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Summary. 
The loading on a harmonically oscillating wing is represented by a linear combination of given functions 

which satisfy the edge conditions. The coefficients in this linear combination are determined, by an 
application of the variational principle due to Flax, so that the required generalised airforces acting on 
the wing are obtained to the greatest accuracy possible. For the particular case of subsonic flow, it is 
shown that, when certain numerical integration techniques are used, the results reduce to those obtained 
from a normal collocation procedure for lifting-surface theory. 

The procedure using the variational principle is shown to be superior to one which obtains the co- 
efficients in the loading expression by minimising the integral of the square of the difference between the 
actual and calculated upwashes on the wing surface. 

Illustrative examples in two-dimensional incompressible oscillatory flow are given. 
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1. Introduction. 

In current lifting-surface theories it is normally the practice to assume an approximation to the loading 
on an oscillating wing which depends on a finite number of parameters, and to determine these parameters 
by equating the given upwash on the wing with that corresponding to the approximate loading at a set 
of points equal in number to the number of assumed parameters. The generalised airforces on the wing 
are then obtained by integrating the approximate loading, weighted appropriately, over the wing. 

Flax 1"2 has given a variational principle which involves integrals that are closely related to generalised 
airforces. This variational principle is used in this report to obtain approximations to these generalised 
airforces. 

When certain functions which occur in the final results can be closely approximated by polynomials 
of sufficiently low degree then the results for subsonic flow reduce to those obtained by a collocation 
procedure. 

Examples are given for two-dimensional incompressible flow which show how the results from the 
variational approach compare with those from a collocation approach and with the exact results. 

For three-dimensional flow Fromme a has advocated the use of a least squares approach. In Section 5 
it is shown that the results from a least squares approach must be expected to be less accurate than those 
from the variational approach. For two-dimensions we illustrate the difference in accuracy by means of 
examples. 

2. The Basic Equations. 

We consider a flat wing and a set of right-handed rectangular Cartesian co-ordinates, fixed relative 
to the mean position of the wing, with the axes of x and y in the plane of the wing and the z axis per- 
pendicular to the plane of the wing. 

The wing is immersed in a stream of undisturbed speed V in the direction of the positive x-axis and 
oscillates harmonically in an arbitrary way with circular frequency co about a mean position in the 
plane z = 0. Let the vertical displacement of a point x,y on the wing surface at time t be given by Z(x,y) 
e i~'' and let the corresponding loading (airforce per unit wing area in the direction of positive z) at the 
point x,y at time t be l(x,y) e *~'t. Then, in linearised flow, the upwash function w(x,y) is given by 

w(x,y)= ( ico+ V ~---£) Z(.x.y, (1) 

and the loading function l(x,y) satisfies the integral equation 

w(x,y) 4~zpol V . l(xo, Yo) K X -  Xo, y -  yo, -~ , M dxo dyo (2) 

where S is the wing area, Po is the density of the air in the undisturbed main stream and K(x-Xo ,  y-Yo, 
oVV, M) is an influence function, also known as the kernel function of the integral equation. The kernel 
function has different forms for the three separate flow regimes M < 1, M = 1 and M > 1. 

Consider, on the other hand, the wing to be immersed in a stream of undisturbed speed V in the direction 
of the negative x-axis, and again let it be oscillating harmonically with circular frequency ~o about the 
plane z = 0. In this case let the vertical displacement of a point x,y on the wing surface at time t be 
Z(x,y) e i°'t and let the corresponding loading at the point x,y at time t be 7(x,y) e i'°t. 

The wing is said to be in a reverse flow when the speed V of the main stream flow is in the direction 
of the.negative x-axis, as opposed to its being in a direct flow when the speed V of the mainstream flow 
is in the direction of the positive x-axis. 

In the reverse flow the upwash function ~(x,y) of linearised flow is given by 



(3) 

and the loading function i(x,y) satisfies the integral equation 

ff~(x,y) - 47zp ° 
S 

(4) 

Each of the functions Z(x,y) and Z(x,y) used to describe the displacement of the wing in the harmonic 
oscillations is usually taken to be a real function, or at most the product of a real function and a complex 
constant. This is not necessary for the arodynami c theory but is convenient for the dynamical theory 
dealing with the wing oscillation. 

The loading l(x,y) must satisfy appropriate edge conditions in the direct flow and the loading l(x,y) 
must satisfy appropriate edge conditions in the reverse flow. When these edge conditions are satisfied, 
the reverse flow relation 

(5) 

is satisfed (Flax 2, Heaslet and Spreiter4). The relation (5) follows from substituting for ~(x,y) from (4) 
into the left-hand side of (5), inverting the order of integration, and finally using the formula (2). Inversion 
of the order of integration is permissible when the aforementioned edge conditions are satisfied. 

The functions w(x,y) and ~(x,y) are taken to be given functions. Let L(x,y) be a loading function which 
satisfies the appropriate edge conditions in the direct flow and which differs from the actual loading 
l(x,y) corresponding to the upwash function w(x,y) in the direct flow by a small variation. The upwash 
function corresponding to the loading function L(x,y) in the direct flow will be written W(x,y). The 
functions L(x,y) and W(x,y) satisfy equation (2) with l(xo, Yo) replaced by L(xo, Yo) and w(x,y) replaced 
by W(x,y). 

Let L(x,y) be a loading function which satisfies the appropriate edge conditions in the reverse flow 
and which differs from the actual loading l(x,y) corresponding to the upwash function ~(x,y) in the reverse 
flow by a small variation. The upwash function corresponding to the loading function E(x,y) in the 
reverse flow will be written W(x,y). The functions L(x,y) and W(x,y) satisfy equation (4) with l(xo, Yo) 
replaced by E(Xo, Yo) and i~(x,y) replaced by W(x,y). 

Define the integral H by the formula 

H =  f f[r,(x,y)w(x,y)+L(x,y)~,(x,y)-~r~tx,y)W(x,y) 
S 

+ L(x,y) W(x,y)} 1 dx dy. (6) 

The variational principle of Flax 1'2 is that H is stationary for first order variations of L(x,y) and 
L(x,y) from the correct functions l(x,y) and 7(x,y) corresponding to the upwash functions w(x,y) and 
~(x,y) in the direct and reverse flows respectively. 

Applying the reverse flow relation to L(x,y), L(x,y) W(x,y) and W(x,y) we get 

S S 

(7) 



and by using (7) in relation (6), we may replace H by the formula 

H=ffIE(x,y)w(x,y)+L(x,y)~(x,y)-f~(x,y)W(x,y)ldxdy. 
S 

(8) 

The stationary value Ho of H is given by 

S 

=fj'l~x,y)~,(x,y)axay. 
S 

(9) 

If now ~(x,y) is taken to be the function 

,~ (x ,y )  = Zj(x,y) 
as it can be by proper choice of Z(x,y), then 

(10) 

Ho=fft(x,y)Z~x,y),~xdy 
S 

= Qjo (11) 

and Q~.o ei'°t is the generalised airforce acting on the wing in mode Z = Zj(x,y) due to aerodynamic loading 
forces arising from the oscillation of the wing in which the vertical displacement is Z(x,y) e i~'t. 

The function Z(x,y) chosen to satisfy equation (10) is, in general, a complex function of x and y. 
Let us write 

L(x,y) = I(x,y)-e(x,y) (12) 

L(x,y) = l(x,y)-- g(x,y) (13) 

W(x,y) = w(x,y)-h(x,y)  (14) 

W(x,y) = ~ (x , y ) -  3(x,y) (15)  

Then e(x,y) is a loading function which satisfies the appropriate edge conditions in the direct flow and 
to which corresponds the upwash function 6(x,y) in the direct flow, and g(x,y) is a loading function which 
satisfies the appropriate edge conditions in the reverse flow and to which corresponds the upwash function 
3(x,y) in the reverse flow. 



