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Summary. 
A method is described for finding asymptotic solutions, valid for large time, of a certain class of linear, 

integro-differential equations which typically arise in the description of systems exhibiting heredity. 
The solutions are developed from a knowledge of the steady-state behaviour of the system, or more 
particularly of a part of the system, under harmonic excitation. The analysis is carried through for the 
particular case of a flexible aeroplane disturbed from steady, rectilinear flight but the main stream of the 
argument may be pursued independently of this physical framework. 
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1. Introduction. 

We consider a continuous, flexible aeroplane in flight through air which may itself be in motion. In 
the usual formulation of this problem the displacement field of the aeroplane structure relative to a set 
of body axes is restricted to lie in a suitably chosen linear function space of finite dimension and the 
'best' solution is found by application of a generalised orthogonality relation (Ref. 1). The aerodynamic 
forces acting on the aeroplane exhibit heredity due to the influence of vorticity shed into the wake at 
earlier instants of time. 

Relative to an equilibrium state of steady, trimmed, rectilinear flight the equation of first variation 
takes the canonical form 

__dx f d t - M x  = A( t - r ) x ( z )dz+f ( t )  (1.1) 

where x(t) is an n-dimensional state vector, M is a constant (nxn) 'mechanical' matrix and A(t) is an (nxn) 
'aerodynamic' matrix; f(t) is a specified vector function of time. The equilibrium state is represented by 
x(t) - 0. 

The left-hand side of equation (1.1) represents the mechanical system which is assumed to have no 
heredity effects; the first term on the right-hand side represents the aerodynamic forces which are de- 
pendent on the motion and takes the most general form of a stationary (invariant to time translation) 
linear functional. The vector f(t) represents the forces applied to the system by deflection of the control 
surfaces or by action of the air (gusts). The matrices M and A(t) and the vector f(t) are implicitly dependent 
on the equilibrium state under consideration. It is assumed that the terms of equation (1.1) are dimen- 
sionless : in particular the time, t, will be understood to be the measure of the unit c/V where c is a suitable 
reference length and V is the equilibrium flight speed. 

Since the system is causal A(t)= 0 for t < 0 so that the upper limit on the integral in (1.1) may be 
replaced by + ~ and we may rewrite the system equations (1.i) as 

dx 
- - - M x  = A .  x + f  (1.2) 
dt 

where the convolution opera to r ,  is defined for the functions go(t), gt(t) by, 

go,~ = ~lS(t-~)~/J(z),lr= ~(t-~)go(z)d~ = ~*go. 

- -  c ~  - -  o 0  

(1.3) 

For  equation (1.1) the initial value problem involves the specification of an initial trajectory restricted 
to a suitable class of functions 2. This initial value problem will be by-passed here by assuming that the 
system is quiescent until time t = 0 and is then set in motion by external forces, that is, 

x(t) = f(t) = 0 for t < 0. 

In the analysis that follows many purely technical difficulties can be simplified by interpreting x(t), 

A(t) and f(t) as distributions whose supports.are bounded on the left at t = 0 3. The convolution of such 



distributions is also in general a distribution with support bounded on the left and a convolution algebra 
exists having the delta functional as a unit element. It will be understood that a derivative with respect 
to time is interpreted (when necessary) as a distributional derivative and that the Laplace transform of 
the functionf(t) defined by 

f oo 
f(p) = f ( t )  e-Pt dt,  P = l '+iv 

0 

(1.4) 

is extended to include right-sided distributions. 
We define X(t) to be the matrix solution of 

dX 
- - - - M X = A * X + I a ( t ) ,  ' t > / 0  (1.5) 
dt 

where 6(0 is the delta functional. Convoluting both sides with f(t) gives 

d ( X , f ) - M ( X ,  f) = A ,  (X,  f ) + f  

showing that the solution of equation (1.2) is given in terms of X(t) by the convolution 

x = X * f  . ( 1 . 6 )  

It is not intended to study equation (1.2) when the form of A(t) is such that the elements of its Laplace 
transform A(p) are rational functions of p : for in that case a finite number of operations consisting only 
of differentiation and multiplication by a real number is sufficient to bring equation (1.2) to the form 

dy 
- - - C  y = g(t) (1.7) 
dt 

where the dimension of y, g and C is not less than n. We shall, for convenience, refer to such systems 
as being 'instantaneous'. If the elements of A(p) are rational functions of p then the elements of A(t) will 
in general consist of a finite sum containing, 

(1) the delta functional and its derivatives, 

(2) exponential functions, and 

(3) the product of exponential functions with polynomials. 
Such forms have often been assumed as approximations to A(t) in applications 4`s. 
For the instantaneous system (1.7) the principal matrix solution 6 has a most useful spectral representa- 

tion which involves the characteristic vectors, rows and roots of the system matrix C; these are finite in 
number and equal to the dimension of the system. It is the purpose of the following analysis to develop 
an analogue of the spectral form of the principal matrix solution for the system (1.2) so far as this is 
possible. 

2. Nature of  the Aerodynamic Forces. 

2.1. General. 

The aerodynamic forces acting on the deforming aeroplane are obviously extremely complex functions 
of the motion but when these forces are linearly dependent on the state variables as in the equation of 
first variation it is possible, at least to a large extent, to separate out those forces which are essentially 
dependent on real flow effects from those which may be estimated on the basis of an inviscid flow model 1. 



Effects of unsteadiness can only be included in the latter group of forces and even in this case almost 
all known results apply to nearly-planar lifting surfaces. In this section we discuss only those forces which 
are derived from unsteady, finite wing theory as conventionally understood 7. Two-dimensional flows 
are omitted from the discussion but there would be no difficulty in including such results in the general 
analysis. 

The starting point is the (improper) integral equation, 

v(x,y,t)=ff l(v;x',y',t),K(x-x',y-y',t)dx'dy' 
S 

(2.1) 

which relates the loading l(v; x, y, t) on the wing to the prescribed downwash v(x, y, t): the function 
K(x, y, t) which depends implicitly on the Mach number of the trim state is termed the kernel function 
and the integration is (formally) over the wing planform. The prescribed downwash v(x, y, t) is, in general, 
the sum of two contributions : one is due to the motion of the aeroplane while the other is due to motion 
of the air itself. In the linear theory, the first is computed as if the air were at rest and the second as if 
the aeroplane maintained the steady rectilinear motion of its equilibrium state. 

In terms of the aeroplane motion the downwash over the wing is given by 8, 

Oh ~3h ) 
v(x, y, t) = w -  qx + p y -  (2.2) ~x Ot 

where w(t), q(t), p(t) are, in the usual notation, the linear and angular velocities of the aeroplane and 
h(x, y, t) is the elastic displacement normal to the (x, y) plane of the body axes. Since the displacement 
field is approximated in a finite dimensional linear function space - (?h/~x-3,h/~t) will be the sum of a 
finite number of terms like i~hi(x.y)/i'x xi(t) and h s(\.yjxi(t). Thus. so far as the motion is corlccrned 
the archetypal downwash field is of the separable form v(x, y) rl(t) and all such fields may be considered 
to be generated from the impulsive downwash v(x,y) 6(t). 

Let the air itself have a vertical motion only which is described relative to space-fixed axes: when 
such gusts are stationary and vary only in the flight direction the downwash field is of the form vo(x + t) 
where the function vg is given. This class of downwash field may be considered to be generated by the 
travelling impulse 6 ( x - a  + t) where x = a is the foremost point of the wing; thus the wing first en- 
counters the spatially impulsive gust at t = 0. 

