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Summary. 
This Report gives a description of an extension to wings oscillating at general frequencies of Multhopp's 

lifting-surface theory for wings in steady subsonic flow. 
This particular variant of the 'kernel function' method is published here because it has been used for 

many years in Aerodynamics Division, N.P.L., and has been the method used to provide results in a 
number of papers already published. 
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Detachable Abstract Cards 

1. Introduction. 
This Report contains a description of a method of calculating the aerodynamic forces on a wing 

oscillating in a subsonic stream. The method, which has been used for some years in the Aerodynamics 
Division of the National Physical Laboratory, is of the 'collocation' or 'kernel function' type, involving 
a numerical solution of the integral equation of linearised theory connecting the lift and upwash distri- 
butions. It is in principle the same as the collocation methods of tackling the same problem which have 
been put forward by other authors both in this country and elsewhere, and have been much used in 
government establishments and the aircraft industry. (See, for example, Refs. 1 to 3.) Nevertheless it 
was thought ~orthwhile to publish the details of this particular variation since it has a few distinctive 
features, and moreover values calculated by it have been quoted elsewhere (Refs. 4 and 5). 

The method is essentially an extension to frequency parameters which are not small of that proposed 
for steady flight by Multhopp 6 and extended to oscillating flight at small frequency parameters by 
Garner 1. The dis~bution of solving points is the same as that in Multhopp's original treatment; although 
this distribution was developed for steady flow at low Mach numbers it seems to apply satisfactorily to 
high frequency oscillations in high subsonic flow. The use of an electronic computer is essential for 
routine application. 

In the examples given below, the wings are performing simple rigid oscillations; this is because most 
of the calculations were performed for comparison with wind-tunnel experiments in which the model 
had this sort of motion. In fact simple modes of distortion could easily be treated, but modes, such as 
aileron rotation, which involve discontinuities in the boundary condition are not included. 

2. The Integral Equation. 

This Section, for the sake of completeness, contains a derivation of the integral equation which connects 
the load distribution on an oscillating wing with the perturbation velocity caused by its oscillatory 
motion. It is assumed that the thickness and camber of the wing, and the amplitude of its oscillation 
are all sufficiently small for inviscid linearised flow theory to be applicable. 



• 2.1. Derivation of the Integral Equation. 
Let (xl, yt, zt) be rectangular co-ordinates arranged so that the undisturbed flow has velocity U in 

the direction of xl increasing. Then @, the perturbation velocity potential caused by the small oscillatory 
motion of the wing, satisfies the equation 

2 ~2@ ~2@ 020 2M 2 ~2(~ M 2 020 

U Oxl at U 2 0 t  2 
= 0 ,  (1) 

that is, the equation of sound in moving co-ordinates. 
A fundamental solution of equation (1) is the oscillating source of angular frequency 09, whose velocity 

potential is 

@o = ei°~t exp -~X i exp U fl 2 R / R, (2) 

where 

R = [x~ + f12 y~ +/32 z~]t.  (3) 

The flow represented by equation (2) has outgoing waves far from the origin. 

The function O@o/OZl then represents an oscillating doublet at the origin. Consider the total potential 
of a distribution of such doublets over the plane zt = 0; the resulting expression for @ is 

@(xi, Yl, Zl, t ) = e U o i f f ( x ,  ' , )O  exp{ i°2MZ Yl ~ z i [  (X1--X]) iogmR (4) 

where now 

R = [(xl - xl) 2 + f12 (Yl - y])2 + f12 zZl]~, (5) 

a n d f i s  a function representing the strength of the doublet distribution. The region of integration is the 
plane Zl = 0. 

Now put 

X~ = X 1 "I-flY 1 COS 0 }, 
Y~ = Yi + rl sin 0 

(6) 

then from equation (4) 

@(xl, Yl, zi, t) = e i'°' 
i~M 2 

f (xl+flr i  cos0, y l + r l  sin0)exp - Ufl  F! COS0 X 

r t=0  0=0 

x exp Ufl ?r 2 3/2 Ufl rl drt dO. 
J L  ~, 1 lJ  

(7) 



Consider the limit of @ as zl tends to zero while xi, Yl and t remain constant. Divide the plane into 
two parts by an ellipse r 1 = 6. When z 1 --. 0 the contribution from the part outside r~ = ~ tends to zero. 
If f is continuous at (Xl, Yl) (and in all the following applications it is continuous) then equation (7) may 
be rewritten 

2n 

f f  lira @(xi, yf, z , t )=  - l im_e  i'°' [f(xi,  Y l )+A]exp ~ x/r~+z~J 
z i ---~0 Z i ---*0 

rl=O 0=0 
X 

zl iogM zi {] 
X (F12 -F Zl2) 312 ~ U~- F2TZ F1 d'l dO (8) 

where 

/ it°M2 ' )) -f(xl ,  Yl) A = f(x'l, Y'I) exp ~ - ~ - ~ -  (x 1 - x  I 

Now by integration by parts 

zll~im+o exp ~ x/ r'{ + z'{ ] i r l z+~)  3/2q U fl (t'~ + z~) r l dr l 
rl=O 

= lira - exp =- _ 1 
zl ~ +O Ufl j x / 6 2 + z 2  ~-exp - U - - f  l zi = " 

Moreover 

li_~mo f Zl"ldFl -- li~injFO { Z1 gl } 
zl (r 2 + z2) 3/2 zl I zl l ~ = 1, 

rt=O 

and 

6 

1-~il~-I- 0 f Z1 t"1 drl 
z, 

rl=O 
- lim ½zi {log(62+z~2)-log(z~)} = O. 

zl-- .  + 0  

Hence 

Z1 lim+oCb(xi, Yl, Zl, t)+2zrf(xl, Yl)ei°t I <~ 2~max  A 

or, since A may be made arbitrarily small by taking 6 small enough, 

@(x, y, + 0, t) = - 2 z r f ( x l ,  YI) eiWt. 

Thus equation (4) becomes 

(9) 



O(x.y.z.t)= - l  f f ~(xl, yi, +O,t)~--~Iexp { iC°M2(x~-xi) k°MR } l I , gfl 2 Ufl z ~ dxl dy'l (10) 

The boundary condition in liffing-surface theory is the fact that the vertical velocity, w = O0/&~, is known 
on the part of the plane zt = 0 occupied by the wing planform. A possible integral equation is therefore 

W(Xl,Yl,O,t ) = ----  1 lirn _~_8 [ [¢(x,,yi,+O,t)o_~[exp{iWM2(x~-x'~) 
2re z 1 --*0 ozl d 3 Ufl 2 

S + W  

io3MR ~ 1 
j -R dx'ldyl, 

(11) 

where the region of integration is the wing planform S and the wake W. 

For small disturbance flow it is known that 

P-P~ = -P~ & c?xl ]"  (12) 

For an isolated plane wing • is an odd function of z~, and it follows from equation (12) and the fact 
that there can be no pressure difference across the wake, that in W 

O(xl, yi, +_O,t)=O(xi~,y'~, +_O,t)exp[ i°) {x'~-xiT(yl)}] (13) 

where the suffix Tindicates the value at the trailing edge. Thus, by equations (11) and (13) w is determined 
by the distribution of q) over S. 

The integral equation (11) has been much used for both steady and oscillating wings, but in this report 
another will be used, easily derived from equations (10) and (! 1), which involves integration over S only. 

It may be observed that equation (10)holds not only when (b is the perturbation potential but also if it 
is any function, simple harmonic in time, satisfying equation (1) and dying away in outgoing waves at 
infinity. In particular q) may be replaced by the acceleration potential ~,, defined by 

It follows that 

8q) &I) t 

= u 

8¢ 
U 0-~7 * + icoO. 

