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S u m m a r y .  

Momentum considerations are used to derive relationships between the lifting efficieny of a wing 
having an attached shock system and properties of the flow field around it. Optimum two-dimensional 
flow fields are derived using shock expansion theory. These may be used to design three-dimensional 
shapes having slightly greater lifting efficiencies than plane wedges. An analysis of the flow in any plane of 
symmetry is used to suggest desirable features of more general flow fields. 
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1. Introduction. 
A high lift-drag ratio is an important requirement for the efficient operation of any cruising aircraft. 

In the supersonic speed range, it is probably most important at low Mach numbers, where the well- 
developed methods of linear theory are fortunately available to indicate suitable lifting shapes. At high 
cruising speeds, it seems that purely aerodynamic design will be increasingly compromised by propulsion 
considerations, and by structural difficulties associated with kinetic heating. If it is assumed that some 
speed range exists, above that where linear theory provides an adequate description of the flow, and yet 
where worthwhile benefits are still to be gained from aerodynamic sophistication, it seems that new 
techniques must be adopted to investigate this region. 

At the present time it seems probable that such a region does exist between Mach numbers limited 
roughly by 3 and 10. A general design philosophy appropriate to this speed range has been presented by 
Ktichemannl, of whose conclusions the most relevant to the present work is this; that an aircraft 
sufficiently highly swept to be aerodynamically slender at cruise will be unmanagable at low speeds, so 
that if we wish to avoid the complications associated with variable geometry, we must accept shapes 
whose leading-edge shock waves are either attached or nearly so (Fig. 1). 

A promising technique 2"6 for the theoretical investigation of such shapes involves 'freezing' stream 
surfaces in two-dimensional or axisymmetric flows, and patching them together to form lifting bodies 
whose near-field flow properties can be calculated exactly for design speed and attitude in an inviscid 
fluid. This method takes advantage of the fact that in supersonic aerodynamics inverse problems are often 
easier to solve than direct ones. Here one calculates not the flow past a given shape, but a shape which 
will support a given flow. 

It would seem that questions concerning the lifting efficiencies of these shapes might also be best posed 
in an inverse fashion. That is to say we do not directly seek efficient shapes, but enquire rather in what 
manner an efficient shape should act on the air passing close to it. The present Report explores this idea 
by relating the lift and drag of a wing to the changes of pressure and momentum along nearbystreamlines. 
Although the general optimisation problem is intractable, a number of interesting and suggestive results 
can be obtained. In particular, optimum flow processes can be calculated for individual streamlines which 
lie in a plane of symmetry, and optimum wing shapes can be derived in two-dimensional flows if shock- 
expansion theory is assumed valid. 



All the analysis is performed on an assumption of zero base drag and no skin friction. No attempt is 
made to assess any aerodynamic properties other than the coefficients of lift and pressure drag based on 
planform area. Attention has been concentrated on the design of compression surfaces, since these are 
likely to be of prime importance in the speed range of interest. 

2. Momentum Relationships. 
We enclose the wing surface to be studied within a control box through which the momentum flux may 

be calculated. Each streamline passing through the box will be shown to be associated with certain 
functions which represent the contributions of the local flow to the overall forces. 

The control volume is shown in Fig. 2, for an aircraft in straight and level flight. Two boxes are drawn, 
one to each surface of the wing, and each is formed of three surfaces. These are. the surface of the wing, 
the forward envelope of the disturbances from that surface (either a shock or a Mach wave), and a surface 
composed of vertical generators drawn through the trailing edge. 

For simplicity we consider only the lower box (V1), the analysis for V 2 being evidently identical. This 
part of the box is redrawn and labelled in Fig. 3. It is convenient to define the frontal projection of LTS T' 
as the capture area, the frontal projection of BTST' as the exit area, and the vertical projection of LTBT' 
as the planform area. Also let the frontal projection of LTBT' be the base area (Ab). 

Consider the streamtube which enters the control volume through a small closed curve drawn on the 
shockwave (see Fig. 3). This small curve, when seen from in front, encloses an element dA c of capture 
area, and when seen from above, an element dAp of planform area. The same streamtube will leave the 
control volume through another small closed curve, which will lie this time in the surface TBT', and this 
curve, when viewed from in front, encloses an element dAe of exit area. It is also convenient to make use 
of another elemental area. This is the cross-section area of the streamtube, at the point where it leaves the 
control volume, measured normal to the free stream. This area, which, as shown in Fig. 3, is not in general 
equal to dAe, will be called dA*. 

The net pressure forces on the lower surface are 

L = f (P~-Po~)dAp 
L T B T '  

(1) 

D = LTfT' (Ps--P~o) dAb (2) 

where p~, is the static pressure on the surface. 
Alternative expressions are easily written by use of the momentum theorem. 

L =  f pvxGdA* 
B T S T '  

(3) 

f f 2dA*~- f (p-p~)dAe. D = Po~ v 2 dAc- p Vx 
L T S T '  BTST" BTST" 

(4) 



In these equations, a co-ordinate system (x,y,z) as shown in Fig. 3 has been employed, and the quantities 
Vx, vz, p and p are all measured in the surface TBT'. 

z Now write ½ p~ v~ as q~ and put equations (3) and (4) into coefficient form thus: 

L 1 f pvxvzdA*~ (5) 
CL - q oo A~ - A--p q~ 

BTST' 

i{ } D Ac 1 p Vx ['dAe~ (p-p~o) dAe. (6) 
C o - - -  2 --~ ~-d-~J + q ~ q~ At, Ap Ap 

BTST' 

The integrals here are evaluated over the exit area, but by making use of the one-to-one correspondence 
indicated above between elements of planform and exit area, we may transform equations (5) and (6) so 
that the integration is carried out over the planform area, then 

1 rpVxoz /dAe\  A 

Av 

(7) 

which may be written: 

1; 
CL = -~p A dAp (8) 

Ap 

where fL - p vx vz dA*~ (9) 
qo~ dAp" 

Equation (9) defines, for each streamline passing through the control volume, a 'lift function', and 
equation (8) shows that the lift coefficient of any wing is the mean value of the lift functions for the stream- 
lines which it captures. In a similar manner, we define a 'drag function',fo, such that 

Co=--~p fodAp 
Ap 

(1o) 

2 dA*~ (p-p®)dA~ 2 dAc pvx (11) 
where fo = dAp q~, dAp q~ dAy" 

Equations (8) to (11) are the fundamental results on which the work in this Report is based. Through 
them, it is possible to consider the aerodynamic forces on a wing in relation to the flow field around it, 
rather than the surface pressures on it. 

The remainder of this Section is devoted to simplifying the right hand sides of equations (9) and (11). 
To do this we need the relationships between the various elemental areas, and these may be obtained by 
combining the continuity equation with some simple geometric relations. 

