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Spring Tabs on Frise Ailerons 
By 

F. B. BAKER, M.A. 

of Messrs. Hand ley  Page, Ltd. 

This paper was published in Aircraft E~giraeeri~g, Vol. XIX,  No. 224, pp. 314-319, October, 1947, 
Vol. XIX,  No. 225, pp. 353-358, November, 1947, and Vol. XIX,  No. 226, pp. 380-389, 
December, 1947. 

When designing spring tab lay-outs for control surfaces, it is usual to assume an average value 
of bl and b~. In the case of Frise ailerons, the hinge-moment curve is often so irregular that  the 
assumption of a constant b, may lead to serious error. 

Before using the hinge-moment curves obtained in a wind tunnel, they  must be modified for 
the effect of response and twist. Across these craves are drawn certain straight lines, whose 
equations are determined from the parameters of the control surface circuit and the torsion bar 
or spring to be used. The intersection of line and curve determines the control surface and tab 
angles corresponding to a given setting of the pilot's control. 

° The paper considers the effect of neglecting co and ca, in calculations; and also discusses the 
effect of changes in follow-up ratio, spring rate, and b 5. Since " lost motion " has the effect of 
reducing the actual maximum aileron angle, formulae are determined for deciding what should 
be the maximum angle with the spring locked; and also explains why separate trim tabs are 
preferable to those which are combined with spring tabs. 

The latter part  of the paper deals with the question of what rate of roll can be expected in 
practice from a given aileron setting at  various speeds. Once again, the curve for l~ is not 
assumed to be a straight line, since its slope varies considerably at large aileron angles. The 
liability of "peaking" is discussed; and also the effect of friction, and stretching of the control 
rods or wires. The formulae developed are equally applicable to elevators and rudders, and 
have been successfully used in practice for designing spring tabs for actual aircraft. 



Why Shear Webs ? 
By 

H.  L. Cox 

This paper was published in full in the Journal of the Royal Aeronautical Society, Vol. 52, p. 759, 
November, 1948. 

The use of progressive taper as a means to free the web of a cantilever from shear stress due to 
bending loads is described; but at tention is drawn to the second function of the web to stabilise 
the compression flange. The limitation imposed in respect of this second function by  the 
liability of the web to buckle under lateial  compression is examined, and a means to avoid this 
limitation by curving the whole cantilever is indicated. 

The theoretical conclusions are supported by a series of tests on cardboard and paper models; 
it is shown that  by suitably curving a cantilever instabili ty of the compression flange may be 
prevented, so that  the strength of the cantilever, limited now only by the tensile strength of the 
tension flange, may be at least doubled. 
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A Boundary Value Problem for a Hyperbolic Differential Equation Arising in 
the Theory of the Non-uniform Supersonic Motion of an Aerofoil 

By 

O. TODD, M.A,, D.Phil .  

This paper was published in full in the Courant Anniversary Volume. Interscience Publishers Inc. 
New York. 1948. 

A solution of the linearised equation for the velocity potential Of a non-uniform supersonic 
two-dimensional motion is obtained in terms of its normal derivative along the aerofoil. The 
problem is treated as a Cauchy problem since the values of the potential along the aerofoil can be 
eliminated by a reflexion. The expression coincides with a formula 0I C. Possio. The treatment 
is a generalisation of a procedure used by G. Temple and H. A. John in the case of harmonic 
motion. 
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A Study by a Double-refraction Method of the Development of Turbulence 
in a Long Circular Tube 

By 

A. M. BINNIE and J. s. FowLF,~ 

(Communicated by SII~ GEOFFREY TaYLOt~ F.R.S.--Received to 5th March, 1947. ) 

This paper was published in full in Proceedings of the Royal Society, A, Volume 192, 1947. 