In practice the kernel function is known only as a steady-state frequency response function/~(x, y; iv) 
relating the downwash v(x,y)e i~t to the loading l(v ;x,y ;iv)eiVt; 

v (x ,y) :  f f i ( v ; x ' , y ' ; i v )K(x -x ' , y - y ' ; i v )dx 'dy ' .  
S 

(2.3) 

Computer programmes are available 1°'11 which will invert equation (2.3) to give a weighted integral 
of the loading (a generalised force) due to a prescribed harmonic downwash: let Q(v,~ ;iv)e i~t be the general- 
ised force due to v(x,y)e ivt for the weighting function ~(x,y). The corresponding convolution inverse of 
equation (2.1) is the generalised force Q(v,~;t) due to the downwash v(x,y)f(t); that is, Q(v,~;t) is the 
generalised force generated by the impulsive downwash field v(x,y)f(t). If C)(v,~ ;p) is the Laplace transform 
of Q(v,f;t) it is shown in Appendix I that (~(v,(;p) is the analytic continuation of Q_(v,(;iv) throughout 
the complex plane cut where necessary to ensure that Q(v,~ :p) is single-valued. 

In the case of gusts let P((;t) be the convolution inverse of equation (2.1) for the downwash field 
6 ( x - a  + t) so that P((;t) is the generalised force generated by the wing traversing a spatially impulsive 
gust. The corresponding frequency response function P((;iv) is the weighted integral of the loading 
"lg (x,y ;iv) where 7 0 satisfies 
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1 = f f 7 o (x',y' ;iv)e '~(x-") _~(x- x', y -  y'; iv)dx' dy'. 
S 

(2.4) 

The Laplace transform of P((;t) is similarly the analytic continuation of P((;iv) into the complex plane. 
Since Q(v,(;p) and P((;p) are the Laplace transforms of real functions of t 

C)(v,~ ;p*) = C)*(vg ;p) 
and 

Pff  ;p*) = P*(~ ;p) (2.5) 

where the superscript * denotes complex conjugate. It follows that the real parts of (~ and 13 are even and 
the imaginary parts odd functions of v. 

Throughout the paper and in the following results which are derived from the initial and final value 
theorems ~z cr is a positive real number; 

Lim Q(t), 1 (t) = Lim ~)(cr) (2.6a) 
t ~  ~ ~ + 0  

Lim Q(t), l(t) = Lim Q(a) 
t--* +0  a--* oQ (2.6b) 

provided the left-hand sides exist, with similar results for P(t). 
The elements of the aerodynamic matrix A(t) are the generalised forces Q(v,(;t) corresponding to the 

downwash fields associated with the elements of the state vector x(t) while the generalised forces P((;t) 
will, in general, contribute to the vector f(t). 

The nature of the aerodynamic forces is so different in the subsonic and supersonic regimes that each 
case will be dealt with separately. 

2.2. Wings in Subsonic Flow. 
Let Kfx,y :p), 7(v :x,y;p) be the analytic continuations of K(x,y :irk l(v :x,y :iv) into the complex plane: 

then equation (2.3) shows that, for separable downwash fields,-l(v:x.y:pl is the operational inverse of 
_K(x,y;p). From the known forms of I£(x,y;iv) for subsonic flow 1° it may readily be deduced that the 
analytic continuation F-,(x,y ;p) has a logarithmic branch point at the origin and has no poles in the 
finite part of the plane; that is, K(x,y ;p) is holomorphic throughout the complex plane cut along the 
negative real axis. In addition, by examining the change in arg K'(p) over a suitable closed contour in 
the cut plane it may be shown that _K(p) has no zeros in the finite part of the plane. Thus l(v ;x,y ;p) and 
the associated generalised force Q(v,(;p) may be assumed to be holomorphic throughout the complex 
plane cut along the negative real axis. Since ~)(v,(;p) is holomorphic only in the open half-plane ~e  p > 0, 
0(v,~ ;iv) must be regarded as the limit of ~)(v,~ ;p) as ~ e  p ~ + 0; in fact O(v,(;iv) fails to be analytic only 
atv = 0. 

For the case of gusts equation (2.4) shows that e p~x- a)7o(x,y ;p) is the operational inverse of epXK(x,y ;p). 
The presence of the entire function e px does not alter the conclusions already arrived at so that it may be 
assumed that also P(~ ;p) is holomorphic throughout the cut plane. 

The generalised force Q(v,(;t),rl(t ) on the wing due to the prescribed downwash v(x,y) q(t) may be 
found by inversion of the transform C)(v,(;p) F/(p). 

Let ftp) be holomorphic in the half-plane ~ e  p > ~ and let 

If(p)] = o ([p[- ' ) ,  [p] , .  1> 1 ; 

thenf(p) is the Laplace transform of a functionf(t) and 
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f(t) = ~ i  f(p)e pt dp (2.7) 

where the path L is a vertical line in the half-plane ~ e  p > ~ .  Under these conditions the path L may be 
completed at infinity (to the left for t > 0) due allowance being made for branch cuts. If ~ = - m  < 1 
this result cannot be applied directly and in this case f(t) will in general be a distribution bounded on 
the left at t = 0. 
But let 

f(p) = p,,+ 1j(p) (2.8) 

then g(0, the inverse of 0(P), can be found using equation (2.7) and 

din+ 1 g(t) 
f(t) - at,,+ 1 (2.9) 

For example if t/(t) = l(t), the unit step function, the 'indicial response' Q(v,(;t). l(t) is the inverse 
of Q.(v,(;p)/p. It is known 7 that, for compressible flow, the initial overpressure generated by a step change 
in downwash is finite hence from (2.6b) 

O(Ipl)/p = O(Ipl-~), Ipl-+ oo 

and equation (2.7) may be used. Since the only pole is at the origin the path L may be deformed to the 
path C D E F G  of Figure 1 giving 

I '~ -1 {Q(aei~)_Q(ae_,~)}e_,tda Q(v,~;t)* l ( t )=  Q(0)l( t )+zXtd a 

and using equation (2.5) 

Q(v,(;t). l(t) Q(0) l(t)+ l(t) fo ~ 1 = - d mltQ(aei~)}e ~t da. (2.10) 

The 'impulsive response' Q(v,(;t), which cannot be obtained directly using equation (2.7), is given from 
equation (2.9) as 

l(t) Jm{Q(ee'~)}e -~¢ da. (2.11) 
g 

Equations (2.10) and (2.6b) show that the amplitude of the delta functional is in fact Lira (~(a). 

An asymptotic expansion for Q(v,~ ; t ) ,  l(t) valid for large t may be obtained from the series representa- 
tion for (~(v,(;p); this takes the form l a 

Q(P) = ~ a,p"+p21np ~ bkpk,ao = Q.(O) 
n = O  k = O  

(2.12) 



hence, upon substituting the series (2.12) into equation (2.10) and performing a term-by-term integration, 
we obtain the asymptotic representation 

1 ~_bk(k+l)!(-) k 
Q(vg ;t) • 1 ( 0 -  6(0) ~ ~ ~ . 

k = O  

(2.13) 

Similarly, equation (2.11) leads to 

1 ~ b k ( k + 2 ) ! ( _ ) k  
Q(v,( ;t) ~ - -[g tk . 

k = O  

(2.14) 

For incompressible flow a step change in downwash generates an impulsive pressure field associated 
with the apparent mass of the air : in this case Q(p)/p2 satisfies the condition for using equation (2.7). 
A term//g6(t) will be added to equation (2.10) and a term dgd6(t) /dt  to equation (2.11) where ~ is the 
appropriate apparent mass. 

Another case of interest is the generalised force due to the downwash, 

v(x,y) l(t) e;", [arg 2[ < n.  