Suppose the surface S forming the back end of the control box is intersected by a plane N normal to 
the free stream, and consider the streamtube passing through a Slrmll rectangle ABDC drawn in N, as in 
Fig. 4a. If this is sufficiently small, the streamlines through the circumference of the rectangle may be 
taken as parallel so that the streamtube intersects S in a parallelogram BDEF. 
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Then, in accordance with our definitions, dA, is the area of the frontal projection of BDEF. This pro- 
jection is shown in Fig. 4b, where an additional point M is constructed as shown. Also in this view we 
have dA*e shown as the area of ABDC, so that 

dA*~_ AB 
dAe MB " 

(12) 

The right hand side of this equation may be evaluated by considering the plan view in Fig. 4c, and 
constructing the point L as shown. Then, since MB in Fig. 4b is equal to FL in Fig. 4c, 

dA*~ AB cot A - tan e 
dAe = F---L = cot A (13) 

where tan e = vy/v~. 
If p, vx are respectively the density* and streamwise velocity component* at the point where the stream- 

tube crosses S, then continuity requires 

PoD vo~ dAc = p v x dA*e (14) 

so that by combining (12), (13) and (14) we obtain 

dAe = Poo v~o 1 (15) 
dAc p v~ 1 - tan e tan A 

or alternatively 

dAe Poo Voo 
, 

dA~ p(v x -  vy tan A) (16) 

To find (dAJdAp) suppose that at the point where the streamline intersects the shock wave, the normal 
to the shock surface has direction cosines (l,m,n) with respect to the co-ordinate system (x,y,z); then 

dAc = -/ (17) 
dAp n" 

Inserting equations (14), (16) and (17) into (9) and (11), we have finally 

21 v~ 
A = - - -  (18 )  

n V~ 

vo~ p v 0 o ~ a n  A)J" (19) 

*Throughout this Report, synqbols describing flow variables, such as p, p, vx, vy, Vz, etc., will normally 
refer to conditions in the surface S. Free stream values will be distinguished by the suffix ()o~- 



The foregoing derivations are, of course, quite arbitrary in many respects. It would have been possible 
to choose a different control volume, or a different method of associating elements of planform area with 
elements of force, and these alternative choices would be equally valid. Properly interpreted, all choices 
must lead to the same conclusions, but the present choice seems especially suitable, for the following 
reasons: 

(a) Closing the control volume with a surface composed of vertical generators simplifies the algebra, 
since there are no pressure terms in the lift function. 

(b) It also makes the planform area of the control volume identical with the planform area of the wing. 
This is convenient, since the first of these appears naturally in the algebra, and the second is an obvious 
choice as reference area. 

(c) By arranging for the integrations to take place over the planform area, we give the lift and drag 
functions their useful 'mean value property' expressed by equations (8) and (10). 

3. A Property of the Lift and Drag Functions. 

By means of a simple example we shall now illustrate both the manner of use of the lift and drag 
functions, and a simple property of them. 

Consider the flow past a two-dimensional double-wedge (Fig. 5a). Two regions of uniform flow may be 
recognised and designated (1) and (2) according to the number of shocks traversed. In any base plane 
BT T' the streamlines belong to one of two families, depending on whether they cross the initial shock A T 
upstream or downstream of the line SS'. Every streamline in the first family is associated with a particular 
value of the lift function, say, fL~, and a particular value of the drag function, fo,. Let the corresponding 
values for the second family be (JL2,fo2). 

Now draw lines A T, A T', in the initial shockwave and replace the streamsurfaces through them by a 
solid surface, as in Fig. 5b. Consider this to be the lower surface of a wing whose upper surface is stream- 
wise. Let us now use the methods of the previous Section to find the lift and drag of this wing. Referring to 
Fig. 5c we note that streamlines of type (1) are captured by a portion of the shockwave having planform 
area A SS' ( = A ~), and those of type (2) by a portion of the shockwave having planform area S' T' TS ( = A 2). 
From equations (8) and (10) we write at once: 

CL -- AlfL,  + AzfL~ 
A1 +Az  ' (20) 

CD = Alfo~ + A2fD2 
A1 +A2 (21) 

Equations (20) and (21) express a simple property which may be illustrated as follows. Draw a set of 
rectangular axes (Fig. 6a) and label themf~,,fo. Plot the point Pt (fLl,fm) which represents the first region 
of the flow field, and the point P2 (fL2,fo2) which represents the second region. On the straight line PI Pz 
find the point Q whose distance from PI is equal to (P1 P2)(Az)/(A1 + A2). Then equations (20) and (21) 
show that the co-ordinates of Q are (CL, Co). It follows that, for any wing derived from the flow field 
under consideration, C L and C D are represented by the co-ordinates of some point lying between P1 and 
P2, on the straight line joining them. 

Now consider a general, three-dimensional flow field, in which each streamline defines a point (fLfo) 
and suppose that all such points lie within some convex region* R of the (fLfD) plane. 

*A convex region is one whose boundary has no concave portions, so that the line joining any two 
interior points of R lies itself entirely within R. 



To calculate CL and CD for a wingwhich captures a given part of this flow field, divide that part into a 
large number of small streamtubes, the nth streamtube being associated with lift and drag functions, 
fL. andfD., and with an element of planform area AAp. Then, for large enough n, 

CL = Z fL, AAv, 
ZAAv, 

Co - E fD, AAv, 
ZAAv, 

(see Fig. 6b). To these expressions, any two small streamtubes will make, as in equations (20) and (21), an 
average contribution represented by some point within R. Subsequent addition of any number of stream- 
tubes always leaves the net average contribution represented by a point within R, so that we may write 
the following theorem. 

Theorem 1 
If each streamline by the control volume of a lifting surface may be represented by a point lying within 

some convex region R of the (fL,fo).plane, then the point (CL, CD) representing the performance of the 
surface as a whole will also lie within R. 

This theorem allows us to replace, to a certain extent, the task of seeking efficient wing, shapes by the 
easier task of seeking flow fields containing efficient streamlines. 

4. Two-Dimensional Flow Fields. 
In this Section we shall apply the idea of lift and drag functions to some two-dimensional flows each 

with a single shock. For a two-dimensional flow we have vy = 0, and I/n = tan 0, so that equations (18) 
and (19) assume the simpler form 

fz = 2 tan 0 v--Lz (22) 
/)¢o 

fo = 2tan011 vooVx (p-p~o)l.p Vx v® A (23) 

4.1. Flows Past Plane Wedges. 
Consider first the simplest case of flow at a given free stream Mach number past a plane wedge of 

semi-angle ~. The lift and drag functions are both constant for all points on all streamlines. By use of the 
relationships derived in Appendix A for flow behind an oblique shock, equations (22) and (23) are easily 
reduced to : 

fL.,- = Cp(~) 
(24) 

fow = Cp(~) tan 

where Cp(~) is the pressure coefficient on the wedge. 
Only the lower of the two possible values of C, is valid. 
As ~ changes at a given Moo, so equations (24) will define parametrically a curve in the lift-drag plane. 

This curve is concave upward for all Mach numbers and for all values of ~ having practical interest. It is 
shown diagrammatically as OS in Fig. 8. 

