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Summary.

Oscillatory heave and pitch derivatives have been determined experimentally and theoretically for
a set of eight planforms — three cropped delta wings, three arrowhead wings, and two unswept tapered
wings. Three experimental procedures of widely different type were used. These were a free oscillation
technique for a wall-mounted half-span wind-tunnel models. A similar technique for models mounted on
rocket-boosted test vehicles and an inexorable forcing technique of the internal rigid drive type applied
to half-span wind-tunnel model wings. The theoretical values were obtained by various forms of lifting-
surface theory. All these results are tabulated and compared. They cover a Mach number range of
approximately 0-8 to 2-5. Some theoretical values of control-surface derivatives are included in the
Tables, and a few other miscellaneous experimental or theoretical results are also described.
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1. The Research Project.

More than a decade ago the Flutter and Vibration Committee of the then Ministry of Supply, being
much concerned with the inadequacy of methods of flutter prediction at that time, launched an ambitious
research programme®’ 2 on oscillatory aerodynamic derivatives involving both government research
establishments and industrial organisations. The objective was to develop theoretical methods of pre-
diction for linearised potential flow (three-dimensional lifting surface theory) for all subsonic and super-
sonic flow regimes, and then to test these methods by experimental comparisons for a wide range of
parameter variations (planform, Mach number, reduced frequency, mode of oscillation). Full details of
the original programme are given in Ref. 2. Seven* planforms were selected (see Table 1) and the in-
vestigation was limited in the main to the derivatives for heave, pitch and control-surface rotation.

A few years later the experimental part of this research programme developed into a combined
Commonwealth exercise under the influence of the Commonwealth Advisory Aeronautical Research
Council (CAARC) with Australia and Canada taking an active part as well as the UK. Further experi-
ments were added to the programme. The aim of this extension was the comparison of different methods
of determining experimentally the rigid body derivatives.

Both these projects have now been completed, apart from the experimental determination of the control
surface derivatives, and several papers®-!” have been issued on various portions of them. An interim
statement on the progress of the original research programme was issued some years ago? but, bearing
in mind that it will be some time before the control-surface derivative measurements are available and
also that the CAARC exercise is now completed, the time is now ripe for an up-to-date thorough survey
of all that has been done. ‘

2. Theoretical Investigations.

2.1. Subsonic Low-Frequency Calculations.

Calculations of the limiting values of the rigid body derivatives**, as the frequency tends to zero,
were made by Hornsby® in 1957, using a digital computer programme of Garner’s adaptation'® of
Multhopp’s steady flow lifting-surface theory'®. This is a collocation solution of the integral equation
giving the downwash in terms of the loading. It is assumed that terms involving powers of the frequency
greater than the first can be neglected. Recently Garner?® has shown that the method of spanwise in-
tegration that he and Multhopp used is not always accurate enough for collocation points near the wing
leading or trailing edges. The inaccuracy is greater near the leading edge and gets worse with increase
of aspect ratio. The more chordwise collocation points one uses and the greater the wing aspect ratio
the more important it is that an improved method of spanwise integration should be used. Garner has
developed a suitable method?! which has been applied to one of the planforms (wing E) of this research
programme. These results (Table 2, part (a)) indicate the order of error that may be present in Hornsby’s
results. With this example the differences are never greater than 3 per cent.

Also included in Table 2 (part (b)) are derivatives obtained by first determining the forces on the wing
in reverse flow and then using the reverse flow theorem?2. The differences between the two sets give
some indication of the accuracy with which the integral equation has been solved in the two cases; for,
if a good approximation had been obtained to the solution for the wing in direct flow and in reverse flow,

*A further planform was later added.
**The derivatives are defined in the Appendix.



there would be negligible differences between the two sets of derivatives. The converse does not however
hold. Negligible differences do not necessarily imply that a good approximation fo the true solution
has been obtained. ' ' '

