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Summary. 
Effects of speed stability and turbulence upon airspeed response of an aircraft flying under landing 

approach conditions are investigated by considering response to turbulence when the aircraft is con- 
strained to fly along a straight flight path by means of the elevator. The speed-stable and speed-unstable 
cases are treated in a uniform manner by considering the way in which airspeed 'diffuses' from an initial 
known value, results being expressed in terms of the time variation of the probability distribution of 
airspeed error. 

CONTENTS 
1. Introduction 

2. Response of the Aircraft to Turbulence 

3. Equations of Motion 

4. Discussion of Speed-Response Equations 

5. Speed Response to Turbulence 

5,1. Background 

5.2. Description of low altitude turbulence 

5.3. Airspeed response 

6. Discussion of Initial Conditions 

7. Discussion of Results 

8. Digital Simulation 

9. Conclusions 

Acknowledgement 

List of Principal Symbols 

References 

Appendix A Mean-square response to the vertical component of turbulence 

Appendix B Mean-square response to the horizontal component of turbulence 

Illustrations--Figs. 1 to 15 

Detachable Abstract Cards 

*Replaces R.A.E. Tech. Report 67 242--A.R.CI 29 912. 



1. Introduction. 

The control of an aircraft during a landing approach is a multivariable task in which speed and height 
are controlled by co-ordinated use of the throttle and elevator. The stability of the resulting closed loop 
system has been discussed, for example, by Cromwell and Ashkenas 1, who consider various methods of 
loop closure. In the present Report we are not concerned directly with the control problem but rather 
with the assessment of the relative effects of turbulence and aircraft speed stability upon the variability 
of airspeed. In order to illustrate these effects in a simple manner we have used the first order equation 
of constrained flight. The concept of stability of partially controlled flight or stability with constraint 
was introduced by Neumark 2. In considering the problem of longitudinal stability below minimum-drag 
speed he considered the dynamics of an aircraft in which a control, for example the elevator, is used to 
suppress one component of the disturbance. In the case where the aircraft is controlled by the elevator 
in such a way as to maintain constant height, or more generally a straight glide path, he showed that the 
equations of longitudinal motion were reduced to a single equation of first order, the time constant of 
which describes 'speed stability'. He argued that the theory could be used to give approximate solutions 
of problems in which the pilot moves his control so as to keep deviation from the glide path always as 
small as possible. 

Subsequently, the concept of speed stability, based upon the above theory, has been shown to be 
physically significant both in flight 3 and in a simulator 4. Further, the concept has been applied 5 as a 
theoretical method of estimating minimum comfortable approach airspeeds, and has been adequately 
correlated with some aspects of pilots' assessments of handling qualities in approaches. 

The existing theory 2 considers the response of an aircraft in still air, and in the case of a given initial 
speed error, allows the time to half amplitude (in the speed stable case) or time to double amplitude (in 
the speed unstable case) to be calculated. 

In the present Report the theory of constrained flight is extended to include the case of aircraft speed 
response in the presence of turbulence. As in the previous work, the aircraft is assumed to be constrained 
to fly along a straight path by means of the elevator, and the motion is supposed to take place at constant 
thrust. Now, however, the aircraft is acted upon by both horizontal and vertical components of tur- 
bulence and we consider statistically the way in which speed diverges from an assumed initial trim 
speed. 

In practice, of course, the elevator and throttle are used in a co-ordinated manner to control both speed 
and height. Indeed, in the case of flight below minimum drag speed under tight constraints such as 
occur in deck landings it has been found 1 that the throttle is often regarded as the primary flight path 
controller. On the other hand, for a fairly speed-stable aircraft it appears that it is quite feasible to control 
altitude using the elevator, control of airspeed requiring only intermittent use of the throttle. 

The difficulty of handling an aircraft in a landing approach is compounded of a variety of features, 
and it would appear to be profitable to consider a variety of approaches to the problem. Multi-loop 
analysis 1 has been applied to consider the stability of various ways of using the throttle and elevator. 
This approach has, however, been applied only to the still-air case and has not been directly concerned 
with sensitivity to turbulence. The longitudinal response of an aircraft may in many cases be considered 
in terms of two independent modes: the short period and phugoid modes. The short-period mode has 
little direct effect on speed and height response, but as it is the principal contribution to the difficulty 
the pilot may have in controlling attitude it indirectly affects the ability of the pilot to control flight path. 
The phugoid mode, which in the controlled case becomes closely related to the speed stability, defines 
the basic speed and height response to turbulence. Even if the pilot were able to demand instantaneously 
any required aircraft attitude (i.e. no short-period difficulties) there is still a basic energy balance to be 
met: for example, holding flight path (suppressing height disturbances) in the face of an up-gust will 
increase airspeed. It is this basic energy problem, that would exist even if there were no 'short period' 
handling difficulties, that concerns us here. 

Consequently, the present Report is not intended to present a model of what necessarily happens in 
controlled flight along a glide path, but to show what would happen to the airspeed if the aircraft were 
constrained to fly along a straight path by means of the el6vator. In this way we hope to obtain a measure 
of the relative effects upon speed variability of aircraft speed stability and turbulence intensity, and it 



is hoped that the trends indicated will be valid independent of the actual means of control employed. 
Since we are concerned with trends rather than with quantitative prediction it has been thought adequate 
to use linearised equations of motion. The main limitation of such a treatment is that speed stability is 
regarded as a constant throughout the motion. In a more exact theory speed stability depends upon 
airspeed and this factor could have significant effects on, for example, the time taken for airspeed to 
diverge by a large amount towards the stall. It is intended to treat this nonlinear problem in a future 
paper. 

