C.P. No. 269
$(18,133)$
A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL
 CURRENT PAPERS

A Note on Derivative Apparatus for the N.P.L. $9 \frac{1}{2}$ inch High Speed Tunnel

by
J. B. Bratt, B.A., B.Sc.

LONDON . HER MAJESTY'S STATIONERY OFFICE
1956

A Note on Derivative Apparatus for the IV.P.I. $9 \frac{1}{2}$-inch High Speed Tunnel
 - By -
 J. B. Bratt, B.A., B.Sc., of the Aerodynamics Division, N.P.L.

11th January. 1956

SUMMARY

A brıef description is given of new equipment for measuring derivatives on funite aspect ratio models with tranling-edge flaps in the N.P.L. $9 \frac{1}{2}$ Inch high speed tunnel. Some account is also given of considerations leading to the choice of method.

1. Introduction

A brief descraption is given in this note of new derıvative apparatus recently fitted to the N.P. L. $9 \frac{1}{2}$ in. square high speed tunnel. A selffexcitation technique is used, and the design has benefited largely from experience ganned with earlier equipment in the same tunnel. The earlier apparatus was limited to the measurement of direct pitching moment derivatives for finite aspect ratio and two-dimensional models, with a frequency paremeter ranging up to 0.07 at $\mathrm{M}=1$, whereas the new equapment has been designed to measure complete sets of derivatives relating to pitching, verticel translation and flap rotation for finite aspeot ratio models only, with frequency parameter ranging up to 0.25 at $M=1$. Consideration has been given to the possibility of adapting the equipment at a later date for the measurement of flap derivatives with tro-dimensional models and at the same time photographing the osciliatory flow pattern.

The design of derivative apparatus for measurement at high speeds is made difficult by the large aerodynamic forces involved and the high frequencies required to obtain a frequency parameter approaching full scale. In the following section some account is given of the influence of these factors in the choice of a self-excitation method for the new equipment.

2. Desion Considerations

A general pranciple relating to the measurement of wing derivatives for pitching and vertical translation states that complete sets of derıvatives can be obtaincd from measurements of pitching moment and lift for pitching oscillations about two axis positions. A design was adopted based on this principle since it led to a much simpler mechanical constriction than one in which provision was made for a vertical translation of the model and pitching about one axis only. Additional requirements for the determination of the flap derivatives were (a) measurement of the flap hinge moment and the total lift and moment on the model for flap oscillations with the wing fixed, and

Published with permission of tho Diroctor, National Physical Laboratory.
(b) measurement of the flap hange moment with the flap locked to wing and the model performing pitching oscillations for each axis position in turn.

A further consideration largely affecting the mechanical design lay in the choice between an arrangement in which a model of a complete planform is supported by a sting at the centre of the working section, and the half-model technique in which a model of half the planform is supported at the wall of the tunnel. The choice of the latter arrangement was determined mainly by the need for the maxamm ragidity in the model support in order to maintann a high stiffness in roll or vertical translation and a corresponding high natural frequency compared with the maximum driving frequency of 100 c. p.s. aimed at in the design. It was felt that a sufficiently rigid sting would have introduced considerable aerodynamic interference. A disadvantage of the half-model technique is the presence of the tunnel boundary layer at the root of the model, and it is hoped later to remove this by suction in order to investigate its effect.

The models for use with this apparatus are regarded as rigid, which implies in practice that they are very stiff and have natural frequencies large compared whth the maximum driving frequency. A high natural frequency alone is not sufficient, a pount which is illustrated by the calculation, based on constant derivatives, of the errors due to flexure in the measured derivatives for a rectangular wing. This leads to the result that for a mass-balanced model and a given frequency parameter the errors in the non-dimensional derivatives are approximately proportional to the expression

where σ is the flexural stiffness, f_{0} the flexural frequency and f the frequency of the imposed pitchıng oscillatzon. If f / f_{0} is small the errors are inversely proportional to flexural stiffness. When the modol is not mass-balanced about the axis an additional error term due to the product of inertia is introduced which is proportional to the above expression with ρ omitted.

It follows from these considerations that in order to maintan a given level of accuracy a model stiffness proportional to V^{2} is required, and with an efficient form of model construction this inmlies a similar proportionality for mass and inertia. Roughly the same argument applies to moving parts connected with the support and drive of the model, sance these partly detemine the stiffness for roll and vertical translation.