If we substitute (12), (13), (14) and (15) into (8) we get 

H = f f I T(x,y)w(x,y)-~(x,y)w(x,y)+l(x,y)~(x,y)-~(x,y)~(x,y) 
S 

-7(x,y) w(x,y) + g(x,y) w(x,y) + l(x,y) 6(x,y)- ~(x,y) 6(x,y) I dx dy 

=;; +,,+,++,,++,+y, +,++,++,] 
S 

= f f [ l(x,y)g,(x,y)-~(x,y)a(x,y) ]dxdy 
s 

j,j" = Ho - /(x,y) 6(x,y) dx dy 
S 

since, by the reverse flow relation for E(x,y), 7(x,y), 6(x,y) and N(x,y) we have 

f j+7(x4')6(x,y)dxdy= f f e(x,y) ff~(x,y)dxdy. 
S S 

(16) 

(17) 

Also, by the reverse flow relation for e(x,y), g(x,y), 6(x,y) and S(x,y) we have 

f f efx,y)6(x,y)dxdy= f J+e(x,y)a(x,y)dxdy 
S S (18) 

which can be used to modify the form of H given by equation (16) if desired. 
The formula (16) shows the stationary property of H at the actual flow conditions, for first order 

variation terms are missing in the expression for the difference H - H o .  

3. Application to Lifting-Surface Theory. 
In order to have integration variables extending over standard ranges we make the changes of in- 

tegration variables 

1 
4o = e(-~o) [Xo-  XL (Yo)] (19) 

1 
no = s y0 (20) 



in the integrals on the right-hand sides of equations (2) and (4). Here s is the wing semi-span (x-axis 
on the wing root chord), c(yo) is the local chord length and xL(yo) is the x co-ordinate of the leading edge 
at the spanwise position Yo. The integral equations (2) and (4) then become 

+ 1  1 

s c(yo) drlo l(xo, Yo) K x -  Xo, Y -  Yo, d~o (21) w(x,y) = 4~zp ° V 
- 1  0 

and 

+1  1 

f ( ) ff~(x,y) = 4npo V c(yo) drlo 7(Xo, Yo) K Xo- x, y -  Yo, V ' M d{o . (22) 
- 1  0 

Let us write 

09 M cox x, o9 M )  (23) K ( x , y , - ~ ,  ) = E ( - - - - ~ ) I ~ (  y ,~ ,  • 

If we take 

E(x) = exp (ix) (24) 

then, for some purposes, I~(x, y, w/V, M) is a function which is more convenient for numerical manipula- 
tion than is K(x, y, og/V, M). For other purposes it may be better to take 

E(x) = 1 (25) 

o r  

i M2x ~ (26) 
E(x) = exp 1 - M  2 ] " 

For the present Report we shall leave E(x) unspecified, except that we stipulate that it has the properties 

E(x~ + x2) = g(x~) g(x~) 

E(o) = 1 

(o o) 
We assume, for subsonic flow, that c(yo) l(xo, Yo) E --¢- 

written as the convergent expansions 

(27) 

and c(yo) i(Xo, Yo)E(-~--- -~)maybe 

-~ /-i-- fo /1 

r=O s =O 

(28) 

and 



r = O  8 = 0  

where the l,(~o) are polynomials of degree r in 4o satisfying 

1 

0 

(29) 

(30) 

the ~(qo) are polynomials of degree s in tlo satisfying 
+ 1  

f ~(tlo) ~, q(,To) x / i  - ~o ano = ,h,q 
- 1  

(31) 

and 6,.p, 6~,q are Kronecker deltas. The A,s and A,~ are constants. 
For supersonic flow, the expressions (28) and (29) would need to be modified to take into account the 

edge conditions, which are different for supersonic flow, and also discontinuities in the pressure along 
Mach lines emanating from points of discontinuity of direction of the wing edges. We shall not go into 
any details of supersonic flow. 

If we write 

and 

L,.~ (Co, t/o) = I,.(~o) ~s(~o) 1 - ~?2 

L,,(¢o, no) = i,(1-¢o)~,~(no) ~ / ~  lv/i-s-~-n2 o 

then equations (28) and (29) may be written as 

(32) 

(33) 

r = O  s =O 

and 

c(yo) l(Xo, yo) E - - V -  = ~,~ E,~ (~o, •,). 
r = O  8 = 0  

Let 

w,s(x,y) = ~  

+1 1 sf! ( ) 
4~zpo V drl° L,~ (40, ~lo) • x -  Xo, y -  Yo,-~, M d~o 

- -1  

(34) 

(35) 

(36) 

7 



and 

+i 1 

s f t  ( W,.~(x,y) 4rcpo V dtlo Ers (~o, tlo) I~ x~-  x, y -  Yo, V' d~o. (37) 
- 1  0 

Then, substituting (34) and (35) into (21) and (22) and using (36) and (37) we get 

w(x,y)=E (-~-~)~ArsWrs(X'Y) 
r=O s = 0  

(38) 

and 

 ,xy, E/ t  Ar  rs,x,  ,39, 
r=O s=O 

Let us now consider a variation L(x o, Yo) of !(x o, yo) defined by the sum of a finite number of terms 
of the series (34), 

where V denotes the summation of some particular finite set of terms, the set consisting of P1 (say) 
1 K--3 .  

terms altogether. The summation of the remaining (infinite)number of terms is denoted by L I '  

define e(xo, yo) by the relation 

so that relation (12) between L(x,y), l(x,y) and e(x,y) is automatically satisfied. 
Let us also consider a variation f~(Xo, yo) of l(Xo, yo) defined by the sum of a finite number of terms 

of the series (35), 

where 7 denotes the summation of some particular finite set of terms, the set consisting of P2 (say) 
2 

terms altogether. The summation of the remaining (infinite)number of terms is denoted by L 2 "  We 

define ~(Xo, yo) by the relation 

c(yo)~(xo, y o ) E ( _ _ ~ )  =~'2ArsLrs(~o, rlo ) (43) 



so that the relation (13) between f,(x,y), I(x,y) and ~(x,y) is automatically satisfied. 
The upwash function W(x,y) corresponding to the loading function L(xo, Yo) in the direct flow and the 

upwash function W(x,y) corresponding to the loading function E(xo, Yo) in the reverse flow are obtained 
from (21) and (22) by replacing l(xo, Yo), l(Xo, yo), w(x,y) and N(x,y) by L(xo, Yo), L(xo, yo), W(x,y) and W(x,y) 
respectively. Then on using (40) and (42) we get 

and 

Similarly, we get (see (14) and (15)) 

6(x,Y) : E (--~-~) ~'lZrsWrs(X,Y) 

and 

3(x,y) = e --V x,~w,s(x,y). 

If we make the change of variables 

+ Ix- xL (y)] 

1 

q = s  y 

in the integral on the right-hand side of formula (16), we get 

+ 1  I 

H=Ho-sfc(y)dt l f~(x,y) f(x ,y)d¢ 
-1 o 

+i 1 

- 1  0 

Substituting from (43) and (46) into (50) we then get 

rs pq 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

\ 

(51) 

where 



+I 1 

'rspq~ S ;drl ;Lrs(~,t])Wpq(X,y)d~ • 
-1 o 

(52) 

The formula (51) shows that the difference H-Ho depends only on the coefficients which have been 
omitted in obtaining the finite expansions (40) and (42) from the infinite expansions (34) and (35), and, 
of course, in accordance with the variational principle, is a second order quantity. 