For a given two-dimensional lifting wedge, or a given Nonweiler wing, fL and f ,  are constant, and 
equations (8) and (10) give 

Cz =fz 

CD ~ fD" 



Thus the curve OS has a dual interpretation, representing either the lift and drag functions of streamlines 
in a wedge flow, or the lift and drag coefficients of the bodies themselves. Its equation may be explicit by 
manipulating the oblique shock relationships to obtain 

f~ [ i  1 Y + l  1~ 
M z ~- fL (25a) 

fD~ - 2-fL 1 + y + l  _ 

w 

HerefDw is the drag function of a streamline which achieves a given lift function fL by being deflected 
through a plane shockwave. 

Alternatively, we may write 

I 1 ~+1 J 6 _ Moo 4 CD~ C~ 1 2 CL 

2 - C  L 1 , ]~÷1 
(25b) 

where Cow is the drag coefficient of a plane wedge which produces a given lift coefficient CL. 
In assessing the performance of any given wing, equation (25b) affords a useful standard of comparison. 

If a given wing has force coefficients CL, CD, we may form an 'efficiency ratio', Ew, by comparing its 
performance with a wedge developing the same CL, i.e. 

Ew - (L/D) _ Co,, '(26) 
(L/D)w C O 

The evidence to date suggests that the maximum value of Ew attainable by practical wing shapes with 
attached shock waves and unswept trailing edges is about 1-1. 

In a similar way, we may use equation (25a) to assess the 'performances' of various streamlines, defining 

Es _fDw (27) 
fL 

4.2. Optimum Two-Dimensional Flow Fields. 

Consider a two-dimensional flow with a single shock wave, as in Fig. 7. To compute such flows we shall, 
for simplicity, use shock-expansion theory to calculate the flow properties, which will then depend only 
on the local flow inclination, and the strength of the part of the shock through which that flow has passed. 
Thus, for given free-stream conditions, the entropy level along any given streamline is known from the 
appropriate shock strength, and knowledge of any additional flow property will enable us to calculate all 
the others. There is, therefore, a unique relationship between the lift and drag functions, along a specified 
streamline or any other streamline at the same entropy level. Moreover, the curve in the lift-drag plane 
(see Fig. 8) which expresses this relationship must, when it corresponds to conditions at P, just behind the 
shock wave, intersect or touch the plane shock curve given by equation (25a). It may be shown that the 
part of the curve lying to the right of P represents an isentropic compression after the shock; the part to 
the left represents an expansion. 

We shall now look for streamlines which are 'optimum' in the sense of producing least fD for a given 
fL. To do this, suppose that for all points such as P on OS in Fig. 8 the curve corresponding to PQ has 
been drawn (Fig. 9). The envelope of these curves (OE) evidently indicates the minimum value offD 
attainable for any given fL, and any point Q on the envelope determines unique values of shock strength* 
and isentropic turning angle. 

*Each curve PQ crosses OS twice, but only at one of these points are the oblique shock equations 
satisfied. The other point is of no special significance. 



The equations which are satisfied on OE are extremely complex; here therefore a cruder but very much 
simpler approach has been taken. A computer programme has been written which traces points on the 
curves PQR along such arcs as lie below OS. For any given free stream Mach number the programme 
computes between eight and sixteen points on each of a number of arcs. The envelope is then found 
graphically. 

It is, therefore, possible to represent any streamline in a two-dimensional flow having only one shock 
wave by a point lying within the region of Fig. 9 bounded by OQE, and the vertical axis. Since calculations 
show this region to be convex, it follows from Theorem 1 in Section 3 that the performance (CL, Co) of any 
wing supporting a two-dimensional flow field is also represented by a point within this region. It is 
impossible, therefore, to find better wings than those whose representations actually lie on the boundary 
OQE. If such a wing can' be constructed, all the streamlines it captures will have identical lift and drag 
functions, as for example the two-dimensional wing shown in Fig. 10a. If all these streamlines are rep- 
resented by, say, the point Q in Fig. 9, then 

• fL = const = fze = Cc 

fD = const = foQ = CD. 

Both the shock strength and the final deflection are uniquely determined by Q. Thus the flow field 
consists of a constant-strength shock wave OS, followed by an isentropic compression centered on S. In 
fact, the calculations show that the angle (3-  ~1) is usually small, and it is sufficiently accurate to take as 
the optimmrl wing a double wedge with the same initial and final deflections. In that case the flow will 
contain a weak second shock wave, but this has a negligible effect upon the calculations. 

At low Mach numbers (1 < Moo < 2.5) it turns out that the optimum streamlines are expanded rather 
than compressed behind the initial shock. It is not then possible to make all the streamlines Captured by a 
wing identical (see Fig. 10b), but the error incurred by assunaing them to be identical for an optimum 
wing is very small. 

Some computed results for the optimmrl surfaces are shown in Figs. 11 and 12. Fig. 11 shows the " 
performance of optimum surfaces, having given values of CL at given Mach numbers, in terms of the 
efficiency ratio E w defined in equation (26). It will be observed that the extent to which Ew can be raised 
above unity is very small, amounting in all cases shown to a fraction of one per cent. 

These results are similar to those of Pike 7, who has investigated the problem of optimum 
two-dimensional lifting surfaces by means of a theory which goes beyond shock-expansion theory by 
taking into account, to first order, the disturbances reflected from the shock wave. He also finds a double 
wedge to be the optimum shape, but folded further forward, and his maximum values of(Ew - 1) are some 
50 per cent greater than those shown here. The interested reader may compare these results with those of 
Bartlett s, who investigates double wedges enclosing a given volume, and finds that the lift-drag ratios 
are higher for convex shapes. 

In Fig. 12 the ratio of final to initial deflection is plotted for the optinaum surfaces. Note that at high 
Mach numbers the shape is concave, whereas at low Mach numbers it is slightly convex. This statement 
is also in agreement with Pikes results 7. 

5. Flow in a Plane of Symmetry. 
5.1. Statement of the Problem. 

We shall now extend the analysis of optimum streamlines, given for two-dimensional flow in the 
previous Section, to more general flows having a plane of symmetry. This case is important because (a) 
almost all practical lifting shapes possess at least one such plane, (b) the widest class of flow fields which 
are readily calculable at the present time are axisymmetric, and have infinitely many planes of symmetry. 



If we restrict our attention to flow in a vertical plane of symmetry we have again Vy = 0, I/n = tan 0 so 
that the expressions for the lift and drag functions are precisely as in two-dimensional flow : 

ft. = 2 tan 0 v~ (22) 
vm 

fD = 2 t a n 0 [ 1  vx (_p--p®)]. (23) 
v~ p vxvo~d 

The vital difference between the two cases is that, because the air on either side of the plane of symmetry 
can now be expanded or compressed sideways, there is no longer even an approximate relationship 
between flow direction and pressure coefficient say, or any other flow variable. For  example, on the 
surface of an elliptic cone, at a point in one of the planes of symmetry, the pressure can be made to assume a 
wide range of values by changing the eccentricity of the ellipse, even though the surface may make the 
same angle with the free stream in every case. Thus, at any given deflection, a very wide range of pressures 
can be achieved in different flow fields. 