Mechanical inertia was the mam factor influencing the choice of method in this apparatus. If an inexorable forcing technique is considered, it follows from the preceding argument that for a given frequency parameter anertial reactions roughly proportional to V^{A} will be present. For any practical design allowing easy interchange of models it was found that at hagh speeds the inertial reactions were very large compared with the aerodynamic reactions, and the possibility of successfully balancung them out with a mass draven in anti-phase seemed doubtful.

The use of a spring to form a tuned system seemed more promising since this would balance out the inertial foroes if the forcing frequency were equal to the stall-eir resonnmoe frequency. The influence of
inertia in this case is through the effect of a departure from still-air resonance and for a given percentage error in frequency is approximately proportional to V^{2}. A practical example indicated that, in the worst case, in order to attain 1% accuracy in a stiffness derivative measurement the forcing frequency should not depart by more than 0.01% from the still-air resonanco frequency.

A logical development of the method of balancing an inertia with a spring is a self-excitation technique, which avolds completely the need to set frequency to a very close tolerance. In this method the tuned system is draven by an electromagnetic excater which is part of a feedback loop deriving its input from a displacement pickup oscullating with the model. The phase of the current in the exciter colls is adjusted to brang the excitang force into quadrature wath the model displacement ond thus to balance the damping forcos. As a result the system oscillates at its natural frequency, which in still air as governed by the elastac stiffness, and an the wind by the elastic plus a direct aerodynamic stiffness. The latter is proportional to the frequency difference, and although this may be very small (down to 1% of the mean), the indzvidual froquencies can easily be measured to 1 part in 10^{5}, which glves more than adequate accuracy on the dirference. The direct damping derivative may be determined from a knowledgo of the forces oxerted by the exciter colls, but in practice it 2 s simpler to measure the electrical power input and relate thes directly to the damping. Electrical losses in the exciter can be dotermined by clamping the coils and measuring the power with the same current flowing as when the system was oscillating.

4. Mechanical System

The general arrangement is show in Figs. 1 and 2. Two vibrating systems are provided one for the wang and the other for the flap, and both are mounted in a ragid rectangular frame which is tied down to an earthed structure by three force pickups. Each system consists of two rigid steel cylinders supported by crossed-spring bearings which permit axial rotation but ere very stiff for lateral displacements. A torsion bar is connected between the cylinders one of which may be clarmed to the model and the other linked to the exciter as shown in Fig. 2 . A free-free oscillation is excited uth a node between the cylunders.

Experience with earlier equipment had suggested this arrangonent for two reasons. In the first place, if one end of the torsion bar is clamped to earth and the excitation is applied at the model end, very large reactions are transmitted to the earthed structure when using the stiff torsion bars requared to obtain high frequencies, and this gives rise to heavy apparatus damping. Secondly, attachment of the exciter at the model end increases inertia and thus reduces frequency for a given elastic stiffness. It may be remarked that at the haghest frequencies the torsion bars are working falrly close to the fatigue limit at the maximum working amplitude of 2°.

The object in providing separate vibratory systems for wing and flap is to keep down the inertia and elastic stiffness in the flap system In view of the small aerodynamic stiffness forces to be measured. Since the flap is supported by the wing at the hinge, rigidity requirements in the drive are not so stringent.

A relatively weak C-spring is connected between each cylinder at the model end and the earthed structure in order to prevent divergence of the system, and provision is made for dusplacing the carthed end of tilus spring for the purpose of balancing out mean aerodynamic moments when working at incidence.

Measurement of the cross-derivatives is ef iected by the three frame plokups, which, in the case where the wing is oscillating with the flap locked to it, give lift and incudentally rolling moment. When the flap is oscillated the wing is clamped to the frane, and the pickups then gave lift, pitching moment and rolling moment.

The frame and vibratory systoms are enclosed in an air-tight box to prevent flow into the tumnel, and the rods linking up with the exciter coils pass through seals formed by flexible metal bellows.

A range of frequency from 25 to 100 c.p.s. is provided by sets of torsion bars.

