
i 

R. & M. No. 3543. 

M I N I S T R Y  O F  T E C H N O L O G Y  ~,~'0,", '~ 

AERONAUTICAL RESEARCH COUNCIL 

REPORTS AND MEMORANDA 

Minimum Drag Surfaces of given Lift which Stipport 
Two-Dimensional Supersonic Flow Fields 

By J. PINE 

LONDON: HER MAJESTY'S STATIONERY OFFICE 

1968 

PRICE! 12s. 6d. NET 



Minimum Drag Surfaces of given Lift which Support 
Two-Dimensional Supersonic Flow Fields 

By J. PIKE 

Reports and Memoranda No. 3543* 
September, 1966 

Summary. 
The two-dimensional surface giving minimum pressure drag for given lift coefficient in supersonic flow 

is considered. The method adopted is a small perturbation of a plane surface; the pressure is expressed 
as a power series in the perturbed slope and third order terms are neglected. The shape of the optimum 
surface is found to be a double wedge surface, with a single discontinuity in the surface slope. The 
compression surface is concave at the discontinuity for Mach numbers below about 1.4 and above 3, 
and between these it can be slightly convex. 

The performance in the case ~ = 1.4 is compared with that of the plane wedge, and the improvement 
is found to be very small, except at hypersonic speeds when improvements greater than 1 per cent are 
obtained. 

Similar results hold for waveriders (three-dimensional wing shapes) based on two-dimensional flow 
fields. 
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Detachable Abstract Cards 

1. Introduction. 
It is well known that within the limitations of small disturbance theory (applicable to low supersonic 

Mach numbers), the optimum lifting two-dimensional surface is a flat plate 1. At high supersonic and 

*Replaces R.A.E. Tech. Report No. 66 305--A.R.C. 28 825. 



hypersonic Mach numbers we can no longer justify a priori the use of small disturbance theory, except 
for very small flow deflection. To find the optimum surface at these Mach numbers a more accurate 
description of the flow is required. The method adopted in the present paper is to take the exact solution 
for the flow about a plane wedge given by the oblique shock wave relationships 2 and to consider the  
direct effect of deviations from the plane wedge shape by means of Busemann second-order theory,  
while the effect of reflections from the shock wave is treated linearly. Reflected disturbances from the 
shock wave are generally much smaller than the incident disturbances. The optimum two-dimensional 
surfaces are found to be 'double wedge' surfaces, concave above M~ = 3. The optimum three-dimensional 
waveriders based on two-dimensional flow fields also are concave chordwise above Moo = 3. 

Recently the case of small incidence at very high Mach numbers has been treated by Cole and Aroesty 3 
using hypersonic small disturbance theory. They find that the improvement in drag relative to that of 
plane wedge is proportional to the size of perturbation from the wedge, and suggest that the optimum 
shape within their constraints is a 'multi-wedge'. Here it is shown that the strict optimum approximates 
closely to a double wedge and the maximum improvement in performance is about 1 per cent in air. 

In this Report wedges and waveriders are compared which have the same lift coefficient. An alternative 
approach is to compare shapes with the same volume. The method used in this Report is not applicable 
to the constant volume constraint. However, Bartlett 4 has investigated a series of shapes with double 
wedge lower surfaces and streamwise upper surfaces, which have constant volume. Using shock expansion 
theory, he finds that the double wedges with the maximum lift-drag ratio are markedly convex, and have 
lift-drag ratios of up to 4 per cent greater than the plane wedge with a streamwise upper surface. It should 
be noted that the difference in the results is due solely to the different constraints. 

2. The Pressure on a Nearly Plane Two-Dimensional Surface. 

Consider a plane surface inclined at an angle 6o to the free stream (e.g. Fig. 1). Neglecting viscous 
effects the shock wave is plane, and flow conditions behind the shock wave are constant. A small per- 
turbation 6(x) in the surface slope causes a small change in pressure. The change in pressure at any 
point Xl on the surface due to 6 at that point can be estimated by Busemann second order theory based 
on the flow conditions behind the shock wave, 

i.e. 