At the beginning of the analysis it will be assumed that this range is unlimited, i.e. any direction and any 
pressure may be combined at some point in some flow. However, pressures, velocities and densities are 
not all independent, since the equations of one-dimensional gas dynamics must be satisfied along stream- 
lines. This is sufficient to put some restraint on the values which the lift and drag functions may assume, 
and we shall find, as in the previous Section, an envelope which contains all the possible values and hence 
defines optimum streamlines. An a posteriori justification of this procedure is provided by the fact that 
streamlines having very nearly the calculated optimum properties are in fact found in computed flow 
fields. 

5.2. Optimum Streamlines Behind a Given Shockwave. 

In this Section we consider the possible values of the lift and drag functions which may arise along a 
streamline which lies in a plane of symmetry and passes through an initial shock wave of given strength. 
We allow the possibility that the streamline subsequently passes through additional shock waves. The 
object of this Section is to prove the following theorem. 

Theorem 2. 

Of all streamlines in the class defined above and producing given values offL, those which give rise to the 
smallest values offD are those which, after passing through the initial, given, shock wave, are isentropically 
expanded back to free-stream pressure. 

To show this we begin by expressing the lift and drag functions in terms of the fewest possible number of 
independent variables, i.e. four*, and choose these to be as follows : 

(a) 0, the inclination of the given shock wave, 

(b) As, the specific entropy rise, 

(c) 6, the ratio of local velocity to the maximum velocity attainable by expansion into a vacuum, 
i.e. v/v . . . .  (note that Vmax does not change across shock waves), and 

(d) 6, the local flow deflection relative to the free-stream. 

Defining 
A3 

R Pt Pt 

Pt ~ Pt 

*The free-stream Mach number is taken as a constant in any particular problem. It does not suffice 
together with 0 to determine As, as the streamline may pass through more than one shock. 
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and substituting standard gasdynamic relationships into equations (22) and (23) we obtain 

sin 6 
f z  = 2 tan 0 - -  (28) 

2 tan 0 F1 ~ cos 6 k(~)~ (29) fo k ~® cos 6] 

= i _ _ ~ [ - i - - ~  2 1(1-fi2'~-~1i-]~o 
where k(~) ?MLLI_~L X~,T-S-~J A v  (30) 

and k has the same sign as (p-P~o). 
Consider now the class of streamlines, which after passing through the initial shock wave, reach given 

values of ~ and 6, but some of which pass through 'embedded' shock waves, and so have various entropy 
levels. The flow fields which contain these different streamlines may be supposed to be generated by 
bodies of suitably chosen cross-section shapes and longitudinal area distributions. All the streamlines so 
defined have the same value offL (see equation (28)), but differing values offn. We now choose 2 so as to 
minimise fn. Inspection of equations (29) and (30) shows that this is achieved by setting 2 as large as 
possible. Since each shock wave in the flow reduces the value of 2, the lowest value offD is reached by 
eliminating all shock waves except the initial, given, one. In this case ), is given by 

F ( ? + l ) M ~ s i n 2 0  -]~-~liF ? + 1  ]~_i I 
"~ = Li~-~-i3 ~z~ iinT0 T2 ]  L2yM~s inZO- (7 -1 )  • 

(31) 

In all subsequent analysis it will be assumed that the flow is isentropic behind the initial shock, so that 
equation (31) holds. 

Now suppose that, in equations (28) and (29), fi remains fixed whilst ~ varies through all possible values 
up to unity. Then the point (fL,fO) will trace out some locus in the lift-drag plane (see Fig. 13). For various 
values of 6, a family of loci will thus be obtained whose outer envelope will represent the maximum 
possible efficiency of streamlines passing through an initial shock of inclination 0. Such an envelope can 
be dearly seen in Fig. 13. 

The formal expression for this envelope is (Ref. 9 p174) 

ef,~fo ffLffD=O 

and applying this to equations (28) and (29) gives, as a relationship between ~ and fi along the envelope 

f~ dk 
k tan26 = -z-- + ~ (32) 

voo 

where dk/d~ is obtained from equation (30) as 

[ 
dk --1 voo | l + v  2 

~ = ~ M L  ~ 2 [ 1---V2 ' 

Y+ i'~ 
{ ~TZS~ ~-  I }(1 1 

i- 
2(1--~2)r -1 

(33) 
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Now when k = 0, i.e. when p = Poo, we can obtain from equation (30), 

1 - ~  2 1 (1  - ~2~_1-1 

1 - ~  - ~ \ I - ~ U  
(34) 

in which ~o is the value of ~ which makes p = p~. If this relationship is substituted into equation (33) and 
use made of the identity, 

2 -2 /)oo 

(7 - 1) 1 -v~-z, 

it is easily shown that, when p = Po~, both sides of equation (32) vanish, so that the condition p = P~o, 
i.e. 15 = ~o, defines the envelope we are looking for. This completes the proof of theorem 2. 

It is perhaps appropriate to recall here that on bodies of revolution, zero pressure coefficients are 
usually reached when the body slope is still sizeably positive. Thus we may have confidence that the 
'optimum streamlines', may be found in real physical flows. The example given later in Section 6.3 is of 
interest in this connection. 

When p = p~ the expressions forfz andfD are as follows : 

fL = 2 tan 0 v0 sin 6 
/)oo 

 ta.0[, (35) 

These equations represent a circle, of radius 2 tan 0 (Vo/~o~), with its centre atfL = 0,fD = 2 tan 0. It is 
given explicitly by 

r,_2 
f2  +(fDmi - 2  tan 0)2 = 4 tanZOV2. 

For small deflection angles and weak shock waves we may make the approximations ~o = ~ ,  
tan 0 = (M E -  1) -~ = 1/fl, and neg lec t fg ,  to obtain 

fDmto ~ ¼fiR. (36) 

In the flow past a two-dimensional wedge at a small angles to the free-stream, we have, e.g. by simplifying 
equations (25a) 

fDw -"  ½flf2L (37) 

so that, for small deflections, optimum streamlines give rise to just half the drag of streamlines which 
produce the same lift in a plane wedge flow. Alternatively, we may say that optimum streamlines in a 
plane of symmetry in a three-dimensional flow are twice as efficient as optimum streamlines in a two- 
dimensional flow. 

5.3. Optimum Shock Strength. 
There is still a further stage of optimisation to be undertaken. The results of Section 5.2 assumed that 

the initial shock strength was given. By relaxing this condition, but still making use of the results of 
Section 5.2, we shall be able to show the following result. 
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Theorem 3 
Of all streamlines possible in a plane of symmetry, which produce given finite values offz, those which 

give rise to the smallest values offo pass through an initial shock wave of finite strength. 
At any given free-stream Mach number, Section 5.2 shows that each possible choice of initial shock 

strength gives rise, via equation (35), to a family of optimmn streamlines described by a circular locus in 
the lift-drag plane. These circles themselves have an envelope, which defines absolutely optimum stream- 
lines for that Mach number, as shown in Fig. 14. 