The path L, which passes to the right of max. (0, ~ e  2), when closed at infinity now encloses a simple 
pole at p = 2 and we obtain 

Q(v,( ;t) , l(t) e at = Q(v,( ;2) l(t) e a' 

+ l(t) I co jm{Q(ae i~)}e -~ t  
n-----J o a + 2  do'. (2.15) 

An asymptotic expansion for Q(v,(;t) * l(t)e at valid for large 12]t in the sector [arg 21 < n may be obtained 
upon using the series (2.12) combined with repeated integration by parts 14: alternatively the term 
(a + 2)-1 may be expanded as an ascending series in a/2 followed by term-by-term integration. We have 

Q(v,( ;t) , l(t)e a t -  t2(v,( ;2) l(t)e a' 

co k 

k = O  j = O  

It follows from the relations (2.5) that, if 2 = ? + ico 

(2.16) 

l(t)e" (c°s cot ] 
\ sin cot J = J m  (Q(v,( ; t ) ,  l(t)ea9 . 

Equation (2.16) shows that for ~ e  2 > 0 the generalised force due to an exponential (time) variation 
of downwash is eventually exponential ; clearly the case of simple harmonic motion (~e 2 = 0) is just 
included since the remainder term in (2.16) decreases more slowly than any exponential with negative 
real part no matter how small. For simple harmonic motion [2[ = co and the expansion shows that the 
effect of finite wake length depends not only on the number of chordlengths travelled (i.e. t) but also 
on the number of wavelengths travelled, cot/2n. 



When 2 = - ~, 7 > 0 the path of integration along both sides of the cut is indented into the upper and 
lower half-planes by small semicircles centred at p -- - 7 "  in the limit as the radii of the semicircles tend 
to zero we obtain, 

Q(v,(;t) * l(t)e- ~' = ~ e  [0(v,[ ;?ei~)] l(t)e- ~' 

+ l ( t )  ~ f~o jm{Q(aei~)}e-~,da (2.17) 

r~ 30 a - 7  

where ~ denotes the Cauchy principal value. The asymptotic expansion is that of equation (2.16) with 
)~ = - ? .  

A series of parallel developments may be made for the generalised forces P(~ ;t) the main differences 
being that, 

Obviously, 

o r  

Lim P(.~;t) * l(t) = 0. 
t--*0 

hence, by analogy with equation (2.10), 

Since 

and 

then 

Lira P((;t) • 1 (t) = Lim Q(1,~ ;t) • 1 (t) 
t - o ~  t ~ o o  

P([;+O) = O.(1,~;+O) 

Q(1,~; +0)= --nl f~o 1 jm{P(aei~) } da. 

C9(1,~;+0)+ -Jm{P(aei=)} da = 0 
0 (7 

f 
oO 

n Q(1,~;~) = jm{Q(ae~,~)_p(ae~)} da 
0 cr 

2.3. Wings in Supersonic Flow. 
By an examination of the frequency response function K,(x,y;i() for supersonic flow 1° it may be seen 

that its analytic continuation F,(x,y ;p) is an entire transcendental function having no zeros in the plane: 
consequently 7(v ;x,y ;p) and the associated generalised forces Q(v,(;p) and P((,p) are entire transcendental 
functions. This is merely a reflection of the fact that in supersonic flow the transient downwash at a point 
can affect conditions on the wing for only a finite time after its inception. Hence Q(v,(;t) is a function 



having a bounded support and Pc, the abscissa of convergence of its Laplace transform, is - oo. Choosing 
the reference length c to be the maximum extent of the wing in the direction of flight then Q(t,,~. ,t) • l(t) 
reaches its steady state at t = M/M- l/ where M is the flight Mach number. The initial overpressure 
for a step change in downwash is finite as in a subsonic compressible flow. For t >~ M/(M- 1) 

Q(v,( ; t ) ,  l(t)e ~t = C)(v,(;2)e ~' (2.18) 

for all 2 = "~ + ico. 
Since O(v,(;P) is an entire function it has a convergent power series expansion about any point in the 

plane: in particular, for the origin we may write, 

0o 

O.(p) = 2 c.p", Co = 0(o). 
n = 0  

(2.19) 

Similar considerations apply to the generalised force P(~,t) and its transform P(~ ;p). 

3. Asymptotic Solution of the System Equation. 

The operational form of equation (1.5) is 

[pI - M -  X(p)]X = I 

where A(p), X(p) are the Laplace transforms of A(t), X(t) respectively. Thus, 

X(p) = [pI  - M - X ( p ) ] -  

and from equation (2.7) 

(3.1) 

(3.2) 

1 fc[pi_M_X(p)]_lePtdp x(t)  = F~/ (3.3) 

where the path L passes to the right of all the singularities of X(p). The characteristic equation 

det [ p I -  M -  A(p)] = 0 

will in general have an infinite number of roots and hence X(p) will have an infinite number of poles. The 
path L cannot simply be closed to the left at infinity as previously since it is not possible to find a contour 
of radius R for which ]]X(p)[[ = 0(]p[ 1) for all ]p] > R. We shall assume that X(p) is meromorphic in 

the whole plane (cut if necessary) including the point at infinity ; that is, there are only a finite number of 
poles of X(p) in any finite region of the plane. In this case it is possible to estimate X(t) by integration 
round an increasing sequence of contours which thread between the poles of X(p). We shall deal ex- 
plicitly with the subsonic case since the supersonic case is a simpler version of this treatment. 

Consider the contour ABCDEFGA of Figure 2 where P~t < Pc < PL, Pc > 0 being the abscissa of 
convergence of X(t). Then 

f X(p)e pt dp = 2hi Z R, 

A B . . .  FGA 

(3.4) 



where the R, are the residues of X(p)e pt at its poles which lie within the contour. We now consider the 
various contributions to the integral from the segments of the contour as v ~ oe. Provided the segments 
BC, GA pass between the poles of X(p) as v ~ oc (their position need not be varied continuously) then 
]]~(p)[] =O(]p] 1)as IP]-~ ~ (equation (2.6b))and the contribution from these segments vanishes (Jordan's 
Lemma). Since the integral along AB becomes X(t) we have, for t > O. 

+_1 Jm{X(c~e i~) e -~t da (3.5) X(t) = R. ~ 

O 

e~Mt I ~ + [~e  {X(~M + iv)} cos v t - J m  {X(#M+ iv)} sin vt] dv 
7Z 0 

where the R, are the residues of X(p)e pt at its poles in the strip #M < ~ < #L, and ~M = - #M > 0. If we 
assume that there are a finite number of simple poles in this strip, p,, n = 1 . . . . . .  M and that ~M is chosen 
so that the path M passes between the poles of X(p) we may write, 

M 

X(t) Lira [ ( p -  p,) X(p)] e p~t J m  {X(~e~)} e-~t d~ + 0 (e "Mr) (3.6) 

0 

since the integral along M is bounded. An asymptotic expansion in inverse powers of t may be developed 
for the second term as was done in Section 2 as the validity of that technique does not depend on the 
upper limit being + ~ 14. 

Thus, assuming that the poles of 'X(p) can be determined in order of decreasing real part equation (3.6) 
may be considered as an asymptotic solution of (1.5) valid for large t: in fact such a solution may be of 
acceptable accuracy for values of t which are not large. 

The form of solution in the supersonic case will consist only of the first and third terms of equation 

(3.6). 

