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Summary. 
In this Report a method of obtaining the transient solution of the helicopter rotor blade flapping 

motion is developed and the effective damping of the motion determined for tip speed ratios up to unity 
and above. 

When reverse flow over the retreating blade is ignored, it is found that the motion becomes unstable 
in the region of tip speed ratios of , ~  for values of inertia number up to 2. However when the equation 
of motion is modified to take into account the reverse flow over the retreating blade, the flapping motion 
becomes unstable at tip speed ratios between 2.2 and 2.8. 

Use is made of a digital computer in performing the numerical processes necessary to the method, 
which could be applied to solving other linear differential equations with periodic coefficients. 
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1. Introduct ion.  

Previous papers by Horvay 1, Shutler and Jones 2, and Horvay and Yuan a, have dealt with the problem 
of the transient flapping motion of a helicopter rotor blade in forward flight. These papers consider the 
problem for relatively low tip speed ratios/~ from 0 to 0.6 and show, in general, that as # increases regions 
of destabilization (i.e. regions where the flapping motion is less stable than that in hovering conditions) 
develop. In these regions of destabilization the frequency of oscillation is either ½ or 1 depending on 
the physical and aerodynamic properties of the blade, and over the range of/~ considered, the flapping 
motion therein becomes less stable as the tip speed'ratio increases. 

Now future developments in helicopter engineering may involve flight where the tip speed ratios are 
much larger than those encountered at present, and under these circumstances it is necessary to examine 
the nature of the rotor blade flapping motion for values of/~ up to unity and higher. 

The methods used in the papers referred to above, however, are not applicable to solving the problem 
for high tip speed ratios because the equation of motion considered therein does not take into account 
the reverse flow over the retreating blade, the effect of which increases with increasing p. Moreover 
the methods of Horvay 1, and Shutler and Jones 2, derive solutions by ignoring high powers of # and 
therefore cannot be used when considering values of unity and higher. 

The purpose of this report, therefore, is to present a method of solution which will extend the results 
of these previous papers into higher regions of tip speed ratio and to show whether or not the decrease 
in stability continues as # increases. This method which is described fully in a thesis by Lowis 4 is similar 
in approach to that of Horvay and Yuan a, but the use of a digital computer enables a more detailed 
treatment to be undertaken. 

For the problem of solving the blade flapping equation when reverse flow is not taken into account, 
it may be argued that if the steady state solution is assumed to be of the form 

oo 

fl = ao + Z a ~  cos root + b, sin re)t, 

r = l  

2 



the coefficient al is found to be given by the equation 

(1 - ½g2)a~ '--- - (2 # b2 + ½ ~2 a3 ) q_/./fi, 

where 6 is a function of flight conditions, suggesting that resonance occurs when/z = x/~, and indica- 
ting in turn that this is a value of tip speed ratio giving instability. 

However the equation for ax is effectively obtained by expanding in powers of # and retaining a finite 
number of terms. This in itself implies that an approximation is being made and that a further investigation 

is required to confirm that instability occurs when p = x/~. Moreover al is the coefficient of the first 
harmonic (cos cot) term in the series for fl and as such the instability would be expected to occur in the 
region of destabilization where the frequency is 1. For low tip speed ratios this region is relatively 
small, and previous investigations for low # would appear to indicate that the region of destabilization 
with frequency ½ is the least stable. Therefore before the significance of this instability can be fully realised 
it is necessary to see how these regions develop as/~ increases. 

The first part of this Report, therefore, deals with the problem of solving the blade flapping equa t ion  
when reverse flow is ignored. While this may be somewhat unrealistic at high tip speed ratios, in so far 
as it no longer represents the time blade motion, it serves to illustrate the basic method adopted herein, 
and also answers the questions as to how the regions of destabilization develop as # increases past 0.6, 
and whether or not instability of the system represented by this equation does eventually occur. 

In the second part of the Report, Section 6 et seq., this method is then applied to the equation of motion 
which is derived when reverse flow is taken into account. 

It will be shown in general, that the initial increase in area of regions of destabilization as/~ increases, 
already demonstrated in previous papers, continues. When reverse flow effects are ignored the motion 
of the blade becomes unstable at p = ,4/-2. When allowance is made for reverse flow, however, the onset 
of instability is delayed until higher values of # are reached. 

2. The Equation o f  Flappin9 Motion. 
For simplicity it is assumed that the blade is untwisted, of constant chord and does not bend or twist. 

The flapping hinge is assumed to be on the axis of rotation and perpendicular to the spanwise axis of 
the blade, i.e., 6~ = 0. At this stage we assume that there is no region of reverse flow over the retreating 
blade. 

By considering the moments about the flapping hinge of all forces acting on a helicopter rotor blade, 
the equation of flapping motion is found to be 1 

d2fl dd)~t~ dt 2 + 2C(t + P2(t)fl = E(cot) (1) 

where J 2C(t) = no9 1.+ #sincot 

I ,4n~ t] p2(t) = 09 2 1 +--~-- cos cot+n#2 sin 2o9 

.and E(o9t) is an aerodynamic forcing function independent of ft. The transient motion is given by the 
solution to the equation 

d2fl. 
~-~+2C(t) ~t + P2(t)fl = 0 (2) 

and it is this solution which concerns us initially in this Report. 