Its equation may be written 9 

ffL ffD af .  Of, _ o.  
06"00 06"00 

Substituting in this from equations (35) we have 

Vo cos 0 sin 0 dO0 
C O S  6 = _- - - -~  

v~o ~ dO " 

To evaluate this expression, combine equations (31) and (34) to give 

2 F(7-1)M2sin20+2-][ 2 s in20-(7-  1!11 
i-v°2 = (1-v~°) L (?--~ ~t~ si--~-O ] 27 Moo (7+ 1) ¥ 

(38) 

(39) 

If this is differentiated with respect to 0 and the result substituted into (38) there is obtained 

v0 4 cos20 V~o (M~ sin20-1) 2 F (7 + 1) i ~  1 
= 1 (40) 

= " = -  - -  ~ ' - - ~ - ~  " 2 cos6 v~ (7+l)2M~v0 M~sln 0 L27M~s in20 - ( ? - I  

Equations (39) and (40), together with equation (35) enable the envelopes to be calculated in terms of the 
parameter 0. 

For weak shock waves a much simpler relationship can be obtained by expanding equation (40) as a 
power series, thus : 

4(M 2 - 1) (M 2 sinZ 0_  1) 2 + 0 (ME sin20-- 1) a (41) c o s 6 =  1 (7+1) 2M~ 

Since cos 6 is roughly 1 -62/2, we have 

2x/2 (M~-- 
6OPT "- (? + 1) M 1)~ (m~ sinZ0- 1). (42) 

Now fron3, the oblique shock relationships, if61 is the (small) deflection immediately behind the shock 

2(M~ - 1) ~ (M~ sin20-1) (43) 
61 -"- (?+ 1) M 2 

whence 

6opt ~ ~/2 61. (44) 

The results of exact calculations, using equations (34), (39) and (40) are presented in Figs. 15 and 16, the 
comparison being made at equal values offL. It will be noted from Fig. 15 that the optimum flow process 
is between 50 and 100 per cent more efficient than the plane shock process. 
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5.4. Discussion. 

The results so far obtained in this Section have indicated the properties possessed by optimum stream- 
lines lying in a plane of symmetry. We cannot, unfortunately, use these to discover optimum flow fields 
in the same way that we did for two-dimensional flows, because it will not be possible to construct the 
flow field out of identical streamlines. However, the optimum properties do give a strong indication of the 
properties which will be desirable in real flows. 

For example, the fact that the optimum flow processes return the air to free-stream pressure makes it a 
plausible assumption that high efficiency will generally be associated with low pressure coefficients at the 
point where the streamline leaves the control volume. This assumption is borne out by all the calculations 
made to date, although the efficiency appears to fall off quite rapidly if negative pressure coefficients are 
encountered. 

The fact that there exists for any given lift coefficient an optimum shock strength different from zero 
may be found a little surprising, but there is in fact a simple physical explanation. Steeper shock waves are 
associated with larger entropy rises and hence higher drag (see equations (29) and (30) et seq.) but they 
also 'capture' more air per unit planform area. This is expressed by the term tan 0 in the expressions for 
fL and fo. For weak shocks the second of these two effects is the more important. The result is of con- 
siderable practical significance as showing that the presence of finite initial shock waves may be beneficial 
provided they are not too strong. However, this applies only to the initial shock wave; any subsequent 
shock 'embedded' in the flow does not cause a loss of efficiency, since the additional entropy rise is not 
compensated by any gain in (capture area)/(planform area). 

6. Some Miscellaneous Applications. 
In Sections 4 and 5 we were able to derive qualitative results by making certain symmetry assumptions. 

In this Section we shall use the lift and drag functions to indicate a number of results which are more 
general, but less precise. 

6.1. Wings with Unswept 7}'ailin9 Edges Supporting Flow Fields with Axial Symmetry. 
6.1.I. Basic equations. Consider a wing derived by freezing a streamsurface in the flow past an 

axisymmetric body (Fig. 17). Any streamline PQ captured by the wing lies in an axial plane. Suppose this 
plane to make an angle ~ with the vertical. Then for such a streamline we have: 

vy = v, sin ~ 

V z = V r COS if/ 

l/n -- tan O/cos ~b 

(45) 

and if the wing has an unswept trail!ng edge A - 0. 
Substituting these results in equations (18) and (19) we obtain for the lift and drag functions 

fL = 2 tan 0 v--r-~ (46a) 
Vm 

fD _ 2tan 0 1 vx (_p-poo) 1 
c o s ~  1 . (46b) 

V ~  p v x v ~ . _ ]  

6.1.2. Variation of lift and drag functions away fi'om central plane. The streamline which leaves the 
control volume through the point (xB, r, ~O) will be associated with particular values of the lift and drag 
functions. Denote these byfL(r, ~),fD(r, ~9). 

Since the flow is axially symmetric equations (46) give at once 
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fL(r, O) = fL(r, o) \ 

J 
4 

f.(r, O) = f,(r, O) sec 0 

(47) 

Thus the lift contributed by an elementary streamtube depends only on its radial position, but the drag 
increases away from the central plane (~ = 0), so that the most efficient parts of the flow field are those 
closest to this plane. The implications of this statement will be considered in Section 6.2. 

The flow in any plane of symmetry ~ = const may be analysed as in Section 5, all the results of which 
hold here, except that all drag functions are multiplied by sec ~. In particular the optilnisation processes 
are still valid, so the same type, of flow is desirable; that is, initial deflection through a weak finite shock- 
wave, no subsequent shocks, and expansion to conditions of small pressure coefficients, but positive 
deflection, in the plane x = xb. 

6.1.3. Relationship between lift andflow deflection. Equation (46a) may be rewritten 

f L =  2 tan 0 ( ~ )  sin 6 (48) 

where 5 is the flow deflection angle. Of the terms in this equation, tan 0 will probably be almost constant 
for a given shockwave, and slightly greater than 1/fl~o everywhere, whereas (v /vJ  will be a little less than 
unity, so that the lift function is very nearly proportional to sin 5, and, for a given Mach number, far less 
influenced by any other variable. By recalling the basic result, equation (8), that the lift coefficient is a 
mean value of the lift function, we see that a good estimate of the lift coefficient developed by any wing 
chosen to support an axisymmetric flow field is provided by a knowledge of the average flow deflection 
in the captured part of the field. Note that it is the deflection relative to the axis (vr/v) rather than the 
vertical component (Vz/V) of this deflection which is involved. 

This simple relationship is useful if it is desired to construct a surface of given lift coefficient, and the 
problem is to choose an appropriate flow field. 