A streaming double-refraction method was employed to examine the flow in a long glass tube 
of a very weak solution of benzopurpnrin in water. Two kinds of turbulent entry were used: 
with one, laminar flow at a Reynolds number of about 1900 was observed at cross-sections more 
than 120 diameters lrom the ei~try ; with the other the corresponding distance was 90 diameters. 
The nature of the breakdown of laminar flow at a cross-section was found to depend upon the 
kind of entry and upon the distance of the cross-section from the inlet. The development of 
complete turbulence at various cross-sections was also investigated. 
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Notes on the Linearised Equat ion for the Ve loc i ty  Potent ial  o f  the Supersonic 
F low of  a Compress ib le  F lu id  

By 

R. K. TEMPEST and L. ROSZNHmD 

This paper  was published in full in the Proceedings of the Lo~don Mathematical Society, Vol. 51, 
pp. 197-214 (1949). 

The paper deals with solutions of the  linearised differential equat ion for the  velocity potent ia l  
of a compressible fluid in s teady supersonic motion. 

The equat ion itself is identical  in form with tha t  associated with two-dimensional  wave motion.  
Thus known solutions of the two-dimensional  wave equat ion may  be in terpre ted  in terms of 
supersonic flow, certain ones emphasizing part icular  characteristics of flows more readily than  
others. Some of the  s0Iutions which have been used by  various investigators are brought  
together  and are shown to be special cases of more general solutions. Two new types of normal  
solution, which are of special interest  and  are appropriate  to special systems of co-ordinates, are 
developed. 

The linearised equat ion for the  velocity potent ia l  of a compressible fluid in supersonic flow is 

ax~ + ~y~ az-~ . . . . . . . . . . . . .  (1) 

I t  is assumed tha t  the  depar ture  from a uniform stream, of Mach number  M, in the  z-direction is 
small, and tha t  cd --= M s --  1. For supersonic flow cd > O. A general solution of (1) is 

¢ = f(lx + my + ~z) . . . . . . . . . . . .  (2) 
where f is an arbi trary funct ion and  l 2 -[- m ~ --  ~¢~ = 0. This was the  basis of Schlichting's 
a t t empt  (1)to put  forward a theory  of supersonic flight in which he considered a plane-wave 
contr ibut ion together  with a circulation round a wing profile to be the correct in terpreta t ion of 
streamlined supersoni c flow. 

In  cylindrical co-ordinates i¢, z, ~0), normal  solutions exist in the forms 

¢ = ~ .  A,, .... cosh -~. z @ ~,~ cos_(k,,~f + ~1,,~) Zl~,,(ifl,r) 
' . . . . .  . . . . .  

4, - -  ~ A,,, ,, cos z + ~:~ cos (k,,,~ + r/,,3 Zk,.(f3,,r) 

where Z~,,,(Tr) is a linear combinat ion of the  two Bessel functions J~,,,(yr) and Yk,,(yr). Nolma l  
solutions in teIms of Legen&e functions exist as 

C ~ m~ l "~ \ • • (o = ~ ,  A,,~(R"~ + B,~R-('~ -'-l)(P,f',(/~) + ,,,,V,,~ ~/~;; cos (m,~ + ~,) (4) 
P,q 

where 
R = ~ - f f z  ~ -  ~" r~) ~, ff = "(z ~ -  ~.~r~) -~-. 

In  the  case of l ine-symmetry,  with velocity constant  on the cone ff = constant,  the  solution is 

¢ = R{aP. ( f f )  + b0,( f f ) }  . . . . . . . . . . . . . .  (5) 

which is recognisable as the Karman-Moore potent ia l  (2) for high-speed flow past  a cone. 
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Ward/~) used a variat ion of Whi t taker ' s  solution of Laplace's equat ion (Ref. 4, p. 388) to obtain 
an expression for the  potent ia l  for flow over wings bounded  by straight  lines. This solution is 

Fcosh--  1 ( p -  1 ) 

¢ = --~o,~-~-~ ,~:o (z/~)'~ (1 - p cosh l)'~f,~/~) de, . . . . . .  (6) 

where p - -  c~r/z. Karman  and Moore's solution/'-/corresponds to the  special case of (6) for which 

L ~ )  = - ½a~ "~ 
C 

A(t) = o, n >~ 2 J 
(7) 

Reference is also made  to the  well-known source and  doublet  potentials  which have  been defined 
by  PrantP  and Tsien 6 and  also to Robinson's  adapta t ion  of a solution of the  linearised equat ion 
in terms of curvilinear co-ordinates 7. The basis of this type of solution will be found in a work 
by Hobson s. 