3. Preliminary Theorems. 

In this Section we state without proof and discuss briefly two results, and prove one further result, 
all of which are used later in Section 5. 

3.1. FIoquet's Theorem 
Any linear differential equation of the second order, having periodic coefficients of period 2n and 

which are functions of time t, has a transient solution 5 of the form 

~1 exp [7,t] .e,( t)+~2 exp [Tat].e2(t) (3) 

where 71, 72 are constants (not necessarily real) and Pl(t), P2(t) are periodic functions of time of period 
2n. ~1, c~2 are arbitrary constants depending on the initial conditions. 

We note that as P t(t) and P2(t) are periodic functions, the stability of the motion depends on the real 
part 0f71 and 72. The main objective therefore is to evaluate the real part of T~ or 72, the one having the 
most positive value being the critical one. 

3.2. Instability Regions and Characteristic Curves. 

A discussion s of an equation of Hill's type 

i.e., 5i + [a - 2qF(~ot)]x = 0 (4) 

where F(ogt) is periodic shows that the a, q plane is divided into regions where the solutions are stable 
or unstable, these regions being separated by what are called characteristic curves. Horvay 1 reduces the 
rotor blade flapping equation to this form and the results show that the #, n plane (equivalent to the 
a,q plane) is divided into similar regions where the solution is stable or unstable. As equation (4) is a 
linear differential equation of the second order with periodic coefficients, it has a solution of the form (3) 
and it is shown that each term of the expression represents a damped (positively or negatively) periodic 
function with constant frequency for a given instability region. In particular for the type of equation 
given by (4) it is shown that 

]'1 ~ --72" (5) 

3.3. Solution using Matrix Equations. 
We now show that if [y] and [x] are column vectors with n elements and [m ]  is an n x n square 

matrix and if both 

[y] = [M]  [x] 
and [y]  = [A I ]  [x ]  
where [I] is the unit matrix, then A is given by the latent roots of [M]. 

Proof 

Clearly [M] Ix] = [ A I ]  [x]  
i.e., [ M -  AI] Ix] = 0. (6) 

The condition that the n equations written in matrix form by equation (6) are consistent is that, 

IM-AII =0. 

Thus A is given by the latent roots of I-M]. 



4. Method of Solution. 
We now proceed to describe a method of solving equation (2). 

4.1. Reduction of Flapping Equation to Hill Equation. 
Equation (2) can be written 

d2~ ~ 4  ~)dfl ( 1 4  0) 
dO--- ~-I- n + 5# sin ~-~ + + ~n# cos 0 + n# 2 sin 2 ~ = 0 

where ~ = cot is the azimuth angle of the rotor blade. Writing 

equation (7) reduces to 

(7) 

/~ exp [ -2~9+~n# 1 = c o s  ~, .v(O) (8) 

v"+ QZ(~t)v = 0 
where the dashes denote differentiation with respect to ff and 

(9) 

/" n2 2 2 2  2 2 2  2 2 2  Q2(O ) = ~ - - ~ - - ~ n  # + ~ n # c o s 0 - s n  #sinO+n#Zsin20+-~n p cos2 . (10) 

This is an equation of the type (4) where Q2(~O) is periodic with period 2g, and so by Section 4 it has a 
solution of the form 

v = ~, exp [7O].Px(O)+a2 exp [ -70] .P2(~)  (11) 

where PI(0) and P2(O) are periodic functions of period 2n and where at and ~2 are arbitrary constants. 
Thus from equations (8) and (11) the solution to equation (7) is given by 

/~= at exp [ - - ( 2 - - 7 )  0]  .Pt(O) exp Dn, cos~9] +~ 2exp [-- (2 + 7) ~k]- 

2 
x P2(IP)exp I~n# cos ~ 1 (12) 

and if we write 7 = 2 + iv it is seen that the motion is stable or unstable according to whether 2 is less than 
or greater than n/2. Our main objective therefore, is to evaluate y and hence 2 in the solution of equation 
(9). 

4.2. The Rectangular Ripple Principle. 
The method of solution of equation (9) to be adopted here is to split one revolution of 0, i.e., ~ = 0 to 
= 2re, into short intervals Os-Os-t ,  over which the variable coefficients Q2(O) may be considered 

constant. 
Since the values of v and v' must be continuous throughout successive intervals, the final values v and 

v' at the end of one interval are the initial values of the variables for the next interval. 
We therefore approximate the actual equation (9) by a set of equations whose coefficients Qa are 

fixed throughout each of the short intervals ~ , , - ~ _  1. The value of Q2 for each interval is obtained by 
substituting the mean value of ~, for the interval in Q2(O). 