However, the coefficients A,s and A,~ used for the evaluation of H are not known a priori. Therefore 
further variations L1 (Xo, Yo) and f,1 (Xo, yo) of the loading in respectively the direct and reverse flows 
are considered. 
These are defined by the finite summations 

(53) 

and 

( COXo) 2 BrsL~s({o, rlo ) (54) c(yo) El (x., yo) E - - - ¢ -  = 2 

where the coefficients B,s and Brs are to be determined. 
The upwash function W 1 (x,y) corresponding to the loading function L 1 (x o, yo) in the direct flow and 

the upwash function W1 (x,y) corresponding to the loading function L1 (Xo, Yo) in the reverse flow are 
given by the formulae 

(55) 

and 

W ' ( x ' y ) = E ( ? ) ~  (56) 

The value of H corresponding to the loading L1 (x,y) in the direct flow and the loading f,1 (x,y) in 
the reverse flow will be denoted by H1. 

If we make the change of variables (48) and (49) in the integrals defining H in equation (8) we get 

+ 1  

lll----s f 
-i 

I 

=S 

+i i 

10 



- {  c(y)El(x,y)E(--~)} {Wi(x,y)E(-~)} l'd¢. 

If we now use formulae (53), (54), (55), (56) in (57) we get 

HI ~ ~2nrsO~rsJ~-~IBPq~pq-~ inrsBpq~)rspq 
rs pq  

(57) 

(58) 

where 

+ 1  1 

- - 1  0 

(59) 

and 

+ 1  1 

f f  •pq = s d~l Lpq (~,rl) N(x,y) E ----~- de. 
- 1  0 

(60) 

We determine the coefficients Bpq and Br~ which make H 1 stationary for first order increments in 
Bp~ and B,~. If Bp~ and Br~ respectively undergo increments ~Bp~ and 6B,~ then H t undergoes an increment 
3H1 given by 

rs  pq  

rs pq  rs p q  

rs Pq 

pq  rs 

_~-~ ~-~ ~B~ ~B~ ~,,~. 
rs  p q  

(61) 

11 



If the sets of equations 

and 

~rs -- ~ 1 7rs pq Bpq = 0 

Pq 

flPq- ~ 2  7~, vq B,~ = 0 
r8  

(62) 

(63) 

are both satisfied, then 3H1 will contain only second order quantities so that H~ will be stationary for 
first order increments in Bpq and Br~. 

The set of equations (62) are a set of P2 equations for P1 unknowns Bpq and the set of equations (63) 
are a set of P1 equations for P2 unknowns B~s. These two sets can be solved only when P2 = P~, which 
henceforth we assume to be the case and let 

P = P1 = P2. (64) 

When equations (62) and (63) are satisfied, then we put 

H1 = H l o  (65) 

6H~=-~2~ 6BrsfBpq?rspq. 
r,~ p q  

(66) 

If we put 

(~Bpq = Apq - Bpq (67) 

and 

fiB,s = A~,-  B,s (68) 

then 

H l o  = H - f H  1 

=H+~2~l(Ars-Brs)(Ar, q-Bvq) Yrspq. 
rs  p q  

(69) 

Then, substituting for H from (51), we get 

H,o= Ho+~z~ (Ars-Br~)(Apq-Bpq)Trspq-~[ Z' A~sAmyrspq 
r s  p q  r s  p q  

(70) 

The quantity H given by formula (51) is the same as H1 obtained by replacing Bpq and Brs in formula 
(58) by At, and Ars respectively. By making small increments in Bpq and B~s from the values Apq and Ars 

12 



a value HI for H1 is obtained. Both quantities H and HI must differ from Ho by second order quantities 
for H o is the stationary value of the general expression H given by formula (8). Hence H'~ must differ from 
H by a second order quantity and as both H'~ and H are particular values of Hx they must both differ 
by a second order quantity from the stationary value Hxo of Hx. Thus Hxo differs from Ho, the value of 
H corresponding to actual flow conditions, by a second order quantity for it may be written 

Hlo = ( H l o - H ) + ( H - H o ) +  H o (71) 

and both H i o -  H and H - H o  are second order quantities. 
The quantity H~o may not be the most accurate estimate of Ho possible with only P terms, but it can 

be used as a good estimate for H0. If we knew all the coefficients Apq and .~r~ we could give a better 
estimate. 

We may arrange each set of elements ~,~, Br~, flpq, Bpq as a column matrix of P elements, and the set 
of elements ?,,pq as a square matrix of P × P elements so that the sets of equations (62) and (63) may be 
written as the matrix equations 

= ? B (72) 

and 

fl = ?' B (73) 

where a, B, fl~ B are respectively the column matrices of the a,s, Brs, flpq, Bp¢ and ~, is the square matrix 
of the ?r~ pq. The matrix ?' is the transpose of the matrix ?. 

We can now write Hlo from equation (58) as 

Hlo = B'a+fl 'B-B'?B (74) 

where a dash indicates matrix transposition. 
By using equation (72) in (74) we then get 

H l o = B ' a + f l ' B - B ' a  

=/~'B 

= P' r -  1 ~ (75) 

where y-  1 denotes the matrix inverse to y. 
The elements of the matrix ? do not depend on the functions w and ~, but only on the wing geometry, 

the flow Mach number and the frequency ratio aJ/V. The matrices a and fl depend on w and ~ respectively, 
the wing geometry and the frequency ratio co/V but not the flow Math  number. 

In lifting surface theory it is usual for the finite summations in (53) and (54) to consist of double summa- 

tions over a rectangular array. The sets for the summations ~ '  and ~ '  will be taken to be the same 
Z..a 1 / / 2 

rectangular array and we shall write instead of (53) and (54) the formulae 

n - l m - 1  

r = O  s = O  

(76) 

13 



and 
n - i  m - 1  

C(yo'Et (Xo, Yo'E ( -~---~ ) = 2 2 B ,  sL,s(~o, tlo). 
r = O  s=O 

(77) 

The functions L,s (~o, tlo) and E,~ (40, t/o) were chosen for their orthogonality properties so that the 
infinite series on the right of (34) and (35) should be convergent in general. The right-hand sides of (76) 
and (77), however, are finite series and in these we may replace the L,~ (~o, r/o) by any nm linear combinations 
of the L,~ (40, t/o) and the E,, (40, r/o) by any nm independent linear combinations of the Ers (40, t/o). For 
example we could write, instead of (76) and (77), 

n-i  m-i 

r = O  , = 0  

Et 11 d 

(DXo) 
C(yo) El (x., yo) e - - p -  

n - i  ra-I 

r = O s = O  

(79) 

where 

n - 1  

jr(~o)=2arp~Po~o ° r =  0 , 1 , 2  . . . . .  n - 1  ( 8 0 )  

p = o  

m - 1  

k~(~o) = 2 b~q r/o ~ ~ s = O, 1, 2 . . . . .  m -  1 (81) 
~/=0 

and the a,p and b,~ are any sets of coefficients such that the determinants Impl and ]bs~] are non-zero 
The pairs of formulae (76), (77) and (78), (79) are completely equivalent to each other. One could obtain 

the C,~ as a linear combination of the Brs and the Cr~ as a linear combination of the Brs. On the other 
hand we could obtain the values C~s and C,s by using (78) and (79) to evaluate Hi  from (57) and finding 
the stationary value of the resulting expression. We do this below. 