If the  potent ia l  is independent  of % the linearised equat ion in co-ordinates (z, 0 --  t a n -  ~ r)z is 

cos20(cos~0 -- ~ sin~#)¢o~ + cos3~(sin#) :~ (cos 2v~ --  2cd ~ s in~)¢~ 

.4- 2 ~ z ( s i n 0  cosO)¢o, = ¢2z~¢= . . . . .  (8) 

Solutions of (8) are useful in considering potentials  which are symmetr ica l  about  the  z-axis, and  
cot v~ 

- -  normal  eigen-values. If t - -  c~ ' part icularly simple normal  solutions exist for certain 

solutions of (8) exist as 

¢ = z '~ t-" F { ~ -  ~ ,  - ½~ ; ~" ~-, t 2} 

and 
¢ = z " t  - ' ( ' -~ )F( -$ (n .  - -  1),--~(n, --1) ' ,  ~3", t~} 

j> . . . . . .  (9) 

These are regular functions if Ill < 1, and therefore represent  flows outside the  Mach cone, t = 1. 
Correspondingly, if ~. tan  v~ = h, a solution suitable for power series approximat ion  for small v~ 
is found to be 

¢ = z  '~ F { -  ½n, - ½ ( n  - 1) 1; k s} . . . . . . . . . . .  (10) 
i 

The expansion of the  solution in terms of Legendre functions (4) is equivalent  to Murphy's  
expansion (Ref. 4, p. 311) and  the  Whi t t aker  integral  solution is equivalent  to Barne 's  integral  
representat ion of the  hype rgeomet r i c /unc t ion  (Ref. 4, p. 286). 

Solutions are developed which  converge rapidly in the  region of the  Mach cone. For restr icted 
values of n these solutions exist in the  form of a product  of a power of (1 -- t ~) and a hypergeometr ic  
function of a rgument  (1 --  t~); in which case 

¢ = (1 - -  t=) 1/2 F{½,  ½; ~ ;  (1 - -  t=)} -] 
a n d  }. . . . . . . . .  (11)  

3 . ~ .  ( 1 -  t~)} .1 ¢ = z(1 - -  t~) 3/~ F { ~ ,  ~., ~ ,  

Other  solutions are obta ined in the  form 

¢ = z ' ~ t - ~ F ( ½ c ,  ½c; ( ½ - - n ) ;  (1 --  t~)} . . . .  

when c = n or n --  1 ; the  degenerate  solutions 

¢ = sin -1 t and ¢ = ~ ' { t - l ' v / - 1  - -  t 2 - -  C O S  - 1  t }  , ,  

are also noted.  

(12) 

(13)  
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In the region immedia te ly  inside the  Mach cone, where (1 --  k ") is small and positive, solutions 
involving functions of small a rgument  are 

= ~'0 F { -  ½~, - ½(~ - 1); (1 _ ~ ) ;  (1 - k=)} 7 
a n d  }- . .  (14) 

= z-(1 - 1~)o+~/~ F{½(n + 1), ½(,~ + 2) ;  (~ + ~);  (1 - k ~) J 

Finally, solutions of the linearised equat ion are obtained in terms of wedge co-ordinates 
(z, 0 = tan -~ y/z) for two-dimensional  flow, in which case the  linearised equat ion assumes the 
form 

cos"~ (cos2v ~ -- cdsin~#)~boo --  2(1 + ~)(sinv~ cos3v~)~e 

+ 2~"z (sinv~ cosv~)~o, = ~"z"~=. . . . .  (15) 

With  the same nota t ion  as before, solutions exist in the  forms 

and " • . . . . .  (16) 

f = ~"t('~ -~) F { -  ~(,~ - 1 ) , -  ~ ( ~  - 2 ) ;  ~; t~} 

outside the Mach angle, and as 

~b = z  ~ F { -  { n , - - ½ ( n - -  1); ½; k ~} "~ 
and ~ . . . . . .  (17) 

3 • = ~-k F { - -  ½(~ - 1), - ½(~ - 2 ) ;  ~, ~) 

inside the  Mach angle. 

