 7 2 0 2 8  - 2" 1 4 6 9 9 9 a  + 7 " 6 3 3 4 4 0 ~  2 

- 1 6 . 7 6 6 7 0 0 ~ 3  + 2 1 . 2 1 9 9 3 0 ~  4 -  1 4 - 2 6 9 0 5 8 a  s 

+ 4 - 0 0 2 7 5 8 ~  6 

0"76 <~ ~ <~ 1"0 

f ,  (~) = - 0 . 0 3 5 7 4 8  - 0 . 0 5 7 6 4 5 ~ -  0 ' 0 0 1 2 3 3 ~  2 

+ 0 - 0 0 5 1 9 7 ~  3 

(b)  R.A.E.  101 - 6 polynomial  approximation.  

0 <~ ~ <~ 0"12 

f 1 ( ~ )  = 0 " 0 6 1 7 8 2  - O" 1 3 6 3 2 0 ~  - 0 " 0 8 6 5 4 5 6 ~  2 - O- 194030c~ 3 

0"12 <<. ~ <~ 0"3 

f ~ ( ~ )  = - 0 " 0 3 1 5 0 5 7  + 2 .97501  ~ -  4 2 - 5 9 1 2 ~  2 + 304"424~  3 

- 1 2 0 8 . 7 5 ~  4 + 2 5 2 0 - 9 9 ~  5 - 2 1 6 5 ' 8 0 ~  6 

0.3 <~ ~ <~ 0"32 

J'l(z~) - - 0 . 0 0 2 6 9 7  + 0 . 3 7 6 0 5 ~  - I. 185~ 2 

0"32 <~ ~ <~ 0.62 

f l ( ~ )  = 0 . 6 5 2 9 8 6 -  7 . 0 3 8 1 5 ~  + 33"5493~  2 - 8 9 " 3 1 6 2 a  3 

- 1 3 4 ' 4 2 1 ~  4 - 1 0 7 " 6 4 2 ~  5 + 35 "8206~6 

0.62 <<. ~ <~ 0"82 

f l ( ~ )  = 6 ' 0 4 7 9 5  - 5 0 7 " 3 9 9 ~  + 1768"71~ / - 3279"59~  3 

- 3 4 0 9 - 6 4 ~  4 - 1883"96~  5 + 4 3 2 - 1 4 7 ~  6 - 

0.82 <~ ~ ~ 1"0 
[ '1(~) = - 0 . 0 2 6 0 8 6 2  - 0 . 0 8 9 7 1 1  ~ + 0 - 0 3 4 1 2 0 1  ,~2 _ 0 . 0 0 7 7 5 1 9 4 ~  3 

N.B.  T h e  p o l y n o m i a l s  g i v e n  in (a) a r c  a b e t t e r  a p p r o x i m a t i o n  to  R A .E .  101 l h a n  t h e  a b o ~ e  a n d  a r e  t h e  

o n e s  u s e d  i n  a l l  t h e  c a l c u l a t i o n s  e x c e p t  t h o s e  fo r  T a b l e  3. 

(c) R.A.E.  103 - thickness~chord ratio 0"1. 

0 <~ ~ <~ 0.36 

[ ~(~) = 0 . 0 5 6 2 5 4 -  0 " 1 0 5 7 4 5 ~ -  0 " 0 5 3 4 9 5 ~  z 

- 0 - 1 0 6 2 3 3 a  3 + 0 - 2 0 0 1 8 2 ~  4 - 0 " 5 6 2 6 6 3 ~  5 

0.36 <<. ~ <~ 0"42 

f t ( ~ )  = - 2 4 - 0 2 7 7 3 6  + 2 4 7 . 8 0 3 3 8 0 ~  - 9 5 6 " 0 1 8 2 4 9 ~  z 

+ 1 6 3 6 ' 6 7 4 9 9 8 ~  3 - 1 0 4 9 " 9 9 9 9 9 9 ~  4 

0.42 <~ ~ <~ 0.52 
j ' , ( ~ )  = - 2 7 4 . 6 3 4 8 0 0 +  2 9 7 3 . 9 0 9 0 2 6 ~ -  1 2 8 6 0 " 6 1 4 1 6 ~  / 