(14) 

X l  

e-f°'x~/u f (9 - ~ ei~e'/v ~/(~1, Yl, z1) d~l, (15) 
- c o  

since both q) and 0 tend to zero as xl ~ - oe. 
On zl -- 0, ~p is in fact proportional to the wing loading, l, defined by 

I e i°~t = pressure difference _ 40 (xl, Yl, + 0, t) 
½ P~o U 2 U 2 (16) 



When ~ replaces q) in equation (10), and equations (15) and (16) are applied, the following expression 
for q) is obtained 

x 1  

~(Xx, y~, zt, t) = -g-~n 
Ct= -co S 

0@1[ { i°jM2(~-xl) i°JMRt 1-] ' ' 
x exp Ufl 2 Ufl 2 -kJaxt dyt d~l, (17) 

where now 

R = {(~1 -x i )2  +fl  2 (Yl-Yl)2 +fl  2 z12}. (18) 

Now let K be any large positive number, and Xma x the greatest value of xt in S, then 

-K 

~1 = - o 0  

eU°(~-x~'uffl(x'bY'l)~[exp{i°3M2(~l-Xa)s Ufl 2 iooMR~us a J -Rlidx'ldy'ld~ 1 

- K  

~i = -oo 

UB 2 ~ dxl dy'~ d~ 
s 

- K  

~1 = - o o  

I t(x.yOl dxl dy~ i¢ _~max)3 ~ 082 (~_Xm.~) ~ 
s 

( i f  )[ +11 ' ,1 -- B 2 Iz~ I I / (xl ,  y l ) l  dxl d.V'l -2(K re.x) 2 I- Ufl 2 (K+-gmax . 
s 

Thus the integral from - oo to - K  may be made arbitrarily small for K large enough. 
Hence 

q~(xl, Yl, zl, t) = - - -  8n l(xi, Yi) e -i°'xl/v e-"°u2x'~/v~2 x 
s 

x 1  

imMR 
x f e"°~/v~20-~[exp { Ufi 2 }lld~dx'ldy'~, 

- o o  

since the integral with respect to 41 from - oo to - K  may again be made arbitrarily small for sufficiently 
large K. 

A more convenient form is obtained by changing the variable 41 to 4, where 41 = ~+x] .  Then 



Cb(xi, Yl, zi, t) -  e°ff 8n l(xi, Yi) e-i'~x'-xi)/v x 
a 

S 

Xl --X~ 

x e i'°¢/va2 exp Ufl 2 ] R]  d~ dx'l dy'l, (19) 
- - 0 0  

where 

R = {{z+fl2 (y, _yl)2+fl2 z~}i. (20) 

The perturbation velocity caused by I is now obtained as the gradient of qb as given by equation (19). 
In particular 

w ( x ,  Yi, 0, t) = U eU°t liln 0 ~ ~ l(x'l, y'l)e-iO(xl-xl}/u x 
8n zi "-* 00z l  Js 3 

XI --X~ 

x f e'°'vva2o@l[exp ( icoMR' l] Ufl = ) R]  dg dx'l dyi (21) 

The cross-stream velocity component, v, may be obtained by differentiating with respect to y~. 

Alternatively, provided co is not zero, equation (21) may be written 

w(x .  y~, O, t) 
U 8n l(x'l, Y'l) K(xl  -x ' l ,  Yl -Y'l)  dx'l dy'l , 

S 

(22) 

where the kernel function, K, is given by 

K(Xl - x l ,  Yl -Y'l) = 

(xa -xl) 

lira e -u°(:q- "i)/v e i'°¢/v¢2 x exp d~ 
Z 1 ---+0 ~Z~ U~ 2 ) e  ' 

--t~O 

(23) 

where R is as in equation (20). 
The changes in the positions of the differentiation and the limit operation between equations (21) and 

(23) may be justified by the uniform convergence of the infinite integral in equation (21) and the con- 
vergence of that in equation (23), and by observing that we may suppose that the only singularities in I are 
along the leading edge and may be removed by a simple change of streamwise variable (e.g. as in equation 
(61)). 

If co = 0 the infinite integral in equation (21) is easily integrated. (See, for example, Ref. 1.) 
It may be observed that, unless co = 0, the two-dimensional forms of equations (10) and (23) may be 

obtained by spanwise integration with respect to y], using the formula 



i i e-iXC°Shtdt" I4(o 2~ ( x )  = ~z 

- -  o O  

(Ref. 7, p. 80) 

2.2. Transformation o f  the Integral Equation. 
There appears to be no method of expressing the kernel K, as given by equation (23), as a simple 

combination of known functions. It is possible to calculate K numerically from equation (23), but the 
process is expedited by using a transformed equation for K, due to Watkins, Woolston and Cunningham 2, 
which requires numerical integration over only a finite range. The following method of deriving the 
altered form of K appears somewhat simpler than that used in Ref. 2. 

It is first convenient to change to non-dimensional co-ordinates by division by a typical length, d. 
Thus 

" h  

Xl = xd ,  Yl = yd,  z 1 = zd,  [ 

x'~ = x 'd,  y'~ = y'd. 

It is also convenient to define v, the frequency parameter, by 

(24) 

and to put 

Then equations (22) and (23) become 

v = o d / U ,  

X 0 = X--X'~ [ 

Yo = Y -  Y'. 

(25) 

(26) 

w(x,y,O,t)  _ e ~' ~ 
v 

S 

l(x', y') d 2 K(x  o, Yo) dx' dy' 

where 

• E iv 1 0 2 xf exp ~ ( ~ - M x / ~ 2 + f i 2 y 2 + f l 2 z  2) 
1 lira -ivxo 

K(xo, Yo) = ~ z ~ O  ~Zfize -oz  N / ~ 2 - ] - f i 2 y 2 - } - f i 2 Z  2 
d~ (27) 

Now consider the part of K involving integration over an infinite range, and change the variable to 
,9 by putting 

(28) 



so that 

¢ = ~- Is +M .iS'. + 8'. yg + 8'. z'.]. (29) 

Then 

o iv 2 '. + fl'. z 2) 
J d~ 

- M , ~ o  + z 2 

I d8 : ) 

: exp - i v ~ ' r  ~ exp - i v ~ r ,  x/~dz 
0 

(30) 

Now from Ref. 7 (p. 172) 

oo 

0 

(31) 

and from Ref. 7 (p. 332) 

i sin (v ~ z) 

0 

d z = ~  Io(v + z  2 ) -L o (v  

when I0 and K0 are Bessel functions in the usual notation, and Lo is the modified Struve function (Ref. 7, 
p. 329) 

2 { x 3 x s x 7 ~- "~ Lo(x) \ x + ~ + 3 - ~  3'. 5'- 7 - - - - ~  (33) 

X 2 X 4 X 6 

Io(x ) = 1 + ~ - + ~ - +  22 42 62 F . . .  (34) 

A useful transformation may be obtained by considering the integral of the function e *z~ x/q + z 2 
round a closed contour in the complex z-plane consisting of the positive real axis, the positive imaginary 
axis indented at z = i and quadrant of an indefinitely large circle. It follows that 

9 



/' cos 2x e-  zy 
l ~ d x  = 

Jo ~ / l + x ~  1 ~ d y ,  
(35) 

and 

i 1 sin2x /" e -~r 

0 0 
(36) 

Equation (35) is merely a well known alternative expression for Ko(x ) (cf. equation (31)). Equation (36) 
leads to the alternative form for equation (32) 

.~ Io(V x//Y~+Z2)-Lo (v 
1 - v ~ y  

0 

dy 

r~/2 

r e -  v , , /~o  + z 2 cos 0 

0 
dO. 

When the terms are collected together it is found that 

f exp [ ~ (4 -M ~f~2+fl2y~+fl2 z2) l d{ 

~/~2_1_ f12 y2..l_ fl2 Z2 

M/# 

= Ko(v.~o+ z )__~ io(v y/~-~o+Z2)_Lo(v~ _ exp(_ivv/~-2+z2z) dz ' 

o 

and it follows that 

I iv 2 1 ae . ° r exp ~ t ~ -  M ~/¢ + / ~  y~o + / ~  z=) 
lim ~ e-'Vx° j d~ 
z-- ,o ~z ~/¢~ + fl~ y~ + #~ z ~ 

(37) 

(38) 

' M/fl 

+i f exp(_ivlyo] z 1 z) ~ dz , 
x / l + ~  ~ 

0 

(39) 

10 



_ V e - ivx°  V g i  
_ [--]~o] L - K 1  (v]yo])--~-{I~ (vlyol)-L1 (vlyo[)} 

MIp 

+~exp(-i-~-[yo[)-v]Yo]£exp(-iv]yo[Z)x/l+z2dz 1, 

since 

K;  (x) - - K1 (x), (41) 

X X 3 X 5 

to(x) - t l ( x )  - ~ + 2 - q + 2 ~ - £ ~ +  . . . .  (42) 

and 

L~(x)=~+LI(x), (43) 

where 

Ll(x) = 2 ( x  2 x 2 x 6 ) 
-~ \ - 5 - + ~ +  3-r~+ . . . .  (44) 