As in the case of flow symmetr ical  about  a line, solutions are developed tot series approximat ion 
in the  immedia te  neighbourhood of the Mach angle. 

The lat ter  solutions enable mathemat ica l  models to be built, of supersonic flow past  bodies with 
two-dimensional  symmetry .  
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Technique of the Step-by-Step Integration of Ordinary Differential 
By 

W. J. DUNCAN, D.Sc., F.R.S. 
Professor of Aerodynamics at the College of Aeronautics, Cranfield. 

Equations 

This paper was published in full in the Philos@hical Magazine, Set. 7, Vol. 39, p. 493, July, 1948 
(substantially the same as Report No. 4 of the College of Aeronautics). 

In Part  I step-by-step methods for the solution of one-point boundary problems are examined 
oriticaUy and emphasis is placed on the dependence of the error on the number ¢~ of equal steps 
used for a given range of the independent variable. When the dominant term in the error at the 
end of the range is proportional to the inverse k ~I' power of ~ the process of integration is said to 
be of index k. The index of currently nsed processes ranges from 1 in the original method of 
Euler to 4 in that  due to Runge and Kutta.  When the index of the process used is known and 
when results have been obtained for the same range of integration with 2 or more values of ~, the 
errors can be assessed and partially corrected. This process of extrapolation towards the limit 
of the step-by-step calculation appears to have been given first by L. F. Richardson. The 
method of assessment andcorrect ion is illustrated by examples. I t  is suggested that  an estimate 
or guess at the number of intervals required for the at ta inment  of results of given accuracy should 
be made, and that  the calculation should first be made with say half this number of intervals 
and then with the full number. I t  is thought that  processes having the index 2 or 3 wilt be 
found usually to be most advantageous. Attention is drawn to the advantages in certain cases 
of using an analytical representation oI the solution in each interval for the interval can then 
be substantially lengthened without loss of accuracy. This is true, in particular, when the 
differential equation or equations can be treated as linear with constant coefficients within 
each interval. All the methods described are applicable to linear and non-linear equations of 
any order and to sets of these. 

In Part  I I  methods for the nnmerical integration of ordinary differential equations are 
classified and very briefly reviewed. The first division is into purely numerical or digital and non- 
digital methods, the latter including analogic and graphical methods. Digital methods are 
classified as progressive and holic or unitary. In the latter the whole range ot integration is 
considered at once; examples are provided by the methods of Rayleigh-Ritz and of Galerkin. 
The classification is carried further in the paper. 
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Control Reversal Effects on Sweptback Wings 
~y 

H. T~p~TON 

This paper was published in full in The Aero~a~¢ica{ (~uarteHy, May, 1949. 

Aileron reversal effects on sweptback wings in general and elevon reversal effects on tailless 
sweptback wings in particular are discussed on a non-mathematical basis, at tention being confined 
to the orthodox flap type of control, The main purpose of the paper is to convey in the simplest 
terms possible a clear physical picture of the conditions producing loss of control power, emphasis 
being natural ly laid upon the part  played by structural wing distortion. 

The nature of the structural distortions occurring on a sweptback wing are discussed, with 
particular reference to alternative rib arrangements. For the purpose of the paper, at tention is 
confined to the overall wash-out prod uced by flexure and torsion, assuming the ribs to be infinitely 
stiff, and to the change ot camber produced by flexure when the ribs are normal to the spar. 

