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Summary. 
The influence of a uniformly reinforced 'rounded-square' hole on the stress field in an infinite sheet 

is examined. Stress concentration factors are presented in graphical form for a wide range of corner 
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1. Introduction. 

The presence of cut-outs in stressed sheets poses considerable problems in design. Even in the simplest 
configurations, where the hole is unreinforced, little progress was made until the development of the 
powerful complex variable methods of Muskhelishvili 1. Even so, the analysis of the stresses around a 
hole of arbitrary shape presents considerable difficulty since it is necessary to find a transformation 
(or mapping) of the profile of the hole on to a circle. In analysing the simplest geometrical shapes (e.g. 
ellipses) for which results had previously been recovered using expansions of the Airy stress function in 
appropriate co-ordinate systems, it is found that the mapping function is a simple 2- or 3-term polynomial. 
More complicated shapes, particularly those with curvature discontinuities such as slots, require, in 
practice, very extensive mapping functions if the profile is to be represented to a sufficient accuracy for 
structural analysis purposes. A procedure for the development of an appropriate mapping function has 
already been given by the author 2 which is weil suited to modern computing machines; a series of profiles 
of the slot (and other) types was examined and considerable design information presented 2. 

If the hole is to be reinforced, which is usually essential, the analysis becomes much more difficult. 
Mansfield ~ has shown how the hole ma~y be designed so that conditions in the sheet are unchanged by 
the presence of the hole. Such a hole is said to be 'neutral'. In order to neutralise a h01e, it is necessary 
not only to use a specific shape for the hole, which is determined by loading conditions in regions remote 
from the hole, but also to use that particular distribution of edge reinforcement which will ensure 
equilibrium of load and compatibility of strain at the attachment interface. Frequently, in practice, one 
or other of these specifications has to be waived. For reasons of access the preferred shape of the hole 
may not be the neutral one: for manufacturing and other reasons, the neutral distribution of edge 
reinforcement may not be employed. 

The weight of the edge reinforcement indicated by neutral hole theory may be as high as 2 or 3 times 
the weight of sheet removed. The cost in structure weight of keeping the stress level uniformly low may 
be too great in practice and it may be more profitable to allow the stress to rise by reducing the rein- 
forcement and achieving a lighter system..Mansfield 5 and Wittrick 6 have discussed the elliptical hole 
which is neutral for 2 : 1 biaxial loading in the sheet and have shown that the use of a constant cross-section 
reinforcement of appropriate size, leads to a small rise in stress with associated weight economy. Even 
though it may not be practicable to use the neutral design, neutral hole theory is valuable in indicating 
the best shape of hole to use, even when the designer has no intention of reinforcing the hole according 
to neutral hole theory. 

The analysis of the stress around a hole of arbitrary shape and reinforcement presents a much more 
complicated problem. Wittrick 6 has extended the unreinforced hole solution of Muskhelishvili to cover 
the elastic boundary condition appropriate to the sheet stiffener interface. The stiffener is assumed to 
be compact and of negligible bending stiffness (a 'chain') as introduced in the neutral hole theory. In 
practice the stiffness of the stiffener is not likely to influence the stress distribution around the hole 
markedly except near a curvature discontinuity as discussed later. Wittrick's analysis leads to cumber- 
some arithmetic even in the most favourable cases with 2- or 3-term mapping functions (as, for example, 
the elliptic hole which he discussedV). Infinite series are required to express the complex stress potentials 
and only for certain particular configurations indicated by Wittrick does the analysis reduce to the 
relative simplicity of the unreinforced case. When the mapping function is extensive, the arithmetic 
becomes unwieldy but such difficulties have to be accepted in analysing reinforced slot type holes. 