Assuming Q is constant therefore, equation (9) has a solution 

v(~) = a cos Q~ + B sin Q0 

so that v'(~,) = - QA sin QO + QB cos QO 

(13) 

(14) 

A and B being constants determined from initial conditions for each interval. Equations (13) and (14) 
can be expressed by the matrix equations 

[V(O) ] = [M(O)] [C] (15) 

where IV(O)]= k¢(o)_ l 

cos Q0 sin Q0] 
[M(0)] = - Q s i n  Q0 QcosQ0 

and 

Now if we divide one revolution of 0 into r equal intervals, then each interval is of magnitude (2re/r) and 
the mean value for the s 'h interval is (2s-  1)~z/r. Q~, the value of Q(O) for the s 'h interval, is found by writing 
0 = (2s-  1}Tz/r, in equation (10) and then the values of v and v' in that interval are given by 

[v~(o)] = [Ms(O)] [C~]. (16) 

27~ 
In this equation 0 takes values 0 < 0 < - - .  

r 

Now the arbitrary constants in [Cs] are determined by the initial conditions which are that 

[ Ys(O)] "~- [Vs- I ( ~ ) ]  (17) 

which is the condition that v and v' are continuous. 

Thus [y~(o)] = [M,(O)] [Cs] 

or [C~] = IMp(O)] - '[V~(O)] 

i.e. [C~] = [M,(O)]-' [Vs_ i (~ )  ] (18) 

Now given the initial conditions for the first interval, i.e. v (0) = v l (0 ) ,  v'(0) = v'~(0) o r  I V ( 0 ) ]  = I V 1 ( 0 ) ]  we 
have from (16) 

[v , (o) ]  = [M,(O)]  [ c , ]  

where from (18) [ c , ]  = [M,(O)]- ' [V,(O)]  

so that IV1(0)] = [M,(0)] [M,(0)]-'IVy(0)]. (19) 



2~. 
By writing 0 = - -  m equation (19) and using equation (17) we obtain 

t" 

[v~(o)]= [M,(~})] [M,(O)]-'[V,(O)], (20) 

which gives the initial conditions for the second interval. Repeating this process for the second interval 
gives 

From this we obtain ~V2 ~ 1 and hence [ g3(o)] and so bY repeated application of the progress we 

obtain 

[V(2~)] = = Yl Ms [Ms(O)]- 1.[V1(0) ] (22/ 
8 = r  

where the order of multiplication of matrices is such that the product starts with s = r and ends with 
s = l .  

Hence 

[ ~ / / s ]  = 

2n 1 sin 2n 
c o s  s Q-~ , 

- Q s  sin S r  

where 
k \ r / J  

COS s 

(23) 

1 
Thus [V(2~)] = II [JC/s]. IV(0)]. (24) s~y 

But ~//s[ = 1 and hence we note that 
1 

II [~s] l  = 1. (25) 

We see therefore, that v(2n) and v'(2n) can be calculated in terms of v(0) and v'(0) by process of evaluating 



a series of matrix products involving all the Q~'s. The Q~'s are calculated and matrices formed and multi- 
plied using a digital computer. (If Q2 is negative in any interval then the trigonometric functions in equa- 
tions (13), (14) and (23) become hyperbolic functions and the programme must account for this.) 

If it is required to plot the transient solution the various values of v~(2zc/r) can be printed out from the 
computer by substituting a slightly different computer programme. It will be shown in the next sub- 
section however, that to calculate the damping we require just the matrix [J/] ,  where 

1 

[Jg] = II [,/#e]. (26) 
$ = r  

The values of the elements [~¢[] depend upon the size of the intervals ~ -  ~ _  1, but converge to a limit as 
r increases. It is found in practice that for most regions of the/~,n plane the convergence is such that 30 
intervals are adequate to give sufficiently accurate values of the elements. 

4.3. Calculation of the damping. 
We have seen that the solution of equation (9) can be written in the form given by (11) 

i.e., v(ff) = ~, exp [?~k].Pl(~,)+~ 2 exp [ -?~] .P2(~) .  

Let us assume that the initial conditions are such that ~2 is zero and al is non-zero. 

Then v(#/) = cq exp [Tff].Pl(qJ) (27) 

and v'(#/) = ml exp [?~]. [~n,(qJ)+ n'l(~)]. (28) 

Then as PI(qJ) is periodic with period 2n, putting ff = 0 and #J = 2~ in equations (27) and (28) we have 

v(0) = alP1(0) (29) 

and v(2z0 = al exp [2z~3,].Pl(0) (30) 

v'(O) = ~ 1 [?P, (0) + P] (0)] (3 I) 

and v'(2~) = ~1 exp [2~?]. [?PI(0) + P'~(0)]. (32) 

Equations (29) to (32) can be combined to form the matrix equation 

[V(2z0] = [A/] [V(0)] (33) 

A = exp [2n7]. (34) where 

But from equations (24) and (26) 

[v(2~)] = [ ~ ]  [v(0)]. 

Using the result proved in Section 4.3 we deduce that A is given by 

AII = 0 

i.e. the values of A are given by the latent roots of [d¢']. 
We can then calculate ? from equation (34). 