One can conclude therefore that Hornsby’s® results are of reasonable accuracy, sufficient for theoretical
experimental ‘comparisons which are the subject of this Report. More accurate values could have been
obtained by using more collocation points (Hornsby® used 15 spanwise x 4 chordwise) and a more
accurate method of spanwise integration. The complete set of results from Ref. 6 are given as the v = 0
(1.e. zero frequency parameter) entries in Tables 3 to 8 and 23 to 26. These include control surface deriva-
tives which were obtained using the equivalent slope and displacement method due to Richardson?3,
For a two-dimensional wing a discontinuous chordwise upwash distribution can be replaced by an
equivalent smooth distribution which gives the same overall forces on the whole wing ; and for a slender
wing a discontinuous spanwise upwash distribution can be similarly replaced by a smooth distribution.
These two smooth distributions are combined by Richardson?? to form an equivalent smooth upwash
distribution for a three-dimensional wing.

2.2. Subsonic Calculations for General Frequency.

A Multhopp-type collocation method due to Davies** was tsed for -the subsonic calculations at
non-zero frequency. This uses the same method of spanwise integration as in the original Multhopp-
Garner method'® and so the remarks made in Section 2.1 about resulting inaccuracies still apply. The
number of collocation points used by Woodcock® was 12 spanwise x 4 chordwise compared with 15 x 4
for the low frequency case®. Further work by Woodcock?®, in which he examined numerically, for several
planforms, the relationship between the calculated values of the derivatives aiid the numbers of colloca-
tion points, indicated that, for the planforms and modes considered in the present Report, the best
accuracy would be obtained with about twice as many spanwise as chordwise collocation points. One
of the planforms used in that Report?’ was wing E of the present series. Some of the results obtained are
reproduced in Table 2 section (d). Examination of all the results showed that the difference in derivative
values obtained from calculations with 12 x 4 points and those with 12 X 6 points are, in general, less
than 5 per cent and often much less. The exceptions are in the vicinity of a zero of a derivative and so
are not significant. This confirms a similar conclusion obtained in Ref. 8 from one calculation for wing
A at zero Mach number.

The equivalent slope and displacement method?3, used by Hornsby®, was also used by Woodcock®
when determining the control-surface derivatives. Since his results . were issued an improved treatment
of control surfaces has been suggested?* but no results are yet available to show the magnitude of the
improvement. The relevant derivative values from Ref. 8 are reproduced in Tables 3 to 10 and 23 to 35.

2.3. Supersonic Collocation Solutions.

For the calculations at low supersonic speeds — that is for cases where the wing leading edge was
subsonic — a collocation method developed by Harris?® 27 at the Royal Aircraft Establishment (RAE)
was chosen. This is a refinement of the method originally proposed by Richardson?®. The solution is a
function not only of the number of collocation points but also of the number of stations used in the
numerical integration over the wing section of the forward Mach cone from a collocation point. The
results given in Ref. 10, and reproduced here in Tables 11 to 16, were obtained using 10 spanwise x 5
chordwise collocation points and 11 spanwise x 5 chordwise integration points in each Mach cone.
Experience suggested that this arrangement would be adequate. However further confirmation was
sought by comparison with the results of steady flow calculations by methods®® 3%3! of known good
accuracy. In each case, for all the Mach numbers considered in the unsteady calculations, the results
obtained by Harris’s method at zero frequency were little different from those given by the other methods —
the greatest discrepancy being less than 4 per cent (see Ref. 10). The calculations made by this method
have so far been limited to the main surface derivatives.