6.1.4. References to other work. For the special case of the flow field about an unyawed circular cone, 
Woods 11 has presented single integral formulae for the lift, drag, pitching moment, and planform area of a 
derived lifting surface. His forlrmlae, are also derived by a momentum analysis, although based on a 
slightly different control volume. 

Another example of momentuln analysis which, although not so relevant to the present work, affords 
some interesting points of comparison, is that given by Zandbergen lz. He is interested in bodies of 
revolution having minimum pressure drag within exact inviscid theory, although mathematical difficulties 
limit him to consideration of bodies supporting homentropic flow fields, as in Fig. 18. His optimum 
solutions, like those of the present work, incorporate a finite initial shockwave. 

6.2. 'Mapping' of Flow Fields. 
Consider a surface S composed solely of vertical generators, and situated in a known flow field F, so that 

streamlines of F pass through S. Consider the class C of lifting surfaces which are streamsurfaces of F, and 
whose trailing edges lie in S. Given F and S, we can compute lift and drag functions for all the streamlines 
captured by any member of C and hence find C z and C o. In this Section it will be shown how a 'map' of 
the lift and drag functions may assist in choosing efficient members of C. 

To illustrate the method we shall take F to be one of the homentropic flow fields recently calculated by 
Moore 1°, who has computed the flow past various bodies of revolution. A typical flow is illustrated in 
Fig. 18. The body of revolution to be considered is generated by OCB. The front portion OC, (0 < x > xc), 
is a cone, which produces a conical flow field bounded by the shockwave OT and the characteristic CT. 
This part of the flow is taken from calculations by Bartlett la. The remainder of the body, CB, is defined by 
some simple analytic function r = r(x), and the flow in the region CTB is calculated by the method of 
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axisymmetric characteristics. In the particular example chosen, the angle CON is 8 °, and the curve CB is 
defined by 

( ~ )  = -0 '015(x~)Z+0"170541(x~)  -0"015 '  

The Mach number in the free-stream is 3.0. 
For simplicity we shall consider only wings with unswept trailing edges, and accordingly choose the 

surface S to be one of the planes x = constant. Here we choose arbitrarily the plane ( x )  = 5.0 which 
\xcl  

lies just in front of the plane TBN. To achieve maximum efficiency one should attempt to find a flow field 
and a trailing edge plane such that the recommendations of Sections 6.1.2 and 6.1.3 are met, that is, an 
average flow deflection related to the required lift coefficient by equation (48), together with as low an 
overall pressure coefficient as possible. This requirement is rather vague, but definite enough to be of use 
in what would otherwise by a purely trial and error process. Here, as the objective is merely to illustrate 
the mapping technique, no particular effort has been made to optimise the choice of flow field or trailing 
edge plane. 

The technique is to associate with each point on the shockwave the values offi. andf9 corresponding to 
the streamline through that point. Then contour maps may be drawn in the surface of the shockwave 
representing lines of constant fL or constantfD. When such a map is seen in plan view (Fig. 19), the lift 
and drag coefficients of a wing capturing any part of the flow field are, by equation (8), the mean values 
offL andfo  over the planform area of the wing. Inspection of such a map may be helpful in determining 
which regions of the flow field should be captured by the lifting surface. 

A slightly different map which may also be of use is shown in Fig. 20. Here the function plotted is the 
'efficiency ratio' E~ defined by equation (27). 

It is shown in Fig. 20 for each streamline as it emerges from the trailing edge plane. Although there is 
now no simple general relationship between the efficiencies shown and the efficiency of a wing derived 
from the flow, some broad features of the flow are very clearly apparent. Several of these are common to 
all axisymmetric flow fields, and are as follows : 

(a) E~ = 0 along ~b = i re~2, 

(b) Es = cos ~k along the shock wave, 

(c) The curve E~ = I touches the shock wave at ~k = 0, 

(d) The region E~ > 1 lies inside the curve E~ = 1. 
Note that in the present example a local value of E~ = 1.95 has been achieved at one point in the flow. 

This is very close to the optimum values calculated in Section 5. 
Although, as has been said, no particular effort was made to optimise the flow field on which Fig. 20 

was based, experience so far indicates that it may be considered representative of fairly efficient axi- 
symmetric flows. By way of contrast~ Fig. 21 is offered as an example of a badly chosen flow field. The 
flow is about a 10 ° cone-cylinder at Moo = 4.0, for which the basic data are given in Ref. 14. The trailing 
edge plane has been chosen to coincide with the plane in which the characteristic from the shoulder 
intersects the shock wave, i.e. x/xc = 2.63. There is an annular region around the body in which the flow 
is overexpanded and directed slightly inward, so that in this regionfz is small and negative. As a convenient 
convention E~ has been shown as negative also. 

It should be emphasised that the maps described in this Section do not refer to flow fields by themselves, 
but to the combination (flow field)+ (trailing edge surface). 

The idea of drawing maps in the trailing edge surface was suggested to the author by J. Pike of the 
Royal Aircraft Establishment, Bedford. 
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6.3. On Different Types of Flow Field. 

We begin by comparing axisymmetric and two-dimensional flow fields. Consider two streamlines in an 
axisymmetric flow, and let them lie in meridian planes separated by a small angle A~k. Also let the two 
streamlines be at the same radial position. Then as the streamlines move away from the axis they diverge, 
and when moving toward the axis they converge. (In a two-dimensional flow they would remain equi- 
distant.) These considerations help to explain the well-known fact that a given body profile gives lower 
surface pressures at corresponding points when it is used to generate a body of revolution than when it is 
used to generate a two-dimensional body (see Fig. 22). The converse is true if the same profile is used to 
generate the inside of an axisymmetric duct; here surface pressure will be higher than on the 
two-dimensional body. 

Now in Section 6.1.3. we have seen that lift is associated with flow deflection, and in Section 6.1.1. that 
low drag is associated with small static pressure. It is reasonable to expect, therefore, that efficient stream- 
lines are more likely to be found in external exisymmetric flows than in two-dimensional flows, and less 
likely to be found in internal axisymmetric flows. All the examples available to date confirm this 
expectation, and some typical numerical evidence is presented in Fig. 23. This compares the properties of 
four flow fields, each associated with the flow at M~ = 6.0 into a constant-strength shock wave of inclin- 
ation 0 = 20 °; these flows are 

(i) The flow past a right circular cone, of semi-apex angle 16.00 °. 

(ii) The flow through a particular axisymmetric duct, whose intake is shaped 15 so as to support a 
reversed conical shock wave. 

(iii) The flow past  a two-dimensional wedge of semi-angle 12.44 °, followed by an isentropic 
compression. 

(iv) The flow past a two-dimensional wedge of semi-angle 12.44 °, followed by an isentropic expansion. 