(35) 

(36) 



In particular as ~/g[ = 1 the latent roots A1, A~ of equation (36) are such that 

A1.A2 = 1 

i.e. y l " ] - y 2  = 0or71 = -Y2. 

This confirms the result of equation (5), Section 3.2. Having obtained y we can evaluate the damping of 
the system using the real part of y as shown in Section 4.1. 

5. Results of Section 4. 

In Section 4.1 we found that the form of solution of equation (2) is given by equation (12). In particular 
the term 

fl = cq exp [ -  ( 2 -  y) ~, 1 .P~(~) exp [-~ n# cos ~-] 

will give us the information required to determine the nature of the solution; The factor Pl(~b) exp [~ 
np cos ~k] is periodic with period 2z~ and writing 

= ~.+iv 

it is clear that 2 effects the damping while v indicates the frequency of solution. 

5.1. Frequency of Oscillation in Regions of Destabilization 

In solving the determinantal equation (36) and by virtue of equation (25) 

A 2-(ml l+m22)A+l  = 0 (37) 

where m u is the element of the i th r o w  and fh column of matrix leg]. 

This leads to the equation 

1 
= ~ log 

~rnl 1 +m22)___ x/(ml 1 +m2 2) 2 - 4 1  
(38) 

2 _l 

Now Horvay ~ shows two regions of destabilization for low values of p, one with frequency ½ cycle 
per revolution and one with frequency 0, and Shutler and Jones 2 indicate a third region with frequency 
1 cycle per revolution. In those regions of destabilization where the frequency is unity or zero, (rn~ t + m22) 
> 2, giving real values for ?. These real values give the damping. 

When the solution has a frequency of ½, (ml ~ + m2 2) < - 2  and equation (38) can be written 

y = ~ l o g  I---(ml l +m22)+x//(rnl l +½i. (39) 

The logarithmic term, which is now real, gives the damping 1 and the imaginary part ~i changes the periodic 
functions which have period 2n into periodic functions with period 4n, i.e., frequency of ½ cycle per 
revolution. 



In regions where there is no destabilization 

[(ml l +m2 2)1 < 2 and y is .then wholly imaginary. 

In the investigation of regions of destabilization in the p, n plane it is helpful to have a datum within 
each region where the frequency is knowh. In the present method when (m 1 1+m22) < 2, it would not be 
immediately clear whether the point under investigation was in the region with frequency 1 or that with 
frequency 0. However, using the previous results 1' 2, where the plane has already been divided up by 
characteristic curves enclosing regions with known frequency for low values of tip speed ratio, the 
method described above can be used to extend the curves to higher values ofp. We note that the character- 
istic curves are the loci of points where 1m11+ m221 = 2. 

These curves are shown on Fig. 1, which is the p, n plane for tip speed ratios up to 1.6 and values o fn  
up to 2.4; the three destabilization regions with frequency 0, ½ and 1 cycles per revolution are clearly 
shown. In between each such region there is a region where the damping is the same as that for zero 
tip speed ratio but as p increases the area of these regions decreases very rapidly. 

5.2. Degree of Destabilization. 

Having divided the p, n plane up into destabilized and non-destabilized regions it is necessary to give 
some measure of the amount of destabilization within the destabilized regions. 

Now when # = 0, i.e. in hovering conditions equation (7) reduces to 

f l "+nf l '+f l  = 0 (40) 

which represents a damped periodic motion with damping - n/2 ifn < 2. We take this value of the damping 
as the norm and introduce the parameter nap p where 

n, pp = n -  22 (41) 

as the apparent value of n in forward flight with napp/2 being the apparent damping. Clearly the reduction 
in damping is the amount 2. 

Writing N = napp  = 1 22 (42) 
n n 

we see that N = 1 when 2 = 0, i.e. when there is no reduction of damping and N -- 0 when 2 -- n/2, i.e. 
when the motion becomes unstable. Thus N is a measure of the amount of destabilization. 

In Fig. 1 curves of constant value of N are plotted in the p, n plane for values of n up to 2.4 and values 
of p up to x/~. 

5.3. General Remarks 
From Fig. 1 we can see the effect of increasing the tip speed ratio on the stability of the flapping motion. 

For current helicopters the value of inertia number n usually lies between 1.4 and 2.0, and we see therefore 
that initially increasing # causes a decrease in stability as an area of destabilization with frequency i is 
entered. As p increases further this decrease ceases and the motion becomes more stable until the charac- 
teristic curve for the area is again crossed. There is a brief interval of p then where this motion has the 
same degree of stability as in the hovering condition but on increasing # further the characteristic curve 
of the region of destabilization with frequency 1 is crossed and subsequently there is a rapid loss of 

stability. Finally, the motion becomes unstable for all practical values of n when # _~ w/2. This value for 