As a general introduction to the discussion on aileron reversal effects, the definition of 
"aileron power" in relation to the actual dynamic condition of rolling is discussed at some length, 
Three conditions are post ulated ; the initial condition, when rolling velocity is zero and accelera- 
tion a maximum; the static condition, in which the wing is restrained at the centre and both 
velocity and acceleration are therefore zero ; and the steady rolling condition, when the rolling 
velocity is a maximum and the acceleration zero. At reversal all three conditions become one 
and the same. The loads and distortions occurring in the static condition are considered in 
some detail, and it is shown that  the ratio of flexural to torsional distortion decreases with speed. 
Additional effects discussed are those relating to flexnral axis position, the additional inertia 
and damping loads in the initial and steady rolling conditions, and the camber change occurring 
with ribs normal to the spar. It  is anticipated that  flexural distortion should have less influence 
in the initial and steady rolling conditions than in the static condition. 

Elevon reversal effects on a tailless sweptback wing, defined as the control reversal effects 
associated with the use of the elevon as an elevator, are discussed along similar lines. As with 
the aileron, a complete representation of devon power would be based on a realistic dynamic 
condition, but for the present purpose it is sufficient to consider the elevon as a pitching moment 
producer in a static condition analogous to that  used for the representation of ailerdn power. 
The loads and distortions consequent upon devon application in the static condition are considered 
and interesting comparisons drawn with the aileron case. It  is deduced that  for a given tailless 
aeroplane on which the same control is used as aileron and elevator, the elevon reversai speed 
must be greater than the aileron reversal speed. Also, the effect of flexural distortion near the 
reversal condition is to augment devon power and therefore to delay reversal. I t  is therefore 
conceivable tha t  if the flexural stiffness is low enough reversal might be delayed indefinitely. 
The effects of flexural axis position, camber change, and inertia loads in the dynamic condition 
are briefly touched upon, as in the case of the aileron. 

Apart from elevon power in relation to manoeuvrabil i ty there is also the question of providing 
trim in the steady flight condition. Though the elevon reversal speed may be well above the 
maximum speed, it is possible that  the elevon angle required for trim may be seriously affected 
by distortion of the structure. This involves consideration of all the loads acting upon the 
structure, not merely those occasioned by devon application. Loads due to initial wing camber 
and washout (that is, of the undistorted wing) may have a major effect on the trim condition 
and upon the distortions produced. 
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For the quantitative estimation of control reversal effects a method is presented in the 
Appendix to the paper. The net wash-in due to distortion is expressed as a function of the 
non-dimensional spanwise parameter z in  the form of alinear term plus a Fourier series 

0 = aoZ + E a, sin n a z ,  

the linear term giving the total  wash-in (root to tip) and the Fourier series modifying the spanwise 
distribution. For a given speed and control surface angle in the static condition the coefficients 
an (including ao) are determined from a set of equations linear in a, representing the equilibrium 
conditions at a number of sections along the wing. For the trim condition on a tailless aeroplane 
an additional equation representing overall equilibrium in pitch provides a solution for the 
coefficients a,, and the devon angle. In the same way, overall equilibrium in roll provides an 
additional equation for net roiling moment coefficient and rolling'velocity respectively in the 
initial and steady rolling conditions for the aileron. For the reversal condition appropriate to 
either aileron or elevon the equations are non-linear in a,, and speed V, but are reducible to a 
polynomial in V 2 of degree equal to the number of coefficients a,,. If direct solution of the 
polynomial proves too cumbersome an indirect solution can be obtained by solving for the static 
condition over a range of arbitrary speeds, from which the reversal condition follows by 
interpolation. 