2.4. Box Method Calculations for High Supersonic Speeds.

All the above mentioned calculations (Sections 2.1, 2.2 and 2.3) are solutions of the integral equation
expressing the prescribed downwash at the wing surface in terms of the loading distribution. In 1952



Stewartson>? obtained an equation applicable to a wing whose leading edge is supersonic in the vicinity
of the wing apek, expressing the velocity potential at a point as the sum of an integral of the prescribed
downwash, over part of the wing surface inside the forward Mach cone, and an integral of the velocity
potential, over the remainder of the wing surface inside the forward Mach cone. Hunt*? and Barnes3*
developed a method for evaluating the velocity potential, and hence the leading distribution, from thls
equation using an integration lattice formed by uniformly spaced intersecting Mach lines.

This method was applied by Barnes’ to determine the rigid body and control-surface derivatives for
wings A, B, D, E and G (4 = 3 version) in a number of cases when the leading edge was supersonic.
The lattice size used was such that there was 8 to 16 lattice points along the mean chord. This was pre-
dicted®* to give results accurate to within 4 per cent. The derivative values calculated by Barnes’ are
given in Tables 17 to 21. It will be seen (cf. also Ref. 10 and Figs. 6 to 9, 12 to 15) that they form an ac-
ceptable continuation of the derivative — Mach number curves for lower supersonic speeds given by
Harris’s calculations!®. Some values for the planform G (A = 3 version) are compared with Lehrian’s
results'? in Figs. 51 to 54, and other comparisons are made in Ref. 12.

2.5. Supersonic Low Frequency Calculations.

A method due to Malvestuto®*35:37 ¢t gl, was used by Orlik-Riichemann'’ to determine the limiting
values of the rigid body derivatives, as the frequency tended to zero, for the subsonic leading edge super-
sonic flow cases. Malvestuto obtained closed form expressions for the derivatives. In doing so he used
a slightly different approximation for the loading in the wing tip region from that used by Jones and
Cohen?°. However the difference is certainly insignificant as regards the stiffness derivatives for the cases
considered here. Comparison between Orlik-Riickemann’s'” values and the values obtained by Harris'®
using the method of Ref. 29 (and given in Ref. 10) showed very good agreement particularly for the wings
D,E,and F.

For the case of supersonic leading edges Orlik-Riickemann®” used design charts obtained by a
similar method. These results are probably slightly less accurate, because of the interpolation involved,
than those for the lower Mach numbers. The complete set of theoretical results from Ref. 17 are given
in Tables 11 to 20.

2.6. Miscellaneous Calculations.

A number of miscellaneous derivative calculations have been made for one or more of the planforms
of this research programme. In nearly every case they were made primarily for some other reason. The
results of these calculations will not in general be given here; but the following survey summarises what
has been done. ’

In 1960 Adams® issued the results of calculations by Richardson’s method?® of the derivatives for
wing B. The cases considered were M == 1-25 using 11 spanwise x 5 chordwise collocation points, and
M = 1-41 using 11 x 4 collocation points. In both cases the frequency was assumed to be vanishingly
small. The results obtained were disappointing. For example the value found for Iy at M = 1-41 was
1-26 compared with 1:37 given by steady flow theory!®. This suggested, as had been suspected, that the
method of spanwise integration used in Ref. 28 was inadequate. Adams was not able to continue with
this work, which had been part of the original research programme; and as a consequence it was taken
over by Harris (see Section 2.3) who used an improved method of spanwise integration which has proved
to be adequate.

Lehrian in Ref. 40 obtained a closed form solution, exact to first order in frequency, for the linearised
potential flow problem of an hexagonal wing oscillating in supersonic flow. She evaluated her solution,
which is limited to wings with sonic or supersonic leading and trailing edges and non-interacting tip
regions, for the two versions of wing G. The results are given in Refs. 11 and 12, and are reproduced in
Tables 21 and 22. In addition comparisons are made in these papers with derivatives obtained from
2-dimensional strip theory and with the experimental values measured by Hall and Osborne!®.