10 



#2 is confirmed for very small values of n by the work of Shutler and Jones 2 and supporting evidence can 
be got from the particular integral of equation (1). The forcing function E(o)t) contains terms with periods 
of once and twice per revolution so that the particular integral can be evaluated 1 by writing fl as a Fourier 
series 

fl = ao + ~-~a. cos r~ + ~ b. sin r~. 
r-- '--I  

One of the equations for the Fourier coefficients is 

(1 - ½//2)a 1 = - [2/./b 2 -F ½122a3] q-/./6 (37) 

where 6 is a function of the flight conditions. This suggests that when # = ~- x/2, a 1 becomes infinite 
whatever the value of n which in turn implies that at this value o f#  resonance occurs. It is known that for 
differential equations with periodic coefficients resonance occurs on the boundary between stable and un- 
stable solutions. However, the occurrence of an equation giving an infinite value for al does not in itself 
prove that the motion is unstable, for this equation is effectively obtained by expanding in powers of p and 
retaining a finite numl~er of terms. This in itself implies that an approximation is being made and that 

further investigation is required to confirm that instability occurs at # = x/~. The results shown in Fig. 1 
provide this confirmation. 

For values of n greater than two there is a region of destabilization of frequency 0 for low values of 
tip speed ratio. 

The transient motion for a blade with inertia number of 1.6 is shown for two values of tip speed ratio 
in Fig. 2. In the first case for # = 0.3 we can see from Fig. 1 that the motion has frequency ½ and is very 
stable. In fact from Fig. 2 we see that the transient is nearly damped out after one revolution. When 
p = 1.4, however, the motion has.frequency 1, and is very nearly neutrally stable. This is again shown 
from studying the transient. The general solution consists of two terms, one of which is heavily damped 
and the other only very slightly damped. The effect of the heavily damped term is lost after about half a 
revolution and thereafter the motion is nearly periodic with period 2~. This can be seen by comparing 
the transient between 180 ° and 360 ° , and 540 ° and 720 ° . 

Finally, Fig. 3 compares the results of the method described in this Report with those of Horvay. The 
region of the/z; n plane shown, is that which is given in detail in Horvay's paper ~, and it can be seen 
that good agreement is obtained. 

6. Equation of Motion when Allowing for Reverse Flow. 
We now consider the validity of the equation of motion of the rotor blade given by equation (1), for 

in deriving this the tip speed ratio is assumed to be small. 

6.1. 77~e region of reverse flow. 
The resultant air flow over a helicopter rotor blade can be thought of as consisting of two components, 

the first being a component due to the forward speed of the helicopter V, the second being due to the 
rotational speed (o)) of the rotor. Fig. 4a shows a rotor blade in two positions, one an advancing position 
(0 < ~ < ~) and the other a retreating position (z~ < ~ < 2~) and for either case it can be seen that the 
resultant airflow perpendicular to the radial direction of the blade is mr + V sin ~. When the blade is in 
an advancing position this quantity is always positive but if we consider it in a retreating position then 
the quantity V sin O is negative, and for non-zero V the expression mr + V sin 0 becomes negative for 
sufficiently small r. When this situation arises the resultant flow over the rotor blade is reversed and the 

11 



area in which this condition occurs is called the region'of reverse flow. It is easily shown that this region 
is a circle with diameter along the line ~' = 270 ° and length V/co, one end of which coincides with the 
rotational centre. 

Now for small tip speed ratios/~ these circles are relatively small compared with the area of the rotor 

disc, and can be neglected with little loss of accuracy. However, as # increases the reverse flow area also 
increases so that for values of/~ greater than unity, the diameter of the reverse flow regqon is greater than 
the radius of the rotor disc. Thus the actual physical region of reverse flow is no longer a circle but a 
portion of circle cut offby the circumference of the rotor disc as shown in Fig. 4b. It can be seen therefore 
that this region is a considerable proportion of the total rotor disc. We can now divide the rotor disc 
into four sectors as shown in Fig. 4c. The first sector OAB is one in which there is no reverse flow over 
any but a small inboard portion of the blade, and the angle of attack of the blade is in the region of 0 °. 
This sector covers all the advancing side of the rotor disc as well as some part of the retreating side. The 
second sector OCD is one in which the flow is completely reversed and the angle of attack is in the region 
of 180 °. It has been shown 6 that the steady lift curve slope a is constant throughout these regions and 
has approximately the same value in each of them. It can be assumed therefore that the value of the lift 
curve slope is constant throughout these sectors. 

There are also two smaller sectors OAC and OBD which separate the two already defined, in which 
the flow is reversed over part of the blade only. In these sectors however the angle of attack is in the region 
of 90 ° so that the dominant force on the blade is a drag force, and in addition the resultant velocity of 
airflow is relatively small. Now forces on the blade are proportional to the square of the velocity, so 
that the total force acting on the blade in the two small sectors are very small. In addition the area of 
these sectors diminishes as the tip speed ratio increases, so that we can ignore them with little loss of 
accuracy. 

It will be assumed therefore that for tip speed ratios of unity and higher, the rotor disc can be divided 
into two sectors, one in which there is no reverse flow over any of the blade and the other in which the 
flow is reversed over the entire blade. This latter sector is symmetrical about the • = 270 ° line as shown 
in Fig. 4b. 