P --Po 

qo 
-- C1 6(x1)Jr-C2 62(xi) (1) 

where 

2 (~+ 1) M ~ - 4 ( M  2 -  1) 
C X - ( M  2_1). ~, C2 = 2(Mo 2_1)  2 

and P0, qo, Mo are respectively the static pressure, dynamic pressure and Mach number behind the shock 
wave. The values of C1 and C2 are shown in Fig. 2. 

For  a plane surface the characteristic lines of the flow are straight and inclined at the Mach angle to 
the flow direction (Fig. 3). A small disturbance created at A propagates along the characteristic A B  and 
is reflected from the shock wave at B. The reflected disturbance (its strength attenuated by a factor 2) 
propagates along BC and is reflected at C without attenuation, doubling the effect of the reflected dis- 
turbance on the surface. The ratio OA/OC (denoted by k) is independent of the position of A for a plane 
surface; that is 

OA O D -  A D  1 - fl tan ( 0 -  6o) 
k - OC - O D + D C  - l + f l t a n ( O - 6 o )  (2) 



where 

fl = cot # = (M 2 - 1) 6 (see Fig. 4). 

For the perturbed surface k is constant to first order. Using a linearised estimate of the pressure change 
due to 6 (i.e. (P-Pi)/ql = C1. ~), Chernyi s finds that the pressure change at any point on the surface 
(xl) due to 6(x) is (including reflected pressure changes), 

oo 

(3) 

The term in equation (3) containing 2 represents the pressure change due to reflections from the shock 
wave. The value of the reflection coefficient, 2, (i.e. the attenuation of a disturbance on reflection from the 
shock wave) is shown in Fig. 5 for V = 1.4, reproduced from Ref. 5. Over a large range of values of c50 
and free stream Mach number the value of 2 is small. The term in 2 (of order 26), is then of second order, 
and the change in pressure or Mo at the surface point x I due to reflections is therefore also of second order. 
The appropriate second order expression for the direct effect of 6(x) on the pressure is equation (1), 
and this replaces the term C1 6(xl) in equation (3) to give the complete second order expression (with 
the suffix on x 1 discarded): 

P-Po = C1 cS(x)+ C2 ~2(x)-b2)~ C1 ~(kx). (4) 
P0 

A refinement of this expression (still accurate only to second Order) is obtained by assuming tS(knx) 
6(kx), instead of the assumption used to obtain equation (4) (i.e. 8(k"x) = 0 for n > 2). As 

,~ _[../'~2 [_ ~3 ~_/~4 . . . . .  ,~,/( 1 - - 2 )  

the term in 2 of equation (3) can be assumed to give 22 6(kx)/(1 - 2) and the equation equivalent to equation 
(4) is 

P--Po = Ci b,(x)+ C2 t~2(x)-~ 22 Ci b(kx) 
qo 1 - 2  

(5) 

The advantage of this refinement becomes apparent later, for although it does not affect the assumptions 
for which the optimum surface is obtained (i.e. second order accuracy), it is found to be a more accurate 
approximation for evaluating the performance of the surfaces. 

3. The Lift and Drag of a Nearly Plane 71vo-Dimensional Surface. 
The lift per unit span of the two-dimensional surface of unit chord is given by 

1 

L = Io (P-P') dx (6) 

where Pr is a reference pressure. Hence substituting for p from equation (5), 

(7) 



If 6(x) produces no change in lift 

1 

Let 
F(x)=8(x) for 0 < x < k  

H(x)=8(x) for k _ < x < l .  

Then F and H are independent functions, for they define x over different intervals. 
Let 

1 1 

F,=f fo  F" dx and H, = fk H" dx. 

Equation (8) can then be written 

22 
Fa + H1 + ~  (F2 + H2) + ~ 2 - ~  Fa = O. 

The drag per unit span of the two-dimensional surface is given by 

1 

D = Io (p - p') tan (6o + 6) dx. 