The coefficient matrices of the exponentials in equation (3.6) may be expressed in terms of the associated 
characteristic rows and vectors,of [ p I - M - A ( p ) ] .  Let u, r, v, be the characteristic row and vector asso- 
ciated with the simple root p,, that is 

and u.r[p,I  - M -  A,(p,)] = 0 (3.7a) 

[p ,3-  M -  xtp.)3 v. = o,  (3.7t;) 

where u,, v, are assumed to be riermalised so that 

Un T B n v n ~- 1 

for a given, non-singular square matrix B,. It is known that is 

Adj [ p , I - M - A ( p . ) ]  = a, v, u~. r (3.8) 

where a, is a constant. Consider the identity 

whence 

[-pl-  M -  A(p)] Adj [pI - M -  A(p)] = det Fp I -  M -  A(p)] I; 

differentiating with respect to p, premultiplying by Adj [ - p I - M - A ( p ) ]  and setting p = p. gives, upon 
using (3.8) 

F 

dp ] ff="p,, (3.9) 

10 



The coefficient of e v.t in equation (3.6) is 

L i m [ ( p - p . ) X ( p ) ]  = Lim 
t_ _ j d e t  [pI - M - A(p)] 

p --* p. P ~ P .  
adj  [ p . I -  M -  A(p.)] 

and upon using equations (3.8) and (3.9) and taking 

= F I dA(p) 1 (3.10) 
B. L --Yp--p J,=p° 

we have, Lim [(p-p,)X(p)] = v, u, r (3.11) 
p--. p, 

In the second term of equation (3.6) we write 

Jm{X(oe~=)} = Jm{ [ p I -  M -  A(p)] -~ }v = ~ ~ 

E = - [ M - A ( 0 ) ]  - t  J m  I + [ M _ X ( 0 ) ] - t  Eoi+[N(ae~)_X(0)  ] (3.12) 

and expand the matrix inverse in ascending powers of 

[ M -  A(0)] -1 [ al  + [X(ae'~) - A(0)]] : 

together with a matrix expansion of A(p) analogous to equation (2.12) this yields a suitable form for an 
asymptotic series for this term. If the series (3.12) is 

Jm{X(ad~)} = Co ~r 2 + C1 a 3 + O (a4/no) 

equation (3.6) can finally be written, 

- 6 l n t  (3.13) X(t)= v. u r e . . t +  1~ Co + C 1 ~  + O  ~ -  

. = 1  

When det[M+A(0)] = 0, that is the system has limiting static stability, the contour of Figure 2 is de- 
formed around the origin and the solution (3,13) is modified to, 

M 

X(t) = VoUor+ v"u"reV"t rc o + D t ~  + 0  t3 ] 

. = 1  

where vo, uu ~ are the characteristic vector and row associated with the root p = 0 and 

= Do + D 1 o + 0 (o2Ina). 

Here, A(p) = d e t [ p I - M - A ( p ) ]  and ao is defined by equations (3.8) and (3.10). 
The exponential part of equation (3.13) is the analogue of the spectral solution for an instantaneous 

system. The main difference between this part of the solution and that for an instantaneous system is 
that no biorthogonality relation exists for the rows and vectors u, r, v,. Clearly, since the number of 
characteristic rows and vectors exceeds their dimension they cannot all be linearly independent and the 
usual reduction of the system matrix to diagonal form (for unrepeated roots) does not apply. 
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It should be noted that, because of the relations (2.5) the characteristic roots, rows and vectors will 
occur in complex conjugate pairs. The roots may also be real but whereas in supersonic flight they may 
be positive or negative, in subsonic flight negative real roots cannot occur because X(p) is not single- 
valued on the negative real axis. For  let, 

A(p) = A1 (IL, v)+iA2 (~, v) = 0 

be the characteristic equation, then if 

/t = - o. is a root, 

A~ (-o. ,  O) = 0 

and 

A2 ( - o . , O )  = O.  

But since A*(p) = A(p*), A 2 ( - a ,  0) cannot be zero unless A(p)is single-valued in the neighbourhood of 
p = -o . '  this is a contradiction in the subsonic case. 

For  the input function f(t) the solution is given from equation (1.6) as, 

M 
x(t)---- 2VnUnTeP"t,g(t)+l fo'rM 

ta=l 
Jm{X(o.ei'~)}e-~tdo. * g(t) 

+ 0 (e ~t) 
(3.14) 

where f(t)-g(t) = 0 (eUMt). That is, g(t) is that part of the input fit) which decreases in amplitude less 

rapidly than e "w,/~M < 0. Alternatively, if f(p) is the Laplace transform of fit) 

x(t) = ~ p I -  M -  A(p)]- l~(p) ept dp 

giving the solution 

M 

x(t) = v. U, r f(p,) e " + ~  Jm{X(o.ei~){(o.ei'~)}e-'n do 
n = l  

N 

+ 2 X(r,) Lim [(p - r~)f(p)]e *'t+ O(e~,t) 
p~r~ 

17..1 

(3.15) 

where rt, I = 1 . . . . . . . . . . .  N are the poles of t(p) in the strip ~M < # </~L, assumed simple. 

4. An Approximation to the Roots of the Characteristic Equation. 
As has already been mentioned in Section 2 there exist programmed numerical techniques for generating 

the frequency response functions Q(v,~ ;iv) for both subsonic and supersonic flow, at least for frequency 
parameters which are not too high. In practice the computed results are invariably given in terms of 
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classical flutter derivatives Which are not directly related to downwash but to displacement of the aerofoil 
surface; their relation to the generalised forces Q(v,~ ;t) is given in Appendix II. The generalised frequency 
response functions will be considered to be the basic data for the computation of the solution (3.6). 

Since the characteristic roots in (3.6) are supposed to be determined in order of decreasing real part 
the approximation is based on a power series expansion of Q(v,(;p) about points on the imaginary axis. 
The solution (3.6) will be supposed to include explicitly only those roots which can be determined with 
acceptable accuracy in this way. In practice the part of the solution of interest contains only those roots 
of det [ p I -  M -  A(p)] = 0 which are closely associated with the mechanical system and the rigid aero- 
plane; these are equal in number to the dimension of the state vector, Fortunately, except at very low 
speeds the (reduced) decay rates for aero-mechanical systems are usually small: a limit to the application 
of the technique described here would probably be a decay rate corresponding to about three chord- 
lengths to half-amplitude but any such estimate depends on the equilibrium flight Mach number and the 
aspect ratio of the wing. 

In the case of supersonic flow O,(v,(;p) has a convergent power series expansion about any point in the 
plane: for subsonic flow a power series expansion about the point Po will be valid only within the circle 
of radius Jm{po} .although since ~)(p) is holomorph'ic in the cut plane an analytic continuation may be 
used to approach the negative real axis. An expansion about the origin takes the form (2.12). 

The power series expansion of Q(p) about Po is 

- dQ d Q (P-po)  Q(p) Q(po) + ~--~l 2 -  a+ . . . . .  = ,(P-po)+-y=e_2 - - ~ -  
pp=po ap p=po z. 

and if, in particular, Po = iog, a point on the imaginary axis, 

~-~ " d 2 O  ( p - i ~ o )  ~ 
O(p) = ¢P-'°')+-aTPI 

p=i~ p=ioJ 

. . . . . .  (4.1) 

Let 

~)(p) = Q' (#,v) + i~)" (#,v) 

then 

-~p = - i  Ov Ov " (4.2) 

We may write the frequency response function Q(iv) as 

Q(iv) = Q' (v) + iv Q" (v) 

and using the identity between Q_(iv) and ~)(p) 1. 
p ~ l v  

(4.3) 

dO(p) F dO' _ dO"-] 
= L -i---~-~+Q"+v=-~--I dp p=i~ dv av _l~=,o 

By using equation (4.4) repeatedly in (4.1) and rearranging terms we obtain 

(4.4) 

(aO' d(?" 
Q(p) = Q'(co)+pQ"(to)-i ~-v-t-P--~-v Jv=o~(P-ic°) 
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/ d~O. ' d~O ,,'~ (p-~to)~ 
- ~ ~-vZ + p--~Yv2 ) ~_~--} i . . . . . . . . . .  (4.5) 

Now let p be the point ? + ito so that the line PPo is parallel to the real axis, then we write (4.5) as 

. d Q ' l  
O(p) = O' ( to)-z~ = -  i 

dv ~=~o 
~2 d20, 
2! dva~=~, 

dO" 72 ) +p { ~ " ( t o ) - i 7 - ~  [ d2(~" / - (4.6) 
dv ~=~, 2! dv z v=,o " . . . . . . .  