2. Response of the Aircraft to Turbulence. 
From the pilot's point of view the immediate effect of turbulence on longitudinal response is to excite 

the short-period mode, making ~/ttitude control more difficult. However, speed and height response is 
affected directly to a negligible extent by the short-period mode and can in general be described by sim- 
plified equations (the 'phugoid' equations) which neglect effects of pitching inertia. 

Both horizontal and vertical components need to be considered if the speed response is to be calculated. 
The horizontal component of turbulence feeds into the equations of speed response in a direct and 
obvious way. In particular, because of the inertia of the aircraft, at high frequencies the airspeed fluctua- 
tions tend to follow turbulence fluctuations exactly (though the airspeed indicated to the pilot will be 
filtered by instrument lags). Only after a time governed in the uncontrolled case by the phugoid frequency 
and in the controlled case by the speed stability time constant do the airspeed variations depend on the 
properties of the aircraft. 

In the case of the vertical component of turbulence the requirement that the flight path be straight 
will imply that the increase in lift associated with an up-gust is counteracted by a downward elevator 
deflection and a corresponding nose down attitude change. This results in an acceleration along the 
flight path which is proportional to the vertical gust velocity. 

Of course, in the case of gust components of high frequency (greater, say, than about ¼ cycle per sec), 
the assumption that the pilot can keep the aircraft close to a straight glide path becomes unrealistic. 
In practice, the pitching inertia of the aircraft, together with lag in pilot control, would effectively provide 
a low-pass filter in the control equations. However, it can be verified from the results of the present theory 
and from the phugoid equations that the effects of turbulence on groundspeed and height are only 
significant at relatively low frequencies so that the present theory does not give physically implausible 
results. 

3. Equations of Motion. 

The equations of motion for constrained flight at constant height and for flight along a straight 
(descending) glide path are of identical form. In what follows we will consider specifically the case of 
flight at constant height. The reason for this choice is that we require the disturbance inputs to the 
aircraft to b e  stationary random processes but consider the horizontal and vertical components of 
turbulence to be height dependent. It is intended that by considering horizontal flight at more than one 
height a qualitative picture can be deduced of the effects of stability and turbulence on an actual landing 
approach. 

The basic longitudinal equations of motion for flight at constant height, referred to body axes moving 
in space but fixed in the aircraft and initially coinciding with the undisturbed direction of motion of the 
aircraft ('wind axes') can be written in the (non-dimensional) standard small perturbation form 

d~ (~ + ~g)- x~ (~ + %) + kO O, z - x .  = (1) 

^ d ~  
-z~(~+ug)+-x--zw(~+%)- 4 = O, a - c  (2) 



dO 
q = ~ ,  (3) 

1 dH 
0 - ~ -  V d t  - 0 '  (4) 

where the usual pitching equation has been replaced by equation (4) which expresses the constraint to 
constant height. 

The above equations can be combined to give 

dO 
dr  xu (0 + 0o)- xw (~ + ko) + k~ = 0, (5) 

- z ,  ( a + G ) - z  w ( ~ + % )  = O. (6) 

Equation (6) expresses the equilibrium of normal-force components, or to first order, equilibrium of 
vertical-force components, a consequence of the constant height constraint. 

Eliminating ~ from equations (5) and (6): 

dr x, (0 + fi,j) + x,, - -  (O + Oo) + k - w o - - -  (fi + 00) = 0. (7) 
Z w  Z w 

Equation (7) can be written in the form 

d~ 
+ AO = - AO o -  B~g  (8) 

where 

{ zu } 
A = - x , + - - ( k - x J  , 

Z w 
(9) 

and 

B = - k ,  

k is defined here by the equation 

(10) 

W 
k - -  - -  

p V 2 S "  (11) 

In the case of a conventional aircraft at moderate incidence (as opposed to partially or entirely jet-borne 
flight) a consequence of equation (11)is that 

k = ½CL. 

Now, 0 is effectively the ground speed perturbation of the aircraft. If we write 

0. = 0+0o,  (12) 



~ is the airspeed perturbation of the aircraft, and equations (8) and (12) lead to the basic equation of 
airspeed response : 

~ + A O  a d ^ ^ = d~ u°-  Bwg. 
(13) 

4. Discussion of Speed-Response Equations. 
Referring to equation (13) we can now see the significant parameters affecting speed response. 

A =  - ~xu+Z" (k -xw)}  (9) 
( Zw 

= c°--CL(I+CD/a)-ta 2 k + a - ~ L - C Z  (14) 

is the non-dimensional time constant of the subsidence or divergence in still air ( where we have used 2 

/ dC, \ 

aircraft at normal attitudes we can put 

k --½CL. 

In addition we generally have 

z,, = - C  z, zw = -½(a+Co) ) . 