Flow fields (i) and (ii) have constant properties along conical rays; flow fields (iii) and (iv) have constant 
properties along outgoing characteristics (at least within shock-expansion theory). For each of the four 
cases, therefore, there is a unique relationship between fL andfo, provided we consider only the vertical 
plane of symmetry. These relationships are shown, in terms of the 'efficiency ratio', in the four curves 
illustrated in Fig. 23. Clearly the most efficient streamlines are those in the external axisymmetric flow, 
even though the shock wave is followed by a compression, rather than an expansion which would be more 
in line with the recommendations of Section 5. When an external axisymmetric shock wave is correctly 
followed by an expansion, as in the example given in Fig. 20 and described, in Section 6.2, much more 
efficient streamlines are achieved, and efficiency ratios close to the optimum values'calculated in Section 
5 are encountered. 

These are only to be found, however, in the central plane ~k = 0. On either side of this the efficiency 
falls away~ as we have seen, in proportion to cos ~. 

It would be possible to construct a very efficient wing which captured only the central part of the flow 
field shown in Figs. 19 and 20. Such a wing in fact has a very sharply anhedralled undersurface, however, 
and would suffer from, amongst other disadvantages, a large friction drag. Ifa flatter, more realistic, wing 
shape is to capture, and take advantage of, the more efficient parts of the flow field, it must necessarily 
capture some of the less efficient regions as well. 

This situation is inescapable with axisymmetric flow fields; the efficient streamlines attainable in the 
central plane are bought at the price of less efficient streamlines elsewhere. By contrast, the streamlines 
in the central plane of a wing supporting a two-dimensional flow are more limited in their possible 
efficiency, but the streamlines do not, of course, deteriorate in efficiency outside this plane. These con- 
siderations suggest that the best flow fields for practical use might well be, in some sense, intermediate 
between two-dimensional and axisymmetric. Such flow fields might be generated, for instance, by bodies 
of elliptic cross section, or by bodies of revolution at small angles of attack. These flows, however, have 
only been calculated to date in the special case of conical flow. 
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6.4. Effects of 7t'ailing-Edge Sweep. 
So far in this Report, attention has been concentrated on wings with unswept trailing edges. In fact, 

the algebra is so much complicated by allowing the trailing edge to be swept that very few simple analytical 
results can then be obtained. One of these few is demonstrated in Appendix C, which shows the relationship 
between trailing edge sweep and efficiency for a double Nonweiler wing 2. This particular result, however, 
could equally well have been derived geometrically. 

Nevertheless, some qualitative conclusions can be obtained from inspection of the basic equations (18) 
and (19), which are repeated below for convenience. 

21 vz 
fL - (18) 

n t~eo 

p v o(L--- ;tan A/ '  (19) 

First of all note that the spanwise velocity component v~ and the trailing edge sweep A occur only in 
the combination (vy tan A) and that the efficiency of the streamtube is enhanced by increasing the value 
of this parameter (provided p > p~). If we suppose a given flow field to have symmetry about the Xz 
plane, and v~ directed everywhere away from this plane (e.g. the flow past a cone) then the local efficiency 
of any streamline will be improved by making A positive*, that is, by sweeping the trailing edge back. 

Alternatively if vy is directed toward the plane of symmetry, as for example in the flow field associated 
with axisymmetric converging duct as discussed in the last Section, a gain of efficiency will results from 
sweeping the trailing edge forward. 

Let us apply these ideas to the flow field about a flat-plate delta wing. Below the wing we have p > p~, 
and vy directed outward; above the wing p < P~o and vy directed inward. It may be concluded that the 
efficiency of both the upper and lower surface flows will be improved if the trailing edge is swept back. 
This result is in accordance with well known facts about the performance of arrow-head wings. 

6.5. /1 Possible Experimental Application. 
The preceeding Sections of this Report have attempted to define the type of flow process that generates . 

lift efficiently. To summarise once again, the desirable features of a lifting flow field are; 

(a) Finite but weak initial shockwave, 

(b) No embedded shocks, 

(c) At the rear end of the control volume ; 

(i) Low pressure coefficients, 

(ii) Large vertical velocity components, 

(iii) Small spanwise velocity components, except in the case of a swept trailing edge, when equation 
(C.3) gives a rough indication of the desirable spanwise deflection. 

It is possible that further work might refine and quantify the above remarks, but even as they stand 
they might be made the basis of an experimental technique to design efficient lifting shapes along the 
following lines. 

Suppose that some empirically designed shape, meeting certain requirements on planform and volume, 
can be tested at its inter~ded lift coefficient in a wing tunnel. Schlieren observations can be made to measure 
the strength of the initial shockwave, and to detect any embedded shocks. A flow survey below the trailing 

*Evidently A rzannot be increased beyond the point at which the trailing edge becomes sonic without 
invalidating the present method of analysis. 
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edge can be made to measure pressures and flow directions there. If any parts of the flow field do not 
meet the above requirements, it may be possible to tailor the original shape so as to alleviate the extent to 
which they depart from optimum flow processes, and thereby to enhance the efficiency of the shape. 

7. Future Work. 

The type of analysis introduced in this Report could be extended to cover the case of lifting flows with 
heat addition, and might consider the relative merits of the following schemes : 

(a) Instantaneous heat addition at the initial shockwave. 

(b) Instantaneous heat addition at an embedded shockwave. 

(c) Heat addition distributed over a finite length of the flow. 

(d) Heat addition to various selected regions of an axisymmetric flow, that is to say, near the tips, or 
near the centre. Mr. L. H. Townend has suggested, in a private communication, that the most efficient 
layout is to be achieved by placing engines near the tips. He argues that the thrust provided by a given 
engine should be independent of its angular position in the flow field, so that for good overall performance 
it will be best placed in those parts of the flow field which are of low lifting efficiency. 

8. Conclusions. 

A relationship has been derived between lift and drag produced in inviscid flow by a surface with 
attached shockwaves, and the changes in pressure and momentum produced along nearby streamlines. 
On this basis lift and drag functions are associated with each streamline. These are such that the lift and 
drag coefficients of a wing are mean values of the corresponding functions for those streamlines which 
are 'captured'. Use of these functions enables the generation of lift to be studied in terms of the flow 
processes involved. 

An analysis of two-dimensional flow fields, into which shock-expansion theory is introduced as a 
simplifying assumption, allows optimal flow fields to be found; these indicate that the optimum lifting 
shapes are very close to double wedges in shape, and have performances only fractionally superior to 
plane wedges. 

The analysis is then extended to flow in a plane of symmetry, when, without any simplifying assumptions 
except those involved in the dynamics of a perfect gas, it is found possible to compute optimum flow 
processes. These have the following main features. 

(a) The air is initially deflected by passing through a weak, but finite shockwave. 

(b) All subsequent flow processes are purely isentropic. 

(c) The air is expanded so as to be at free-stream static pressure as it passes out of the control volume. 

(d) The final deflection is x/~ times the initial deflection, if these are both small. 

(e) If only small perturbations of the free-stream are involved, the lifting efficiency of the optimum 
process is twice that of a flow which produces the same lift by means of a plane shock. 