This is the most convenient form for the elements of A(p) in computing, by an iterative technique, 
those characteristic roots of d e t [ p I - M - A ( p ) ]  = 0 which have sufficiently small real part '  also, this 
form for A(p) does not (locally) increase the order of the chracteristic equation. In effect the characteristic 
roots are determined as selected roots from a sequence of (nxn) matrices rather than from one single 
(nxn) matrix as for an instantaneous system. 

For a chosen airspeed assume that an approximation to a characteristic root has been found. The 
approximation may be improved by successive recalculation of this root when A(p) is, at each step, 
updated by the use of equation (4.6) when 7 + ito is the current approximation : at each step the other 
characteristic roots are discarded (see Appendix III). Ifa matrix iterative technique is used a good estimate 
of the required root is available at each step. With an obvious extension of the notation of equation (4.6) 
we define the first approximation to A(p) as, 

A(p) = A' (to) + pA" (09) (4.7) 

for the (approximate) root }, + ito. When, by a number of iterations the change in A(p) becomes sufficiently 
small the resulting root and characteristic row and vector may be termed the first approximation: for 
this approximation the characteristic matrix is real and the roots appear as complex conjugates. For a 
root with zero or very small real part this approximation is sufficient. 

The second approximation to A(p) is similarly 

dA" 
A ( p ) = A ' ( t o ) - i y d A ' I (  ~ ' ' ( t o ) - i ~ ; d v  v~,o +p ~-vv!,~ ) (4.8) 

for the root 7 + ito. In this case the elements of the characteristic matrix are complex and hence the roots 
do not appear in conjugat.e pairs. However associated with the approximate root 7 + ito will be its con- 
jugate 7 - i to  and relative to the latter 

= ( - t o ) - i ~ - I  +p M(- to)- i~  
v = - - a ~  = - -  

- d v  v ~ ~, + p (09) + iy d v  ~ = 

= X*(p). 
Hence a successive approximation to the root y + ito will be mirrored by an approximation to its conjugate 
7 - i to :  in practice only the roots for co >=0 need be computed since the conjugate root, row and vector 
may be synthesised. A suggested computational procedure is outlined in Appendix III. A third approxi- 
mation may be constructed but the necessary derivatives in equation (4.6) become difficult to compute 
accurately : fortunately, for wings of low and moderate aspect ratio the variation of ~)' and {~" with v is 
not large. 
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In subsonic flow when [co[_ [7[ the expansion (2.12) must be used rather than (4.6). Corresponding to 
the first approximation (cf equation (4.7)) is 

X(p) = ~ '  (0) + pA" (0) 

while corresponding to the second approximation (cf. equation (4.8)) is 

(4.9) 

n -~v (7 + ion) 21n r 
" v ~ + O  ' 

d~" 0 

v ~ + 0  

(4.10) 

where re i° - ~ + ico . 

In particular, for co = + 0 and ~ = - G < 0, 

(w ( ) 
-~+0 

v ~ + O  " 

The approximation (4.9) corresponds to the well-known use of constant aerodynamic derivatives in 
stability and control of rigid aeroplanes 9. Indeed it should be remembered that we are dealing here only 
with those aerodynamic forces which are derived from potential flow and for all other forces a 'steady' 
approximation is the only one available 1. 

For two-dimensional flows a simple first approximation like equation (4.9) is not available since in 
this case 

~"  (0) = 1 Lim ~ m{.~(iv)} 
V v ~  + 0 

does not exist. 
When, in subsonic flow, the first approximation leads to a real, negative root it is shown in Appendix 

III that two possibilities arise. Either the root is spurious or it corresponds to a complex pair having a 
real part differing little from the root in question and a very small imaginary part (cf. the discussion at 
the end of Section 3). 

Having found the characteristic roots, vectors and rows the exponential part of the solution (3.13) is 
known. Loss of asymptotic stability is indicated when, for some airspeed, a pair of roots approaches the 
imaginary axis. In the remainder of the solution for the subsonic case, equation (3.12), the dominant term 
2 Co 
n t 3 arises from the term 

n ~ p 2 1 n p  

v ~ + 0  

in the expansion for A(p) (cf. equations (2.12), (4.10)). This leading term can always be found since the 
right-hand derivative (d~,"/dv) is given by quasi-steady wing theory la : the higher order terms cannot 

v ~ + O  

readily be estimated. It would appear to be inconsistent to retain the exponential part of the solution at 
all when only the leading term of the asymptotic series is available. Although it is true that this part of 
the solution will, in theory, eventually dominate any decaying exponentials, in practice it rapidly becomes 
insignificantly small (see Section 5.2). 
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Assuming the strip #M </~ < #c to contain all' the roots associated with the mechanical system (and 
derivable from the first approximation) the magnitude of #M will depend on the location of other roots 
of de t [p I -M-NIP) ]  = 0. Such roots cannot be found using the technique of this section and without 
further specification of NIP) for sufficiently large ~e  p no estimation of/z M is available. 

The solution for the input function f(t), equation (3.15), requires the evaluation of XIP) at the poles of 
i(p), hence it is implied that, using the technique of this section, only those poles of rip) can be included 

which do not lie too far from the imaginary axis. In the case when f(t) is due to flight through a gust 
structure vo(x + t) the elements of rip) take the form P((,P)Vo(P) and in subsonic flow lip) has a logarithmic 
branch point at the origin: the poles of rip) are the poles of ~0(P)' By the nature of its definition (equation 
(2.4)) the frequency response function/~(~ ;iv) shows much larger variations with v than the functions 
O~(v,~ ;iv) and the use of the second approximation is probably essential. 

5. Two Simple Examples. 

5.1. Short-period Motion of a Rigid Aeroplane. 
For some speed ranges it may be important to include frequency effects when calculating the short- 

period motion of an aeroplane ; this is particularly so in the transonic range. The unsteady aerodynamic 
forces discussed in Section 2 are based on linearised theories which do not hold in the transonic speed 
range. A linearised theory does exist for simple harmonic motion in the transonic speed range provided 
the frequency parameter v is bounded away from zero. Thus the method described in Section 4 can be 
applied in those cases for which o) > lY by using equation (4.8) but an expansion analogous to that of 
equation (4.10)is not available when Ico[ < ]?I- 

With this important reservation we may discuss the application of the method to the classical short- 
period approximation wherein the motion is assumed to be described completely in terms of incidence 
change w and pitch rate q. In this section only, the notation of Ref. 22 is used, extended where necessary 
to include the transcendental nature of the aerodynamic 'derivatives'. The operational form of the 
dynamic-normalised equation of motion corresponding to equation (3.1) is Ref. 22, p. 21, 

(P[I 0 0 l  ] +" V 5"IP)- 1 +zo(P) l 

The first approximation to, for example, 2,~(p) is given by equation (4.7), 

(5.2) 

where (equation (4.3)) 

~w(iV) = e~(v)+ive~(v). (5.3) 

In the spirit of the derivative notation we shall write 

e~(v) - ew(v) 

and 

~ ( v )  = e,~(v) 

etc., retaining the tilde superscript to remind us that these are frequency dependent 'derivatives'. The first 
approximation for equation (5.1) is then 

1 01 + ~,,.(v)+, pY,jv),- 1 + ~q(v)+ p~o(v) 
( P [ o  ] [ rfid~)+Prfiw(V),rfiq(v)+prhq(v) ] ) [ q ]  = IO0] (5.4) 
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with characteristic equation, 

(1 ~,) + r ~ ) }  
\ 

+ (1 pZ 
/ / \ 

P 
\ / 

If, as is usual, we neglect 5., rh 4 and ,~q compared to unity and consider the derivative 5 0 to be negligible, 
we have finally the characteristic equation, 

p2 -k B(v)p + C(v) = 0 (5.5) 

where 

B(v) , = Z~, + rhq + r~. , 

c(v) = ,% + .~  e~. 