Co/a < < 1, 

and under these circumstances equation (14) reduces to the usual form 2 

In the case of a conventional 

dCD 
A - C o - C L = = .  (15) acL 

The stability criterion, or condition for subsidence is 

A > O ,  

and the speed at which A = 0 is the minimum-drag speed. 
Equation (8) illustrates the effects of horizontal and vertical gusts on ground-speed response. The ratio 

of the ground-speed changes due to horizontal and vertical gusts is A/B. In the case of conventional 
flight, when k = ½ CL, 

A 2(c   co) ,16, 
B dC L 

In the case of step gusts the asymptotic changes in ground speed in the case of a speed-stable aircraft are 
respectively 



and ) B ~0 a=-~ 
(17) 

Equation (13) illustrates the analogous effects on airspeed response. It is convenient to examine high 
and low-frequency effects separately. At high frequencies the horizontal component of turbulence has 
a predominant effect and the fluctuations of airspeed are identical with those of the horizontal turbulence. 
This result is due to aircraft inertia and is independent of the height constraint: exactly the same result 
is obtained if the (elevator fixed) phugoid equations are used. 

At very low frequencies the vertical gust has a predominant effect, and in the speed stable case 

a~ ~ - ~  %. (18) 

As an illustration we consider the case where the aircraft meets a step gust at t = 0, such that 

fig = ~'0 = fi* H(T), (19) 

where ~* = u*/V is a constant, and H(z) is a unit step function. Then equation (13) has the solution 

B 
ua = ~* H(z) e-A~--~*--:(1--e-A*), 

A (20) 

where the first term comes from the horizontal gust and contains a step of the same size as that in the 
gust, and the second term comes from the vertical gust and in the speed-stable case (A > 0) increases 
smoothly from zero to the asymptotic value given by equation (18). 

In many practical cases the speed-stability time constant A is very small and the transient response 
of the aircraft becomes indistinguishable from that of a neutrally stable aircraft (A = 0) over moderate 
intervals of time. In this case equation (20) takes the form 

) 

fin = ~* H(T)-~* Bz .  (21) 

It is clear that if B is large the effect of vertical gusts on rate of change of airspeed will be large. To clarify 
this point it is instructive to write equation (21) in terms of real time. Then we obtain 

g 
u~ = u* H(t) + u* ~-,t. 

V 
(22) 

Thus the effect of the vertical step gust of magnitude u* is given by 

dua = U* g 
dt V (23) 

and is large for low approach speeds V. Thus we can expect relatively large effects of vertical gusts on 
VTOL and STOL type aircraft. 

5. Speed Response to Turbulence. 

5.1. Background. 
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For  the rest of this Report we consider the case of an aircraft in the presence of random turbulence 
and controlled by the elevator so as to fly along a straight path. The motion is assumed to take place at 
constant thrust. It is assumed that at t = 0 the airspeed error is zero. We then consider the statistics of 
airspeed error as time increases. Results are expressed in terms of the time dependence of the variance 
of speed error. It is assumed that the horizontal and vertical components of turbulence velocity can be 
represented as uncorrelated Gaussian processes. The speed error will then also be Gaussian (since we 
have used linearised equations) and the mean and variance thus completely define the amplitude probabi- 
lity distribution. The turbulence is defined by its variance, as a measure of intensity, and spectral density. 

Since, at t = 0, the speed error is assumed to be zero, the amplitude probability distribution is a delta 
function (this is just a convenient way of regarding an exactly defined quantity as part of a random 
process). As time increases the probability distribution 'diffuses' in a manner defined by the time variation 
of the variance. In the speed-stable case the variance will tend asymptotically for large time to the value 
given by the usual stationary theory (the effect of the constraint at t = 0 becoming negligible). We will 
concentrate in the following sections on the fluctuation of airspeed, based on equation (13), as this is 
the variable most closely related to the pilot control problem. Analogous results for groundspeed can 

b e  derived, based on equation (8). 

5.2. Description o f  Low Alt i tude Turbulence. 

The turbulence velocity components u 0 and w o are defined by their variance and power spectra. A 
simple analytical form for the power spectrum which is adequate for our purposes is 

G(92) = 0 -2 2L 1 
n 1 + 922 L 2 , (24) 

where a z is the mean square turbulence velocity, 92 is space frequency in rad.ft-1, and L is the scale of 
turbulence. In terms of non-dimensional frequency & (in radians per unit ~) equation (24) becomes 

~(~) = ~z 2__ 1 
7z#, 1 + 6)2/# TM (25) 

where #2 is the mean-square non-dimensional velocity and 

m 

#~ - p SL" (26) 

The corresponding non-dimensional turbulence autocorrelation function is 

o o  

R(v) = f ~b(d~) cos 6"9~ d6) 

0 

= ~2 e-Oriel . (27) 

In order to obtain quantitative estimates of speed response it remains to substitute numerical values 
for 0- and L in equation (24). Existing experimental data on low altitude turbulence, particularly in the 
case of the vertical component, is rather sparse and further measurements are an important part of 
future research. The values we assume are taken from an unpublished note by J. K. Zbrozek describing 
an approximate model of low altitude turbulence which agrees adequately for our purposes with the 
trends of existing experimental measurements 6'7. The values of tr for both vertical and horizontal com- 
ponents of turbulence velocity are expressed in terms of a 'reference turbulence intensity' (aw)ref, which 



is the value of the root mean square of the vertical component at the altitude of 250 feet (where the vertical 
component is of greatest intensity). The probability of exceeding a given value of (aw)r~f over 'rough 
terrain', which is appropriate to the vicinity of a typical airfield with close proximity of buildings, etc., 
is illustrated in Fig. 1. The mean square turbulence velocity is closely correlated with wind statistics, 
an approximate relationship being 