In this Report Wittrick's theory is applied to a group of rounded-square profiles whose boundaries 
are composed of quadrants of circles and straight lines. Because of the jump in curvature at the junction 
of the straight and curved boundary elements, the representation of the profile can only be approximate 3 
but for the unreinforced hole no practical difficulties arise in approximating to the stress field. For the 
reinforced hole, however, analysed by the Wittrick theory, the supposition that the reinforcement is of 
chain type leads to a local distribution of the stress field around a discontinuity in curvature. This 
perturbation of the stress field arises from the simplification of the stiffener properties : in practice there 
will be no local concentration of stress at the curvature jump since the stiffener will possess some bending 
stiffness. However small that stiffness may be, it will ensure continuity of the edge loads induced into 
the sheet at the interface and the stress field will be free of singularities. 
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Wit~rick 8 has examined the stress distribution around a class of profiles of the 'rounded-square' 
type. These have continuous variation of curvature and their affinity to the truly quadrantal profile is 
discussed in Ref. 3. In this Report, the true quadrantal corner profiles are examined and a comparison 
with the simpler representation is provided. The vcriation of stress concentration with geometrical 
parameters is provided and results are given both for the Mises-Hencky and for the maximum principal 
stress criteria. 

2. Analysis. 
The complex-variable methods of Muskhelishvili 1 for the analysis of the 2-dimensional stress system 

in a sheet perforated by a single hole have been extended by Wittrick 6 to deal with a reinforced boundary 
at the hole. The analysis is not repeated here and Wittrick's notation is, in the main, adopted. Stress 
potentials have to be constructed as expansions in an auxiliary complex-variable ~ which have a known 
behaviour at infinity, where the influence of the hole is negligible. If the function mapping the hole on 
to the unit-circle in the C-plane is known, the stresses are exactly calculable as polynomials in the unrein- 
forced case. However, if the hole is reinforced, the 'chain' boundary condition cannot be satisfied exactly 
using finite series for the stress potentials except for a few special cases enumerated by Wittrick 6. Instead, 
it has to be satisfied approximately and collocation methods, as proposed by Wittrick, are found to be 
quite satisfactory. 

2.1. Mapping of the Hole. 
The significant difference between the investigation reported here and Wittrick's applications ~'8 is in 

the nature of the profile of the hole. Wittrick has used 2- and 3-term mapping functions to transform 
the given profile on to the unit-circle in the C-plane. These correspond to the elliptic hole ~ and the 
'rounded-square 's or Wittrick profile 3. Both these families of profiles have continuous and smooth 
variation of curvature in contrast with the profiles analysed here and elsewhere a. To obtain reasonable 
transformations many terms are required in the mapping function and an adequate simulation of the 
profile is achieved using 40-term polynomials. The exact profile to which the mapping corresponds can 
be regarded as a perturbation of the given one, and for light reinforcements, the errors in the stress systems 
developed will not be significant. To avoid the worst effects of the perturbation, standard smoothing 
techniques are used 9. 

Difficulties arise when attempts are made to map a profile with abrupt changes in curvature, owing 
to the Gibbs' phenomon, but these can be alleviated by replacing the neighbourhood of the curvature 
jump by a 'ramp' of rapidly changing curvature. This can be done by modifying the mapping coefficients 
using the F6jer or Sigma corrections 9. The Sigma correction is used in this Report and the coefficients 
C, of the mapping function 

N 

z = 2 C,C-" 
- 1  

are modified to 

C, sin a/c~ 

where (N+ 1)~ = (n+ 1)n. This modification has the effect of reducing the severity of the curvature 
change and the profile thus mapped is everywhere acceptably close to the given one. 

2.2. Stress Potentials. 
A large number of collocation points is used in calculating the stress potentials so as to reduce the 

chance of errors being introduced into the stress values. About 80 points are found to give satisfactory 



results. If the number of points is increased unnecessarily the computing time increases whilst too~ small 
a number of points leaves the stress field lacking in the detail necessary for a satisfactory calculation. 

Separate analyses are made for the uniaxial and for the shear loading cases. The various biaxial 
loadings are obtained by superposition of solutions obtained from the uniaxial case. The equations 
governing the stress potentials [-equations (34) and (45) of Wittrick 6] are linear in .the coefficients of the 
stress functions but are non-linear in the mapping coefficients. This non-linearity arises from the variation 
of the reinforcement parameter Q with position. Because of this feature, it is unlikely that a procedure, 
more satisfactory than collocation, can be found for the numerical evaluation of the stress potentials. 