The first approximation roots pl (1), p l ~2~ are solutions of the equation 

pl2+B(ogl)Pl + C ( o ) I )  = 0 

where ICOll = lira(p, (1', p,(2')l if the roots are a complex pair, 

= 0 if the roots are real. 

Assuming the first approximation roots to be found, we now consider the second approximation, 
firstly for the case of a complex pair of roots with IJm(pl (1), p(2)[ > ]~e (p,('), px(2))[ (equation (4.8)) and 
secondly with this inequality reversed (equation (4.10)) which includes the case of a real pair of roots. 
This distinction is only necessary for subsonic speeds. 

(a) complex pair of roots, pl (i), pl (2) = Yl-----i(-01 ; [(DI[ > [~1[" 
Ignoring terms of 0(y~ 2) the characteristic equation becomes simply, 

p2 + (B(ml)_ i?16B(wt ) )p + (C((..Ol) _ /? laC((_Dl) )  = 0 

where 

dBi aC(~o,) = dC [ 
aB(a~t) = d v  . . . .  ' 

v = o ) l  

In order to obtain an approximate analytical form for the second approximation roots, assume that 
B2(col)/4 < < C(oJ1) so that 

B(o0, o12_ C(col) ~ 0, 7 1 -  2 

giving the second approximation characteristic equation 

( " "6B(°)i))  ( " 6C((n1)'~ 
p2--2y 1 1 - t - , ~  p+a~ 1 1 - - , ~ ' 1 ~ )  = 0 .  
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This equation has two roots which are not complex conjugates: we retain only that root which has a 
positive imaginary part since we are improving the root 71 + leo1. The improved root is (cf. equation 
(AIII.1)) 

p2<I)=Y~ ( 1-~ 1 6C(°91))co~ 2 + ie)i ( ?x 6 B ~  1 ) ) 1 - t ~  

and 

p2 (2) = p2 (1)* 

It is interesting to note that the change in the 'frequency' term of the characteristic equation affects the 
damping and vice-versa. 

(b) Pair of roots, pl m, pit2); I~e(p~ <~, plt2))l > I.~'m(p~(1), p1(2))1. 

For the root p l ~) = ",,~+ io)) = r~e i°l, for example, the second approximation characteristic equation 
is 

pZ+(B(O)-i 2 ( ~  1 "1- i(-D1) 01 6B(+Ohl, 
7~ 

+(C(0)--2 (h  +iw~) 2 In r~ 6B(+0))  = 0. 
7~ 

In this case, to obtain an analytical form for the improved roots, assume that 

> > c(o/ ;  B(o/> o, c to t>  o 

so that the two (real) roots of the first approximation are 

c(o) c(o) 
pl m ~ - B(0)+--~-~,, pl <2~ 

B ( 0 ) '  ~u) 

For the root pl m we take/"1 = B(0), 0~ = n in the expansion (4.10) giving the characteristic equation, 

p 2 + B ( l + 2 i 6 B ) p +  ( C - 2  &B B 2 ln B ) = 0 
7~ 

with the appropriate root (cf. equation (AIII.2)), 

and its - ( 1 ) ,  complex conjugate P2 . For the r o o t  p l  (2), take r i = C(O)/B(O) giving the characteristic equation, 

with the appropriate root 

and its complex conjugate p2 (2)*. 
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As discussed in Appendix III, only one pair of these roots is genuine : since the expansion used was for 
~ol = +0  we can accept only that root, p2 ~1) o r  p2 (21, which has positive imaginary part. Thus if 6B < 0 

the root pair p2 t2), p2 t2)* are genuine while if 6B > 0 the pair pz ~ ,  p2 ~*. 
In this analysis we have retained only one quadrature derivative component, namely rfi;; = rfiw and 

dB I din, I 
6 B ( +  O) = -~v - d,' 

~ + 0  v ~ + O  

For a conventional aeroplane the main contribution to rfi, is from the 'lag in downwash' effect at the 
tailplane so that the right hand side of the above expression cannot simply be estimated from ffw(0) and 
rfiw(0) by using the result quoted at the end of Appendix II. 

5.2. Classical, Binary AeroeIastic System. 
The example chosen here is that of a simple, classical binary system for a rigid wing having plunging 

and pitching freedoms. Because of its familiarity a Lagrangean formulation is used. The flutter derivatives 
are those for a rectangular wing of aspect ratio 4 in incompressible flow with the axis of pitch at half- 
chord: they are derived from the results of Lawrence and Gerber 21. 

The parameters of the system are deliberately chosen to give wide frequency separation of the roots 
and no mechanical inertial or stiffness coupling is included. 

The operational form of the homogeneous system equations is, with an obvious extension of the usual 
British notation for flutter derivatives, 

[p2a~ + pT~(p) + a=v, 2 + 7~(p)] ~ + [pTo(p) + 70(p) ] 0 = 0 

[ -  pNe(p)- N,(p)] c + [pza°-  pmo(p) + aoVo 2 - N0(p)] 0 = 0 (5.6) 

with a~ = 15.4 and ao = 3.85. The in-vacuo natural frequencies in plunging and pitching respectively 
are ~ = 5 rad/sec and co 0 = 30 rad/sec. 

Figure 3 shows the variations of true frequency with airspeed for the two roots of the system which 
originate from the uncoupled motions at zero airspeed : the suffices z and 0 are used in this sense. No other 
roots of the system were sought. Figure 4 shows the inverse of time to half or double amplitude for the 
two modes; the flutter speed is 500 ft/sec. Both first and second approximations are shown when the 
difference is discernible. 

The non-dimensional root loci are shown in Figure 5. As the pair of roots of smaller frequency approach 
the real axis the second approximation shows that the more negative root of the first approximation is 
genuine but its imaginary part is extremely small. 

For an airspeed of 440 ft/sec the response in 0 due to a unit impulse applied in the pitching freedom 
is, 

aoOo(t) = 0.156e-° 1 s, sin (0.086t- 0.810) 

0'057 
+ 1"674 -°'°°53t sin (0.595t + 0 . 0 5 6 ) + 7 +  0 (l/t4). (5.7) 

After two chordlengths the term in 1/t a is extremely small. 
The frequency response function Oo(iv) due to unit amplitude-excitation in pitch is given directly from 

eqn. (5.6) by 
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- v2a~ + ivle(v) + azVz 2 + Iz(v ) 
Oo(iV) = (_v2a~+ivl~(v)+a~VzZ+l~(v)),(ivlo(v)+lo(v)) 

( - ivm~(v) - m~(v)), ( - vZao - ivmo(v) + aoVo z - mo(v)) (5.8) 

For an airspeed of 440 ft/sec the function ao~e{Oo(iv)} is plotted in Figure 6. This function gives the data 
required for a calculation of Oo(t) by a numerical evaluation of the integral 16,23 

aoOo(t ) 2 fo ~ = - ao ~ e  {0o (iv)} cos vt dr. 
7~ 

This evaluation would serve as a basis of comparison with the analytical solution, equation (5.7). However 
numerical inversion brings its owndifficaatties and in order that these do not cloud the issue a comparison 
is made by calculating the real part of the analytical Fourier transform of the solution, equation (5.7). 
The difference between the curves is everywhere very small and cannot be shown on Figure 6. Instead 
a series of selected values are compared in Table 1. The term 0.057/t a yields, for small v, the contribution 
0.0091 vZlnv and this is always less than 0-0017 in magnitude: it would be undetectable in a numerical 
inversion. 