(aw)~r - 0"2 U 1 o 

where U~o is the mean wind speed at l0 metres above the ground. In terms of (Ow)r~f, values of a and 
L for vertical (wo) and horizontal (uo) components of turbulence velocity at altitudes of 40 feet and 500 feet 
are shown in the following table. These two altitudes are used in Section 7 to illustrate typical effects of 
altitude on airspeed perturbations. 

Altitude Lw ow/(ow)ref L, 

40' 75' 0'935 620' 

500' 620' 0"985 950' 

G,,/(o-w)ror 

1 

I 0.985 

Power spectra corresponding to the values tabulated above are illustrated in Figs. 2 and 3. At 500 feet 
the vertical and horizontal components are very similar (Fig. 3) but at very low altitude (Fig. 2) the 
low-frequency components of the vertical velocity are suppressed. In the model employed, the mean- 
square value of vertical turbulence velocity decreases by less than 10 per cent in going from 500 feet to 
40 feet, the loss of energy at low frequencies being compensated by an increase at higher frequencies 
(Figs. 2 and 3). Existing data is not adequate to give great confidence in this phenomenon, but in any 
case the results of the present investigation are insensitive to the higher frequencies in the vertical tur- 
bulence. 

5.3. Airspeed Response. 
The equation describing airspeed response to turbulence is 

d~a d 
d~- + A~° = ~ ~ . -  U%. (13) 

fig and ~0 are the (non-dimensional) horizontal and vertical components of turbulence velocity, with 
autocorrelation function given by equation (27). Since ~0 and ~0 are assumed to be uncorrelated, the 
components of response fia to horizontal and vertical gusts can be considered separately. Since ~0 and 
~,,, are assumed to be Gaussian processes it follows that ~,, is also Gaussian. 

We assume that at r = 0 the airspeed error is zero, i.e. fia(o) = 0. As regards the initial values of tur- 
bulence velocity there are two possibilities. We could assume that ~0(o) = 0 and ~g(o) = 0, implying 
that the idealized pilot had contrived to trim airspeed at a moment when the wind velocity was passing 
through its mean value. Alternatively we could assume that ~0(o) and ~o(o) are random variables having 
a Gaussian amplitude probability distribution with variance equal to the mean-square turbulence 
intensity. In physical terms this assumption implies that the pilot trims to the correct airspeed, but without 
reference to the gust intensity at the moment of trimming. In practice the above alternative assumptions 
will provide bounds to what actually happens: the pilot will attempt to trim airspeed relative to the 
mean wind speed but can never succeed in exactly doing this. At low gust levels, when he is able to watch 
airspeed fluctuations over a fairly long time interval, he will be able to judge when the wind velocity is 
near its mean value and the first of the two assumptions will be near to physical reality. However, at 
high gust levels, when airspeed fluctuations tend to be large, the pilot will only be able to judge the mean 



of the relatively high frequency fluctuations (due to horizontal gusts). In addition, the necessity of keeping 
airspeed fluctuations within bounds may force him to adjust the airspeed error to a low value at a moment 
when the turbulence velocity is not small. In these circumstances the second of the above alternative 
assumptions may be a better description of the situation. 

In view of these two possibilities, the course taken has been to consider the relative effects of the two 
assumptions in detail in Section 6, using as illustration the response to the horizontal component of 
turbulence of an aircraft with neutral stability. Having illustrated the relative effects of the two possibilities, 
we have made the second of the two possible assumptions (i.e. random initial gust velocity) in the remainder 
of the report. 

Throughout the theoretical treatment it is assumed that for t >/0 the thrust takes a predetermined 
trim value appropriate to the approach. In other words, once the pilot has achieved a zero initial airspeed 
error a,(o) -- 0, he returns the throttle immediately to a predetermined setting. As a result, in the case 
of a speed-stable aircraft, any particular time history of airspeed error will eventually fluctuate about a 
zero mean value. 

For the moment, then, we consider the general problem of the solution of equation (13) with initial 
condition given by ~,(o) = 0, with Og(o) and ~g(o) random, and find the way in which the variance of the 
(Gaussian) response a,(z) increases from zero as time increases. The analysis of the response to the vertical 
component of turbulence fig is presented in Appendix A (see Fig. 4) and the analogous treatment for the 
horizontal component ag is in Appendix B (see Fig. 5). Combining the results gives 

,a(z) = aa--  A 1 # t + A  - e  ~ t -~ t  

B2~2 [ ( ) -2A~A+]2t--2Ae-(v'-A)r l ~ t - h  w~ 1 + A - A + p , -  - e  
(28) 

In the speed-stable case (A > 0) the variance #~ tends to a finite value for large values of z : 

B2~. 2 2.2 ]At ...t ¢v9 
#L( w )  = v o" #t + A "  A(#t + A) " 

(29) 

This result can be verified by applying the usual methods for stationary random processes to equation 
(13). 