Expanding tan (80 + 8) in a Taylor series this becomes 

1 1 

D = t a n  8ol ° (p-p,)dx+ sec 2 8ofo (p-p~) 8dx 

1 

+sec 2 6o tan 6ol  ° (p-p~) 62 dx +0(63) 

Substituting for p from equation (5) 

1 

D Do 
t l  

- I (I)o - P,) 6dx + tan 
i 

sec 2 8 o Jo 

1 1 

6Olo (PO--Pr) 82 dx+qo I C1 62 dx+O(~3, ,~62) 

which becomes, using equations (11) 

D-Do 
see 2 60 

- (Po-Pr)(F1 +H1)+ {(Po-Pr) tan 60+qo C1} (F2+H2)+O(63, 262) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



Substituting for F1 + H1 from equation (12) 

D-D o 22 F1 
(Po--Pr) sec2 60 1 - - 2 "  k 

q- {tan6oq Poq°Cl-Pr cIC2} (F2+H2)" (17) 

4. The Minimum Drag Surface. 
In Section 3 an expression for the drag (equation (17)) and a constant lift condition (equation (12)), 

are derived in terms of two arbitrary functions F and H, describing the surface slope over particular 
regions of the surface. The optimum surface is given by the F and H which minimise the drag under the 
constant lift constraint. The process adopted to find this F and H takes place in several steps. First it is 
shown that for any given F(x), the function H which minimises the drag is a constant. This must also be 
the form of H for the unrestricted minimum drag surface, for if H were not constant for this surface, 
then whatever F(x), the drag could be reduced by using constant H. With H constant, optimising for F 
shows F to be constant also. The optimum surface is thus shown to be a double wedge, with wedge 
angles 6o+F and 60+H to the free stream (e.g. Fig. 6). The two constants F and H are related by the 
constant lift condition. Hence the drag can be represented as a function of F only, and as a final step, 
the minimum drag is found by putting dD/dF = O. 

For any function F the values of F1 and F 2 are constant. Then the drag, from equation (17) can be 
written 

1 

D-Do = { }fkH2dx+constant (18) (Po -P~) sec~ 60 tan 6o + Poq°-prC1 c1C2 

and the constant lift condition becomes 

1 1 

cl f k H dxq-C2 I H 2 dx = constant. (19) 
dk 

3 

The coefficient of H2 in the drag expression can be negative if the lower surface Mach number is sufficiently 
close to 1, but in the cases of interest it is always positive, so that the minimum drag is given by minimum 
H2, under the constraint of equation (19). This is a straightforward problem in the calculus of variations. 
In the usual way, we define a function P by 

P = H2 +#(C1 H+C 2 H 2) (20) 

where # is a Lagrange multiplier. Then H is the required optimum function if it satisfies dP/dH = 0; 
i.e. 

2H+C1 bt+2pC2H = 0. (21) 

Hence the optimum H is a constant, a result which can be confirmed intuitively from the original problem. 
With H constant, H1 = ( l - k )  H and H2 = ( I - k )  H 2. The drag expression and lift condition can 

now be written in terms of F 1 and F 2. 
i.e. 

k k 

D-Do = -22 1 { ~ t f F2 dx + constant (22) (po--pr) sec260 1 - 2  Fdx+ tan6o-t Poq°Cl-Pr -.IC2 
o o 



k k 

+ - -  dx = constant. 4 k( 2) Fdx Ca 
0 0 

(23) 

As in optimisation of H, the calculus of variations shows F to be constant for minimum drag. Hence to 
the accuracy of the analysis, the optimum inviscid performance of a two-dimensional surface in super- 
sonic flow is given by a 'double wedge' surface (e.g. Fig. 6) with the discontinuity in slope occurring at 
the point where the pressure change reflected from the shock wave just fails to affect the surface. 

With F and H as constants the constant lift condition (equation (12)) becomes 

H C2 2 -- k) H2)+ 122~ ~ 0 kF+(1-k) +-c~(kF +(1 _ = (24) 

i.e. 