Outside the sector of reverse flow the equation of flapping motion will be identical to that derived by 
Horvay ~. We make the same assumptions as he does in deriving the equation, namely that the blade is. 
rigid and the flapping hinge is on the axis of rotation and perpendicular to the spanwise axis of the blade. 
We now derive the equivalent equation which will be valid in the reverse flow sector. 
is a circle with diameter along the line ~ = 270 ° and length V/co, one end of which coincides with the 
flow is reversed over the entire blade. This latter sector is symmetrical about the 0 = 270° line as shown 

6.2. Equation of Motion in Reverse Flow Sector. 
The equation of flapping motion of a rotor blade in the sector of reverse flow can be derived in a similar 

manner to that given by Horvay 1 for the motion when there is no reverse flow. Only the aerodynamic 
forces are affected by reverse flow so that the centrifugal force is given by : 

C= fRdC= f~rco2dm 
oo 

(38) 

The lift force which now acts downwards (see Fig. 5a) is given by 

o 2 Oo ac, 
(39) 

where p is the air density, c the chord, dCL/de the slope of the lift curve, 0 the blade pitch angle, 0 -  q~ the 
angle of attack and U the resultant air velocity. It has been shown in Section 6.1 that we can assume 
that the lift curve slope a is constant over the entire rotor disc with little loss of accuracy. For  reverse 
flow U will be in the direction shown in Fig. 5a. 
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The longitudinal component of velocity U T at an element of the rotor blade is 
U T = cor-#coR sin ~9 (40) 

which is always positive in the reverse flow sector because sin ~ is always negative. 

The perpendicular component is given by : 

U e = Z'mR - r d f f -  i2ooRfl cos ~ (41) 
at 

where 2'¢oR is the difference between the sinking speed of the helicopter and the induced velocity through 
the rotor disc, 

Now the flapping motion of the blade is obtained by equating moments of forces acting on the blade 
about the flapping hinge to zero and this gives: 

I r ~ + = 0 (42) 

when I r is the moment of inertia of the rotor blade about the flapping hinge. 

If 0 and ~b are small we can write 

( 0 -  0 ) O  2 = OU~.- Up U r (43) 

Substituting equations (38), (39) and (43) into (42) and integrating we obtain the equation 

d2/~ dfl 
d t  2 + 2c(t)-~- + p2(t), fl = E(o)t) (44) 

where 2C(t) = -- n~[1 + 4/.t sin cot] (45) 

p2(t ) = co2 [ l - ~nkt cos oat - n p  2 sin 2cot] (46) 

d C  L c R  4 
and n = p d~ 8IF'  (47) 

If we compare this equation with that obtained by Horvay I we see that the reverse flow merely has the 
effect of changing the sign of n. 

6.3. The Equation to be Solved. 

We have seen in Section 6.2 that by making certain assumptions the equation of flapping motion of a 
rotor blade in the reverse flow region differs from that which holds over the remainder of the disc merely 
by the difference of sign of the parameter n. As we are interested in the transient solution therefore our 
problem is to find a solution to the equation 

where 

d2fl ~-~ 
dO 2 ~ 2c(~,) + P2 (~,)/~ = 0 

2C0p) = _+nil +4~ sin 0] 

(48) 

(49) 
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and p2(0 ) = [1 +~nbe cos 0 -+ n/z2 sin 20] (50) 

the negative signs holding in the sector of reverse flow but all signs being positive otherwise. 

Thus equation (48) which is the equation to be solved is a second order differential equation with 
periodic coefficients, but these coefficients are discontinuous at the boundaries of the reverse flow sector 
due to the sudden change in the sign of n at these particular stations. 

7. Method of Solution. 
We now proceed to show how the method of mean coefficients can be applied to solve equation (48) 

and in particular to find the effective damping of the motion defined by that equation. 

7.1. The Form of Solution. 
In general, the term involving dfl/dO in an equation of the type (48) can be eliminated by making the 

substitution. 
/ o  

fl = v ( o )  (51) 

and thus reducing the equation (48) to the form 

d2v 
dO a t-Q(0). V = 0. (52) 

In the particular case of equation (7) the appropriate substitution is given by (8). 

In the case of equation (48) however, the coefficients 2C(0) and P2(0 ) cannot be defined by a single 
trigonometric expression for all 0 and therefore we cannot conveniently eliminate the term involving 
d~/dO in this case. 

However, equation (48) is a linear differential equation with periodic coefficient of period 27t and 
therefore has a solution of the form 

[3 = :qe v'~° P1 (~b)+~2 eV2q' P2(0) (53) 

where 9'~, 72 are constants (not necessarily real) and P1(0), P2(0) are periodic functions with period 2re. 
:~1, :~2 are arbitrary constants depending on initial conditions. 

If we write 7i = )-i+ iv~ it is seen that the least negative of 21 and ).2 gives the parameter by which the 
damping of the motion can be measured and in particular the motion will be stable if both 2~ and 22 are 
negative but unstable if either are positive. It is the evaluation of these quantities therefore which is our 
primary aim. 