In the case of an aircraft with neutral-speed stability, we obtain, on taking the limit A ~ 0 in equation 
(28): 

~,2(z) = 2aa~ ^ 2 1--e ~'~ + - - # ~  #t 'c- 1 - e  -ut~ (30) 

Since airspeed error ~a is a Gaussian process under the present set of assumptions, knowledge of the 
variance #ao for any value of ~ (equation (28)) enables us to infer the probability that any arbitrary level 
of speed error has been exceeded. For example, there is a probability of about 68 per cent that ~o satisfies 

and a probability of about 95 per cent that 

[~al < 2#~. 

This is perhaps the most convenient way to interpret the numerical values of Oao or a..  presented in the 
following sections. 



6. Discussion of Initial Conditions. 

In order to compare the effects of the two alternative possibilities : 

(i) f,(o) = 0 and fo(o) = 0 

(ii) f,(o) = 0 and fig(o) random 

in choice of initial conditions (discussed in Section 5.3), we now evaluate the ensemble mean-square 
response to horizontal turbulence in each case for an aircraft with neutral-speed stability (A = 0). Since 
the effects of initial conditions only persist for a relatively short time, the results will be equally valid 
for any aircraft, stable or unstable, whose speed-stability response time is large (i.e. small A). 

In this particular case equation (13) takes the form 

dr,  dog 

d'L" d '~  " 
(31) 

For any particular realisation of the process, equation (31) implies that 

f ,  = fg + constant. (32) 

In the case of initial conditions (i) above, the constant in equation (32) is equal to zero and in any 
particular realisation of the process, the time history of ft,(r) will fluctuate about a zero mean value. 
The evolution in time of the variance of f~ in this case can be shown by the methods of Appendices A 
and B to be given by 

2̂ ^2( 2.,,) ~*. = aag l - e -  . (33) 

In the case of initial conditions (ii) (above), the constant in equation (32) is a random quantity, equal 
in magnitude and opposite in sign to the random quantity ~g(o). Any particular realisation of f .  is thus 
given by 

f,(~:) = fo(z ) -  fo(o). (34) 

Since the time average of any realisation of fg(~) is equal to zero, the time history of f,(~) will fluctuate 
about a random mean of -fo(o). The (ensemble) mean-square value of f,, is given in this case by the 
component of equation (30) due to horizontal turbulence: 

&azo(~)=28 } ( 1 - e  -"'~) Ug (35) 

The factor of 2 in equation (35) as compared with equation (33) is associated with the random fluctuations 
about a random mean described above. Although the average value of ~o(o) is zero, in a few cases the 
pilot will have trimmed airspeed, ~a(o) = 0, at a moment when the initial gust velocity ~0(o) is near a 
peak value. Equation (35) takes account of these possibilities, weighted according to their probabilities. 
A corresponding effect appears in the time constants in equations (33) and (35), which also differ by a 
factor of 2. 

7. Discussion of  Results. 

The method adopted for the presentation of results has been to choose two types of aircraft, which 
we shall call Aircraft 1 and Aircraft 2, and to consider each when flying at constant heights of 40 feet 
and 500 feet in the turbulence environment described in Section 5.2. From our point of view, the most 
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important differences between the two aircraft lie in their approach speeds and associated C L. In order 
to illustrate speed-stability effects we have varied the speed-stability parameter A over a wide range 
in the case of each aircraft. The relevant properties of the two aircraft are summarised in the following 
table. 

W 
Wing loading ~- 

(lb/ft 2) 

Approach speed V 

(ft/sec) 

Aircraft l 40 180 

Aircraft 2 30 i 230 

CL 

1.1 

0.5 

In each case the speed stability parameter A has been varied over the following range : 

A = - 0.1, - 0'06, - 0.01, 0, 0.01, 0.06. 

Corresponding times to half amplitude (when A > 0) and double amplitude (when A < 0) are summarised 
in the following table. 

A -0 .1  -0 .06  -0.01 0 0.01 0.06 

Aircraft 1 21.4 35.7 214 ~ 214 35.7 

Aircraft 2 12.9 21-5 129 c~ 129 21.5 

Seconds to double 
amplitude 

Seconds to half 
amplitude 

We first of all consider the case of neutral stability, A = 0, and then show how these results are affected 
by changes in A. All results are based on equation (28) which, starting from an initial airspeed trim 
condition fia(o) = 0, describes the evolution in time of the ensemble mean square airspeed error aza(t). 

2 for Aircraft 1 at altitude 500 feet in the case of neutral speed stability. The effect Fig. 6 illustrates aao 
of the horizontal component of turbulence is shown for the two alternative types of initial conditions 
discussed in Section 6, viz. (i) Og(o) = 0 and (ii) ~g(o) random. The main feature is that for a short time 
after the initial trim condition the predominant effect is that of horizontal turbulence. However, after 
a time interval of about 5 to 10 seconds (depending upon which of the two types of initial condition is 
more relevant, i.e. depending upon the extent to which the pilot has managed to trim airspeed relative 
to mean horizontal windspeed) the predominant effect is that of the vertical component of turbulence. 