6. Com'h,tin¢l Remarks. 
An alternative way of dealing with the system (1.1) when .g,(iv) is known is by a numerical evaluation 

of equation (3.3) when the path L is the imaginary axis. Clearly, a necessary condition is that the system 
is asymptotically stable. 

If in equation (3.3) we write 

X(p) J , = ~(iv) = i~'(v)+ i~"(v) 

p = i v  

where I~'(v) is an even and ~"(v) an odd function of v then using the fact that X(t) = 0 for t < 0 we have, 
for t_>O, 

X ( t ) = 2 f  ~'(v) cos vt dv 2 f ~"(v) sin vt dv 
7g , 1Z 

0 

Numerous investigations have been made which exploit these relations 16,17,23, particularly to derive 
the generalised forces Q(v,~ ;t) ,  l(t) and P(~ ;t), l(t) from oscillatory aerodynamic derivatives s'ls'19. This 
technique is probably best suited to intermediate ranges of time since for large time accuracy will suffer 
due to the rapidly oscillating character of the integrals while for small time the necessary curtailment 
of the range of integration and unreliable aerodynamic data at high frequency parameters makes the 
estimation of error difficult. For very small times it is probably best to use indicial aerodynamic data 7 
which is not obtained by Fourier inversion procedures and to integrate the equation of motion 
numerically. In this respect the situation for supersonic flight is easier to deal with than that for subsonic 
flight. 

The numerical inversion of the frequency response function X(iv) will not give that part of the solution 
which, at subsonic speeds, is dependent on the singular behaviour of ~(iv) at v = 0. The asymptotic 
behaviour of this part of the solution can however be found directly from X'(v), X"(v) by using the ex- 
pansion (2.12) with p = iv and the known results for the Fourier transforms of the pseudo-functions 
(1/[tl") and (1/)1") sgn t, where n is an integer greater than unity 2°. 

Perhaps the main attraction of the type of solution presented here is that it is not purely numerical 
but retains the familiar features associated with the analysis of linear, stationary, instantaneous systems; 
that is, the exponential solution with the attendant root locus and mode of motion so familiar in rigid 
aeroplane stability and control. 
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LIST OF SYMBOLS 

h(x,y,t) 

l(v ;x,y,t) 

lg(x,y,t) 

P 

p(t) 

q(t) 

r 

t 

v(x,.v,t) 

vg(x + t) 

w 

xi(t) 

x , y , z  

t(t) 

x(O 
u. r 

v. 

K(x,y,t) 

Q(v,~ ;t) 

P(¢;t) 

M 

A(t) 

B. 

M 

X(t) 

Y 

5(0 

¢(x,y) 

n(t) 

0 

Transverse displacement of wing camber surface 

Wing loading due to the downwash field v(x,y,t) 

Wing loading due to impulsive, travelling gust 

Laplace transform parameter 

Rate of roll 

Rate of pitch 

..Modulus of complex variable 

Time measure 

Downwash velocity over wing planform 

Vertical gust velocity distribution 

Incidence 

Element of state vector 

Rectangular Cartesian body axes vdth x-axis along equilibrium flight vector and 
z.axis downward 

Forcing vector - equation (1.l) 

State vector - equation (1.1) 

Characteristic r O W  

1 for the simple root, .p, 
Characteristic vector J 

Aerodynamic kernel function 

Weighted integral over the wing of l(v ;x,y,t), v = v(x,y)6(t) 

Weighted integral over the wing of Ig(x,y,t) 

Mach number 

Apparent mass (incompressible flow) 

Aerodynamic matrix - equatioa (1.1) 

Normalising matrix for the root p, - equation (3.10) 

Mechanical matrix - equation (1.1) 

Matrix solution of equation (1.5) 

Real part of typical characteristic root 

Delta functional 

Weighting function for Q(v,~ ;t) and P(~ ;t) 

Generalised co-ordinate - amplitude of  displacement 

Argument of complex variable 

Real part of complex variable, p 
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Superscripts. 
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A P P E N D I X  I 

Continuation o f  the Frequency Response Function. 

gel'rlma 

L e t y ( t ) -  h l t ) , x ( t ) ;  h ( t ) = O , t < O  

and let the Laplace t ransform h(p) of h(t) have ascissa of convergence ~, : if 

(1) x(t) = l(t) e p~ 

(2) ~ e  p > / ~  

then Lim y(t) = ft(p)e pt 

Proof :  

y(t) = h(z)eptt- o d'c 

= e p' h(z) e -p* dz 

and 

i 
t 

Lim y(t)e -p '  = Lim h ( z ) e - P ~ d r .  

The limit will exist if :~e p >/~c and is then equal to h(p) hence, 

Lim y(t) e -  p' = f~(p) . 
l ~ c t 3  

In particular,  if the half-plane of convergence of,h(p) contains the imaginary  axis then h(iv), the frequency 
response function, exists and is equal to h(p) evaluated on the imaginary  axis, that  is, 

h(iv) = [h(p)]p= iv, ,uc < 0 .  

Conversely,  h(iv) is an analytic function and its cont inuat ion  into the half-plane/~ > Pc is the ho lomorph ic  
function h(p). The function ii(p) may  also be continued into the half-plane It <-% It, but will not  be holo- 
morphic  there. W h e n / t ,  > 0 then Lh(/~)]l, i,. may be defined by cont inuat ion as above but this function 
has no meaning as a frequency response function. 
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APPENDIX II 

The Definition of Flutter Derivatives. 

The axis system referred to here is that normally used in aeroplane stability and control having the 
x-axis along the flight-direction and the z-axis downwards. 

In classical aeroelasticity a Lagrangean formulation of the equation of motion is invariably adopted. 
The result is that the flutter derivatives in the displacement mode hg(x,y) are defined as a linear com- 
bination of the generalised forces Q(iv) for the downwash fields ~h/~x and hi. Let Fo{t) be the generalised 
force in mode h~ due to the displacement hj(x,y)3(t). Then by definition (equation (2.2)) 

Fo(t ) - Q (Oh/dx, d = hi; t)+dr Q(hj, hi; t) 

and for the motion h3(x,y) tlj(t), 

Fi~(t).q:~t) = - Q  -~x ,hi;t)+-~Q(hj, hi;t) .t/j{t) 

= I -Q(~hj  1 -~ ,h , ;  t). l(t)+Q(hj, h,; t) * df__~ 

Where, in compressible flow, Q(t).l(t) shows the behaviour kll(t) at t = 0, Fo(t).t(t) will show the 
behaviour k 1~5(t) + k2 l(t) while in incompressible flow it will be k~d~(t)/dt + k26(t) + ka l(t). 
When 

r/j j , 

fro(iv ) = _ ~ (ahj , hi; iv) + iv(~ (h;, h,; iv) 
dx 

and writing 

Q(iv) = Q'(v) + ivO"(v), 

- ' " ~ " = Fij (v) + tvFi~ (v) 