The remaining part of the kernel K is 

F iv M + 1-42 , 2 ..~ R2 z2) ~ x iexp [ Y ( e -  "/~ ~ ,o . 
lira e_~xo - d d~ 

~ o  a ~ J ~/¢~ + fl~ y~ + /~  ~2 
0 

~¢o 

= - -  fi2 e-  i~xo f exp 
0 

1 ivM 1 } d~ 
(~2 + B~ y~)3/~ ~- fl2 ( ~  + 13~ y~) , 

(45) 

11 



e -ivx° XO . exp { iV } 
yo ~ x/Xo 2 + f12 yg fl-7 (Xo - M x/Xo 2 + 13 2 yZ) 

xo  e_,~xo f { ~  }[iv ] + . ~ y -  exp - M  x/~ 2 +f12 ~ ivM 
Yo -~ ( Yg) -~ x/¢2 + fl2 y 2 f12 d~ 

0 

d~ 2 1 ( ° n  integrating bY parts' °bserving that ~(¢2 + ~-yg)3! = f12 y2 V/~q=_fl2 y2 ) 

e-lVX° { Mx° 
Myg 1 Jr x/x2 + f12 y~ } exp { ~-g2 (xo- M x/x2o + ~2 Y~) } 

{ } e -iv~o -ivMlyol .+ ive -'vx° 
+-M~y2o exp fl My~ 

xo 

- - f  expf~z(~-Mx/~2+~2Y2)}d~. 
0 

(46) 

K is found by adding equations (40) and (46) : 

e - i v x o  

d2K(xo, Yo) - y2 -v[yo[Kl(v[yo[l-2 v[yol{II(vlyo[l-Ll(vlyo{)} 

-t f l+~f l  {Y°{ exp ( - 
M / #  

f exp(-iv]yo]~)~+z 2 dr 
0 

~( Mxo )exp + 

12 



xo 

iv ! t + ~  e x p  ~-~(~-M~/~2+]~2yo2) d~ (47) 

Equation (47) is the expression for K given by Watkins et aF. An alternative form, suitable for use 
when M is small or zero may be obtained by adding equations (39) and (45). For steady wings 

,[ xo] 
d 2 K(xo, Yo) = -Y--~o 1-1, ~/x~+fl2y2o 

(48) 

this follows from equations (47), (42) and (44) and the fact that xKI(X ) tends to unity as x tends to zero, 
(or, alternatively, directly from the non-dimensionalised form of equation (21) with co = 0). 

The properties of K are discussed in Ref. 2. In particular it is shown that 

-Y---~o 1-t x/x20 +jO2 y20 

iv v2 v yo - x0) 
log 2 ( M -  1) 

+ (terms which remain finite when x o or Yo tend to zero) 1 " (49) 

The strongly singular nature of K is apparent from the first term in equation (49). Apart from the factor 
e ~'~" this singular term is the same as for the steady wing and is treated in the same way. (See Section 
3.2, below.) The next two terms in equation (49) are also singular but less strongly so, and complicate the 
integration only through the logarithmic terms in the spanwise integration. 

2.3. Boundary Conditions. 
If the wing surface vibrates according to the equation 

Zl = q (X1, Yl)  d " t  , (50) 

then the boundary condition on the planform is 

13 



w I O q  i°) le~O~t ' 
-~=  ~ x + - ~ q  

that is 

-U = 7x +iv e i°~ . (51) 

In the particular case of rigid pitching about an axis xod downstream of the origin 

z = - % (x 1 - xod) e i°'t , (52) 

so that 

w e i°~' [1 = - ~o + iv ( x -  Xo) ] .  (53) 

If q, in equation (50) is real the wing is performing oscillations of the standing wave type, but travelling 
waves may also be treated by taking q to be complex. 

3. Extension of  Multhopp' s Lifting-Surface Theory. 
In Ref. 6 Multhopp described a lifting-surface theory for wings in steady flight at subsonic speeds, 

in which the kernel of the integral equation was simply that given by equation (48). The distinguishing 
features of the method are the use of particular chordwise distributions of lift with their corresponding 
influence functions and the chordwise and spanwise locations of the points at which the upwash is evalua- 
ted. Garner 2 (1952) described an extension of this to wings oscillating with low frequency parameter by 
retaining terms linear in frequency, thus introducing additional influence functions. In this Section a 
further extension using the complete kernel is described. Multhopp's basic ideas of obtaining influence 
functions and choice of solving points remain unchanged. 

3.1. Calculation of  Influence Functions. 
The integral equation is 

w(x, y, O, t) e i°~t 

U 8~z 
f f l(x', y') {d 2 K(x o, Yo)} dx' dy' (54) 

where the kernel K may be expressed by equations (27) or (47) (or in other ways, some of which may be 
found in Ref. 2). In this report equation (47) will be used. 

It is convenient to write 

~(x, y, O) e i ' '  = e i*x (wx, y, O, t), (55) 

and 

l(x, y) = e ~*x l(x, y), (56) 

and also to take the origin of co-ordinates so that the wing tips are in the planes Yl = _+s. (This does 
not imply that the planform is assumed to be symmetrical.) 

Then equation (54) may be re-written 

14 



$ 
y' = + ~  x' = xr (y ' )  

u(X ,y ,O) :  1 f f 7(x"Y') d2 ' - - ~  3 ,2 [y2 e '~° K(xo,Yo)] dx' dy'. 
8 

Y~ = "~ l  X '  = -\'l ~ I 

It is also convenient to change the spanwise co-ordinates by putting 

r~ = yffs = yd/s ,  

r/ '  = y l / s  = y '  d / s ,  

so that 
S 

yo = ~ (r/- ~'), 

and to change the chordwise variable of integration to q~ by the relation 

x'l = xlL (Y'I) +½c(yl)(1 - c o s  ¢), 

that is 

,. c(y') 
x' = Xz (y )+-~-d-(1 - c o s  ~b), 

so that ¢ = 0 on the leading edge and ¢ = rc on the trailing edge. Then equation (57) becomes 

+ 1  

1 d f 1 
U 8n s (r/_ r/,)2 

r / ' = -  1 

i . C t -l(x',y') [y~ d 2 e T M  K(xo, Y o ) ] ~  sin q~ de dr/'. 

@=0 

In accordance with Multhopp's approach the loading is now assumed to be of the form 

i ( x ' , v ' )  - - -  8s 2 c(y') r~(n') %(¢) 

q=l  

where the function 1-'q are unknown, and 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

V1(¢) = cot ½¢, 

W2(¢) = cot ½~b- 2 sin ¢ ,  

q - 1  

• q(¢) = cot ½¢ - 2 2 sin re  
r=l 

(q I> 2). 

(65) 

15 



It follows that 

where 

( t / -  t/') 2 rq(r/) F o dr/ , 
~'=--i q=l 

1rE Fq = - _ y2 d 2 e~Xo K(xo, Yo)] qJq(~b) sin ~b d~b. 
7Z 

4~=0 

(66) 

(67) 

The functions Fq a re  the 'influence functions'; they express the upwash at the point (x,y,O) due to the 
part of the lift distribution on the elementary strip I/' < r /< r/'+ dr/'. The choice of the points (x,y) and 
the values of r/are discussed in Section 3.2. The integral in equation (66) has a strong singularity at r/' = r/ 
which has to be accounted for by taking the principal part as in the theory for steady flow. 

The expression for [ - y ~  d 2 e "x'' K(xo, Yo)], which follows from equation (47) falls naturally, from an 
algebraic point of view, into four parts. 

[ -  y~ d 2 e i~x° K(xo, Yo)] = G1 + G2 + G3 21- G4 (68) 

where 

o~ = Vlyol K,(vly0l)+ 5- vlyo[ {h (Vlyol)- L1 (%1)} 

M/# 

G2 -_ v2 y2 f 

iM v[yolM fl + fl exp ( iM vly°l , (69). 