(12~2_2 +k) F +(1-k)H = O(62). (25) 

Then substituting for H 2 in equation (24) from equation (25) 

H = - F  (k-k2+22) 1 C2F(1+2) +0(Fa)" (26) 
( l - k )  (1-2)  C1 (1 -  k) (1-2)  

The value of the angle at the discontinuity (O) is given by 

O = H - F .  

Using equation (26) this becomes 

F( l+2)  (1 C2 (k-k  2 + 22) F) 
• = ( 1 - k ) ( 1 - 2 )  Ca (1-k)(1- , ; t i  +0(Fa)" 

From equation (17) the drag is 

D-D o 22F { qoC 1 C~} ( 2) 
(P0 - P,) sec2 60 = - 1 -----2 + tan 60 4 kF 2 + (1 - k)H . Po-P ,  

Substituting for H 2 from equation (26) 

D - D O 22F BF 2 
(p0--Pr) sec2 60 1--2 ~ (1 --,,~) 2 

where 

B = 
k+22k-322k+422 { qoCa C2} 

1 - k t a n  ~ o  4 - -  . 
Po-Pr  Ca 

(27) 

(28) 

(29) 

(30) 

(31) 
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For the minimum drag dD/dF = O. 
i.e. 

22 = 2B Fop t (32) 
1 - 2  ( 1 - 2 )  2. 

Hence, from equation (28) 

- 2 ( 1 + 2 )  { C2 k-k2+22 2 } (33) 
~opt= B(1 -k )  1 C1 1 - k  "B 

and from equation (30) 

Dmln - -  Do 2 2 

(170 -p~) see 2 t5 o B " 

Now Lo = P o -  P, and Lo/D o = tan 60, hence equation (34) can be written 

(34) 

Dmin -- Do 2 ̀9]̀2 
= (35) 

Do B sin 260 ' 

5. Further Properties of the Minimum Drag Surface. 
In Section 4 the minimum drag surface was shown to be a double wedge, with a change of surface 

slope (Oopt) at the point where the pressure change reflected from the shock wave just fails to affect the 
surface. The magnitude of ~opt is of order 2 (see equation (33)), and its value calculated from equation 
(33) with p, = Poo and various Moo is shown in Fig. 7. As the wedge angle (6o) tends to zero, ~opt ~ o, in 
accordance with the linear theory result. For  Moo = 2 the value of ~opt is negative and the optimum 
surface is slightly convex. For  Moo = 3, it can be seen from Fig. 5 that except close to shock detachment 
2 ~ o. Hence the optimum surface at Moo = 3 is very close to a plane wedge. For  Much numbers greater 
than Moo = 3, the optimum surface is concave (except again near shock detachment) and increasing the 
M u c h  number  with constant wedge angle increases the concavity. 

The decrease in drag is shown by equation (35) to be of order 22 . However, since the optimum shapes 
are found to avoid the reflected pressure changes impinging on the surface, their performance can be 
calculated exactly by shock-expansion theory or a double application of oblique shock wave theory. 
Hence we may determine the accuracy of the present theory by comparing it with exact values. A fairly 
extreme example is given by M~o = 10,60 = 20 ° and 2 = -0.09.  In Fig. 8 the exact value of LID for the 
plane wedge and the double wedge (with 6o = 20 °) is shown with Pr = Poo. Values from the present 

• theory are shown to be close to the exact values, although as M6 becomes large some discrepancy occurs. 
In Fig. 9 the value of (D o-Dmin)/D o from equation (35) is shown for various Much numbers with 

pr -- poo. The decrease in drag compared with the plane wedge with the same lift is very small except at 
hypersonic Mach numbers or near shock detachment. The accuracy of Fig. 9 is demonstrated by com- 
paring it with the exact configurations shown in Figs. 10 and 11. For  the extreme case of Fig. 11 (i.e. 
Moo = 10, t5 o = 20 °) Fig. 9 is seen to be in error by 20 per cent. The error is smaller for a lower Much 
number or a change in 6o. 