Let 

+i 1 s ; f  ( o) 
U~ (x,y) = -4npo V dtlo J,(~o) k,(~lo) g x -  x~, y -  Yo, ~,  M d~ o 

-1 0 
(82) 

so that 

n - 1  m - 1  

( °x)22 W~(x,y) = E ---V- C,s U,~ (x,y). 
r = O  s=O 

(83) 

14 



If we now substitute from (78), (79) and (83) into (57) we get 

n - l  m - 1  n - l  m - I  n - - I r a - I n - I r a - 1  

r=Os=O p=Oq=O r=Os=O p=Oq=O 

(84) 

where 

+ I  I 

- 1  0 

(85) 

+ 1  1 

- 1  0 

(86) 

and 

+i 1 

~ k , . s p q = s f d r l f j , . ( 1 - Q k s ( r / ) U p q ( X , y ) d ~ .  

- 1  o 

(87) 

The function H1 is stationary when 

n - I r a - 1  

p = O  q=O 

r = 0,1,2 . . . . .  n - l ,  

s = 0 ,1 ,2  . . . . .  m - 1 .  (88) 

and 

n - l m - 1  

r = O s = O  

r = 0,1,2 . . . . .  n - l ,  

s =  0,1,2 . . . . .  m - 1 .  (89) 

The sets of equations (88) and (89) may be written as the matrix equations 

0 = ~/C (90) 

and 

(91) 

where 0, ~b, C and C are respectively column matrices of the 0r~, ~bpq, C,s and Cpq, and ~k is a square matrix 
of the yrs pq. The matrix 4 '  is the transpose of the matrix ~k. 

15 



We can now write H1o from equation (84) as 

Hlo = C 'O+(o 'C-C '~C 

= CO+4~ 'C - C 'O  

= 4 , ' C  

= ¢' ~ -  1 0. (92) 

elements of qJ, given by formula (87) are more complicated to evaluate because the function Upq(x,y) must 
first be determined from formula (82) and it is a tedious process to evaluate Uvq(x,y) for any given values 

of x and y. 

4. Reduction to a Current Lifting-Surface Theory. 
In order to evaluate Hlo from formula (92) ~he elements of the matrices ¢, 0 and ~ must be determined. 

The elements of 0 and ¢ given in formulae (85) and (86) are quite straightforward to evaluate, but the 
elements of ~0, given by formula (87) are more complicated to evaluate because the function Upq(x,y) must 
first be determined from formula (82) and it is a tedious process to evaluate Upq(X,y) for any given values of 

x and y. 
It may be possible to evaluate the elements of 0 and ~b analytically from formulae (85) and (86) if w(x,y) 

and ~(x,y) are functions of sufficiently simple form. Otherwise the elements may be obtained from these 
formulae by means of numerical integration. If the values of the integrand at a finite number of points 
is to be used for the numerical integration and if the integrand is to be approximated by the product of a 

polynomial function in ~ and r/with the function k / l ~  ~- ~/1 - r/2, then there is an optimum p°siti°n f°r 

these points to give best accuracy. Let ~u, u = 1 ,2 , . . .  n be the n zeroes of l,(~) and let r/v, v = 1,2 . . . . .  m 
be the m zeroes of 7,,,(r/). If ran points only are to be used for the numerical integration then for the numerical 
integration of the integral on the right-hand side of (85) it is best to take these mn points to be the points 

1 - ~,,, rl~ 

u =  1 , 2 , . . . , n  

t, = 1.2 . . . . .  m 

(93) 

and for the numerical integration of the integral on the right-hand side of (86) it is best to take these 

mn points to be the points 

u =  1 , 2 , . . . n  

v = 1,2 . . . .  m 

(94) 

The elements of ~k will have to be obtained by numerical integration of the integral on the right-hand 
side of equation (87) since Upq(x,y) can only be obtained numerically. In this case the integration points 
(93) are the optimum ones to choose in general. 

Let us define 

Xuv = c(y3 4. + xL(yv) 

Yv = s ~v 

u =  1 , 2 , . . . , n  

v = 1 , 2 , . . . , m  
(95) 
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and 

Yc,,v = c(y,,) (1 - ~ . )+ XL(y~,) 

Yr = s r/,, 

u =  1 , 2 , . . . , n  

v =  1 , 2 , . . . , m  
(96) 

Then  the results of performing numerically the integrations on the right-hand sides of (85), (86) and 
(87) using mn points at the op t inmm locat ion are 

Ors = s / ,  H p  ) G~")jr(~,) k~(tl. ) w(2,,,  y,) E (97) 

u = l  v = l  

n m 

( 
u = l  v = l  

(98) 

22 ~9.spq = s H(. ") GIT'~j.(~.) ks(th.) U pq(Yc,, v, Yv) 
U=I V=I 

(99) 

and the constants H~ ~, u = 1,2 . . . . .  n; G~ "), v = 1,2 . . . . .  m; are the integration weighting constants. 
We can define functions h~')(~), r = 1 ,2 , . . . ,  n, by the formula 

. - 1  

p = O  

which are such that  " 

hi")(~,) = 3,, 

and we can define functions g~')(t/), 

which are such that  

Then  

s = 1, 2 . . . . .  m, by the formula 

m--1  

0~")(t/) = ~ g~)t/q ~/1 -t/2 
q = 0  

W)(~o) = 6,°. 

1 

H,(. ") = f h(. ") (¢) de 
0 . . : .  .~ 

(100) 

(101) 

(102) 

(103) 

(104) 
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and 
+ 1  

= [ g(~")(q) dr/. (105) G(~) 
L t  

- -1  

It will be noticed that the definitions of the functions h~')(~) and g~m)(q) given in formulae (100) and 
(102) are analogous respectively to those ofj,(~o) and kd~/o) given in formulae (80) and (81). Indeed, as 
particular cases, we may take 

and 

J,(~o) = h~ ''J(~o) (106) 

ks(no) = g?' ) (no) .  

If we do this, then formulae (97), (98) and (99) reduce to 

O , ~ = s H ,  Q w ( Y c , ~ , y ~ ) E ( - ~ )  

dpvq = s Hp Gq ff~(xpq, yq) E V 

and 

~O,.s pq = s H, Gs Upo(YC,s, Ys) . 

(107) 

(108) 

(109) 

(110) 

If we use expressions (108), (109) and (110) for the elements of the matrices 0, ~b and ~k respectively 
then the expression (92) for H10 is exactly the expression which would be obtained for the corresponding 
generalised force in, for example, Ref. 5. Thus the results obtained using the variational technique are 
closely related to those of a collocation procedure. 

The quantities Upq(~r~, y~) appearing in equation (110) may be obtained from formula (82) by means 
of an approximation technique such as the one described in Ref. 5. The accuracy with which these 
quantities are obtained using this technique may not be as good as is desirable, in particular for points 
2r,, Ys near to the wing edges. Garner and Fox 6 have suggested a more accurate procedure for obtaining 
these quantities, but even this procedure cannot give these quantities in the ultimate when the edges 
are approached. Possibly a completely different procedure for obtaining these quantities Uvq(2,., ),~) 
is necessary. 

A procedure such as that of Watkins et al 7, or a modification of it. may also produce results thal arc 
more accurate than the ones obtained by the technique of Ref. 5. 

The accuracy with which the elements of 0 and 0 are obtained can be increased by using more than 
mn points for the evaluation of the integrals on the right-hand sides of equations (85) and (86), or per- 
forming analytically these evaluations if this is possible. Also the elements of ~ may be obtained with 
greater accuracy by using more than mn points for the evaluation of the integral on the right-hand side 
of (87). In this case some of the integration points might tend to get very close to the edges and a good 
procedure for evaluating Upq(x,y) at the integration points should be used. 