~ - ~ v 2  exp ( - i v  lyol T1d~, (70) 

1[ l ~3 = ~ 1~ ~/xg+/~2yo~ (71) 

x o  

G 4 = - ~  exp ( t -Mx/ t2+flZyZo I dt. (72/ 

o 

An alternative form for G4 may be obtained by changing the variable of integration by putting 

/~  = t -  M x/t  2 +/~2 yo 2 ' 

After some manipulation it appears that 

G4 -- iM vlY°l+ fl exp ivM[yo[ ) 
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_ { 1 iv  ~ exp iv -M +-~ L ~/x2 + fl2 y2 - Mx°] } [ -~ (x° - M ~ y 2 ° )  1 

Mfp 

__ V 2 y2 f exp (--ivlYo[ "c) x/1 + z 2 dz. (73) 

--[Xo- M/x2o + 13 ~ yg] / ~ [Yo[ 
V 

This form is more suitable for small M since the terms in G 1 and G 3 which become infinite as M tends 
to zero are cancelled by terms in G4. 

The influence functions F~ depend on the position of the point (x,y) relative to the strip r/' < r /< (r/' + dr/'), 
xL(y' ) < x < xr(y'). The parameters X and Y are therefore defined by 

X - xl-xlL(y'l) _ d ( x - x z ( y ' ) )  (74) 
c(y'l) c(y') 

y fl lY~-YI[ d 
= c(yl) - / ~  [yo[ c(y ' ) '  (75) 

so that (76) [Yol- c(y') Y 
d /~' 

and Xo x -  x . . . .  c(y')  ,, = = x - x L ~ y ~ - - ~ - t l - c o s ( o )  

_ c(y') [ X - ½ + ½  cos q~] (77) 
d 

In terms of these new parameters G1, G2, Ga and G4 are given by 

Gt = yKt(y)+ztiy{i~(Y)_Ll(y)} iMY+fl ( i M Y )  
2 Mfl exp - - -  , (78) 

M/~ 

Gz= 72 f x/l+zzexp(_iYz)dz, 
0 

(79) 

1 I M ( X - ½ + ½ c o s  ~b) 1 
~ 3 = ~  1~ /(x_½+½cos4,)2+y2 × 

G4 = - - -  
iy  

M 

exp [ '~,, ~'' {,.  ,+,cos ~, ~ ~ .  ,+, ~os ~,'÷ ~' } ] .  

c~')(x-½+½ cos 4) 

f e x p I ~ ( t - M ~ t z + ( c ( Y ' - - ) d Y ) 2 ) J d t '  
0 

(80) 

(81) 
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where 

The influence functions may now be written 

v Y c(y') 
fl d " (82) 

Fq = In i (G1 + G2 + G3 + G4) Wq sin ~b dqS, 
O 

or, by equation (65) 

Fq(X, Y) = 1 i (G1 + G2 + Ga + G4) (cos (q - 1) ¢ + cos qqS) d~b 7Z 
O 

(83) 

(84) 

Since G 1 and G 2 do not depend on q5 

F1 = Gt+G2+I/~ i (G3+G4)( l+c°s~)dt~ '  

o 
(85) 

Fq = In i (G3 + G4) (cos (q-  1) ¢ + cos q~b) d~b, 
0 

(q >/2). 

The repeated integrals in the terms in G4 may be avoided by integration by parts. Thus for F1 

/ t  

1 fG4(l+cos(9)d(~ 
0 

(86) 

= _ln (¢ + sin ¢) G4 o --n (q~ + sin ¢) - ~ -  dq~ 
0 

c~') (X_l) 

0 

iv 1 c(y') F ~ ~j(¢+ 

× sin ¢ d~b, (87) 
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and similarly for F2, F 3 . . . .  
The calculation of the influence functions is a straightforward task, requiring only standard methods 

of numerical analysis. The functions Kt,  It  and Lt, which occur in G1, have been tabulated, but for 
use in a computer it may well be more convenient to use expressions for them as infinite series or as 
integrals. For 'example I t - L t  may be calculated from the series in equation (42) and (44) or from an 
integral expression such as 

~ / 2  

I t ( x ) - L d x ) = 2 { 1 -  f e - x ° ° s ° c o s O d O } , - n  (88) 

0 

which follows from equation (37). Expressions for Kt,  may be found, for example, in Ref. 7. The function 
G2 requires only simple numerical integration. The only complication arises from the fact that when 
Y is small G3 changes rapidly when cos ~b is near to (1 -2X) ,  and a close spacing of values of the variable 
of integration may be necessary. 

When Y = 0, and 0 < X < 1, the influence functions are easily evaluated by observing that 

G I + G 2 + G a + G 4  = 2 f o r e  < cos - I  ( 1 - 2 X ) ,  ] 

0 for ~ > cos - t  ( 1 - 2 X ) .  
(89) 

Thus, by equation (84) 

c o s -  1 (1 - 2X) 

2 f (cos (q - 1) ~b + cos q~b) dq~ Fo(X,O ) = -~ 
0 

(90) 

In particular 

2 t 4 Ft(X,O) = - cos-  (1 - 2X) + -  X ~ (1 - X) 4 
7g 7Z 

F 2 ( X , 0 )  = 8 X ~  (1 - X )  a/2 , 
7~ 

Fa(X,O) = 8x~(l_x)3/2 ( 8x) 1---f , 
(91) 

and in general, for q I> 2 

Fq(X,0) = 2{n sin [(q-1)qC°S-t- 1 (1 - 2X)]_~ sin [~/cos -tq ( 1 - 2 X ) ]  } . (92) 

If Y = 0 and X < 0 then (Gt + G2 q- G3 -]- G4) = 0, while if Y = 0 and X > 1 then (Gt + G2 -k G 3 + G4) = 2, 
but in practice these cases are not required. 

3.2. The Solving Points and Simultaneous Equations. 
The distribution of solving points was taken to be the same as that used by Multhopp 6 for steady 

flight, and by Garner 1 for low frequency oscillations. It seemed reasonable to suppose that the satis- 
factory nature of this distribution would carry over into part of the finite frequency range and in fact no 
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difficulty attributable to the selection of solving points has been encountered. 
According to Multhopp's scheme the unknown lift distributions are assumed to be defined by their 

values at the spanwise stations defined by 

Y'I sin ng 
- -  = q .  - , ( 9 3 )  
s m + l  

where m is an odd integer, and takes the integral values from -½ ( m -  1) to +½ ( m -  1). In practice the 
smallest possible value of m seems to be 7. In effect taking this distribution is equivalent to assuming 
a change of spanwise variable to 0, defined by 

t / =  cos 0 (0 ~< 0 ~< n), (94) 

and taking equal intervals in 0. 
The unknowns are then the values of Fq (equation (64)), and we may define Fq., as the value of Fq(q) 

at t / =  q,. Since it is assumed that the Fq's are zero at the wing tips there are m unknowns for each Fq. 
The points at which the upwash is to be evaluated are taken to lie in the spanwise positions specified 

by equation (93). In a calculation it is necessary to include only a finite number of terms, N say, in the 
lift distribution as postulated in equation (64), and the number of points at each spanwise position is 
also taken to be N. There are therefore mN solving points and mN unknowns F~,,, 1 ~< q ~< N, -½ ( m -  1) 
~< n ~< +½ ( m -  1). Thus the solving points are taken to lie on the lines 

for 

Y ~  = r/~ = s i n  v n  

s m + l '  

-½(m-1)<...v<...½(m-1). 
(95) 

The positions of the N solving points on each line t / =  q~ are defined as 

2rip } 
xl = xl,.(r/,)+½c(q~) 1 - c o s ~  , p =  1,2 . . . .  N 

which may also be written 

xl = x.~(n~) +½ c(n0 1 + cos (2 r -  1) n 
2N+1  r = 1 ,2 , . . .N (96) 

In practice N is taken to be small, usually 2, 3 or 4. 
For N = 2, there are 2 points on each chord 

xl = xlL(r/0 + 0'9045 c(~/0, (97) 

and 

Xa = xlL(t/v)+0'3455 c(t/d. (98) 

If N = 3 the two numbers 0-9045 and 0"3455 are replaced by the three numbers 0.9505, 0'6113, and 
0.1883, and so on. 

In calculations non-dimensional co-ordinates are used, and the positions are defined by 
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{ (2,'-1),~ 
x = x~ ) = Xc(t lJ+½ I+COS 2 N + l  J " r = 1,2, . . .N (99) 

The corresponding values of X and Y to be used in calculating the influence functions are thus by 
equations (74) and (75) 

d 
x('~ = [xt'~ - x~(,7.)]. (ioo) ~'" e(q.) 

and 

~s I~-~.1. 
Y ~ , "  - C(tl, ) (101) 

The suffix v denotes the spanwise position at which the upwash is to be evaluated; the suffix n denotes 
the spanwise position of the lifting elements which cause the upwash. 