As part of a separate research project Garvey*! made some further calculations for the two slenderest
wings (C and F) using a box method due to Allen and Sadler*2. This method is based on the integral
equation which gives the downwash in terms of the velocity potential. This is solved approximately
~ using a lattice formed by intersecting Mach lines. The mesh size used by Garvey was such that there were
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4 to 5 boxes on the semi span and between 16 and 30 boxes along the root chord. In Ref, 10 Harris showed
that there were satisfactory agreement between his results and Garvey’s though a direct quantitative
comparison was not possible because the two calculations were made for different values of the frequency.
The comparisons were for Mach numbers of 1-077 and 1-2806. Garvey*! made calculations in addition
for wing C at M = 1-0440 and 1-1662.

The wing E has attracted particular attention as a suitable guinea pig for theoretical research. It has
been used by Lehrian and Garner'®2? in assessing different methods of determining control surface
derivatives, by Woodcock?® in an investigation already mentioned (Section 2.2), and is also involved
in a current AGARD research project. The values calculated by Garner which are given in Table 2 form
part of the latter item.

Also to be mentioned briefly are some evaluations'® 7 of the deriatives for triangular wings which
are close approximations to the cropped deita wings A, B and C. The method*® ** used was the series
solution in the frequency parameter, originally due to Watkins. These calculations provided an initial
estimate of the effect of frequency on the derivatives which was later confirmed by the collocation solutions
due to Harris'°.

3. Experimental Investigations.

3.1. Tunnel Measurements - Free Oscillation Technique.

One can by measuring and analysing the decaying free oscillations of a rigid wing, free to rotate about
a fixed axis against an elastic constraint, both in the wind stream and in vacuum, deduce what the air-
forces are. This requires an assumption as to the form of the equation of motion. Presuming it is a second
order differential equation with constant coefficients* one obtains expressions for the pitching derivatives
as functions of the frequency and rate of decay for the two conditions and the stiffness of the elastic
constraint. This was the method used by Orlik-Riickemann!’ to determine the pitching derivatives for
two or more axes of rotation for each of the set of planforms apart from the wings G. The free oscillations
were instigated by exciting the wing at its natural frequency, using a feedback system to control the
frequency, and then cutting off the excitation when the motion had reached a preset amplitude. This
procedure should minimise motion at the other natural frequencies and also ensure that the wake is
fully established. The ensuing decaying oscillation was then analysed on a dampometer>”. The derivatives
were then obtained from the measured frequency and rate of decay, assuming that the latter was small
enough for powers of it higher than the first to be neglected.

The measurements were made in the National Aeronautical Establishment (N.AEE) 16 in. x 30 in.
intermittent suction wind tunnel (see Table 27). The models were half-span models mounted to one side
wall of the tunnel. Details are given in Table 28. Each mode] was separated from the tunnel wall by a
reflector plate placed 4 in. away from the actual wall in order to minimise the effect of the boundary layer
at the tunnel wall. Small end plates were also fitted to the root chord of the models in order to reduce
the effects of the small gap (0-01 in.) between the root and the reflector plate. Details of the measuring
technique are given in Ref. 50. For each set of experimental conditions at least 10 wind-on readings,
in one tunnel run, and 10 wind-off readings in vacuum (as well as readings at atmospheric pressure)
were made, which were averaged to give one pair of data points (i.e. values of —mg and —m, for a chosen
axis position). In most cases a further tunnel run was made to give a second pair of data points for the
same set of conditions.

These measured derivatives will, amongst other things, be functions of the axis position, Mach number,
frequency, and rate of decay. However, provided the rates of decay are always small, it is assumed that
they are good approximations to the derivatives appropriate to maintained sinusoidal oscillations of
infinite duration. In general at each Mach number, for each wing, measurements were made for two
axis positions and at two frequencies (obtained by using two different elastic constraints). For wings
B and E measurements were also made at a third frequency. The results obtained showed a rather larger
effect of frequency than one would expect. This was so for all the planforms, at all the Mach numbers
investigated, without exception. Typical results are shown in Figs. 2 to 5. The theoretical predictions
always gave little variation in value over the range of frequencies of the tunnel tests. No explanation

*This is an approximation to the integro-differential equation given by current theory.
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of this discrepancy has yet been found. We will return to this point later (Section 4.2/).