Calculated results for a hypothetical  wing are given to illustrate certain features of interest. 
Convergence with respect to the number of terms taken in the series expression for 0, obviously 
an important  feature of the method, is demonstrated by calculated values of aileron reversal speed 
and devon angle required to trim using one to five terms in the series ior 0. Convergence in respect 
of aileron reversal speed is good, two terms (a0 and al) being sufficient : for elevon angle to trim, 
the two-term solution is about 10 per cent in error and three or possibly four terms are required 
for a close approximation. Values of the rolling moment coefficient in the static condition 
calculated by the one-term (a0) solution, which for aileron reversal speed is only 4 per cent in error, 
are compared with the values calculated by a more standard semi-rigid method using a single 
linear mode for the wash-in due to distortion. The semi-rigid method gives a good approximation 
over the first two-thirds of the speed range, but the reversal speed is underestimated by about 
17 per cent. 

The effects of certain design parameters on the elevon reversal characteristics are illustrated 
by calculated values of elevon angle to trim and of elevon reversal speed for a range of values of 
the parameters in question. A forward flexural axis, low aspect ratio, small sweepback, low wing 
loading, high overall stiffness, and a high ratio of torsional to flexural stiffness are all shown to be 
beneficial. Certain conclusions arrived at qualitatively in the main part of the paper are confirmed 
by the calculations. 
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The Radial Focusing Effect in Axially-symmetrical Supersonic Flow 
~y 

R. E. M~YEa 
T h e  Depar tment  of Mathematics, The  Universi ty of Manchester.  

This paper was published in full in the Quarterly Journal of Mechanics and Applied Mathematics, 
Vol. 1, Part  4, December, 1948. 

The mathematical  significance of the characteristics lies in the fact that  they are the lines on 
which normal derivatives of the velocity components can be discontinuous. Physically speaking, 
they are the carriers of disturbances. The paper is a contribution to the Study of the laws of 
growth and decay of the disturbances along the Mach lines. 

I t  is shown that  in the case of an irrotational, isentropic, steady supersonic flow of a perfect 
gas, involving two independent variables, the first order derivatives, in the direction normal to 
a Mach line, of the velocity components satisfy each a first order, ordinary, non-linear differential 
equation along tha t  Mach line. The variation of these derivatives is closely connected with the 
convergence and divergence of the Mach lines. A system of generalised orthogonal co-ordinates, 
c~, fi, is introduced, with h e dfi denoting the element of length along the lines ~ = cons~. If the 
lines fi = const, are identified with one of the Mach line families, then h~ is proportional to the 
normal distance between two neighbouring Mach lines of that  family and satisfies a second order, 
ordinary, linear, homogeneous differential equation along any  one Mach line of the family. 

These focusing equations are integrated in the special case of a straigh t Mach line in axially- 
symmetrical flow on which the velocity is constant. Such a Mach line occurs, e.g., at the entry 
of a diffuser with uniform axial flow upstream, provided the slope of the wall is initially zero. 
It  is found that  

h ~ =  (c + @7)/(1-t- c) ( i f h ~ =  1 w h e n r =  1) 

where r is the distance from the axis, and c a constant which can be calculated from the initial 
radius of curvature, Rsl, of the meridian section of the wall. Now, h e = 0 implies a limit line 
and hence a shockwave, and thus a necessary condition for shock-free flow in the entry of a diffuser 
can be deduced. I t  is 

> = 1) Mo% o 1), 

where M0 denotes the upstream Mace number (the initial radius of the diffuser is chosen as unit 
of length). For a two-dimensional diffuser of width 2b, the coiresponding condition is 

R~ > (r = 1)Mo 4 b/2(Mo ~ -  1). 

The integration of the focusing equations also leads to the result that  the rate of change of any 
velocity component per unit length in the direction normal to the Mach line is proportional to 

r- 12(c = 

On the other hand, the change along the normal, from the Mach line to a neighbouring one, is 
proportional to r -I/2. This distinction is the main improvement which Non-Linear Theory brings 
about in comparison with Linear Theory which leads to the r-1/2-1aw but neglects the curvature 
of the Mach lines. 
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t, 

The focusing laws are used to calculate the velocity distribution in the entry of a diffuser and 
it is shown that Focusing Theory explains the surprising features of this distribution which were 
first noticed by Tupper at the instance of his numerical investigation based on Linear Theory. 