When there are control surfaces present then one or both of w(x,y) and ~(x,y) may be discontinuous 
and as a result the formulae (97) and (98) or (108) and (109) may be rather inaccurate. In this case it is 
advisable to perform analytically the integrations on the right of(85) and (86), or at least to use a numerical 
integration procedure which takes the discontinuities into account. The basis of equivalent upwash and 
displacement calculations rests on the accurate evaluation of the 0~ and Cpq. 
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Of course, if there are control surfaces present, the number of terms required in the summations in 
(53) and (54) to give a small difference H l o - H  o may be relatively high compared with the number 
required if only smooth modes of displacement occur. 

If for the distributions of loading Ll(xo, Yo) and E~(Xo, Yo) corresponding to the stationary value 
H10 we write 

L~(x, Yo) = l(xo, Yo)- el(Xo, Yo) (111) 

and 

Lt(x,,. Yo) = l(x,,, y,,)- ~l(x,,. Yo) (112) 

and if the upwashes W~(x,y) and Wl(x,y) corresponding respectively to the loading L,(xo, Y0) in the 
direct flow and E,(xo, Yo) in the reverse flow, are written 

Wl(x,y) = w(x,y)- 6~(x,y) (113) 

and 

Wl(x,y) = ff~(x,y)- 31(x,y) 

then, following the process leading to equation (16), we have 

Hlo=Ho-ffZt(x,y)6dx,y)dxdy. 
S 

(114) 

(115) 

The difference H l o - H  0 therefore depends on the quantity 

f fgl(x,Y)61(x,y)dxdy= f f ei(x,y)~i(x,y)dxdy. 
S S 

(116) 

If the functions w(x,y) and ~(x,y) are smooth functions, then it may be expected that for a relatively 
small number of terms in the summations (53) and (54) the difference H1 o -  Ho is very small. If one of the 
functions w(x,y) or ~(x,y) is not smooth, then, with the  same summations, the difference H l o - H o  may 
be expected to be larger, while if both w(x,y) and ~(x,y) are not smooth the difference H l o -  Ho may be 
expected to be larger still. 

If, for example, the loading l(xo, Yo) is such that it is given exactly by a finite series of the form (53), 
then 

and 

~51(x.v) = O. ~:l(x.)') = 0 (117) 

Hi,, = Ho (118) 

whatever the form of ~(x,y). In three-dimensional wing theory this is not in general the case, but it does 
occur in two-dimensional incompressible flow. 

If l(xo, Yo) is not given exactly by a finite series of the form (53) nor is 7(Xo, Yo) given by a finite series 
of the form (54) then the results obtained using equivalent upwash and displacement functions may 
not give the generalised airforces to the desired accuracy for a relatively small number of terms in the 
summations, when one of w(x,y) and ~(x,y) is discontinuous. If both w(x,y) and ff~(x,y) are discontinuous 
the error may be worse. 
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5. A Least Squares Approach. 
A process which has been suggested (see, e.g. Fromme a) for obtaining the generalised force is to take 

an approximation to the loading given by formula (53) and to obtain the coefficients Brs by minimising 
the expression 

f f I w(x,y)- W,(x,y)12f(x,y)dx dy 
S 

(119) 

where Wt(."4') is given by formula (55) andj(x,y) is some function which one might consider desirable 
to introduce and might for convenience be taken to be unity. The estimate Qj for the generalised force 
Qjo is then taken to be 

Qj= f fL~(x,y)Zj(x,y)dxdy. 
S 

(120) 

If we write 

then 

Lx(Xo~ Y,,) = I(xo, Y~)-el(Xo, Yo) 

Qj= ffl(x,y)Zj(x,y)dxdy-ff~l(x,y)Zj(x,y)dxdy 
• ~; S 

=Qjo-f  fea(x,y)Zj(x,y). 
S 

(121) 

(122) 

Thus, in general, the quantity Q~ approaches Qjo only to within terms of first order, so this procedure 
procedure is not as good an estimate of a generalised force as is obtained by using Flax's variational 
principle. This will be illustrated by an example in the next section. 

6. Example for Two-Dimensional Incompressible Flow. 
Consider a two-dimensional wing of chord length c. Introduce co-ordinate axes x and z such that the 

x-axis is along the direction of the wing chord and the z-axis is perpendicular to the wing chord. 
Corresponding to the x co-ordinate of a point P on the wing we can introduce a transformed co- 

ordinate ~ by means of the formula 

~-= X--XL. (123) 
C 

where xl.. is the x-co-ordinate of the leading edge. 

The two-dimensional wing is assumed to be oscillating harmonically with circular frequency co in a 
flow of subsonic main stream speed V. 

Corresponding to the upwash distributions w(x) and ~(x) there are respectively the loading function 
l(x) in the direct flow and the loading function 7(x) in the reverse flow. 

We wish to estimate the value of Ho where 
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Ho = J l(x) ~(x) dx. (124) 

wing 
chord 

We shall take E(x) to be unity and take the approximate loading distributions L~(x) and El(x) in the 
direct and reverse flows to be given by 

n - 1  

Ldx) = 2 Crjr(~) (125) 

and 

where 

n - 1  

El(x) = ~ Crjr(l -~ )  

r = O  

(126) 

The upwash corresponding to the loading Jr(~) in the direct flow is denoted by Ur(x). The estimate 
Hlo of Ho, using the variational principle is then given by (see equation (92)) 

H~0 = c~b' ~9 -1 0 (128) 

where 0 and 4) are column matrices with elements 0r and q~p respectively and ¢ is a square matrix with 
elements Gp and 

1 

or = [ L ( 1  - ¢) w(x) d~ (129) 
t ~  

g 

1 

~p = f jp(¢) ~(x) de (130) 
0 

1 

o,p = f j,(1- ¢) Up(x) de. (131) 
0 

From two-dimensional incompressible flow theory we know the functions Up(x) corresponding to the 
loading distributions jp(¢). They are 

[ 1 t (132) 
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etc., where 

We can work ou t  @rp 

U dx) = V 

U2(x) = V 

from equat ion (131) to get 

) Hi~)(v)+ 8 Ug~)(v) 1 
e-iv(2¢-  1) } 

(133) 

(134) 

(135) 

1 

7~ 3 

0 

(136) 

1 1 ] 

0 0 

(137) 

1 

0,o = - - d p  v (i,~ [ I-Ii~)(v)+ i 
.d d 

o 

e-~V(2¢- 1) (1 - ¢ ) ~ 1 - - ~  ~ d~ 

X 

0 0 

(138) 

(139) 

If we take n = 1, ~ is a 1 x 1 matrix consisting of  the element Ooo- 
Hence  

- 1 =  4 

~p V s (iv) {H~ 2) (v) + i H~o 2) (vy, 

l 

0 

d~ 

(140) 

If we take n = 2, ~b is the 2 x 2 matrix 

I//00 @01 (141) 
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Then @- ' is the 2 x 2 matrix 

where 

7oo 7oi 

71o 711 

(142) 

700 

I I 

(iv) J I I -~ )  _ ~+2nH~2)(v) e-i~(2~-t)(1-~) _ d~ 

0 0 

rcpV 3 {H(12)(v) + i H(o2)(v)} P(v) 
(143) 

701 

1 t 

(iv) 
o o 

npV 3 {H(12)(v)+i H(o2)(v)} P(v) (144) 

71o --  

t 

4(iv) f e - i V ( 2 ¢ - l ) ( 1 - ~ ) k / 1 J ~ d ~  

o 

pV 3 P(v) (145). 