Since only the pitching derivatives, (—my), (—my), were obtained, and only two axis positions were
used for each wing, it is not in general possible to deduce the derivatives appropriate to a further axis.
However, in the limit when the frequency tends to zero, theory concludes that the stiffness derivatives
due to heaving (I, and —m,) are zero; and that the damping derivatives due to heaving (I, and —m;)
are equal to the corresponding stiffness derivatives due to pitching (}; and —my respectively). Thus in
this case a complete set of derivatives for any axis position can be derived. The derivatives for maintained
oscillation at v = 0 (zero frequency) were obtained by extrapolation from the measured values assuming
that —mg and —my, (with a small correction® to account for the non-zero decay rate of the actual motion) .
varied linearly with v2. This assumption agreed well with the measured values at 3 frequencies obtained
for wings B and E. .

Derivatives thus obtained, for v = 0, referred to an axis through the wing apex are given in Tables
29 to 46. The pitching derivatives ( — mg), (—my) are plotted in Figs. 6 to 17. It was not possible to analyse
similarly the transonic results since they were made for only one frequency. The frequency varied little
over the whole range of M and so the results are given, in Figs. 18 to 25, as curves of derivatives against
Mach number for approximately constant frequency (i.e. constant vM).

A number of possible sources of inaccuracy were considered during the tests and where possible tests
made to assess their importance. Approximate measurements of the lowest natural frequency of each
model, clamped at its attachment to the elastic constraint, indicated that flexibility effects should be
negligible at the test frequencies. The effects of aerodynamic drag, and of a cavity behind the reflection
plate, were also investigated and found to be small. Experience in the United Kingdom, mainly at the
National Physical Laboratory (N.P.L.) has indicated that tunnel interference effects may be large in
tunnels with slotted walls. The arrangement used by Orlik-Riickemann!” was however different from
that for which large effects were discovered — in effect a full-span horizontally mounted model in a tunnel
with solid roof and floor and slotted side walls in contradistinction to the slotted roof and floor and
solid side walls used at the N.P.L. In fact Garner’s theoretical treatment*® of the subsonic case does
suggest that the former arrangement will nearly always produce less interference. For the N.A.E. tunnel
(see Table 27) the two most significant interference parameters used in Ref. 46 (5, and ;) are much
smaller than those for tunnels where large interference effects have been reported*®. Approximate values
for comparison are

do Jo
N.AE. 16in. x 30in. 002 003
N.P.L. 14in. x 36in. —-0-11 007
N.P.L.20in. x 25 in. —0-25 015
H.S.D.20in. x 221in. —024 014
H.8.D. 20 in. x 22 in. (slots closed) 0-13 —-001

These relate to small half models. The last three tunnels have slotted roofs and floors. The H.S.D. (Hawker
Siddeley Dynamics Ltd.) one is that used for the experiment described later in Section 3.2, and the two
N.P.L. tunnels are ones where measured values of oscillatory derivatives have been shown to be con-
siderably modified by tunnel interference*S. In the tests in the H.S.D. tunnel diffusion screens were fitted
behind the slots and so the conditions approximated more closely to be slots closed than the slots open
condition. - -

The effect of fixing boundary-layer transition was investigated for wing A using a transition strip
applied close to the leading edge. Repeat measurements were made for the three supersonic Mach

*The relationships used were obtained by writing the aerodynamic pitching moment for the actual

decaying moment as . .
ying MgO+My0+My0+ My 8
and then neglecting certain terms (see Ref. 17).