The focusing laws show also that a discontinuity of the stream-line curvature at the entry of 
a diffuser leads to a singularity of the field of flow where the leading Mach line of the diffuser meets 
the axis. This singularity is, however, not connected with the appearance of a limit line and its 
nature is investigated on Linear Theory. The perturbation potential which describes the field 

of flow can be written in the form 

- -  (x + cos u) du, 

wnere x is measured  downst ream from the  singular point,  v 3 - - - - M o  ~ -  1, ~ ~ - !  when 
(x + ~r cos u) >~ 0, and  ~ = 0 otherwise. 

The most  striking feature of the  singulari ty is tha t  the second derivatives of 6 are proport ional  

to r -1/~ log p, near p = 0, 

where p ---- (~r  - -  x) /2c~r.  That  means, on Linear  Theory  the  disturbance, i .e . ,  discont inui ty  of 
the  velocity derivatives,  is reflected from the  axis not  as a discont inui ty  but  as a logari thmic 

singularity. 
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On Source and Vortex Distributions in the Linearised Theory of Steady 
Supersonic Flow 

By 

A. RoBiNsol~ 

This paper was published in full in the Quarterly Jour~¢al of Mecha~Jics arid Applied Mathematics, 
Vol. 1, 1948; College of Aeronautics Report No. 9, October, 1947. 

Various particular solutions of the lineared equation of steady supersonic flow are considered 
with a view to their application to the flow round aerofoils and other bodies. General line, 
surface, and volume distributions of supersonic sources and doublets are considered, as well as 
similar distributions of vorticity. Results are given corresponding to the theorems of Gauss (on 
total  normal intensity) and of Poisson in classical potential theory. Formulae are derived for 
the field of flow due to an isolated re-entrant vortex travelling at steady supersonic velocity; 
they constitute a counterpart to the law of Biot-Savart. 

Two mathematical ideas are required to carry out the analysis. One is the formal introduction 

of the operator Vh/5 ( 'hyperbolic nabla of index/5 ')  defined b y ( - -  /5 2 ~ O ~) ~x' ~y' ~ which is used 

in conjunction with the ordinary vector operator V = g-x' 0y '  g} • The second concept is that  

of the finite part  of an infinite integral due to Hadamard and others. I t  is pointed out that  
in spite of the apparent artificiality of the definition of the finite part, this concept can be 
used to describe real physical quantities, such as the flow across a surface surrounding an 
isolated source. 

An application of the theory is given in College of Aeronautics Report No. 10. 
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Assessment of Errors in Approximate Solutions of Differential Equations 
By 

w . J .  DUNCAN, D.Sc., F.R.S.  

Professor of Aerodynamics at the College of Aeronautics, Cranfield. 

This paper was published in full ill the Quarterly Jour~¢al of Mecha~,ics c~d Afl~lied Mathematics, 
Vol 1, p. 470, December, 1948. (Substantiall_y the same as Report No. 13 of the College of 
Aeronautics.) 

The paper discusses three particular methods, two of which apply to linear partial differential 
equations, while the third applies to linear o r  non-linear ordinary differential equations and is 
treated more fully in the paper A.R.C. 10,526 of which an abstract is given separately. When the 
Green's function of a linear partial  differential problem is one-signed, as is true in many important  
cases, strict upper and lower bounds to the error in an approximate solution can he assigned when 
the absolute maximum and minimum values of the residual have been found. The residual is 
defined as the value of the differential expression for the approximate solution which is zero for the 
exact solution. I t  is shown that  the Green's function is necessarily negative for Poisson's equation 
in the region interior to a closed surface or curve on which the solution vanishes. This method of 
assessment has been successfully applied to a number of problems arising in the theory of elasticity. 
The error for a linear partial differential problem can also be expressed approximately as an 
integral containing the residual when an approximation to the Green s function is known. " 
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Notes on The Linear Theory of Incompressible Flow round 
Swept back Wings at Zero Lift 

By 
F. URSS, LL 

Symmetrical 

This paper was published in full in The Aeronautical Quarterly, Vol, 1 (1949) p. 101. 