Now it is shown in Appendix 1 of Ref. 6 that the singular integral in equation (66) has to be evaluated 
by a principal value by the formula 

+ i  ~-e  I 

~ = 2~ ~ --. o ( , - . l ' )  ~ (n-.1') ~ 
-i -i r t+~ 

(102) 

wheref(q) represents the numerator in the integrand of equation (66). 
If the variable of integration is changed by putting 

q' = cos 0', (103) 

and it is assumed that in equation (102) 

oo 

f ( t f )  = 2 ap sin pO 
1 

(104) 

where the ap's are constants, then it follows after some analysis that equation (102) may be evaluated 
numerically according to the formula 

(m - 1) - } _ _ _  
+ 1  2 

2---~ (fly_ rl,) 2 dq' = - bv~f(rl j  + b~. f ( t l . )  

- 1 (rn - 2) 

2 

where n,v 

m + l  
bVV ~ -  4cos(v ) 
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b~, = 

1) E sin -sin 1 
(Iv-  n] even) 

= 0  Iv-  n I odd.  (105) 

It follows that equation (66) may be replaced by 

N 

° 2 _ iy(r) ~ 0) = - b~ Fq,~ Fq(X~ ~ Y~,) 
U X ~  ~ . r w  v~ 

q = l  

n = + ( m - l )  

2 N 

+2 
( m - l )  ' q = l  * 

n = - - -  
2 

By equations (100) and (101), 

(106) 

X(')=½ (l+cos (2'-1)~) yvv=0 
v~ 2N + 1 ' " 

(107) 

In general there are mN equations of the sort (106), one for each pair of the N values of r (1 ~< r ~< N), 

a n d v : ( - ( m - 1 ) ~ < v ~ < ~ ) 2  ' " "  T h e r e  a re  mN u n k n o w n s  Fqn, s i nce  I<.Nq<~N, and ,  l ike  V, 

\ / 

(m 
2 1) ~ n  ~< ~ .  However, most wing planforms are symmetrical and any mode of vibration may 

be split into a symmetrical part and an antisymmetrical part. Thus for a symmetrical oscillation of a 
symmetrical planform 

~(x~ ), y~, 0) = ~(x~),, y_ ~, 0) (108) 
U U ' 

and Fq,n = Fq,_,,. 

(109) 

The number of equations and unknowns is then reduced to ½N(m + i). Similarly for an antisymmetrical 
oscillation the number of equations is reduced to ½N(m- 1). 

Equations (106) are an approximate form of the integral equation (66), but they were deduced on the 
assumption that the influence functions behave like the right hand side of equation (104) which has 
continuous derivatives for ]~/'l < 1. In fact the numerator in equation (66) contains terms in (r/-q,)z log 
[r/-r/'[ which require a small (but often significant) alteration in equations (106). This correction is 
discussed in the next Section (Section 3.3). 

3.3. The Logarithmic Terms in the Influence Functions. 
As noted at the end of Section 3.2 equations (106) have to be adjusted to account for logarithmic 

terms in the influence functions. This is done by adding to ~' (J((r) Y~v) a term proportional to the co- - - q ~ : -  Vv, 
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efficient of ( t /-  t/') 2 log ]q-r/'[ in F¢ 
In order to evaluate this coefficient it is convenient first to write 

X o = ½(1-cos¢ ) .  

Then by equation (84) 
1 

Fq=l f [GI+G2+G3+G4] [ 

(110) 

+cos {qcos-l (1-2Xo)} ] ( ~--~ffo ) dXo. 

Thus, for example, 

1 

F l =  f [GI+Gz+Ga+G,] 2- fi~-Xo ~z~ Xo dX°' 
0 

1 

F 2 = f [GI+G2+Ga+G4] 2 ~f~X°(1-4Xo)dXo, 
~q Xo 

0 

(111) 

(112) 

(113) 

and so on. 
Consider, therefore the expansion, for small Y of 

1 

Fq = f [G i + G2 + G3 + a 4 ] f q ( X o )  d X  0 , 

o 

(114) 

where fq is a function of Xo defined by equations (111) and (110). 

(i) By equation (78) 
1 1 

f Glfq(Xo)dXo = Gl ffa(Xo)dXo . 
0 0 

(115) 

Now 

where 

G1 = fl#Y Kl(fl#Y)+ (a power series in Y), 

v c(y') 
= f12 d 

Then it follows from the expansion of K1, Ref. 7 (p. 80), that 

(116) 

(117) 
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1 1' 

0 0 

(ii) From equation (79) 

(iii) By equation (80) 
1 

¢ f G3 fq(Xo) dXo 
0 1 

= - -  M Xo) 1 q 
0 

½ f12 122 y2  log Y 

+ [terms in y4 log Y, y6 log Y...]  

+ [a power series in Y] } . 

1 

f Gffq(Xo) dXo = a power series in Y. 
0 

M(X-Xo) ] 
x/(X_ Xo)2 + y2 exp [i/2 {(X- Xo)- M 

(118) 

X 

= ~ ( X - t )  exp(i/2t) 14 
0 

(119) 

1-X 
1 +~ f f(x+t)exp(-i/2t) I1 

0 

x/ (X_Xo)2  + y2}] dX ° (120) 

Mt~+yZ] e x p ( - i M # ~ d t  

Mt ] exp ( -  iM/2 tx/~ y2) dr. 

Now the terms in y2 log Y may be found by using the following integrals 

y2 
+ T l o g ( t +  t , ~ y 2 )  

( -  1)" 1.3.5... (2n- 1) y2n + 2 log (t + ~ y2) 
2 4.6.8... (2n+ 2) 

+ {a polynomial in t, Y and ~ y2} 

{a polynomial in t, Y and x / ~  y2} 

f x/~ + y2 dt-tx//-~+ y2 
2 

f t2.@+y2dt - - -  

f t2n+ 1 t ~  y2 dt = 

-I,,2 = log (t + t x / ~  y2) 

\ 
f t 2 t x / ~  y2 y2 

~ d t  = 2 2 y2 log (t + % t2/t/t/~ y2) 

f t2 n ,2.~7_~,2d t (-1)" 3.5...(2n-1) y2,1og(t+ t~y2  ) 
x/t 2 + y2 2 4.6... (2n) 

+ {a polynomial in t,Y and ~ y2} 

f t2n+ 1 ~ d t  y2 = {a polynomial in t, r and v / ~ +  y2} 

(121) 

(122) 
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By expanding the integrand of equation (121) it follows that 

1 

f Gafq(Xo) dXo = y2 log Y {2i#fq(X)-f;(X)} 
0 

+ (terms in y4 log Y, y6 log Y...} 

+ {a power series in Y}. 

(iv) Similarly 

1 

f G4f (So) dX= 
0 

y21ogY35pz {_½ 

1 X 

f ,xo, xo+f  xo, xo} 
0 0 

+ (terms in y4 log Y, y6 log Y.. .  } 

+ {a power series in Y}. (124) 

When all the terms are collected together it is found that 

Fq 

1 

f (G1 + G2 + G3 + G4)fq(Xo) dXo 
0 

X 

= y2 log Y { ~ ~ f lq(Xo)aXo + 2,:.f(Xo)-i'(x)} 
0 

+ (terms in y4 log Y, y6 log Y . . . .  } 

+ {a power series in Y}. 