numbers and in some cases appreciable differences in the measured values were found. Typical points
are shown on Figs. 26 and 27. The greatest difference was in the value of —m, for the aftmost axis (0-759 ¢,),
at M = 1-56 and v = 0-066, where addition of the transition strip produced about 13 per cent increase
in the value of the derivative (see Fig. 26). The magnitude of this effect is disturbing. It suggests that
the measured values may sometimes be a rather poor approximation to the derivatives for high Reynolds
numbers; and that it may have been better to have fixed transition in every case. Such a difference, at
a Mach number well above 1, makes one wonder also whether there would not have been far larger
- differences for the transonic measurements with wings B and E. Removal of the root fences produced
changes of the same order in the derivatives while the effect of transition peristed undiminished. It is
interesting to note that the variation of derivatives with frequency parameter was even greater in general
with the fences removed than in the normal condition (see e.g. Figs. 26 and 27). A possible explanation
of the unexpected size of the rate of change with respect to frequency of the measured derivatives for all
the wings is that it is a product of the flow conditions at the root. v

An attempt to correct for half-model effects was made by applying a factor of 117 to all the zero fre-

quency stiffness derivatives (—my) for the test axes and leaving the damping derivatives for the same axes

unmodified*. This factor was based on comparisons between the values of derivatives for full span models
measured by Tobak*’ and the values obtained by Orlik-Riickemann!” with half-span models. The
planforms used by Tobak** were not the same as those of the present investigation. The results used in
deriving the factor were for delta wings of aspect ratios 2 and 3 mounted on a central body and of course
some allowance had to be made for the difference in planform and the effect of the body. As the authors
remark'” this is a tentative correction procedure based on little evidence and this correction will require
subsequent refinement. The derivative values given in Tables 29 to 58 and Figs. 6 to 17, 34 to 40 have
been corrected in this way but those given in Figs. 2 to 5, 18 to 28 include no correction for half-model
effects.

The variation of the derivatives with amplitude was also investigated for wing A at a Mach number
of 1-56. The results for the aftmost axis are shown in Fig. 28, where the range of amplitude of oscillation
for each case is noted. The stiffness derivative (—my) is little affected by change of amplitude but large
changes occur in the value of (—my,). These are similar in magnitude to the changes produced by the root
fence or the transition strip (see Fig. 26).

In considering the dependence of the derivatives on various parameters one should also bear in mind
the repeatability of the measured values under supposedly the same conditions.' As mentioned above
each data point was obtained as the mean of at least 10 readings taken in immediate succession, and
each derivative value quoted in this Report is nearly always obtained from the mean of two data points.
The variation between the individual measurements of the frequency was always very small, but up to
about 15 per cent difference was found between individual values of the logarithmic decrement. These
differences are reflected in the differences between the values of two ‘data-point’ values of a derivative
for the same condition. Differences in (—my) were always small but differences in (—m,) were often
between 5 and 10 per cent.

3.2. Tunnel Measurements — Forced Oscillation Technique.

The method used by Hall and Osborne!® to determine the derivatives, was an ‘inexorable forcing’
technique of the internal rigid drive type*®. Briefly the wing was mounted on a mechanism which oscillated
it continuously in pitch with constant amplitude about a chosen axis and the resulting reactions between
the rig and the earth were measured. The differences between the measured reactions wind-off and wind-
on, for the same frequency of excitation then enabled one to deduce the values of the aerodynamic forces
(lift pitching moment and rolling moment) acting on the model. A system of balancing was used which
virtually eliminated contributions to the reactions arising from the rig and model inertia; and hence

*All the derivatives, for any other axis, obtained using the axis transfer relationships, will therefore be
modified.
**Though Tobaks paper*’ is, as the title implies, mainly concerned with measurements of (—my), it
does include some values of (—m,) as well.



avoided the errors which would arise otherwise when the airforces were given by the small differences,
of two large quantities. It was necessary to make measurements wind-off for some residual rig generated
oscillatory forces remain after balancing, but this meant that the final result was the difference between
the airforces wind-on and in still air and not the total airforces. It would have been preferable to have
had .the second test in vacuum. However the still air airforces should be relatively small at the test fre-
quencies. A full description of the rig is given in Ref. 48.