711 

I 

4(iv) f c-iV(2¢- l)~l ~ d ~ 
o 

p VS P(v) (146) 

and 

1 1 

P(v): f e" '2'-l'(1- e41  cae f  a_C- Ca¢ 
0 0 

- e-~'(2~-l)~l_--~d~ , 1 -  _ d~. 

0 0 

(147) 
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I fn  = 1 we get from (128), (129), (130) and (131) 

Hlo = - 4 p V c  
7~ 

1 1 

0 0 

1 

(iv) {H]Z)(v)+iH(o2)(v)} e -Iv~2¢-1) d~ 
0 

(148) 

If n = 2 we get from (128) 

Hto = c [Too Oo q5o+7ol  01 (~oq-~'lO Oo ~1 +])11 O1 (])1] (149) 

where 0 o, 01 are obtained frolTl (129); q5 o, ~b I from (130); and 7oo, 7ol, 71o, 71t from (143) to (146) re- 
spectively. 

The integrals occurring in (140) and (143) to (147) can all be evaluated analytically, but we do not 
choose to do this for the present because the values obtained by numerical evaluation are also of interest. 

In the least squares procedure, an approximation function Ll(x) of the form (125) is taken for l(x) 
and the coefficients C: are chosen such that the expression 

1 

f lw(x)- Wl(x)l ~ dx 
o 

(15o) 

is a minimum, where 

n-1 

Wl(x) = ~ C~ U,(x). 
r=0 

(151) 

If n = 1, then there is only one coefficient in the formula (125), namely Co, and if the expression (150) 
is to be a minimum we must have 

1 

f w(x) Uo(x) d~ 
o 

C o  ~ 1 

' f IOo(Ol = d¢ 
o 

1 

I w(x) e ivt2~- ~) d~ 

1 ° 

rW (iv) {H~Z)(v)+ i Hto2)(v)} 
(152) 
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where the asterisk * attached to a quantity denotes that its complex conjugate is to be taken. 

The estimate H~ for H o is then 
l 

Hs = Co c f :o(o w(x) de 
0 

1 I 

f Vv(x)?-@d~ f w(x)eiv(24-1)d~ 
4 1 o o 

= - - p V c  (153) 
n (~v) {H] z) (v) + i H(o 2) (v)} 

If n = 2, there are two coefficients in formula (125), namely Co and C1. If expression (150) is to be a 
minimum we must have 

1 1 

f "  1°f cq 1 w(x) Uo(x) d~ +-V-- £ w(x) U*I(x) d~ C o  = -~ 
0 0 

1 1 

~01 f * C~oofw(x)U.dx)d ~ C1 = --V--f w(x) Uo(x)d~ + - ~  
0 0 

(154) 

(155) 

where 

aoo ~-- 

~01 

~10 

~11 

(iv) 2 

2iv Hi )(v)- 

-{H(tZ)(v)+iH(o2)(v)} { 1 -  (sin---~v) 2 t 

4H7 )(v)/-/i ~(v) + ~ ~ ( sin v 

{ n?~(v)+ i u~g'(~) } - { I-l~"(v)-i U~o"(~) } 

16 1 
rd (iv) 2 

(156) 

(157) 

(158) 

(159) 
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The estimate Hs for H o is then 

1 1 

o 0 

1 1 

0 0 

1 1 

o 0 

I I 

+~oo ~(x) . - - ( -  eli ,.~'(x) U',(x) d~ . 

fl 0 

Example 1. 
Let us consider the wing to be in heaving oscillatory motion so that 

(160) 

Z(x,t) = ce i'~' . (161) 

Then 

w(x) = 2ivV. (162) 

The actual two-dimensional incompressible flow solution gives for the loading function l(x) the ex- 
pression 

l(x) = 4pV 2 (iv) I H]Z)(v) 
{ Hi2)(v) + i H(o2)(v)} 

The total lift per unit span is Le ~°t where 

! 

L = c f l(x) d~ 
0 

+ 2 i v ~ ] ~ / 1 - ~  (163) 

= 2rcpV2c(iv) I H~2)(v) - 1 ,. , 
(164) 
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The total pitching moment per unit span, about the mid-chord line, is M e  ~'t where 

1 

M = c 2 f (½- 4) l(x) d~ 

0 

= ~'~pV 2 c 2 (iv) [ H]2)(v) 
{Hi ~'(v) + i H~o 2)(v)} 1 " 

We may also write L and M in the forms 

{Hf)(v)+iHCo2)(v)} - -4 -2 ( i v )+( iv )a+o(v3)+O v 3 log 2 

p V  2c2 _ + O ( v 2 ) + O  ( v 2  l o g ~  . 

(165) 

(166) 

(167) 

To estimate L we must take ~(x) = 1 and to estimate M we must take ,~(x) = c(½-4) in both the 
procedure using the variational principle and that using least squares. 

We shall consider results for n = 1 and n = 2 only in the following cases. 

Case (1.0. 

n - -  i w(x) = 2ivY ,~(x) = 1 

The estimate Hlo for L obtained from the variational principle is given from the formula (148) as 

1 1 

pV2 c o 0 
H l O  = - -  . .  

1 

{H(12)(v)+iHf)(v)l fe-,.2¢-,, / ¢ N 1 - ~  de 
o 

(168) 

The integrals in formula (168) can be evaluated analytically, or numerically. The numerical integrations 
are carried out using a one-point integration formulae. The result obtained using the numerical values 
of these integrals in (168) is exactly that which is obtained by the collocation method and will be denoted 
by H~C)o. Thus 

1 
H lo  4p V2c 

{H~ 2) (v) + i Uto 2) (v)} {Jo(v)- i J ,  (v)} 
(169) 

and 

1 
H(~) - 4p V2c (170) 

to = {H~a)(v)+ i H~o2)(v)} e-,Vl2 . 
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The estimate H, for H0 obtained from the least squares procedure is given from formula (153) as 

1 I 

Hs = 8 p V 2 c  o o 
7: { H ? ) ( v ) +  i H(o2)(v)} 

(si v) 
= - -4P  V2c {H]Z)(v)+iHCoZ)(v) } • (171) 

The expressions for Hlo, H]C~o and H~ given in (169), (•70) and (171) may be written 

p V 2 c  

H l o  = {H]Z)(v)+i  H¢o:)(v) } [ - 4 - 2 i v + O ( v 3 ) ]  (172) 

H(C) P V 2 c 
1 0  ----~ {H~ 2) (v) + i HCo 2) (v)} [ - 4 -  2iv - ½(iv) 2 + O(v 3)3 (173) 

p V 2 c  2 2 4 
Hs = {H(12)(v) + i H(o2)(v)} [ - 4 - ~ ( i v )  +O(v )] (174) 

The expressions (172), (173), (174) are estimates for L which is given accurately by formula (166). The 
expression H1 o is closest to L, differing from it by a term of 0(v z) in the square brackets. The expression 
H~C), also differs from L by a term of O(v z) in the square brackets, whereas the expression H s differs from 
L by a term of 0(v) in the square brackets. 

Case  (1.ii). 

n = 1 w(x)  = 2 i v V  ~(x )  = c ( ½ - ~ )  

The estimate Hlo for M obtained from the variational principle is given from formula (148) as 

1 1 

0 0 
H~o = - 8 p V 2  c 2 

7~ 
1 

{H~lZ)(v)+iH(oZ)(v)} f e - iVc2~- l )~ l~d  ~ 
0 

(175) 

If the integrals are evaluated analytically we get 

H1 ° = _ p V 2  c2 1 
{H~2)(v) + i/-/~g) Iv)) {Jo(v)- i J,(v)}  (176) 
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and if they are evaluated numerically usifig one-point integration formulae we get 

= C 2 10 - -P V2 
{H(i2)(v) +i  H(o2)(v)} e -'v/2 " 

(177) 

The estimate H~ for H o obtained from the least squares procedure is given by formula (154) as 

I 1 

? 