Figs. 7 and 8 illustrate o-,z, for Aircraft 1 and 2 at altitudes of 40 feet and 500 feet in the case of neutral- 
speed stability. The altitude effects are due to the differences in the tubulence power spectra illustrated 
in Figs. 2 and 3. Altitude has little effect on the airspeed fluctuations due to horizontal turbulence but 
a very marked effect on the fluctuations due to the vertical component. At altitude 40 feet the vertical 
component is negligible for at least a minute and so will have little effect on the final phases of an actual 
landing approach. The marked difference between the airspeed fluctuations due to vertical turbulence 
at 40 feet and 500 feet is particularly striking as the assumed mean-square values of vertical turbulence 
velocity at the two altitudes differ by less than 10 per cent (table in Section 5.2). The relatively high fre- 
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quency energy of the vertical turbulence at 40 feet (Fig. 2) is rendered comparatively innocuous by the 
low-pass filter effect of the airspeed response to vertical turbulence (equation (13)). 

The other effect illustrated by Figs. 7 and 8 is the much larger response to the vertical turbulence of 
Aircraft 1. This is associated with the lower approach speed V and larger associated value of B. To 
clarify this point we consider the asymptotic form of the response to vertical turbulence (given by equation 
(30)): 

(36) 

In terms of real time t, equation (36) gives" 

2 9 2 L  2 
a~,, t .  (37) ~o( t )  ~ V3 

Thus for given altitude and turbulence intensity the rate of increase of aZ, o is inversely proportional to 
V 3. This result should be compared with the analogous result, equation (23), for a vertical step gust, 
emphasising the increase in airspeed perturbations due to vertical gusts at low approach speeds. In 
contrast, the initial rate of increase of a2, due to horizontal turbulence (see Figs. 7 and 8) is given by 
equation (30) as: 

2 2 2 O'u a ~ O'u g ]~t "g 

2 v t  (38) = 2 a .  - ~  

and is directly proportional to V. This relatively high frequency effect is not particularly relevant to 
the height holding task, however, and at altitudes where the vertical component of turbulence does not 
have a negligible effect (500 feet in Figs. 7 and 8) it appears that the effect of height holding on speed 
will make airspeed control a more difficult task at low approach speeds. 

2 Figs. 9 to 12 illustrate the effects of speed-stability parameter A on a,,(t). For small changes in A 
(A = -0.01 and 0.01) the response to horizontal turbulence is negligibly different from that in the zero 

o~ o(t) 
speed-stability case over the first 60 seconds although eventually ~ will become indefinitely large 

(G.,)ror 
and will tend to #' in all speed-stable cases ~ . Figs. 9 to 12 confirm that in a l l  speed-unstable cases 

# t + A  / 
at altitude 40 feet the effects of vertical gusts are negligible compared with those of horizontal gusts, 
whereas at altitude 500 feet they dominate the airspeed response over intervals of time greater than 
about 10 seconds for Aircraft I and 20 seconds for Aircraft 2. 

At low levels of turbulence and moderate values of speed-stability parameter (0.01 > A > -0-01, 
say), the horizontal component of turbulence gives rise (Figs. 10 and 12) to fluctuation of airspeed that 
the pilot could ignore. However, due to the vertical component of turbulence the ensemble mean-square 
airspeed error eventually either becomes indefinitely large (speed-unstable case) or tends to a limit 
(in the speed-stable case) given by (equation (29)) 

o-2 B 2 
Ua 

a 2 A ( p t + A  ) ' "¢vg 

(39) 

which is large for small A. Thus even at low levels of turbulence, except for an aircraft with relatively 
high speed stability, the low frequency components of vertical turbulence, combined with the height 
constraint, will continually give rise to the need for correcting power adjustments. 
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As far as the pilot is concerned, it is clear that task difficulty in control of airspeed will depend both 
on aircraft speed stability and level of turbulence intensity. The level of instability that will cause concern 
is evidently a function of gust level. A simple way of looking at this is to choose a fixed value of ensemble 
root-mean-square airspeed error, say au*, which the pilot would regard as requiring corrective action. 
We can then find (assuming the glide path constraint via elevator) the gust intensity (aw)ref that would 
cause tru* to be reached in a given time interval. Fig. 13 shows how the gust intensity (trw)ref is related to 
speed-stability parameter A for a sequence of such time intervals, viz. 5, 10 and 20 seconds. Obviously 
the gust intensity which will cause a given level of airspeed error to arise in 5 seconds is greater than the 
gust intensity which will cause the same level of airspeed error to be reached after 20 seconds. Fig. 13 
illustrates how the necessary gust intensity (trw)r,f to cause a given rms airspeed error a*o in a fixed time 
interval increases in a roughly linear fashion as speed-stability parameter A is increased. 

8. Digital Simulation. 
In order to convey a clearer impression of the effects of speed stability upon airspeed response to 

horizontal and vertical turbulence, some actual time histories of response, subject to the constant height 
constraint, have been simulated on a digital computer. The results are illustrated in Figs. 14 and 15. The 
method employed was to solve the basic differential equation (13) numerically, using turbulence inputs 
which were obtained by operating on a sub-routine for generating Gaussian random numbers with an 
appropriate shaping filter in digital form. 