A derivation is given of the linearised equations of motion Green's theorem o n  potential 
functions leads from these equations to the method of sources, whereby the pressure is expressed 
as a surface integral extended bver the wing. For points on the wing the principal value in some 
sense of the surface integral must be taken. T o  this must be added a line integral depending on 
the definition of the principal value. When the swept back wing consists of two equal cylindrical 
surfaces joined at an angle an integral relation can be derived connecting the pressure distribution 
along the centre section and the profile; this relation is due to Neumark. When the pressure 
distribution is given an integral equation for the profile is obtained which can be solved 
explicitly, but care is required in prescribing the pressure near the leading edge if geometrically 
impossible wings are to be avoided. When the wing consists of two equal cylinders joined at an 
angle the wing plan has a discontinuity in gradient near the nose ; hut if the wing plan is assumed 
to have large but finite curvature near the nose the pressure on the wing is not greatly changed. 

I t  is next shown that  it is not possible to design wings with isobars kinked in the centre, unless 
suction slots or similar devices are used. Finally it is proved that  there may be no wing or one 
wing with a given pressure distribution but that  there cannot be more than one. 
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Flutter of Systems with Many Freedoms 
By 

Professor W. J. DUNCAN, D.Sc., F.R.S. 

This paper was published in full in The Aero~auticol Quarterly, Vol I, page 59, May, 1949. 

The aim of the paper is to discuss methods for calculating critical flutter speeds and the nature 
of the motion at these speeds for systems with a large number of degrees of freedom. This problem 
is becoming increasingly important  since it is now recognised that  reliable estimates of critical 
speeds can, in many instances, only be made when many independent kinds of motion of the 
structure are admitted. However, the labour in the calculations increases exceedingly rapidly 
as the number of degrees of freedom is increased. Hence two principal problems arise : - -  

(a) The choice of a minimum set of dynamical co-ordinates or degrees of freedom which leads 
to calculated results of adequate accuracy. 

(b) The choice of the methods of conducting the calculations after the dynamical co-ordinates 
have been chosen. 

These problems are considered separately in Parts I and II  of the paper. 

I t  is concluded that  a particular freedom F must be retained when the balance of energy at a 
critical flutter speed is sensitive to its inclusion, unless it can be shown that  the amplitude of F is 
very small. This amplitude will be very small when one or both of the following conditions is 
satisfied : 

(a) The coupling terms in the Lagrangian dynamical equation corresponding to F are all very 
s m a l l .  

(b) The direct impedance for F at the critical flutter speed and for the flutter frequency is 
very large. 

The equation of energy for any number of freedoms is reduced to a convenient form showing 
explicitly the influence of the phase relations of the motions. I t  is shown that  large skew- 
symmetric components in the aerodynamic stiffnesses will result in a large intake of energy when 
the phase relations of the motion are ±avourable for this. Hence dynamical co-ordinates giving 
rise to such aerodynamic stiffnesses mast  be scrutinised with special care. 

Some simple illustrative applications given in the paper support the validity of the proposed 
method of selecting co-ordinates, but its general usefulness can only be judged on the results of 
extended trials. "In any event, it is hoped that  the analysis of the flutter problem given in this 
paper will contribute towards a better understanding of the physics of flutter. 

Attention is drawn to the usefulness of comparing the various aerodynamic couplings with the 
corresponding inertial couplings, since this may suffice to show that  the former are small. 

Inverse methods appear to be the most advantageous for the calculation of critical flutter speeds 
when there are many freedoms. 

There are a few known special cases where "exact" calculations of critical flutter speeds can be 
made for elastic continuous systems having infinitely many degrees of freedom. Such systems 
throw much light on the general problem of the choice of freedoms and they are considered briefly 
in the paper. 
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