7.2. Rectangular Ripple Principle. 
Section 5 gives a detailed account of the application of this principle to an equation of type (52) so that 

this section will give only an outline of the method to be used to solve equation (48) emphasising the 
points where differences occur. 

We divide one revolution of ~b into small intervals 0 5 - % - 1  over which the coefficients 2C(0) and 
P2(0 ) are assumed constant. Values of fl and dfl/dO must be continuous throughout successive intervals, 
and the initial values of these quantities for a given interval are taken to be the final values of the previous 
interval. We choose the number of intervals so that the radial boundaries of the reverse flow region 
coincide with the division of intervals. 
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We approximate equation (48) by a set of equations whose coefficients 2C and p2 are fixed throughout 
each of the intervals ~ s -  ~'s- 1. The values of 2C and p2 for each interval are obtained by substituting 
the mean value of ~ for the interval in 2C(~,) and p2(o) respectively. For intervals in the reverse flow 
sector the negative signs in equations (49) and (50) are taken, otherwise the positive signs are taken. 

Assuming 2C and pZ are constant, equation (48) has a solution 

fi(O) = e- c~'(A cosf~, + B sinf~) (54) 

where f = (p2 _ Cz)½ 

and A and B are constants determined from initial condition for each interval. 
From equation (54) we have 

dB 
d--~ = 3'(0) = - e - c o  (A[C cos f 0  + f  sinfO] + B[C sinf  0 - f  cos f 0 ] )  

(55) 

(56) 

Equations (54) and (56) can be expressed by the matrix equation 

[~(~)] --- [M(O)] [D] 

where [N(~,)] = [ f l (O) ]  

Fcosf0  
[M(0)] = [e-C°] L -  C c o s f 0 - f  sin f 0  

and 

(57) 

sin f 0  1 
- C sinfO + f  cosfO_] 

If we divide one revolution into r equal intervals of magnitude --27z the mean value for the sth interval 
r 

'is (2s-1)  ~. 2C s and Pff, the value of 2C and p2 for the sth interval are calculated using this value of 
Y 

and the values of fl and fi' in tfiat interval are given by 

[ms(q,)] = [Ms(q,)] [DJ (58) 

Using this notation and proceeding as in Section 5.2 we can derive the equation 

where the order multiplication is such that the producl; starts with s = r and ends with s = 1. 

[1  0 l Now [Ms(0)] = - C s  fs 

(59) 
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so that 

Hence 

where 

[dg~] Le r J 

I-Ms(O)]-1 = [ C1 s/fs O ]  1/f~ 

2nfi + C~ 1 2nf~ 
cos r ~ sin 2nf~r f~- sin - - r  

-f~ sin 2nf~ C~ sin 2nf~ 
r f~ r 

- C~ sin 2nf~ + cos 2nf~ 
f~ r r 

(60) 

1 

Thus [9~(2n)3 = H [J/t's]. EM(0)] (61) 

Hence we see that/?(2n) and fl'(2n)can be calculated in terms of fl(o) and fi'(o) by process of evaluating 
a series of matrix products involving the C~'s andf, 's. These are calculated and the matrices formed and 
multiplied using a digital computer. (If the quantity p z _  C 2 is negative the trigonometric functions in 
equations (54), (56) and (60) become hyperbolic functions and the computer programme accounts for 
this.) 

If it is required to plot the transient solution, the various values of ~(2n/r) can be printed out by sub- 
stituting a slightly different programme, but it has been shown in Section 4.3 that to calculate the damping 
we require just the matric [~4/] where 

1 

[ ~ ' ]  = H [,dt'~] (62) 

for the values of e 2n~1 and e 2~r2 are the latent roots of this matrix. Hence the damping which is determined 
by the real parts of 71 and Yz can be found from the matrix [dg]. 

8. Results of Section 7. 

From the latent roots of the matrix [Jg] in equation (62) not only can the effective damping be found 
as previously shown but also the frequency of oscillation of the transient flapping. The latter is deduced 
from the imaginary part of 71 and 72, 

8. 1. Frequency of Oscillation. 

The latent roots of the matrix [~ ' ]  can be real and positive, real and negative or complex in nature. 
If the quantities e 2~7' and e 2"~ are real and positive then 71, 72 are also real. Thus from equation (53) we 
see that in this case each term in the transient solution represents a damped oscillation with frequency 
one cycle per revolution. 

If however e 2~' and e z~2 are negative quantities, say -A1 ,  -A2 ,  then 

7 j = ½ 1 o g e [ - ' A j ]  =½nlogeAi+½i,  j =  1,2 (63) 

In this case the damping is given by ½ log,, Aj and the imaginary part ½i changes the periodic function 
Pl(~t), P2(~) in equation (53) to periodic functions with period 4, i.e. frequency ½ cycle per revolution. 
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If e 2n~1, e 2~r2 are themselves complex then ~1, ~2 are also complex and neither the real nor imaginary 
parts have constant values when this is so. 