The simulated results refer to Aircraft 1 (of Section 7) flying at its approach speed of 180 feet/second 
with horizontal and vertical components of turbulence corresponding to the model described in Section 
5.2. The parameters in the turbulence model correspond to an altitude of 500 feet. As illustrated by the 
table in Section 5.2, the turbulence mean-square levels are identical for the two components at 500 feet, 
but the scale length is smaller in the case of the vertical component. Fig. 14(i) illustrates a random sample 
of the horizontal component of turbulence ug, expressed as a function of real time, t, in seconds. The value 
of ug at t = 0 has been arbitrarily chosen to be equal to the rms value aug. Figs. 14(ii) to 14(vi) illustrate 
the airspeed response ua, corresponding to the given sample of turbulence, for a range of values of speed- 
stability parameter A. The initial value of the airspeed error Ua is taken to be zero. This is one of the 
cases, discussed previously, in which we suppose that the aircraft has been initially 'trimmed' in such a 
way that the airspeed error is zero at a moment when the horizontal gust velocity is non-zero. The 
resulting fluctuations in airspeed error clearly follow the fluctuations in horizontal turbulence, and in the 
cases of nearly neutral stability (A = 0.01 and A -- -0-01) the airspeed traces are almost identical to 
the horizontal gust trace except for a constant displacement caused by the initial conditions. The difference 
between speed stability and speed instability is not apparent in the above cases (A = 0.01 and A = -0.01) 
as the length of the sample is short (60 seconds) as compared with the corresponding speed-stability 
time constants (214 seconds to half and double amplitude respectively). In the very unstable case (A = - 0.1) 
however, the divergent trend is clearly illustrated. 

Fig. 15(i) illustrates a random sample of the vertical component of turbulence, wg, over the same time 
interval of 60 seconds. The initial value of wg is chosen to be equal to its rms value awg. Figs. 15(ii) to 
15(vi) illustrate the corresponding airspeed response, derived from equation (13), for the same range of 
values of the speed-stability parameter A. In this case the high frequency fluctuations of the gust com- 
ponent do not appear in the airspeed response. The trend towards increasing divergence as the speed 
instability increases is illustrated in Figs. 15(iv) to 15(vi). Even in the most stable case, A = 0.06, the 
airspeed changes after 60 seconds are quite large. This result is not unexpected, as can be verified from 
equation (39) and Fig. 10. 

9. Conclusions. 
In order to obtain a measure of the relative effects upon airspeed variability of aircraft speed stability 

and turbulence intensity we have considered what would happen ~o the airspeed if an aircraft were 
constrained to fly at constant height by means of elevator control. The results are expressed statistically 
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in terms of the time variation of the probability distribution of airspeed error, expressed in terms of the 
variance, or ensemble mean square airspeed error, assuming that initially the airspeed error has been 
trimmed by the pilot to a value of zero. The thrust is assumed to remain constant throughout the ensuing 
transient motion. The main conclusions are as follows: 

(i) The nature of the results justifies the plausibility of the assumptions in that at high frequencies, 
where the constant height constraint by means of elevator control is unrealistic owing to lags due to 
pitching inertia for example, the height restraint has negligible effect upon the speed response. 

(ii) At high frequencies the inertia of the aircraft causes.airspeed fluctuations to follow horizontal 
turbulence fluctuations exactly. This result is independent of the constant height assumption. 

(iii) In the case of the vertical component of turbulence the constant height constraint will imply that 
the increase in lift associated with an upgust is counteracted by a nose-down change of attitude resulting 
in an acceleration along the flight path proportional to the vertical gust velocity. 

(iv) At low frequencies (time intervals of more than 10 to 20 seconds) the largest contribution to 
perturbation of airspeed comes from the vertical component of turbulence, except at very low altitudes 
where the low frequency component of the vertical turbulence has less power. 

(v) At relatively higher frequencies (time intervals of less than 10 seconds), where the horizontal 
component of turbulence is of primary importance, the magnitude of airspeed fluctuations, subsequent 
to the initial state of zero airspeed error, depends upon the ability of the pilot to judge the mean windspeed 
and hence contrive to trim the aircraft so that airspeed is correct at a moment when the turbulence 
velocity is small. This effect has been illustrated by considering two types of initial condition : in one the 
initial airspeed error and horizontal turbulence velocity are both zero, in the other the initial airspeed 
error is zero but the initial turbulence velocity is random. 

(vi) The rate of increase of airspeed error due to the vertical component of turbulence is greatest at 
low speeds, the rate of increase of ensemble mean-square airspeed error being inversely proportional 
to the cube of the speed. 

(vii) The initial rate of increase of airspeed error due to the horizontal component of turbulence is 
greatest at high speeds, the rate of increase of ensemble mean-square airspeed error being directly pro- 
portional to the speed. However, this relatively high frequency effect may not noticeably affect task 
difficulty except in the case of aircraft with a high level of speed instability. 

(viii) Even for an aircraft with positive speed stability at low levels of turbulence, the low frequency 
effects of the vertical component of turbulence combined with the constant height constraint can eventu- 
ally cause large errors to occur in airspeed if corrective power adjustments are not made. 