+ 2 7 7 6 3 - 8 2 3 9 6 ~  3 - 2 9 9 2 0 . 8 5 9 3 8 ~  4 + 1 2 8 7 6 . 0 4 1 6 7 ~  s 
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0"52 <~ c~ <~ 0"80 

fl(cQ = 12"251779 - 107'979725c~ + 399.043950~ 2 

+ 790"318651~ 3 + 881"190451c~ 4 - 523-746444~ 5 

+ 129.619017~ 6 

0"80 <~ o~ <~ 1"0 

f l(c~) = - 0"030909 - O" 104182~ + 0.038922u 2 

- 0.008703o¢ 3 

TABLE 1 

A Comparison of Values of Cp on Wing 1, Mach 1.2 when using 10 Point and 20 Point Gaussian Integration. 

X Y Cp 10 pt. integration Cp 20 pt. integration ')~, 

0"05 
0"1 
0"2 
0"3 
0-4 
0"5 
0"6 
0"7 
0"8 
0"9 
0"975 
0"025 
0"05 
0'1 
0"2 
0"3 
0"4 
0.5 
0"6 
0"7 
0"765 
0"775 
0"8 
0"9 
0"975 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0"3 
0"3 
0"3 
0"3 

0"186401 
0'113438 
0"049949 
0"005426 

-0"030530 
-0"049627 
-0"060656 
-0 '067615 
-0"067488 
-0"066836 
-0"066871 
-0"O25085 
-0"032150 
-0"048414 
-0"079968 

0'3 
0"3 
0"3 
0-3 
0"3 
0'3 
0"3 
0"3 
0"3 
0"3 

-0-106006 
-0"107039 
-0"103536 
-0 '095017 
-0"086464 
-0"082921 
-0 '070798 
-0"049676 
-0"0O5350 

0"039719 

0-186401 
0-113438 
0"049949 
0"004862 

-0"030041 
-0.049098 
-0"061616 
-0-067536 
-0.068101 
-0"068098 
-0"068194 
-0-025664 
-0"032236 
-0"048524 
-0.079934 
-0.106655 
-0.107121 
-0-102987 
-0-095814 
-0-086970 
-0.081963 
-0-O69800 
-0"049928 
-0"005872 

0"039204 

0 
0 
0 

11.6 
1.6 
1.1 

-1 -6  
0-1 

- 0 . 9  
- 1.9 
- 1.9 
-2 -3  
-0 .3  
- 0 . 2  

0.4 
-0 .6  
-0 .07  
-0 -5  
- 0 . 8  
- 0 . 6  

1.2 
1.4 

- 0 . 5  
- 8 . 9  

1.1 
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T A B L E  2 

A Comparison of Exact and ( ahldatcd I "aluesfi,r a Simple ('tlordwise Integration. 

f I *  0 ° 6 exact value 

850 0-0038125 2.82449 

87 0.0013714 3.33568 

88 ° 0'0006094 3'74127 

89 ° 0"0001523 4"43450 

numer ica l  value 
10 pt. in tegra t ion  

2"82451 

3.33571 

3"74120 

4'43448 

o /  
/ o  

0-0007 

0-0009 

- 0 . 0 0 2  

- 0 ' 0 0 0 5  

T A B L E  3 

A Comparison of I~dm,.vof Cp on Wing 1, Math 1"2 for two Different Approximations to the Thickness 
Distribution. 

X Y 4 po lynomia l  fit 6 po lynomia l  fit ",, 

0.05 
0.1 
0-2 
0.3 
0.4. 
0-5 
0.6 
0-7 
0.8 
0-9 
0-975 
0.025 
0.05 
0.1 
0-2 
0.3 
0.4. 
0.5 
0-6 
0-7 
0-765 
0.775 
0.8 
0.9 
0.975 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.3 
0.3 
0-3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

Cp 

0.186401 
O. 113438 
0.O499487 
0-00542626 

- 0.0305297 
- 0.0496268 
- 0.0606557 
- 0.0676152 
- 0.0674879 
- 0-0668355 
- 0.0668709 
-0 .0250850  
-0 .0321496  
-0 .0484141  
- 0-0799677 
- 0.106006 
- O. 107039 
-0 .103536  
- 0-0950165 
- 0.0864637 
- 0-0829205 
- 0.0707977 
- 0-0496764 
- 0.00535026 