In presenting the results of the calculations made using the method of Section 7, we consider the 
variation of/~ and n on the value and nature of e 2~. We can divide the/~, n plane into regions where the 
frequency of oscillation is ½, 1 and a third region where the frequency varies between ½ and 1. This is 
shown in Fig. 6 where the continuous lines forming the boundaries of these regions show where the latent 
roots of [ ~ ]  change from real to complex quantities. Also in this diagram the lines of constant damping 
within constant frequency regions, are shown. 

8.2. General Remarks. 

Fig. 6 shows the variation of damping over a range of/~ from 1 to 2-8 and n from 0 to 2.4. The regions 
in which the motion has frequency ½ and 1 are marked and it is seen that these cover most of the/~, n 
plane shown. For n > 1-2 as/~ increases past unity the damping decreases slightly at first and then starts 
to increase until the boundary of the frequency ½ region is reached. There is then a very short interval 
of # where the frequency changes from ½ to 1 and then the damping decreases steadily until the motion 
becomes unstable at values of # between 2.2 and 3.0, depending on value of n. 

If we compare this figure with that of Fig. 1 we see that the general'effect of taking reverse flow into 
account is to 'stretch' the boundaries of constant frequency regions to the right and this means in turn 
that the values of ~ for which the motion becomes unstable are higher. 

Fig. 7 shows the transient motion of a rotor blade for two revolutions of ~, for an inertia number n 
of 1-6 and tip speed ratio of 1.4 with and without allowance for reverse flow. As would be expected these 
motions are identical until the reverse flow region is entered at 0 = 210°. However, when reverse flow 
is ignored the motion has very small effective damping and a frequency of 1 cycle per revolution, but 
when reverse flow is accounted for the motion has relatively large effective damping and a frequency of 
½. This naturally makes considerable difference to the transient motion. To explain the difference in the 
motion from a physical point of view, we note that in the case where reverse flow is ignored the blade 
enters a region where the damping becomes negative at azimuth angles of 220 ° -  230 °. Consequently the 
amplitude of/? starts building up from this point and only decreases when positive damping which occurs 
again at 310°-320 ° , takes effect. If we take into account reverse flow, however, the region of negative 
damping becomes a region of large positive damping so that the amplitude of/~ rapidly decreases from 
2200-230 ° onwards. 

Fig. 8 shows the transient motion for n = 1.6 and p = 2.4 i.e. for a value of# jus t  below that for which 
the motion becomes unstable. Here the frequency is 1 cycle per revolution, and the transient solution, 
which has two terms, contains one which is heavily damped and another which is only slightly so. The 
effect of the heavily damped term is lost after about half a revolution and thereafter the motion is nearly 
periodic with period 2~. 

Physically the large increase in amplitude of/? from 0 = 180 ° onwards is explained by the fact that the 
stiffness in the quadrant 90 ° < 0 < 180 ° is negative so that large amplitudes would follow this region. 

9. Conclusions. 

The method of solving the equation of flapping motion of a helicopter rotor blade described in this 
Report is one which leads directly to the parameter which measures the stability of the motion. In doing 
this the necessity of plotting a solution is avoided although this can be done with little extra labour. 
Moreover, the customary numerical methods of solving differential equations such as the Runge-Kutta 
type do not lend themselves to equations with periodic coefficients whose values fluctuate rapidly. 

The results obtained in this Report show that the onset of instability of the blade flapping motion 
occurs at tip speed ratios in the range of 2-2 to 2.8 for values of inertia number up to 2, when reverse flow 
over the retreating blade is taken into account. In comparing these results with those obtained by neglect- 
ing reverse flow it is found that the onset of instability is delayed until higher tip speed ratios are reached. 
In allowing for reverse flow it has been assumed that the blade at any time is either entirely within or 
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entirely without this region of reverse flow. The justification for this assumption made in Section 6 is 
that the portion of the rotor disc in which this is not so is relatively small, and that the forces on the blade 
under these ~onditions are also small. This is particularly true for the higher tip speed ratios considered 
and it is here that the instability occurs. It is reasonable to assume therefore that these results give a true 
indication of the direct effect of reverse flow on the onset of instability. 

These results are in general agreement with those of Wilde, Bramwell and Summerscales 7 who have 
investigated the problem using an analogue computer. In their work, account is taken of the fact that in 
the 'partial reverse flow region' airflow is from the leading edge to trailing edge over the outboard part 
of the blade, but from trailing edge to leading edge over the inboard part. This refinement however, does 
not appear to lead to any major differences from the results obtained by this report. 

Jenny, Arcidiacono and Smith 8 have also investigated the problem, making assumptions similar to 
those made by Wilde, Bramwell and Summerscales, and deduce that instability occurs at approximately 
the same value of tip speed ratio. 

However, in all these investigations no account has been taken of the elasticity of the blade and the 
effects due to bending and twisting have been neglected. It is possible that for high tip speed ratios con- 
sidered the effect of twisting may be particularly marked due to the fact that on entering the reverse flow 
region the flexural axis of the blade is shifted from the quarter chord to the threequarter chord position. 

It would appear, therefore, that the effects of elasticity should be considered and it should be possible 
to extend the method described in this Report to allow for this. 
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