(cf. equation (4.3)) the flutter derivatives are given by 

Fii (v) _ (~, ahj ~ 
~ ' = (-~-xx' hi; v ) -  v2Q '' (h j, hi; v) 
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t t  Fij (v) Q"( c3hj hi, v) + ~' h = - , ' Q ( j, hi;v). 
Ox 

If, in the expansion (2.12), the coefficients a, ~ ,  bk ~I~ refer to Q(~h/c~x, h~;p) and the coefficients a,, t2~, 
bk 12~ to O(hj, hi; p) wehave, 

fdP) = - ao " ) -  2 (a"")- a._ (2))p. 
n = l  

-t-p21n p ( - b o t l ) -  ~ (bk ~1)- bk-112))P k. 
k = l  

Quasi-steady wing theory gives the coefficients ao it), (al(1)-a0 t2)) and bo (1). In the notation of this 
paper the central result of Ref. 13 is, 

dO"(v,~ ;iv) A - 
dv ~ + o  = ~ Q ' ( v , l  ;0) (~' (1,~;0) 

where A is wing aspect ratio. Since 

Ohj 
dffij,, = dO"(~-xx, hi;iv) / , 

dv ~ + o  dv ~--,+o 

then 

dPl)' / A ~, 0hi, 
dv ,,~ +o - i~  o (T~x 

1 ;0) Q' (1,h, ;0) 

_ A P, ) (0)  P,2'(0) 
16 

if we take 

hi = 1, h 2 = x .  
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APPENDIX III 

Computation of the Characteristic Roots. 

In this appendix is outlined a computational procedure for estimating those roots of 
de t [p I - 'M-A(p) ]  = 0 having sufficiently small real part. 

(a) First approximation (equations (4.7) and (4.9)) 
For initial estimates of those roots which correspond to modes involving mainly overall aeroplane 

motion use equation (4.9). For an initial estimate of the pair of roots which correspond to a normal 
vibration mode use equation (4.7) with co equal to the reduced natural frequency at the speed considered. 

By matrix iteration or otherwise compute the corresponding roots and vectors one at a time by trans- 
lation of the estimated root to the origin : adjust A'(eJ), ~"(co) by look-up or interpolation and recompute 
the root until the difference in the imaginary part is small. If, in the subsonic ease, I?l >- I°~1 the computation 
should be stopped. If particular roots are followed through a speed range the value of the root at each 
previous speed provides an estimate for the current speed. Finally compute the characteristic rows as 
vectors of the transposed matrix and normalise with (equation (3.10)), B, = l-,~"(c~) 

(b) Second approximation (equations (4.8) and (4.10)) 
This approximation makes A(p) complex. The roots and vectors of complex matrices are usually 

computed from a real matrix of twice the dimension whose roots and vectors are the required roots and 
vectors together with their conjugates. This method is unsuitable here since there is no simple way of 
selecting those roots which belong to the appropriate expansion (4.8) in the upper or lower half-plane. 
However since ? is by the very character of the method of solution considered to be small, a perturbation 
technique is very suitable. 

Let p, = 7, + ion,, %, u, r be the first approximation root, vector and row. For supersonic flow and in 
subsonic flow w~en 17.] < I~°. we obtain, by the usual perturbation argument, the correction to p., 

P" dv %" (AIII.1) 6P" =-iT"u"r dv . . . . . .  ~. 

It follows that, for supersonic flow, when co. = 0, 6p. = 0 to this order of approximation. In subsonic 
flow when 17,[ ~> I¢o.I (and hence o),, also is small) we have, 

d~." 2 f t n r .  .O. Xt ) 
(AIII.2) 

where r.e i°. =_ 7. + io3,, 
Equations (AIII.1) and (AIII.2) need only be used for ~,J,, > 0 since 6p* = (@.)*. 

As usual, difficulties will arise with both first and second approximation s when equal or nearly equal 
roots occur: however, since calculations will normally be carried through for a range of airspeed such 
situations can be avoided by making a small change in the chosen airspeed. The perturbation technique 
usually also yields a simple expression, for the change in the characteristic vectors or rows but since this 
result depends on the biorthogonality relation and the existence of a finite dimensional vector basis, 
it does not apply here. If the vectors are required there seems no alternative to a direct calculation using 
the root already determined. 

An interesting situation arises when, in the subsonic case, the first approximation yields real negative 
roots. Let p. = - a . ,  a.  > 0 be such a root; then by equation (AIII,2), taking p. = - a .  + i0 = a.e i~, 

( d ~ "  '~ J m  6p. = 2cr.2u. T ~ . ]  v. 

v--* + 0 

since u., v. are real. If J m  6p. > 0 the second approximation shows that to the first approximation root 
- a .  corresponds the complex pair 
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( 2G, z ( d,~,'"~ ( d ~ "  
-cr"-~--Inla"lu"rk-~vJ v")- - - i2a"ZuJ  \ - ~ v ) %  (AIII.3) 

v~+O v--*+ O 

whereas if J m  tip, < 0 this root must be regarded as spurious. In fact such roots certainly exist but they 
lie on other Riemann surfaces to the one being considered and thus have no physical significance. As an 
example suppose a pair of complex roots to degenerate to a real negative pair in the first approximation 
either through a continuous change in speed or other parameter. Let the roots be - ~r,, - ~r,, with - a, < 
--O" e < --O" m where - a e  is that point at which the root locus first reached the real axis. Let Al(P) be the 
first approximation characteristic equation and let 

A2~ ) = A t ~ ) + a A I ~  ) 

be the second approximation. Then 

- 6 A I "  ( - a . ,  + 0 ) - / f iAt"  ( -  cr,, + 0) 
tip, = aA, 

dp p=_,,. 

tip,,. Now 6A(' ( - a , + 0 )  is not zero for any a > 0 and hence 

SgntA(' ( - a , , + 0 )  = sgn 6A1" ( -am,+0)  

with a similar expression for 

while 

dA1 dA1 I sgn dp p=-~. = - s g n - ~ - p  P=-% 

since there are, by assumption, no real roots of AI(p) in the interval (-a, , ,  -~rm). Hence 

sgn J m  3p, = - sgn Jm 6pm 

and one of the roots is spurious. Equation (AIII.3) gives, for small ~r, an upper bound to the imaginary 
part of such a pair of roots. We have 

[Jm p.[ = [Jm 6p.[--I2~r. 2 u, r \ ~ ] v, [ 

v~+O 

-<2o?llu.ll \ W /  IIv.II 
v~+0 

and using the normalising condition (3.10), 

___ 20"n 2 

II denotes the linear norm of a matrix. where II 

dA" 

liE- X"<0)ll 
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TABLE 1 

0 

0.1 

0.2 

0.4 

0-56 

0.58 

0.59 

0.60 

0.62 

0.64 

0.022 

- 0.742 

- 0.441 

-0 :106  

- 0.058 

- 0.055 

-0 .053 

- 0.051 

- 0.049 

- 0-047 

2-822 

2.894 

3.170 

5.132 

24.274 

51.272 

84.310 

- 73.485 

- 30.945 

-17.532 

415 
2.844 2.921 

2.152 2.223 

2-729 2.797 

5.026 5.101 

24.216 24.216 

51.217 51.151 

84.257 85-489 

- 73.536 - 74.578 

-30.994 -31.103 

-17-579 : -17.583 

Col. 2 is the real part of the Fourier transform of 0.156e-°8 it sin (0.086t-0.810) 

Col. 3 is the real part of the Fourier transform of 1.674e-o.oo53t sin (0.595t + 0-056) 

Col. 4 is the sum of cols. 2 and 3 (Eq. (5.7)) 

Col. 5 is the real part of the frequency response, Eq. (5.8) 

V = 440 ft/sec 
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