2.3. Stress Criteria. 

The results to be presented are given as variations of the Mises-Hencky criterion 6 with structural 
parameters. In addition some results using the maximum principal stress criterion are shown and 
although there is some change in the value of the stress concentration using this second criterion, the 
variation with parameters is, qualitatively, much the same. 

3. Discussion of Results. 

The symbol [ f l , f2;q] ,  as used in Ref. 3, describes the loading of the sheet far from the hole.f1 andf2 
are tensions applied along the axes whilst q is an applied shear. Results are given for [1, 0;0], [-1, ½; 0], 
[1, 1;0] and [0, 0; 1] loadings. The results using the Mises-Hencky criterion are presented in Figs. 3 
to 10 and using the maximum principal stress criterion in Figs. 11 to 18. Note that in the odd numbered 
diagrams, the abscissa is p-+, where p is the ratio of qua~trant radius to the semi-width of the hole (b). 
This representation emphasi/es the essentially linear dependence of the stress envelope on p-~. 

It will be seen from the figures that for any given value of p, there is a value of the reinforcement 
parameter A' (= A/bt, A being area of cross section of the reinforcement and t the sheet thickness) which 
will minimise the stress concentration for a given loading. As p decreases, the optimum reinforcement 
decreases. That an optimum reinforcement exists for a given system follows from the fact that the 
introduction of a small amount of reinforcement restricts the edge strain, whilst too excessive a reinforce- 
ment leads to high normal and shear stresses occurring similar to the stresses at a completely restrained 
(built-in) corner. 

For the truly quadrantal corner joined to straight sides of the hole, the normal stress induced into 
the sheet at the interface, under the chain reinforcement hypothesis, jumps at the point of curvature 
discontinuity. Thus it is possible, by ignoring the bending stiffness of the edge member to obtain a 
spurious result, since a real jump in normal stress on the edge of the sheet implies an infinite shear stress. 
Very high shear stresses arise only in the limiting case of negligible bending stiffness in the edge member. 
This detail is considered further in Appendix A. 

A schematic representation of the Mises-Hencky stress variation is shown in Fig. 19 for a typical 
hole (p = 0.5) under uniaxial loading. This illustration shows how the presence of a small amount of 
reinforcement lowers the stresses as compared with an unreinforced case, and also shows how the stress 
accumulates in the corner when the reinforcement is excessive. Not only does the peak stress rise, but 
the region affected by high stress spreads throughout the quadrant. It is clear from this illustration that 
reinforcements in excess of the optimum are not only uneconomical in the weight of material used, but 
lead to an enlargement of the area of high stress. 

The parameter q, which is defined as the weight of optimum reinforcement for a given system relative 
to the weight of sheet removed is plotted, as a function of p, in Figs. 20 to 23 for the four loadings 
discussed here. The parameter q has the value 

q = 
211+(41) 1A 
E1+(4-1) 21 



and in the range of p examined (0-2 to 1.0) lies between 1"93 A' and 2A'. If the stress is allowed to rise to 
above the optimum a lighter reinforcement is possible and in Figs. 20 to 23, the values of t / for  stress 
excesses of 5, 10, 15 and 20 per cent are indicated. A reduction in weight, often of quite significant 
proportions, i~ achieved with a modest rise in stress. Thus it appears that striving for optimum reinforce- 
ment may be inadvisable. 

The limiting profile, p -- 1.0, is a circular one and this case can be analysed exactly. For  all round 
tensile loading [-1, 1 ; 0] the hole is neutral for A' = (1 - v)- 1 or, for v = 0.3, A' --- 1.43. For  p < 1 the 
profiles are never neutral but, nevertheless, are often associated with low values of stress. The particular 
case of the circular hole is discussed in Appendix B. It should be noted that the reinforcement required 
to neutralise the hole is about 3 times the reinforcement required for optimum results in the uniaxial 
loading case. 