0-0397188 

Cp 

0.186418 
0.113427 
0.0499487 
0-00486795 

-0 .0296780  
-0 .0492956  
-0-0606683 
-0-0681522  
-0"0683206 
-0 .0667964  
-0 .0670641 
-0 .0250375  
-0 .0321535  
-0"0482865 
-0 .0800282  
-0-106999 
-0 .106769  
-0 -103485  
-0-0951855  
-0-086'7300 
-0 .0820828  
-0 .0698637  
-0 .0496614  
-0 .00490073  

0.0400351 

0.009 
- 0 . 0 1  

0 
- 1 0 . 3  

- 2 . 8  
- 0 . 7  
0.0.2 

0-8 
1-2 
0.06 
0-29 

- 0 . 2  
0"07 

--0"3 
0-08 
0-9 

- 0 . 2 5  
- 0 . 0 5  

0.2 
0-3 

- 1 - 0  

- 1 . 3  
- 0 . 3  
- 8 . 4  

0.8 
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r~j 0 ~Z 

~,, Z\ \ \ \ \ \ \ '  

FIG. 1. Area of integration for a general point (x,y,z). 

M[Z] N~'i~ 0 NI[I] 

1 

' ~ ~ \ \ \ \ \ \ \ ~  I I I t ] 

Y M [)] 

P ; i 

FIG. 2. Regions of integration for point (x,y,o). 
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k'x~ 
MQch (In~' '~hrough 
trailin 9 ~dge- centre 
l ine intersect ~on 

FIG. 3. Plan of Wing 1. R.A.E. 101 section t/c = 0.054. 

36 



0'06 

. . . . .  Y =  0"25 

004  
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I 

, z I -0"02 / 
I ( / /  O---- Our results (rounded leading edge) 

I .# Haines et al (sharp leading edge) 
I I / + Weber analytic results (sharp leading edge) 
I 
I ÷! 

i ill 

-0"04 

- 0 " 0 6  

-0"08 

/ 
/ 

I 
/ 

I 
4 

I 

I ' 0  

FIG. 4. Wing  1 - a compar i son  with the results of  Haines, Rollins and Osborne,  M a c h  1.2. 
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Wing 
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I I l 

I Moch 1"2 poin~ (,0-9~0-3) 

K, fC=a ÷ =z,~) 
c(/3)(=B ÷ =2)C=j-=2) I/z 

region 2 

0"30 

0.160 

0"D69-~ -~ 0-300 

q [~] de =-6-3B2S3~,63(Gou~ 20point)/ 
7"07155x I0 ~ (Gouss 10point)/ 
6.382523x103 ( Simpson ) / 
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/ 
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f 

y 
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FIG. 5a. Values of various integrands in equation (3.7). 
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- 0 . 2  

- 0 - 3  
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Wing I 

reg ion 
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0 - 6  0-7 O, 

q[i] d~ 
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=-1-09932 x iO 
- t - 0 9 8 6 4  x 10 -2 

=-1-099836 x i() 2 

('Gauss 20 po in t )  

(Gauss ! 0 point.) 
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K~ f ( = ! -  °'Z,t3) 

c(/31(~ l-~z)(~ ! +e z) i /z 

0 -3 -  < /3-< 0-73 

I I I 
FIG. 5b. Values of various integrands in equation (3.7). 
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/3 "---~ 0 7  

q [i.] d / 3  = - 6" 087375 × 10 -4. (Sirnpson ) 
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- 5"92789 x 10 -4 (Gauss 10 point) 

( c )  Wing I Mach I "Z point (0-9 ~ 0.3)  
K 

~ ~' ~=~c~,-= ~,~ (~,-=~ '~ r~,- ~ .~  ~- ' ,  c~,-~, ~}{~,~ ~ c~, ~o~ ''~ • c~,-=~" 
region I 0"3 ~ /3 ~ 0-73 I 

oc i - ¢c 2,~q2 

FTG. 5c. Values of  var ious  integrands in equat ion (3.7). 
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FIG. 5d. Values of various integrands in equation (3.7). 
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FIG. 6. Plan of Wing 2 R.A.E. 101 section t/c= 0'06. 
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FIG. 7. A comparison with experiment results and 
those of Haines et al, wing B Wing 2 Mach 1.2. 
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