Then for small Y; 

Fq(X, Y) = Fq(X,O) + Kq(X) y2 log Y 

+ (terms in y4 log Y, y6 log Y...} 

+ {a power series in Y}, 

where  

(125) 

(126) 
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X 

Kq(X) = f12 122 f fq (Xo) dXo + 2i#fq(X) -f'q(X) . 
0 

(127) 

In particular 

/I(X) = k(vc(y')'~Z[ c°s- l (1-2X)  ] rc 

4 iv c(y') / 1 - X 1 

~ ~-~ ~/-y-+~x+.(l_X),~ 

gz(X) = ( v c(y') ) z 4 X1/2 (1 - X )  a/z 

I x/1-__~ ( l+4X-8XZ)  4 ivc(y') - 4 ~  +1 X3/2(1-X) 1/2 +~ fl2d 

K+(X) = (v  ~(y')) --~-d-j ; X  1/2 (1 --X) 3/2 (3-8X) 

4 iv c(y ' ) / I -ZX 
-t 4 (1 -- 12X+ 16X 2) 

1 1 (l+I2X_72X2+64X3) 
-~--7¢ X 3/2 (1 - X )  1/2 

and so on. 
Then it is shown in Ref. 8 that equations (106) have to be modified by replacing 

by 

where 

= (x,.  o) F (X (r) Yvv) fq (r) 

(X~, O) O) * K (X(°~ fls G~, ffq (r) = F (y(r)  
cttl~) 

m-1  

2 4[ E 2n' l,sinV -sin'+'  
- - -  cos -----7-7, og Gv (m+ 1)2 m + l  m + l  [ 

(m- t) 
n=---5-- m + l  ( 2wr ) 

+ ~  log 4 + cos ~-~-]- 
n@v 

(128) 

(129) 

(130) 

(132) 

Numerical values of the quantities Gv are given in Ref. 1, for m = 7, 11 and 15. 
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3.4. Kinked Leading and Trailing Edges. 
Many of the planforms encountered in practice haVe sudden changes in direction in their leading and 

trailing edges. The commonest is perhaps the centre section of a swept wing; a more extreme example 
is treated in Ref. 4. These kinks violate the assumptions in the spanwise integration formula. Those 
calculations described in Section 4 which related to such planforms have therefore been carried out for 
'smoothed' planforms, obtained by the rule suggested by Multhopp for steady flight. 

It is assumed that the kink in the leading or trailing edge occurs at a spanwise solving station t /=  t/~. 
(In practice kinks rarely occur except at the centre section.) Then the equivalent planform is calculated 
by the rules 

1 5 1 
XL(/~v) = " ~  XL(?~v- 1) + ~ XL(t/v) "~ ~ XL(~v +1), (133) 

1 5 1 ' 
XT(t/v) = ~ XT(t/v - 1) "~- 6 XT(t/v) "~ "i2 XT(tlv- 1), (134) 

where the quantities in the right hand sides are those obtained from the original geometry of the planform. 
The value of m should obviously be taken large enough to ensure that the alterations to the geometry 

are small. The number of solving points may also have to be large if the mode of vibration is one in 
which the altered areas of the planform are specially significant. The obvious method of deciding whether 
the number of solving points is big enough is by performing calculations for a sequence of increasing 
values of m, but the amount of computation required may be prohibitive. 

3.5. Calculation of Lift Distributions and Solving Points. 
The solution of equations (106) gives values of the function Fq,. for -½ (m-  1) ~< n ~< ½ (m-  1). Then 

according to equations (56) and (64) 

N 

l(x,y,) = e_iV x 8s 2 ~.) r~(~.)O~(~), 
q=l 

(135) 

on  ! 

nTc 
q = q. = Sinm+ 1 , (136) 

that is on 

s sin mr 
Y = Y" = d m + l  ' (137) 

where 

x = Xz(tl.)+½ ~-~ (1 --COS q~). (138) 

Thus I may be calculated on any of the lines t/ = t/.. Provided m is large enough the lift at any point of 
the wing may be found by interpolation. 

The overall generalised forces may be regarded as weighted integrals of I over the planform. Consider 
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F 

S 

where W is the weighting function. 

Then 
s 

F =½p~ U 2 f 

yl = --S 

that is 

f f W(Xl,ya) Ap(xx,yt) dx~ dy~ 

xiT(yl) 
f l(xl,yO dxl dyx, W(xI ,y l )  

xl = x~L(yl) 

F= ½p~ U 2 
+ 1  

f 
r/= - 1  

W(x l,y l) l(xl,y l~ s c(r/) sin ¢ de dr/, 

(139.) 

(140) 

(141) 

where 

xlL = xlL(r/)+½ c(r/) (1 -cos ¢), 

and 

Y l  = s t / ,  

N 

l=rc@(rl) exp [ - iv  (Xz(r/)+½c-(-~-(1-c°s¢ ) )12Fa(r/)~q( ¢ ). 
q = l  

Hence equation (141) may be rewritten 

+1 i F = ½p~ U 2 -  4s2~ f 
q = - l ~ = O  

W(Xl,Yl) exp I--iv(x''+lCOl)'lL[l]) 2 ---d-- ~ 

N 

x 2 r.(~) {cos (q- 1) ¢ +cos q¢} ,t4 dn. 
q = l  

- - C O S  × 

(142) 

(143) 

(144) 

(145) 

If W is a polynomial in (xl,yx) it may also be expressed in the form 

P 

W = 2 Ap(r/) cos pC, 
p = 0  

0~<¢~<~, 

so that the integration with respect to ¢ depends on integrals of the type 

(146) 
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0 

(147) 

(Ref. 7, pp. 20, 21). 
The spanwise integration may then be carried out by the formula 

+ 1  

f ~z ~-~jfz n~z fdtl m + 1 cos m + 1 
- 1  

(148) 

In the examples given in Section 4 the forces evaluated are the overall lift, for which W = 1, and the 
pitching moment, for which W = - x l .  

By equation (145) 

+ 1  

Lift = ½p~ U 2 S A  exp - i v  ~xLttl)+-- ~ x 

~ / = - 1  

N 

q = l  

(149) 

Pitching moment (about xl = 0, positive nose up) 

-½ p~ U 2 Sd A 

+ 1  

~ / = - 1  

N 

q = l  

N 

q = l  

The spanwise integration is now to be carried out by equation (148). 

3.6. Low Frequency Theory. 

When the frequency parameter v is very small a low-frequency theory may be constructed in which 
terms of order v are neglected. 

From equations (78) to (81) it follows that when v is small 
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1 1 X - :  +~ cos 4' 
G1.-[-G2+G3+G 4 = 1+ [ ( X - x + ~ l  1 cos ~b) 2 + y2]~ 

iv c(y') y2 
f12 d [ (X-½+½cos~b)2+Y2]  6 ~-O(v21°gv)" (151) 

The influence functions are then obtained by using equation (151) in equation (85). 
When v = 0 these influence functions reduce to those of Ref. 6, but for low frequency they are not 

the same as those of Ref. 1. This arises from the fact that in Ref. 1 the ratio w = / i s  not e -ivx a s  defined 
w 1 

in equations (55) and (56), but exp(ivM 2 x/fl2). In view of the theory contained in Ref. 1 it appears un- 
necessary to describe the present low-frequency theory further. There appears to be no analytical method 
of deciding which is the more accurate. 

3.7. Method of Calculation. 

The following is an outline of the steps which have to be carried out to compute aerodynamic forces 
by the method described in the preceding Section. The procedure is described as for an asymmetric 
wing in an asymmetric mode of oscillation, but in most practical examples the calculation is greatly 
shortened by considerations of symmetry. 

Data. 
The following information is assumed to have been given: 
(i) Geometry of the planform. 
(ii) Mode of vibration, q(x~,yO in equation (50). 
(iii) Angular frequency, 09. 
(iv) Mach number M. 
It is also assumed that the following have been chosen : 
(v) m the number of spanwise solving stations (m odd). 
(vi) N the number of solving points on each chord. 
(Some consideration is given to the choice of m and N in Section 5.) 
(vii) A representative length d. (Usually either the mean chord, ~, or the root chord c,.) 
(viii) The origin, taken to be midway between the wing tips, and at any convenient streamwise position. 

Calculation. 

(a) Calculate the following quantities for n = - - -  

nTz  

(i) q. = sin m + 1 

(ii) c(t/n) (from the wing geometry). 

(m - 1) ( m -  1) 
to + - -  

2 2 

(iii) XL(tl,) (from the wing geometry). 

(iv) XT(Fln ) (fron'l the wing geometry). 

(v) Values of (ii), (iii) and (iv) modified using equations (133) and (134) to account for any kinks in the 
leading or trailing edges. 

(vi) xt, r), from equation (99) for r = 1,2 . . . .  N. 

(b) Calculate the following quantities for all combinations of 

V 
( m -  1) ( m -  1) 

- - - t o  + - -  
2 2 
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( m -  1) ( m -  1) 
n = - - - t o  + - - ,  

2 2 

and 

r =  1,2,.. .  N ,  

excluding those for which I v - n  I is an even positive number. 