Wittrick s finds that the optimum profile of the 'rounded square' type has a stress concentration 
factor of 1.66 in [-1, ½; 0] loading and that this compares unfavourably with the unreinforced elliptic 
hole, where the factor may be under 1.5. From Fig. 7 it will be seen that profiles which are nearly circular 
give stress concentrations of the order of 1.3 to 1-4 in biaxial loading. The discrepancy between Wittrick's 
results and those reported here lies in the difference in the profile. Wittrick's profiles do not include the 
circular element as a limiting case, that is, a profile with the right shape to be neutral. However his profiles, 
for p < 0.5, are adequate representations of the 'quadrantal corner'. For  0.5 < p the Wittrick results 
must be interpreted with care. 

However, Wittrick's conclusion that the optimum performance with a hole of this type is inferior to 
an unreinforced elliptic hole, is endorsed, whilst a reinforced elliptic hole is a very good design indeed. 
The best that can be achieved with a rounded-square hole is a stress concentration factor in biaxial 
loading which is about 1.3 for a nearly circular hole: for the reinforced elliptic hole using reinforcement 
values markedly different from 'neutral hole' indications, the stress concentration factor can be kept 
down to the order of 1.17. 

Conclusion. 
The computations made by Wittrick for a family of 'rounded-square' holes have been extended to 

the simulated 'quadrantal '  corner. Stress concentrations for a wide variety of loadings are presented in 
graphical form for corner radii of 0.2 to 1 times the semi-width of the hole. 

APPENDIX A 

The Effect of a Finite Bending Stiffness of the Edge Reinforcement on the Shear Stress Under a Pressure 
Discontinuity (see para. 3) 

In the main text, attention was drawn to the possibility of high stresses in the sheet at the reinforce- 
ment interface due to a pressure jump. This detail is analysed with the following model. 

Given an elastic strip of thickness t occupying the region bounded by y = _+ a which has an edge 
member on y = __ a of constant cross-sectional area B and bending stiffness EI. Suppose the system is 
acted upon by a pressure loading p(x) which is an odd function of x and p(x) does not tend to zero as 
x ~ 0 from either side. Such a model is a valid representation of the local conditions under a curvature 
discontinuity. Since we are seeking a local effect, the boundary can be assumed straightened and a 
discontinuous load introduced to simulate the curvature jump. 

We seek an Airy stress function q~ for the sheet satisfying V 4 ~o = 0 in the sheet together with boundary 
conditions 

63 /f~2q~ 02q)"~ t ~2q) 



and 

where 

0% 02q9 
EI -~x4 + t ~x 2 = - p(x) 

a 

0 

o n y  = _ a  

The general solution of V4cp = 0 of the form cp = sin ,ix F(y), where F(y) is even in y is 

q~(x,y) = i [AI('I) cosh 'iy + A2('I) 'iy sinh ,iy] sin ,Ix d,i. 
0 

The first boundary condition gives 

A1 Ut + A2 U 2 = 0 

where U1 = Q(1 +v) 0 cosh 0+s inh  0 

U z = Q(1 + v) 02 sinh 0 + (2Q + 1) 0 cosh 0 + sinh 0 

Q = B/at 

and 0 = a,i. 

The second boundary condition gives 

'I2(V1 A1 + V2 A2) = ~ P(x) sin ,ix dx = ~(,i) say 

0 

whore 

and V2= -(a / - -g)(1-v)0 3 s inh0+(a / -~ ) ( l+v)0  4 cosh 0 + t 0  sinh0 

so that 

u 2  ~(,i) - p(,i) u ,  
'i 2A1 = and ,I2A2 = 

V1 U z -  V2 U1 V1 U2-Vz  UI" 

The required shear stress is - - -  
02~o 

ax Oy 

¢O 

evaluated for x = 0, y = a and has the value - f 2  2 E(A, +A2) 
0 



sinh O-t-Z 2 0 cosh 0] dL On substituting for A~(2) and A2(2) this has the value 

i Q [(1 + v) 02 - (1 - v) 0 cosh 0 sinh 0] p(0) dO 
I 
a--g FI(O) + t F2(0 ) 

where F I(O) = - ( 1  + v) 2 Q 0 s + (1 + v) (3 -v )  Q 04 cosh 0 sinh 0 + 203 sinh20 

and F2(0 ) = 2Q 0 cosh  2 0 -t- cosh 0 sinh 0 + 0. 