The optimum double wedges described by Figs. 7 and 9, were evaluated using a reference pressure 
p, = poo. This represents a wedge with a streamwise upper surface and a base pressure equal to free stream 
static pressure. With little further effort we can consider wedges with base pressures different from free 
stream static pressure, wedges with fixed upper surfaces, and wedges where the upper surface is the same 
shape as the lower surface (i.e. thin aerofoils as Fig. 12). The first of these is investigated simply by sub- 
stituting the base pressure for p~. If the base pressure is smaller than free stream static pressure the effect 



is merely to decrease the value of B via the term qo C1/(po-p,) (see equation (31)). Hence the optimum 
shape is a double wedge with a Oopt of slightly larger magnitude than that which was obtained for Pr -- P~. 
There would also be an increase in the value of (Dml n -  Do)/D o compared with that shown in Fig. 9. At 
hypersonic Mach number Po >> P~ and changes of base pressure cause little change in B. 

The inclusion of a fixed upper surface which does not interfere with the lower surface flow, gives equal 
lift and drag contributions to the plane and optimum wedges, and so causes no change in the optimisation 
process of Section 4. Hence the optimum is a double wedge with a Oopt of the same value as that found 
for the wedge with upper surface parallel to the free stream. 

For expansion surfaces which are perturbed, the pressure change equation equivalent to equation 
(5) is 

P-Pe _ C1 (Me)6e(xl)+ C2 (Me) 62(xl) (36) 
qe 

where subscript e refers to the conditions on the unperturbed expansion surface. As equation (36) contains 
no term in 2, the optimum surface is a plane. For thin aerofoils, the upper and lower surface values of 
5o and 6 are the same. Hence the lift of a thin aerofoil is given by 

1 1 

L: fo  o-pe, X+fo IqoCl' o --qeCl' e  } 

1 

+f 
0 

(qo C2 (Mo) + qe C2 (Me)) 6 2 ( x )  -~ 2~ G_ (~4o)6(kx)} dx (37) 

and the drag similarly by an expression differing from equation (15) only in the value of its coefficients. 
The optimisation then proceeds as that of Section 4, resulting in a double wedge optimum whose Oop t 
is smaller than that of the equivalent wedge value. It corresponds to a compromise between the larger 
Oopt of the compression surface and the zero ~opt of the expansion surface when they are optimised in- 
dependently. At hypersonic Mach numbers, when the upper surface pressures are small, the difference 
between %pt for the wedge and the aerofoil is also small. 

6. The Hypersonic Small-Disturbance Theory Result. 

Recently, the optimum two-dimensional surface within hypersonic small-disturbance theory (i.e. 
M~-~  00, 6 o ,~ 1, Moo 6 ~ 00) has been treated by Cole and Aroesty 3. They do not obtain a strict 
optimum however and they suggest a 'multi-wedge' as a limited optimum shape. 

The analysis of Sections 2 to 4 is only applicable for M o 6 ,~ 1. As 6 = 0(2) (see equations (9) and 
(32)), this is equivalent to M o 2 ,~ 1. When Moo is large and 6 o small the Mach number behind the 
shock wave (Mo) is large. For M~ < 10 it can be seen from Fig. 5 that if 6o is small then 2 is very small 
and the requirement is still fulfilled. 

With 6o small (positive) and Moo ~ oo, it can be seen from Fig. 5 that 2 --, 0.14, and the analysis of 
Sections 2 to 4 is not applicable. However it is not difficult to adapt this analysis to comply with the 
hypersonic small disturbance theory assumptions. 