Hs = _ 8 p V  2 c 2 o o 
rC _ .-4f/"i~Siv) + i H(o2) (v) } 

(v) 
{H(12)(v)+ i H(o2) (v) } . (178) 

The expressions for Hlo, H(()o and Hs given by (176), (177) and (178) may be written 

p V  2 c 2 
Hio = {H(i2)(v)+ i H(o2)(v) } [ -  1 -~iv)+0(vz)] 

H(C) 
P V2 c2 

o = {H?~(v) + i U(o ~(v)} [ -  I .  ~(iv) + O(v~)] 

p V  2 c 2 
Hs = { i t ?  ) (v) + i H(o 2) (v)} [ -  1 + 0(v2)]. 

(179) 

(180) 

(181)  

The expressions (179), (180), (181) are estimates for M which is given accurately by formula (167). The 
/ \ 

expression n s is closest to M, differing from it by a term of 0 ( v 2 log ~ )  in the square brackets. The 
\ / 

expressions Hlo and H(,C) o differ from M by a term of 0(v) in the square brackets. 

Case (1.iii). 

n = 2 w(x) = 2ivV ~(x) unspecified 

The estimate Hlo for H o obtained from the variational principle is given by formula (149). On sub- 
stituting for the quantities involved and simplifying we get 

1 

{Hi2~(v) + i/-/~o=~(v)} 
0 

1 

= p Vec f l(x) ff,(x) d~.  

0 

(182) 
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Thus the generalised force is obtained exactly from the variational principle, irrespective of the function 
~(x), provided the integral (182) is evaluated exactly. If numerical evaluation of(182) using two integration 
points is used, then the generalised force is obtained exactly provided ~(x) is a polynomial of degree not 
higher than the second in 4, but not otherwise. 

The estimate H~ of the generalised force obtained from the least squares procedure is also exact in 
this case. 

Example 2. 

Let us consider the wing to be in pitching oscillatory motion about its mid-chord line so that 

Z(x,t) = c(½- 4) e i'~t . (183) 

Then 

w(x) = V [ -  1 + iv(1-24) ] .  (184) 

The actual two-dimensional incompressible flow solution gives for the loading l(x) the expression 

H(i2) (v) i H(o2) (v) 
+½(iv)-H¢z) v + i  l(x) = 2pV z {H]2)(v)+iH(o2)(v) } { 1 ( ) H(o2)(v)} 

- 4 ( i v ) ¢ + ( i v ) 2 ( ~ - 2 ~ 2 ) l ~ / 1 - ~  (185) 
The total lift per unit span is Le i''' where 

H]~)(, ) ] 
L = npV 2 c -(l+½iv) {H(Z)(v)+iH(2)(v)} ½iv (186) 

and the total pitching moment per unit span, about the mid-chord line, is Me i'~t where 

M = ¼npV 2 c 2 [ H ?  ) (v) + ½(iv) i H(o 2) (v) + ~(iv)2 1 
{H(12)(v) + i H(02) ( v ) }  {H?)(v) + i H(02) (v)} 

(187) 

We may write L and M in the forms 

M = 

pV2c I 2 1 1 2 
L = {Hf)(v)+iH(o2)(v)} (-~)v)+2-~(iv)-~iv) 

Y ir~ 3 v 

pV  2 c 2 1 3 1 1 2 (~v) +ig (iv)) {H(12'(v) + i H(o2'(v)} 

(188) 

(189) 

To estimate L we must take ~(x) = 1 and to estimate M we must take ,2(x) = c(½- 4) in both the pro- 
cedure using the variational principle and that using least squares. 
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We shall Consider results for n = 1 and n = 2 only in the following cases. 

Case (2.0. 

n = 1 w(x) = V [ -  1 + iv(1 - 2{)] ~(x) = 1 

The estimate H10 for L obtained from the variational principle is given from formula (148) as 

! 1 

4 p  ° ° 
HlO = - V2C 

I 

(iv) {Hf)(v)+iH(o2)(v)l  e -'~(2~-1) _ d~ 

L 

(190) 

If the integrals are evaluated analytically we get 

[ i  +  iv] 
H i °  = 2pV2c (iv) {H(12)(v) + i H(o2)(v)} {Jo(v)- i Jl(v)} (191) 

and if they are evaluated numerically using one-point integration formulae we get 

H(~) [1 +½iv] 
lo = 2P V2c (iv) {H~2)(v)+i H(o=)(v)} e -'~/2 " (192) 

The estimate H~ for L obtained from the least squares procedure is given from formula (153) as 

1 1 

f x/L dC f 
' 0 0 

H~ = 4 pV2c 
7I (iv) {H~2)(v)+ i H(o2)(v)} 

=2pV2c [ (~--~)+2-~v { (sin--~) -c°sv }] 
(iv) {H(~ 2~ (v) + i H(o 21 (v)} (193) 

The expressions for Hlo, --to'CO) and H~ given by (191), (192) and (193) may be written 

pV2c [ 2  ] 
Hxo = {H(x2)(v)+ i H(o2)(v) } ~ +  2 +~(iv)+O(v 2) (194) 

pVZc 
H(lC~o = {Ht12)(v)+iH(oZ)(v)} [ 2 2 +~(iv)+O(v3 2 1 ~v+ ) J  (195) 

pV2c [ 2 1 2 ]  
H~ = {H]2)(v)+iH(o2)(v) } ~ - ~ + O ( v  ) . (196) 

31 



The expressions (194), (195), (196) are estimates for L which is given accurately by formula (188). The 
expression H~o is closest to L differing from it by a term of 0(v) in the square brackets. The expression 
H]C~ o also differs from L by a term of 0(v) in the square brackets, whereas the expression H~ differs from 
L by a term of 0(I)in the square brackets. 

Case (2.ii). 

n = 1 w(x) = V [ -  1 + iv(1 - 24)] We(x) = c(½- 4) 

The estimate Hlo for M obtained from the variational principle is given from formula (148) as 

4 . 2 C 2 Hlo = --~pV 

1 1 

f (½-~) ~l---S-~d~ f [ - l + i v ( 1 - 2 4 ) ] \ / l  ~-~d~ 
o o 

1 

(iv){H~Z)(v)+iH~oZ)(v)} fe-'~'2¢ -1' l~_~d¢_ 
o 

If the integrals are evaluated analytically we get 

(197) 

H,o = ½or ~ c ~ [1+½iv] 
(iv) {H? ) (v) + i H(I 2) (v)} {Jo(v)- i J,(v)} 

(198) 

and if they are evaluated numerically using one-point integration formulae we get 

1 0  (iv) {Hi2)(v)+ i H~o2)(v)} e -'~/2 " (199) 

The estimate H s for L obtained from the least squares procedure is given by formula (153) as 

4 2 c 2 H~ = - ~ p V  

1 1 

; ( ½ - 4 )  N / ~ d ~  f [ - l +  iv(1-24)] e iv(2~-  1) d~ 
o o 

(iv) {H(,E)(v)+ i H(o2)(v)} 

[ { 1 
(iv) {H(,Z)(v)+ i H(o2)(v)} 

(200) 

The expressions for Hlo, H~C)o and Hs given by (198), (199) and (200) may be written 

H1o = {H(a2)(v)+iH(o2)(v)} +½+0(v) (201) 

HCC• P V2 c2 I~+½+0(v)l 
i o = {H~2)(v) + i H(o 2) (v)} 

(202) 

P V2c2 I 1 lq_o(v)l 
Hs = {HtxZ)(v)+i Hto2)(v)} 2iv 12 " (203) 
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The expressions (201), (202) and (203) are estimates for M which is given accurately by formula (189). 
All the expressions differ from M by a term of 0(1) in the square brackets. 