The measurements were made in the H.S.D. 20 in. x 20 in. continuous wind tunnel at Coventry,
(see Table 27). Details of the models are given in Table 28. They were half-span models mounted to the
rig at one side wall of the tunnel. Each model was mounted in the model support disc of the rig which
formed part of the tunnel wall. The gap between the model root and the tunnel wall was always kept
small — between 0-004 in. and 0-008 in., and the root chord of the models in each case was a little greater
than the diameter of the support disc. The measurements of rolling moment would of course include
a contribution from the air pressure on the support disc in addition to that from the model wing itself.
The position of the model attachment to the support disc was so arranged that the model could be
oscillated in pitch about the mid-point of the root chord and (by ‘turning over’ the rig) about an axis
through the root chord trailing edge.

For each Mach number measurements were made for pitching oscillations, about the above two axes,
at three different frequencies and also at zero frequency*. This provided values of the derivatives due
to pitch (i.e. the suffix 6 and suffix § derivatives) for the two test axes; and from these, using the axis
transfer relationships, the complete set of heave and pitch derivatives and also those derivatives giving
the rolling moment on the half-wing due to heavc or pitch, referred to an axis through the apex, were
derived. Sufficient information was obtained for the test axes to permit axis transfer at any frequency
and so no use was made of the theoretical relationship between certain damping and stiffness derivatives
at zero frequency.

The three frequencies used were such that the frequency parameter range covered in each case was
roughly O to 0-1. Values of the supersonic heave and pitch derivatives, for wings A —F, referred to the
axis through the apex, for the different frequencies, are given in Tables 29 to 46 for three Mach numbers.
It will be seen that the measured variation with frequency is often quite different from what one would
expect. Consequently the complete set of derivatives from Ref. 15 have not been reproduced. Instead
tables of mean values of the heave and pitch derivatives for v = 0 — 0-1 at all the measured Mach numbers
for all the planforms are given in Tables 59 to 65. Where a value was measured at zero frequency this
has been listed, otherwise the mean of the values at the other frequencies has been taken as the appropriate
approximation. Values which appeared to be hopelessly wrong have been omitted from such averaging
but it is of course difficult to decide where to draw the line.

The accuracy of the rolling moment derivatives (to be precise the generalised force coefficients for a
mode of linear symmetric flexure) is, as mentioned above, very doubtful. Little point is served in giving
them in detail. In every case these were considerably different from the theoretical values particularly
for the slenderest wings. A few of the better examples are shown in Figs. 29 to 32 illustrate the sort of
results that were obtained.

At the subsonic and transonic Mach numbers (up to M = 1-3) the tunnel used had slotted liners applied
to the roof and floor (see Table 27). Perforated sheet diffusion screens were fitted behind the slots for
practically all the tests. A few measurements for wing A at a Mach number of 0-9 with both the slots
open and the slots sealed did however show that the normal running conditions corresponded more
closely to the slots closed state. It follows from the values of the interference parameters, d,, &', for this
tunnel, quoted in Section 3.1, that the measured values of the derivatives may be significantly affected
by tunnel interference at subsonic speeds. Corrected values, based on the theory of Garner et alia*®,
have therefore been determined and these are given in Table 66. An approximate formula from Ref. 46,
eqn. (70), was used which involved only the measured derivative values. It will be noticed that corrections
have been obtained assuming both slots open and slots sealed. The assumption of open slots always

*QOnly the stiffness defivatives were of course obtained at zero frequency.