The pressure coefficient for the plane wedge is given by hypersonic small disturbance theory to be 

Cpo = (~ + 1) 62 . (38) 



Then at a wedge angle 60 +(5 

Cp = (Y q- 1) ((50 q- (5)2 (39) 

= Cpo +ACp 

where 

ACp = (y q- 1) (2(5 (5o + (52). (40) 

This values of Cp includes the effect of reflections from the shock wave, correctly in the case of a plane 
wedge. These reflections originate on the surface at k"x (Section 2). If 6 = (5(x) = (5(k"x), as for the general 
perturbed surface, the reflected pressure changes are different from those accounted for in equation (3). 
The equation is equivalent to equation (3) of Section 2 is 

oo 

Cp = Cpo -1- ACp -I- 2~2n(ACp(knx)- ACp) 
n = l  

(41) 

i.e. 

oo 

Cp_Cpo ~ 1-1- ~ ACpdt-~ ACp(kx)+ 22~-~2n(ACp(k~x) - ACp(kx)) 
n = l  

(42) 

where 

ACp = (T + 1) (2(50 . 8(x)+(52(x)) (43) 

The constant lift condition is 

f ( C p -  dx = 0. (44) Cpo) 

Substituting for Cp-Cpo from equation (41), and neglecting terms 0((53, (522, (522) as in Section 2, 

2(5o(F1 + H1) + F2 + H2 -~ 

where F. and H,  are again defined by equations (11). 
The drag coefficient is given by 

42 60 F1 
k(1 - 32) 

1 

Co = fo Cp tan ((5o + (5) dx . 

- -  = 0 (45 )  

(46) 

Proceeding again as in Section 2 

CD--Coo ( ~ ) ~  
Cpo sec 2 6o = F1 + H1 + tan 60 (H2 + F2) + (T + 1) (F2 + H2). (47) 

9 



Equations (45) and (47) have the same form as equations (12) and (16) with C1, C 2, qo, (Po-Pr), k, D and 
D O replaced by 260, 1, (~, + 1) (1 -32/1 -2), Cpo, k(1 -32/1 -2), Co and CDo respectively, and the analysis 
of equations (18) to (35) is applicable to the present case. Hence the optimum shape again approximates 
closely to a double wedge (showing that the multi-wedge found in Ref. 3 is a more restricted optimum), 
and the drag coefficient and second wedge angle are given by 

CDmin-- CDO = 222 (48) 
Coo B sin 260 

and 

--2(1 -22  ) {1 1 - 2  k(1-32)-22 ~}  
~opt = B(1 -2 -k (1 -32 ) )  26o " 1 - 2 - k ( 1 - 3 2 ) "  (49) 

where 

k(1-32) { 422(1-2)} 
B = 1 - 2 -  k(1 - 32) 1 + 22 -  322 -~ k(1 - 32) x 

{ tan 6o_F ~+lcvo. 1-321_2.26°- 2-~---oo } " (50) 

Now 

Cpo = Coo cot 60 = (7 + 1) 602 . (51) 

Hence neglecting terms 0(62 ) 

CDmi n /~2 
Coo 1 = -B6---~ (52) 

and 

k(1 - 32) { 422(_1-2) ~ 3-112 
6oB= 1 - 2 - k ( 1 - 3 2 )  1+22-322-) k(1-32) J 2(1-2)" (53) 

The values of k and 2 for hypersonic small disturbance theory are 3 

1 - F  
2 . . . .  (54) 

I + F  

2 - F  
k = - -  (55) 

2 +F  

where 

F = (56) 

10 



For ~ = 1-4, 2 = -0.139, k = 0"451 and 

~opt = 0"14 60 

Comi, . 1 = -0.0095.  
CDo 

7. The Extension to Waveriders Supporting Two-Dimensional Flow Fields. 
A similar analysis to that for the wedge can be applied to waveriders based on two-dimensional flow 

fields. The unperturbed waveriders are based on the exact flow about a plane wedge. The method is 
demonstrated here for a waverider of delta planform. The unperturbed shape is a caret wing, as shown in 
Fig. 13. 

The surface perturbations are kept constant along the intersection of the compression surface with 
rearward facing Mach planes normal to the vertical plane of symmetry such as the one shown by the 
dotted line in Fig. 13. The flow then remains two-dimensional to first order. With constant planform, 
the small changes in the shock wave shape cause small changes in the anhedral angle. 