Case (2.iii). 

n = 2 w(x) = V [ -  1 + iv(1 - 24)] ~(x) = 1 

The estimate H, 0 for L obtained from the variational principle is given by formula (149). If the integrals 
occurring are evaluated analytically, the resulting expression is exactly that given for L in formula (186). 

If the integrals are evaluated numerically using two-point integration formulae, then 0o, 01, ~bo, 4)i 
are obtained exactly but the numerical estimates 

1 

f e-iV(2*- l) ~l ~ d~-"-2 {Jo(v)-i Jl(v) + Eo(v)} (204) 
0 

1 

fe- 'v(z ' - l ) (1-{)~l~d~-"-4{g~--(vV)+El(v)}  
0 

(205) 

where 

1 
Eo(v) = 384 (iv)* +O(v s) (206) 

El(v ) = -l(iv)3+O(v4) (207) 

which are obtained from two-point integration formula, are only approximate and lead to approximate 
values of 7oo, 7ox, 71o and 7xl. 

Using the approximations (204) and (205) to evaluate 700, 7o~, 7to and 711 we get 

H(C) = L 10 
upV 2 c(iv) [H (2) (v) Eo(v) + iv(H(, 2) (v) + iH(o 2)(v)} Et (v)] 

4{H(12)(v)+iH(o2)(v)} I2  "ll~V) jo(v)+idl(V)+2El(v)_Eo(v) ] 

5 4 5 Y =L pV2e [-~(iv) +0(V )+0(V 5 . 
{H~12)(v)+iH~o2)(v)} log~) ] (208) 

The estimate H~ for L obtained from the least squares procedure is given from formula (160), which 
in this case reduces to 

I. COS V- 

H,=  rtpV% {H(2)(v)+iH~o2,(v) } 1 -  (--)v {H(2)(v)+iH(°2)(v)} 

(2+ 
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2 2 2 pV2c L[- v+ 2-~(iv)+(iv)  f iTr v = l , + ~ + l o g ~  } {H(2)(v) + i H(o 2) (v)} 

The estimate H~C) o is much closer to L than is H~. 

Case (2.iv). 

. = w(x) = v [ -  1 + i , (1 - 2~)]  ~ ( x )  = c ( ½ -  ~) 

The estimate H~o for M obtained from the variational principle is given by formula (149). If the integrals 
are evaluated analytically we get 

{H(a2)(v)+ i H(o2)(v)} ~lv--~(iv)+-(~(iv) + -~(iv)+~(iv) x 

f i~ v )  v l 
and if they are evaluated numerically using two-point integration formulae we get 

{H(12)(v)+ i Hto2)(v)} ~zv-  (iv)+ (iv)2 + -~(tv)+f~(iv) x 

( i~ 1 v )  x l ? + ~ - + o g ~  + 0 ( v a ) + 0 ( v a l o g 2 )  ] (211) 

which is exactly the same as H,o to the accuracy given. 
The estimate H~ for M obtained from the least squares procedure is given by formula (160), which in 

this case reduces to 

H s = gpV 2 c 2 
4{H~(~)  + i U~ ~ (v)} 

= {H]2~(v)+iI_if~(v) } ~=£~v--6iv+g(iv) +~-+log  +0(v 2) 

The expressions (210), (211) and (212) are estimates for M which is given accurately by formula (189). 
The expressions Hlo and H(() o differ from M by a term of 0(C) in the square brackets, whereas the ex- 
pression Hs differs from M by a term of 0(v) in the square brackets. 
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7. Concluding Remarks. 
A method, based on the variational principle of Flax, for obtaining approximately the generalised 

airforces on an oscillating wing in a stream flow has been described. Attention has been confined mainly 
to subsonic flow, where results are shown to reduce to those of normal lifting-surface theory using a 
collocation procedure when certain further approximations are made. 

A method based on least squares has been suggested 3 as a means of obtaining greater accuracy than 
that which is obtained with the collocation procedure. It is asserted here that the least squares approach 
is not, in general, as accurate as the procedure based on the variational principle. 

Examples in two-dimensional incompressible flow have been given, which show clearly that the results 
obtained from the variational principle are in general superior to those obtained from the least squares 
procedure. Case (1.ii) is an exception. 

The results from the variational principle are only marginally more accurate than those from the 
collocation procedure, the order of error being the same in each case considered with the exception of 
Case (2.iii) where the result from the variational approach is exact. 

In two-dimensional incompressible subsonic flow the order of error for both the results from the varia- 
tional procedure and from the collocation procedure is the same in all cases if the same approximations 
(125) and (126) to the loading are used. 

In three-dimensional flow, possibly the errors from the results using the variational procedure and 
from the results using the collocation procedure are of different orders of magnitude. This can only be 
determined by means of extensive calculations. 

Since the present Report was written Stark has published a paper (Ref. 8) which covers similar ground. 
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c 

c(y) 

E(x) 

G~"~ 

H~ .) 

H 
Ho 

J,(¢o) 
k~(tlo) 

K x, y, v 

l(x,y) 

7(x,y) 

L(x,y) 

L(x,y) 

LI(x,Y) 

E~(x,y) 

tr(~) 

M 

Q~ 

s 

S 

t 

V 

w(x,y) 

~(x,y) 

W(x,y) 

W(x,y) 

WI(X,Y) 

Wl(X,y) 

x,y,z 

Xo, Y. 

XL(y) 

Z(x,y) 

LIST OF SYMBOLS 

Chord length of a two-dimensional wing 

Wing chord at spanwise position y 

Function having the properties (27) 

Spanwise weighting function 

Chordwise weighting function 

Integral defined in equation (8) 
Stationary value of H 

Defined in equation (80) or (127) 

Defined in equation (81) 

Kernel function 

Loading function in the direct flow 

Loading function in the reverse flow 

Loading function in the direct flow 

Loading function in the reverse flow 

Loading function in the direct flow 

Loading function in the reverse flow 

Polynomial of degree r in ~ satisfying equation (30) 

Mach number 

Generalised airforce (see equation (12)) 

Semi-span of wing 

Wing area 

Time 

Speed of undisturbed flow 

Upwash function in the direct flow 

Upwash function in the reverse flow 

Upwash function in the direct flow 

Upwash function in the reverse flow 

Upwash function in the direct flow 

Upwash function in the reverse flow 

Cartesian co-ordinates 

Cartesian co-ordinates 

Abscissa of leading edge at spanwise position y 

Displacement function' 
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2(x,y) 
ZJx,y) 

= 0.57721... 

~(x,y) 

•(x,y) 

8(x,y) 
g(x,y) 

r/ 

t/o 

fOC 

2V 

Po 

0,) 

LIST OF SYMBOLS--continued 

Displacement function 

Displacement function 

Euler's constant 

Polynomial of degree s in t/satisfying equation (31) 

Defined in equation (14) 

Defined in equation (15) 

Defined in equation (12) 

Defined in equation (13) 

Defined in equation (49) 

Defined in equation (20) 

Zeroes of 7m(t/) 

Frequency parameter 

Defined in equation (48) 

Defined in equation (19) 

Zeroes of l,(~) 

Density of fluid in the undisturbed flow 

Circular frequency 

Denotes conjugate of a complex quantity 
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