3. Electrical Equapment

(i) Pickups

The whole of the pickup system is based on the F.M. equapment supplied by Southern Instruments. Displacement pickups are fitted to both wing and flap cylinders, and consist of a brass slug movang in the field of a small coil enclosed in a dust core shell. The coil is shunted across the F.M. oscillator inductance. A sensitivity of 2 volts per degree displacemont is obtauned.

A capacity type force pickup has been developed for the frame (Fig.3). It consists essentially of two annular diaphragms placed in tendem to give a parallel motion to the centre boss to which the load is applied. The boss forms the moving electrode of a condenser which is included in the F.J. oscillator circuit. An output of 0.4 volt per microinch displacement is obtazned. A diaphragm stiffness giving one microinch per 1 b load is sufficzent to give the frame system an adequate frequency response.

A small capacity pickup based on the bending of a short beam has been constructed for measuring flap hange moments with the wing oscallatang. This requires the flap to be mass-balanced.

The calibration of the F.l. electronics for all these pickups can be rapialy checked by switching anto the F.M. oscallator circuit a small capacity which is known to be equivalent to a certain displacement or force.

(ii) Amolitude Measurement

The signals from the displacement packups provide a measure of amplitude as well as formong the input to the feedback loop. They are measured with a very stable feedback amplifier (antrinsic gain 3500, gain with feedback 11) followed by a crystal diode bridge and D.C. microanmeter.

(iii)
 Wattmeter Measurements

Both driving power and current, and the components of pickup outputs, are measured with a dynamometer wattmeter proceded by buffer amplifiers. These amplifiers have been developed specially for this purpose and are based on circuits employing a large amount of negative feedback of the same order as in the anplitude amplifier but with a much greator current output. Although these amplifiers are A.C. coupled, the phase-shift through each over the frequency range of the tests is not more than $1 / 20$ degree.

The watmeter is also used for setting the driving current in quadrature with the dasplacement by taking signals from the
displacement pickup and from a rosistance in series with the exciter coils and adjusting the phase of the current to gave a null reading.

In moasurang the in- and out-of-phase components of force pickup outputs, the disvlacement plckups provide in-phase reference signals, whilst quadrature ref'erence signals are obtanned from these whth the and of a phase shifter previously adjusted with the aid of the watmeter.

(iv) Freduency Moasurement

Frequency is measured with two Dekatron counters and an arrangement of electronic gates made by Labgear. The slgnal from a displacement pickup is amplified and pulsed at a cirtain voltage level. When the operation commences a signal pulse opens gates to the counters, one of which counts signal pulses and the other 1000 cycle pulses from the N.P.I. standard frequency. When 10^{n} signal pulses have been counted a pulse is produced which closes the gate to the standard frequency comber to leave a reading which represents the time in milliseconds for 10^{n} signal cycles. Integral values of n may be set up to a maximu of 5 .

(v) Drive and Control (Fig.4)

The current to the oxciter coils is provided by a straightforward push-pull amplifier whth a moderate amount of feedback and a maxumum output of 17 watts. A tunable twan-T filter is ancorporated for removing signals which might excite the lower frequency mode of the vibiatory systems, i.e., with both cylinders oscillating in phase under the constrant of the C-spring and bearing springs.

To maintain a constant stable amplıtude a control device is provided which automatically adjusts the driving power to changes in danping. Its action is illustratod in Fig.5. The signal from the displacement pickup is amplified and then squared by a trigger curcuit to give a constant amplitude square wave of the same frequency and phase as the invut. A controllable fraction of the input is subtracted from the square wave and harmonics are removed vith a tunable low-pass filter to leave a signal whach is fed into the driving anmifier. With thas arrangoment a very smoll increase in amplitude can be made to give a large decrease in driving power, and thus to stabilize the motion. The device is much more rapid in action than conventional automatic gain controls which involve relatively large time constants for smoothing the D.C. voltage applied to the grid of the variable-mu valve.

Fig.I.

Fig 2.

General arrangement - End view

Capacity force pickup.

Control system

Crown copynght reserved
Printed and published by Her Majesty's Stationery Opfice
To be purchased from
York House, Kıngsway, London w C 2
423 Oxford Street, London w.1
P.O Box 569 , London s.e.i
13 A Castle Street, Edinburgh 2
109 St. Mary Street, Cardfff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Brrmungham 3
8o Chichester Street, Belfast
or through any bookseller