Fig. 14 shows a caret wing in side view, AB, EE' and FT' are rearward facing Mach planes along which 
the surface perturbation (6) is constant and the direct pressure change is given by C1 6 + C2 62. Prescribing 
6 = 6(x) along OT' is sufficient to prescribe 6 over the surface. If O' is unit length in the x direction, the 
plan area of surface with perturbation 6(x) isf(x) given by 

f(x) = sx/k' 0 < x < k' (57) 

1rex 
- s - -  k '  < x < 1 ( 5 8 )  

1 - k '  

where k' is the x co-ordinate of F, and s if the wing span. 
Now AB is a typical perturbation and BC its reflection from the shock wave. 
As in the wedge case AA' is equal to k CC'. Hence r(x) the ratio of the influenced area (CC'ffB) to 

incident area (AA1B'B) is 1/k when A is upstream of E, and zero when A is downstream of F. It can be 
shown that it varies linearly with x for A between E and F. 

As for the wedge, reflected pressures are second order and the third order terms are neglected. Hence 
to this accuracy it may be assumed that reflected pressures act on the unperturbed surface. Then the 
reflected pressure due to 6(xl) is r2 C1 6(x0, and the total change in pressure is 

P-Po = f(x){Cx 6(x)+ C2 62(x)+ r2 C1 6(x)}. (59) 

Using this expression the constant lift condition becomes (by analysis similar to that for the wedge) 

C2 22 
Fx + GI + Hx +-~(F2+ Gz + H2)+-~(FI +G't) = 0 (60) 

where 

F, = fo F"f(x) dx (61) 

G. = i '  G"f(x)dx (62) 

11 



f k ' - x  G'I = G ~ f (x )  dx (63) 

1 

H. =fk" H " f ( x ) d x .  (64) 

The equation equivalent to equation (16) for the wedge case is 

D - D  o 
(Po--Pr) sec2 go 

qo C~ 
= F I + G I + H t W t a n ~ o ( F 2 + G 2 + H 2 ) +  (F2+G2+H2).  

Po - P, 
(65) 

As F., G, and H, are all proportional to the span S (viaf(x)),  from equation (65) the drag coefficient 
based on planform area is independent of the span. As S becomes large equation (65) does not degenerate 
to equation (16) (the equivalent wedge equation) because k and k' are independent of S. 

Expressing F, from equations (57) and (61) as 

k 2 

S F"(y) dy 
F , =  k' 

0 

where y = x 2, F can be shown to be a constant for minimum drag as in the wedge case. Similarly, H can 
also be shown to be a constant, but the function G for minimum drag is complicated by the G' term in 
the constant lift constraint. The form of the function G for minimum drag with F and H constant is 
given by the calculus of variations to be G = K1 +K2x. The value of G varies according to the area 
influenced by the reflected pressures from the shock wave. As this area is continuous at k and k', the values 
of G at these values of x are F and H respectively. The value of K~ and K 2 can  thus be determined to 
give 

(66) 

Hence for the minimum drag H and F are found from equation (60) to be replaced by 

H - F =  
3k'H 

k '2 -4- k'k + k 2 4- 0(H 2) (67) 

and from equation (66) 

H - G  = ( H - F  +0(H2). 
~tc - g) (68) 

Hence equation (65) can be written in terms of H 2 and H 3, similar to the wedge case, and the optimum 
value of H, G and F (i.e. 6) found to be 

c~ = F = ( l - K ) - -  - -  
2 K 1 

for the region OE'~EE'20 (Fig. 14) (69) 
B K2 

(Fig. 14) 
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(1 z-x  K,h 6 = G = -K-~--S- ~ BKz] fortheregionEE'tT'lFT'2E'2E 
(Fig. 14) 

(70) 

6 = H = -  - -  
2 K 1 

for the region FT'~T'2F 
B K 2 

(Fig. 14) 

(71) 

where k is as the wedge case (equation (2)) 