These optimum processes are used to suggest desirable features of flow processes in more general 
situations. Particular attention is given to the case of a wing obtained by 'freezing' a streamsurface in an 
axisymmetric flow field. In such a field it is possible to create regions of much higher lifting efficiency than 
can be achieved in a two-dimensional field; other regions, however, are necessarily of lower efficiency. 

The effect on efficiency of trailing edge sweep is considered qualitatively. Sweepback is found to be 
beneficial if either, 

(a) the static pressure in the trailing edge surface is greater than free-stream pressure, and the flow is 
directed outward, 
or~ 
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(b) the static pressure is less than its free'stream value, and the flow is directed inward. If the static 
pressure is equal to that of the free-stream, sweepback has no effect. 

It is shown how 'maps' of a given flow field may be drawn so as to indicate those parts which, from 
their lifting efficiency, seem most suitable for incorporation into an efficient lifting system. 

Finally, a tentative proposal is made for utilising the new concepts in an experimental programme. 
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LIST OF SYMBOLS 

A,A 
k 

l, m, n 

P 

q 

S 

V 

r) 0 

/)max 

Vo 

X, y, Z 

Ab, Ao Ae, Ap 

da; 

CL~ CD 

Cp 

D 

Ew 

L 

M 

R 

8 

0 

2 

P 

Lift and drag functions defined by equations (8) to (11) 

Function defined by equation (30) 

Direction cosines of shock surface at point where streamline enters 

Static pressure 

½ pv 

Radius in cylindrical co-ordinates (x, r, ~b) 

Entropy 

Velocity 

Velocity corresponding to p = P~o 

Velocity obtained by expansion into a vacuum 

/)/Vmax 

/)0/Dmax 

Rectangular co-ordinates, x streamwise, y spanwise, z vertical 

Base, capture, entry and planform areas respectively 

Area intersected by elementary streamtube with plane normal to free-stream 
direction 

Coefficients of lift and drag based on planform area 
2 Pressure coefficient = (p -  Poo)/½ Po~ v~o 

Drag 

Efficiency ratio, defined for streamlines by equation (27) 

Efficiency ratio, defined for wings by equation (26) 

Lift 

Mach number 

Gas constant 

(M 2 - 1)~r 

Ratio of specific heats 

Streamline deflection angle 

Angle between streamline and x-axis, viewed in z-direction 

Angle between shock wave and x-axis 

Ratio of total pressures or densities 

Density 
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Suffices 

F 

A 

LIST OF SYMBOLS--continued 

Angle in cylindrical co-ordinates (x, r, ~b), ~9 = 0 is vertically downward 

Ratio of pressure to momentum terms in drag equation (Appendix B) 

Angle between rear end of control volume and yz plane 

b Value in base plane 

r Radial component 

t Total values of pressure or density 

w Relating to a wing 

W Relating to a plane wedge 

Free-stream conditions 

1 Conditions immediately behind shock wave 

x, y, z Components in x, y, z directions 

Note: The variables p, s, v, ~, 6, e, p, when used without any suffix, refer normally to conditions at the 
point where the streamline under qonsideration leaves the control volume. Exceptions to this rule should 
be clear from context. 
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Consider the flow past 
The following equations can be written immediately. 

Conservation of x-momentum. 

APPENDIX A 

Some Simple Oblique Shock Relationships. 

a two-dimensional wedge supporting an oblique shock as in Fig. 24. 

2 2 (tan 0 - t a n  5)+ (p-p~o) tan 0. P~o v~ tan 0 = p vx 

Conservation of z-momentum. 

(P-Poo) = P v~ tan 6 (tan 0 - t a n  6). 

p~ v~ tan 0 = p v~, (tan 0 - t a n  6). 

Continuity• 

(A.I) 

(A.2) 

(A.3) 
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These are not sufficient to solve the flow, because the energy equation and the equation of state have 
been omitted. However, they do permit some very simple relationships to be written which are useful at 
certain places in this Report. Using equation (A.3) to substitute for (tan 0 - t a n  6) in equations (A.1) and 
(A.2) respectively, we obtain 

( p -  po~) = p ~ v ~(v ~o - Vx) (A.4) 

( P - P J  = P~o v~ vx tan 0 tan 6. (A.5) 

These equations evidently hold immediately behind a shock wave of any form or strength. The curious 
result (A.4) that the relationship between pressure coefficient and streamwise velocity perturbation is 
exactly the same as in linear theory appears to be little known. It is not generally true at large distances 
behind the shock. 

APPENDIX B 

The Orders of  Magnitude of  the Terms in the Drag Function 

Consider the lift and drag functions for flow past a wing with an unswept trailing edge 

21 vz 
• ( B . 1 )  f L - -  n V~ 

n L vo~ p v ~ v x l  

It is interesting to enquire whether there exist combinations of lift coefficient and Mach number such 
that one of the terms in (B.2) becomes negligible compared with the other; that is, does 

F = P - P ~  (B.3) 
p vx(v~ - vx) 

ever become either very large or very small? As a typical value we may calculate F immediately behind 
the shock, where use of equations (A.3) and (A.4) yields 

tan 0 - t a n  6 
F = (B.4) 

tan 0 

which is always of order unity. It is, therefore, never legitimate to neglect either term in (B.2). 

APPENDIX C 

The Effect of  ~'ailing Edge Sweep on a Double-Nonweiler Wing. 

A very simple illustration of the qualitative relationship between spanwise velocity component, trailing 
edge sweep, and lifting efficiency, is provided by the following example. Consider the system formed by 
two plane shock waves intersecting along a line in the plane y = 0 (Fig. 25). ~qtream-surfaces drawn 
behind these shockwaves can be combined to form a 'double-Nonweiler' wing 2. Let the traces of the 
shock waves in planes x = const make angle ~b with the horizontal. If 0 is the inclination of the shock to 
the free-stream, and 6 the flow deflection relative to the flow stream, we have 
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v~ = v~ tan 6 cos ~k 

vy = v~ tan 6 sin 

I/n = tan 0/cos ~ .  

If these relationships are substituted into equations (18) and (19), and further simplification carried out 
by use of the results in Appendix A, there is obtained, for any streamline, 

fL= c. 
(c.1) 

Cp tan 6 F1 - tan A tan 0 sin 
 o--oos  

so that, for the entire wing, 

L fL cos IP [1 - tan A tan 6 sin ~b 1 

=rOD = tan6 kl 6d" (c.2) 

Suppose A to be given. Then for small values of ~, efficiency is enhanced by making A~ positive. It is 
easily shown by differentiating equation (C.2) that maximum (L/D) is achieved when tan A sin ~k is the 
smallest positive root of the equation 

where 

axa +bx2 + c x + d  = 0 (C.3) 

a = tan 6 tan 0 

b = - 2 tan 6 

c = l  

d = - tan2A (tan 0 -  tan 6). 

If ~O is given, the efficiency increases monotonically with A if ¢ is positive, and decreases if ~ is negative. 
The limit is reached when the trailing edge becomes sonic, when the present method of analysis is no 
longer valid. 
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