= a ' 
(i) V,n C~.~'rl) 

s d 
(ii) Yv," = fl 2 c~, )  Ir/~ - t/hi 

(c) Calculate the influence function Fq. 
(i) r ¢Y(~) y~ ~) 

for all combinations of 

q =  1,2,.. .  N 

r = 1,2 . . . .  N 

( m - l )  n -  ( m - 1 ) t o  q 
2 2 

v = . ( m .  1)to + ( m - 1 )  
2 2 

excluding those for which Iv"  n lis evenl using equations (84), and  (78) to (82), (or s o m e  convenient 
modified form, such as those obtained using equations (73) or (87)). 

(ii) 

for 

(r) Fq(X~,v, O) 

:: q =  i , . , : .  N 

r = 1 ,~ . .N  

( m - l )  ( m - l )  
v -- - - t o -  

2 2 

using the formulae (90) and (91). 
(d) Calculate the logarithmic correction 

(r) K~(Xv,v) 

for 
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r = l  . . . .  N 

q = l  . . . .  N 

V m 
(m-1 )  to ( m - l )  + 

2 2 

using equations (127), or (128) to (130), and then calculate 

F ix'-(,) O) 

for the same values of r, q and v, using equations (131) and (132). 
(e) Calculate 

w- (xT~ ' y~, o) 
U 

for 

r = l  . . . .  N 

(m- 1) (m- 1) 
v =  - - - t o  + - -  

2 2 

using equations (55), (50) and (51), and the given mode shape q. 
(f) Construct the mN equations (106) in the mN unknowns F~,~ using equations (105) and the influence 

functions calculated in (d), with left hand sides from (e). 
(g) Solve the equations (f) for Fq,~. 
(h) Calculate whatever generalised forces are required using equations (145) and (148), (or (149) and 

(150) if lift and moment are wanted). 
The lift distribution on any wing section may be calculated using equations (64), (62) and (56). 

4. Calculated Examples. 

The calculations given below are for wings which are performing rigid pitching and heaving. In all 
these examples the typical length d is taken to be the geometrical mean chord ?, so the frequency parameter 
becomes ~ = og~/U. 

In the earlier examples the influence functions were calculated by a program for the (now obsolete) 
Deuce computer. Subsequent calculations are to be done by a K D F  9 computer until this in turn is 
replaced. 

In order to define the quantities calculated it is assumed that, when the wing is oscillating in a mode 
combining heaving and pitching, its surface is defined by the equation 

z = - {Zo + ( X - X o )  % }  e i'°t (152) 

where ? z o is the amplitude of the heaving oscillation, and x0 defines the axis of rotation. Then the lift 
and pitching moment are expressed by 

Lift = pV2S e i°'t {(Iz + i~ I~) z o + (l~ + i~ I~) CZo} , (153) 

and 
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Pitching Moment  = pV2S~ e i'°t {(mz + iv m~) z o + (m~ + ff ma) %},  (154) 

which defines the eight derivatives lz, I~, l,, la, mz, m~, m, and ms. The pitching moment is taken about the 
axis x = xo, and is positive if it tends to raise the leading edge. 

These derivatives depend on the position of the pitching axis and vary with it according to the following 
equations: 

U X o )  = lz(O) 

l~(xo) = l~(O) 

l~,(Xo) = l~,(O)- xo  l~(O) 

ls(xo) = l s (O) -  xo  l~(O) 
(155) 

rr~(xo) = m~(O) + Xo Iz(O) 

m~(Xo) = m~(O) + Xo /~(0) 

m~(xo) = m~(O) + xo(l~(O ) -  rn~(0))-- x~ 1~(0) 

ms(xo) = ms(O) + Xo (/~(0) - m~(0)) - x~ le(0) 

In all examples the origin is taken to be at the leading edge of the centre section. 

4.1. The Rectangular Wing of  Aspect Ratio 4. 
Table 1 gives the derivative coefficients as calculated with re(N) = 7(2) at a high subsonic Mach number, 

M = ½ x/~, for a range of frequency parameters. The values for ~ -~ 0 were obtained by the theory of this 
report for small 9 (Section 3.6); the low frequency theory of Ref. 1 gives Is = 0.531, and - r n  s = 1'188 
which differ negligibly from the values in Table 1. All the other 6 derivatives are necessarily the same 
for both low-frequency theories. 

Figs. 1 to 3 show the variation of l~, Is, - m~, and - ms with pitching axis position Xo. For all derivatives 
the variation with ~ is reasonably systematic, although the value of m is probably too small for high 
absolute accuracy. Figs. 2 and 3 also show experimental values measured in the 36 in. by 14 in. wind 
tunnel in Aerodynamics Division N.P.L.,* which has solid side walls and longitudinally slatted roof 
and flow. 

4.2. The Rectangular Wing of  Aspect Ratio 2. 
Table 2 gives values of the pitching and heaving derivatives for a range of frequency parameters. It 

may be noted that changing m from 7 to 11 makes little difference and m = 7 is presumably high enough 
for this planform in these modes of oscillation. Again the derivatives tabulated for ~ --, 0 were calculated 
by the low frequency version of the present theory. The method of Ref. i gives for ~ ~ 0, l~ -- 1.633, 
and - m s  -- 1.060, so that the difference is negligible. 

Fig. 4 shows the variation of - m s  with pitching axis position, and a comparison with experiments 
from the N.P.L. 36 in. by 14 in. wind tundel. The theory shows reasonably consistent variations with 

and agrees fairly well with experiment. 
Figs. 5 and 6 show the variation of la, m~ and ms with frequency parameter. This variation is reasonably 

self consistent and also fits in well with the tangents to the curves at 9 = 0 as predicted by the theory 
of Ref. 9, in particular by the following formulae for small ~ : 

*Unpublished communication frolrl K. C. Wight. 
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h 2 
la = (la)~ _, 0 + v ]~ (l,)~ _, o + o(~), (156) 

A 
--m~= (-m~)~_~o+~(-1-~)(-l~m,)9.oo+O(~) . (157) 

4.3. Wings of Non-Rectangular Planform. 
Table 3 gives the derivatives for a swept tapered wing of aspect ratio 2, for three frequencies at M = 0-781 

(/3 = 5/8) and one frequency at M = 0.927 (/~ = 3/8). The planform is shown in Fig. 7. The curves in 
Fig. 7 illustrate the theoretical behaviour of -m~ as a function of the axis position x0. The curve for 

= 0-5 has been omitted to avoid confusion. The comparatively small effects of changes in ~ and M 
may be noted. The experimental points in Fig. 7 have been obtained either by taking mean values from 
Ref. 10 or from Fig. 20 of Ref. 11. The theory appears to agree best with the experiments of Ref. 11. 

Fig. 8 contains some curves of the derivatives for lift and pitching moment, for pitching about the axis 
Xo = 1. (It should be noted that the scales are larger than in the previous figures.) The curves for non- 
zero frequency obtained by the present theory fit in well with the values of l, and m, for ~ = 0, and fairly 
well for l~ and rn~ with the tangents for small ~ obtained by using the method of Ref. 1 and the formulae 
of Ref. 9 (equations (156) and (157) of this Report). 

Fig. 8 also shows curves obtained using the relations between the derivatives in backward flight and 
forward flight which are predicted by the reverse flow theorem (Ref. 12). The differences between t h e  
direct and reverse flow solution is fairly small. 

Finally Table 4 contains the derivatives for two other wings whose planforms are given in Fig. 9. The 
effect of increasing m is fairly small but larger for the delta wing possibly owing to the greater change in 
leading edge angle at the centre section. 

5. Concluding Remarks. 
The results described in Section 4 indicate that, in common with most kernel function methods, that 

of this report can be used to provide satisfactory solutions of the linearised problem of three-dimensional 
theory for rigid modes of oscillation. It seems reasonable to suppose that this will also be true for modes 
involving smooth distortion provided the mode shape is not so complicated that an excessive number 
of solving points is required, and the frequency is not excessively large. 

Possibly the most important decision which has to be made at the start of a calculation is the choice 
of the number and position of solving points. Obviously a first consideration is that the mode shape 
must be adequately defined by its values at the solving points. After this the only general method is to 
carry out calculations with increasing numbers of integration points until some limiting solution is 
reached. This is open to the objection that it requires lengthy computation which, even if practicable, 
is eventually discarded, but there appears to be no alternative. Some guidance as to the minimum number 
of stations across the span may be obtained from Ref. 13, which deals with the steady case. 

Hinged control-surface derivatives, or forces caused by oscillations in other modes whose shape has 
a discontinuity in shape, are not covered in this report. The usual methods of adapting lifting-surface 
theory to this problem involve either the use of the reverse-flow theorem or the replacement of the dis- 
continuous mode by a smooth one designed to give the same derivatives (Refs. 12, 14 and 15). 