B' = tan 6o-F qo Cx C2 
Po-Pr C~ 

(72) 

k' = 1 - ( tan  0 - t a n  6o) ( f l - tan 6o) cos 2 0 (73) 

3k' 
K =  k'2 + kk' + k 2 

K 2 = -~ (1 -K)2+l -k '+2(k ' - k )  - K + - ~ - -  l _ k  ~2--3-+--4-)Jfl 2K KzY] 

The drag compared with that of the caret wing of the Same lift is given by 

Drain I = 23-2 K21 

D O B' sin 260" K 2 

This is the same as that for the wedge, except for a factor K~ ? B _ K~ k(1 +22). This has in general a 
K 2 B' K2 (1 -k)  

value 0(1). In particular when Moo = 10, 6o = 10 °, then Kl = -1.55, K2 = 1.45 and K~ B = 0.7. The 
K 2 B' 

222 
value of B sin 260 from Fig. 9 is 0.0064, giving a possible drag reduction over that of the caret, for these 

conditions, of 0.45 per cent. The curvature of the shape has the same sign as that of the wedge at the 
same CL and Moo, for it depends on the sign of 2 only. A typical concave surface is shown in Fig. 15. 
Surfaces similar to this have been evaluated in Ref. 6. 

8. Conclusions. 
The two-dimensional compression surface with minimum pressure drag for given lift is a double wedge 

surface. The discontinuity in slope is at a point such that disturbances from the discontinuity on re- 
flecting from the shock wave just fail to affect the surface. Except when the shock wave is close to detach- 
ment the double wedge is convex for 1.4 ~ Moo ~< 3 and concave for other Math numbers. 

When the expansion and compression surfaces have independent shapes and pressures, the magnitude 
of the compression surface discontinuity for minimum pressure drag is independent of the expansion 
surface. However, variation in base pressure does change the magnitude of the discontinuity. With a 
base pressure equal to free stream static pressure the improvement in drag over that of the plane wedge 
is very small, except at hypersonic Mach numbers when drag reductions over I per cent occur. A reduction 
in base pressure increases this value slightly. 

i3 



The optimum thin two-dimensional aerofoil is a double flat plate with a single slope discontinuity. 
The change in slope at the discontinuity is smaller than that required for the optimum wedge. 

The analysis is applied also to include hypersonic small-disturbance theory. The optimum surface is 
again found to be a double wedge with a reduction of drag compared with the plane wedge of about 
1 per cent. This result differs from that of Cole and Aroesty 3, which is an optimum under an arbitrary 
shape constraint. 

Optimum 'waveriders' based on two-dimensional flow fields are based on the flow past a surface for 
which a change in slope occurs over a finite region of the surface. The slopes on either side of this region 
are similar to those found for the double wedge, and a small reduction in drag at hypersonic speeds 
compared with the caret wing can be achieved with a surface which is concave chordwise. 
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LIST OF SYMBOLS 

Defined by equation (31) 

Defined by equation (72) 

Defined by equation (1) 

Drag of perturbed surface 

Drag of plane surface 

Drag of minimum-drag surface 

8(x) for 0 < x < k 

Defined by equation (11) 

6(x), k < x < k' 

Defined by equation (62) 

Defined by equation (63) 

6(x) for 1 > x > k (or k' Section 7) 

Defined by equation (i 1) (or (64) Section 5) 

[1 - fl tan (0 - 60)]/[1 + fl tan (0 -  6o)] 

OF/OT in Fig. 14 or equation (73) 

A constant 

Lift of perturbed surface 

Lift of plane surface 

Local Mach number close to surface 

Free stream Math number 

Surface pressure 

Unperturbed surface pressure 

Pressure increment 

Reference pressure 

po Mo 

Streamwise co-ordinate 

(Mo 2 - 1)~r 

Ratio of specific heats of gas 

Perturbation angles of surface 

Inclination of unperturbed surface to free stream direction 

Inclination of shock wave to free stream direction 

Attenuation factor of disturbances reflected from the shock wave 

Angle at the discontinuity (equation (27)) 
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