A convenient function for p(x) is to take p(x) = p for x ~< b and zero for x > b so that 

4ap . 2 ['bO'~ 
p,:o)---  ,--O-sin t ~ ) "  

In a practical example, it is convenient to take a = 20, b = 20, t = 0.1, B = 0.5, I = 0.05, so that 
p = 0.025T, where T is the tension in the reinforcement at the junction. 

The integral is evaluated numerically and has the value 0.246T. This example illustrates the absence 
of a significant stress concentration in a practical system. 

APPENDIX B 

Circular Reinforced Holes (see para. 3) 

If a sheet containing a reinforced, circular hole is subjected to axial tensions fl, f2 say, the stresses 
around the sheet are (from Ref. 5, equation (34)) given as 

tr. = A +f2 - i - ~  (A -f2) cos 20 

cr~ = ( 1 - Q )  ( f l  + f 2 - 1 - ~ ( f l - f z ) c o s  20) 

and 
2Q 

z = i ' ~  (ft  - f2  sin 20. 

2A' 
Q is the reinforcement parameter (1 + v) A '+  1 " 

For shear loads S acting alone the corresponding stresses are (Ref. 5, equation (45)) given as 

t r , =  2 Q S s i n 2 0  
I + Q  

as = 2(Q - 2)S sin 20 
I + Q  



4 Q S  
and ~ = - - -  1 + Q cos 20. 

For  the 4 basic loadings considered in the text, the minimum possible Mises-Hencky stresses and 
associated reinforcement parameter A' are (for v = 0.3) as under: 

Loading . . . . . . . .  [1 ,0 ;0 ]  [!,½; 03 [1, 1;03 [0,0; 13 

Minimum Mises-Hencky stress . .  1.493 1.325 1.0 1.167 

A' for min s t r e s s  (A 'op t )  . . . .  0"445 0.984 1.429 0"281 

Relative stress at A' = 0-5A'op t . .  126~ 113~ 110~ 133~ 

From this Table it is clear that optimum reinforcement requires the use of an unnecessarily heavy 
member. By reducing the reinforcement weight by half, the penalty in stress is small and the weight 
saved may be used advantageously elsewhere in the structure. In all round tension the optimum rein- 
forcement neutralises the hole and leads to a very heavy design (A' -'- 1.4) with a reinforcement weight 
of about three times the weight of Sheet removed. 

The behaviour of nearly circular holes (i.e. p ~ 0.7) is broadly similar. 
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LIST OF SYMBOLS 

Area of cross-section of reinforcement 

Reinforcement parameter (= A/bt) 

Semi-width of hole 

Real coefficients in the mapping function which relates z and 

Mises-Hencky stress 

Direct stresses and shear stress which are applied to the sheet at a great distance from 
the hole 

Terminating index in polynomial representation of z 

Reinforcement parameter (= 2A'{(1 + v) A'+ 1} - l) 

Tangential and normal co-ordinates on the boundary of the hole 

Thickness of the sheet 

Cartesian co-ordinates in the plane of the sheet 

Complex variable (= x + iy) 

An auxiliary complex variable 

Reinforcement weight divided by weight of sheet removed to form the hole 

Argument of 

Poisson's ratio (taken to be 0.3) 

b- 1 times radius of corner quadrant 

Direct stresses and shear stress referred to the s, n axes at a point on the boundary of 
the hole 
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Mises-Hencky stress as a function of p and A' for [1, 0; 0] loading. 
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Mises-Hencky stress as a function of A' and p for [-1, 1 ; O] loading. 
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FIG. 7. Mises-Hencky stress as a function of A' and p for [2, 1 ; 0] loading. 
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Mises-Hencky stress as a function of A' and O for [0, 0; 11 loading. 
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Maximum principal stress as a function of A' and p for [1, 0; 0] loading. 
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Maximum principal stress as a function of A' and p for [1, 1;0] loading. 
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FIG. 15. Maximum principal stress as a function of A' and p for [2, 1 ; 0] loading. 
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Maximum principal stress as a function of p and A' for [2, 1 ; 0] loading. 
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FIG. 22. 
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loading. 
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FIG. 23. Variation of reinforcement weight with p in optimum (and other) reinforcement [0,0; 1] 
loading. 
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