There have been many other applications of lifting-surface theory to oscillating wing derivatives, 
each with its own method of choosing solving and integration points. All of them should be satisfactory, 
given sufficiently accurate integration, provided M is low enough to be well within the range for which 
equation (1) is applicable. The chief interest lies in the derivatives predicted for high subsonic M. A 
comparison of their behaviour in this respect is given in Ref. 16, in which the present method appears 
to give reasonably good results. 
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A 

c(y') 

Cr 

Ct 

d 

f 

f 

Fq 

G1,G2,Ga,G, 

G~ 

Io,I1 

J o,J1,J 2, . . . 

Ko,K1 

K 

K~ 

l 

1 

l~,l~,I~,la 

L (suffix) 

Lo,L1 

m 

rn~,m~,m~,m~ 

M 

n 

N 

P 

Poo 

F 

F1 

R 

LIST OF SYMBOLS 

Aspect ratio 

Wing chord at y -- y' 

Geometric mean chord (~ = S/2s) 

Root chord 

Tip chord for wings with straight tips parallel to the flow 

Representative length associated with the wing (in the examples in Section 4, 
d = ~) 

Strength of doublet distribution (in Section 1) 

Representative function in integration formula, equation (102) (in Section 3.2) 

Function defined by equations (111) and (114) 

Influence function (equations (66) and (67)) 

Parts of kernel function, equations (68) to (72) 

Coefficient in correction for logarithmic term in spanwise integration, equations 
(131) and (132) 

Bessel functions (Ref. 7) 

Bessel functions (Ref. 7) 

Bessel functions (Ref. 7) 

Kernel of integral equation (equation (27)) 

Coefficient of y2 log Y in Fq (equations (125) and (126)) 

Wing loading (equation (16)) 

Equation (56) 

Derivative coefficients defined in equation (153) 

Value at leading edge of wing 

Modified Struve functions (equations (33) and (44)) 

Number of spanwise solving stations (equation (93)) 

Derivative coefficients defined by equation (154) 

Mach number of undisturbed stream, 0 ~< M < 1 

Integer denoting spanwise station (equation (93)) 

Number of chordwise solving points (equation (96)) 

Fluid pressure 

Fluid pressure far upstream of the wing 

Integer denoting chordwise position of solving point (equation (96)) 

Radial distance in polar co-ordinates (equation (6)) 

Distance modified for compressibility (equation (3)) 
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s 

S 

t 

T (suffix) 

u 

U 

z) 

w 

W (suffix) 

W 

xI ,Yl ,Z1  

xl,y'l 

x,y,z 

x',y 

xo,Yo 

Xo (in Section 4) 

Zo 

X 

Xo 

Y 

~o 

Fq 

Fq ,n 

6 

A 

0 

AL,AT 

LIST OF SYMBOLS--(continued) 

Semi-span of wing 

Area of wing planform 

Time 

Value at the trailing edge of the wing 

Perturbation velocity in the streamwise direction 

Velocity of undisturbed flow 

Perturbation velocity in the starboard direction 

Perturbation velocity in the upward direction 

Equation (55) 

Wake 

Weighting function for generalized force (equation (139)) 

Rectangular co-ordinates, x 1 increasing in the direction of undisturbed flow, Yl 
to starboard, z~ upwards. (In the numerical examples of Section 4 the origin 
is taken to be at the leading edge of the centre section.) 

Variables of integration 

Xl/d, yl/d, zl/d 
Non-dimensional co-ordinates 

x'l/d, y /d 

( x -  x'),. (y -  y') 

Non-dimensional x co-ordinate of the axis of pitching oscillation 

Non-dimensional amplitude of heaving oscillation 

Defined in equation (74) 

Streamwise variable (equation (110)) 

Defined in equation (75) 

Defined in equation (82) 

Amplitude of oscillatory incidence of a pitching wing (equation (52)) 

( 1  - Mz) ~ 

Functions in lift distribution (equation (64)) 

Fq(tl,) 

Semi-major axis of ellipse dividing (x'l,y'l) plane (equation (8)) 

Increment i n f  (equation (8)) 

Angular polar co-ordinate (equation (6)) 

Angle of sweepback of a straight leading or trailing edge 

v c(y') 

f12 d 
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P 

P~o 

q) 

~Pq 

(z) 

LIST OF SYMBOLS--(continued) 

Frequency parameter v = cod/U 

Frequency parameter ~ = coO/U 

Fluid density 

Fluid density far upstream of the wing 

Chordwise variable (equation (62)) 

Velocity potential of perturbation flow field 

Velocity potential of an oscillating source 

Acceleration potential (equation (14)) 

Chordwise lift distribution (equation (65)) 

Angular frequency of oscillation 
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TABLE 1 

Pitching and Heavin 9 Derivatives for a Rectangular Wing, A = 4. 

(Pitching Axis at Leading Edge, x o = 0) 

m(N) 7(2) 7(2) I 7(2) 7(2) 

M 

- -  m z 

- -  m ~ ,  

1~, 
Ix 

- m ~ ,  

- m e ,  

0.866 
-o0 

0 
2.479 
0 
0"515 
2-479 
0.547 
0.515 
1-194 

0.866 0'866 0-866 
0.3 0.6 1-2 

0"077 
2"310 

- 0"041 
0.546 
2.432 
0'892 
0'544 
1.217 

1 

0.180 
2'098 

-0 '121  
0'620 
2.413 
0'960 
0.634 
1"086 

0-209 
1-705 

- 0.250 
0"581 
2.184 
0.936 
0.602 
0.751 

TABLE 2 

Pitching and Heaving Derivatives for a Rectangular Wing, A = 2. 

(Pitching Axis at Leading Edge, x0 = 0) 

m(N) 7(3) 7(3) 11(3) 7(3) 

M 0.866 0.866 0.866 0.866 

-o 0 0"3 0.3 0-6 

- 0.043 
1.478 

-0"052 
0.258 
1.486 
1.692 
0-235 
1.101 

I 

0 
1-461 
0 
0-242 
1.461 
1.634 
0.242 
1.063 

- 0.043 
1.477 

-0.051 
0.260 
1.486 
1.691 
0.237 
1.102 

z 

- -  m z 

m m ~ .  

1~, 
1~, 

- -  m e z  

- m~, 

-0"167 
1"577 

-0"212 
0'340 
1"625 
1"699 
0"264 
1"193 
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TABLE 3 

Pitching and Heaving Derivatives for a Sweptback Wing, A = 2. 

Pitching axis through leading edge of centre section, x o = 0 
(AL =60 °, AT = 26"57 °, cr/s = 1"6160, ct/s = 0"3840) 

m(N) 15(3) 15(3) 15(3) 15(3) 

M 0.781 0"781 0.781 0.927 

0.25 0-50 1.00 1.00 
i 

- -  m z 

-0"017 
1-268 

-0"028 
1"368 
1'261 
2'351 

-0"081 
1"260 

-0"125 
1"362 
1"211 
2'374 

-0"371 
1.294 

-0 '548  
1"413 
1"020 
2.428 

-0"228 
1"333 

-0 '388  
1"532 
1"315 
2-272 

-m~ 1.344 1.246 0.879 1.333 
-ma  2.959 2.994 3-084 3"031 

. . . . . . . . . . . .  [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TABLE 4 

Pitching and Heaving Derivatives for a Tapered Wing and a Delta Wing. 

(For planform details see Fig. 9) 
Pitching axis through leading edge of centre section, Xo = 0 

I 

Wing Tapered A = 4.33 Delta A = 1.5 

re(N) 7(3) 11(3) 

M 0"9 0.9 

0-15 0.15 

I z  

- -  m z 

- -  m / .  

- m , ,  

- -  m6~ 

7(3) 11(3) 

0'9 -0.9 

0.190 0.190 

0-056 0.056 
2-640 2.636 

-0 .012  -0 .012  
1.315 1.324 
2.742 2.737 
1.281 1.278 
1.332 1.341 
2.255 2.251 

-0 .010  
1.066 

-0 .017 
1.273 
1.058 
2.461 
1.255 
3-487 

-0 .009 
1.058 

-0 '015  
1.302 
1.050 
2-405 
1-285 
3.453 
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FIc. 9. Planforms of wings for Table 4. 
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