(ix) The magnitude of the airspeed error which develops over a fixed time interval depends both upon 
the speed stability (or instability) and upon the level of turbulence. For a given variance of speed error 
after a fixed time interval the required level of turbulence is least for high levels of instability, the speed 
stability and turbulence rms being related in a roughly linear fashion, (Fig. 13). 
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- -  Unit of aerodynamic time 
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Longitudinal increment in velocity 
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Air density, slugs/ft 3 
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APPENDIX A 

Mean-Square Response to the Vertical Component of Turbulence. 
In the case of the vertical component of turbulence ~0, equation (13) takes the form 

dz 
- - +  Aft,, = - Bkg = ~ (say). (A.1) 
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kg has an autocorrelation function given by equation (27), and so we take ~ to have an autocorrelation 
function 

~2 e-ZtM (A.2) Rgz)  = ~r~ 

of the same form. We can subsequently put 0 equal to - B ~  o. 

We have assumed that a,(o) = 0 and that Og(o) is random. Since the time history of the input ~ previous 
to z = 0 can tiave no effect on the response a~ after z = 0 we can replace (Fig. 4) the input by a function 
x ( z )  given by 

x(z) = ~  0, z ~< 0 

~, z > 0. (A.3) 

The  input x(z) is in effect 'switched on' at z = 0. x(z) is a non-stationary process with autocorrelation 
function R~(Zl, z2) given by 

f ^2 e-~tl~x 
Rx(Zl, z2 ) = o. 0 -321, Zl ~ 0 and z2 ~> 0 

0, otherwise. (A.4) 

Fig. 4 is a block diagram illustrating equation (A.1) subject to the above conditions. The differential 
1 

equation is represented by a transfer function s - - ~ '  s being the Laplace transform variable. The position- 

ing of the switch (Fig. 4) ensures that wg(o)  is random. 

The following method of analysis is indicated by Papoulis 8. 

1 
The impulse response corresponding to the transfer function s + A  is 

h ( z )  = e -A ~  . (A.5) 

Then using equation (A.4) we have for the cross-correlation between x and ~a: 

Rxa~(Zl, Z'2) = 

32 

~trO' ^ 2  f e-~t(~ ~ -32+3) e-A3 dz ," T 1 ~ 0, "17 2 ~ 0, "[71 > "IS 2 ; 

0 

"g2--~1 

f; 
0 

~2 

+ f e-m(,:l-~2+3) e-A3d.ct 
~2 --31 

;T  1 ~ 0 ,  T2 ~ 0 ,  T 1 < T 2 ;  

0 ; otherwise. (A.6) 

17 



Evaluation of the integrals involved leads to 

Rx,o(~l, r2)= ~ e -"'~ e"t~2-e -A~2 ; z l ~ > 0 , r 2 ~ > 0 , z l > z 2 ;  

+ ~ A  ear'--e-Urn ;zt ) 0 ' " f 2 )  0 'Zl  <T2 ; 

0 ; otherwise. 

The variance of Oa can be expressed in terms of its autocorrelation function, thus: 

O~.(z) = Rc, oc,.('r,z) 

= i Rx*°(z- r''z) h(~') dr' 
0 

- - 0 ~  ~ e -"'~' e -A~' 

0 

_ ~2 F1 e-2ArA+#t--2Ae-(Ut-A)~l 
A(A+#,) [_ # t - A  J " 

Setting 0 equal to - B~q we obtain the component of equation (28) due to ~g. 

e A ea'{ }l 
-t e A ( * - v ) -  e - u t ( * - v )  dr' 

# t +  A 

(A.7) 

(A.8) 

APPENDIX B 

Mean-Square Response to the Horizontal Component of Turbulence. 
In the case of the horizontal component of turbulence equation (13) reduces to 

d~. d~o 
dz ~-A/~a- d~'  

From equation (27) we have for the autocorrelation function of 09 

^ 2  e-mlfl Ra.(z) = aa. 

dO o 
It follows that the autocorrelation function o f ~ -  is 

R~g(z) = ^2 aaq, (2#t 3(z)-#t  2 e-Ud*J), 
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where 6(v) is the delta function. 
We have assumed that ~,(o) = 0 and that ~a(o) is random. As in Appendix A we replace the input by a 

function that is 'switched on' at z = 0, viz : 

y(z) = f 0, z ~< 0 

d~ a 
-d~-,z > 0. (B.4) 

y(z) is thus a non-stationary process with auto-correlation function Ry('cl,z2) given by 

Ry(Zl,'c2) = o'ag (2#, 6(zl --%)--#~ e-"tt~-~21), zl ~> 0 and %/> 0, 

0,  otherwise. (B.5) 

Fig. 5 is a block diagram illustrating equation (B.1) subject to the above conditions. Then the cross 
correlation between y and ~, is given in the case zl ~> 0, %/> 0, z~ < z2 by 

~2 

Ry,~( 'Cl , ' c2)  = 2# t e ~  f 6  ( z 2 - %  - z )  e-Ard'c-- 
0 

- - # t  O-ag 

0 

~2 

T2 - -  "c I 

The variance of fia can now be expressed in terms of its autocorrelation function, thus: 

02o('r) = Rao ao(z,z) 

= i Ry a~(z - z', z) h(z') dz' 
0 

(B.6) 

' 

= (rag (1-- A(A+#t) I t t -A (B.7) 

Equation (B.7) gives the component of equation (28) due to the horizontal component of turbulence ~g. 
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