makes the free stream value greater than the tunnel value by an amount varying from about 2 per cent
for the two slender wings up to about 20 per cent for wing G (A = 3 version): while the assumption
of closed slots always makes the free stream values less than the tunnel value by half these amounts.
The actual state probably corresponds to something intermediate and closer to the latter condition
than the former. It may well be, therefore, that the required corrections are always fairly small, and
certainly they should be smaller than the corrections given by the closed slots assumption. An alternative
approach to the correction of the experimental results to give free stream values is to estimate theoretic-
ally the derivatives for the model in the tunnel. This has been done by Garner for two cases which are
roughly the extremes as regards the amount of correction. He used the full theory of Ref. 46 in conjunction
with the lifting-surface theory of Ref. 21. These results are also quoted in Table 66 for the same two assumed
slot conditions. The amount of correction is, on the whole, similar to that estimated using the experi-
mental derivative values though it varies more between the different derivatives and sometimes it is
rather greater. A further doubt arises from the fact the ratio of the planform area to tunnel cross sectional
area for the three wings A, D and G (ratios 0-141, 0-188 and0-218) is rather high for the tunnel interference
theory to apply. In view of these uncertainties the uncorrected measured values have always been used
elsewhere as experimental estimates of the free stream values.

The unexpected, and often large variation of derivatives with frequency, mentioned above, has been
attributed'® to tunnel interference. The authors of Ref. 46 conclude however from the evidence of some
tests in other tunnels with slots open and sealed, and from their theory for low frequency, that there is
little effect of frequency on the subsonic interference until the frequency parameter is of order unity.

In an attempt to explain the apparent tunnel interference effects Hall and Claridge®! carried out
some further tests in their 10 in. x 8 in. intermittent induction tunnel** using a smaller model of wing D.
The arrangement was similar to that of the main tests: slotted roof and floor (though normally without
diffusion screens), model mounted to side wall, ratio of wing plan area to tunnel cross sectional area
0-26 (cf. 0-19 in. main tests). Approximate values of the tunnel interference parameters d,, d'y are —0-33
and 0-20 respectively compared with —0-24 and 0-14 for the 20 in. x 22 in. tunnel with open slots and
0-13 and ~0-01 for the latter tunnel with closed slots. The tests were to investigate the possibility of dis-
turbances from the oscillating model propagating upstream via the plenum chamber. It was found,
by making upwash measurements ahead of the wing with slots both closed and open, that this did indeed
happen to a significant extent even at supersonic speeds as high as M = 1-14. However the introduction
of diffusion screens behind the open slots greatly reduced the effect and so it is doubtful if this mechanism
leads to any noticeable errors in the derivative values measured in the 20 in. x 20 in. tunnel. A few
measurements of —m, at subsonic speeds are also reported in Ref. 51. There were obtained by a free
oscillation technique with the slots both open and sealed. Differences of the order of 20 per cent between
the derivatives, for the two wall conditions, were found. This confirms to some extent the estimated
corrections, assuming open slots (Table 66) to the 20in. x 22 in. tunnel measurements*

For one of the wings — wing G — it was found that there was some distortion of the wing-root mounting
block structure under the conditions of measurement. This was predominantly pitch and roll of the wing
relative to the mounting block. Corrections to the measured values of the derivatives were therefore
made based on measured structural stiffnesses, and the tabulated values include these corrections. The
corrections were always small the largest being 33 per cent.

As with the free oscillation tests one woyld expect there to be some inaccuracy due to half-model
effects. In this case it will probably be mainly due to the tunnel-wall boundary layer. The small gap,
0-004 in., between the wing root and tunnel wall should have a rather smaller effect since it lies entirely
within the tunnel-wall boundary layer. A rough estimate!3 suggested a correction factor of 1-05 compared
with the 1-17 used by the authors of Ref. 17. This factor has not been applied to the measured values.

One or two tests at supersonic speeds with and without fixed boundary-layer transition showed no
observable effect on the measured derivative values. The remainder of the supersonic tests were made
therefore without boundary-layer transition forcing strips. For the transonic tests however, where one
would expect larger effects, transition forcing strips were always used (see Table 28).

*The closed slot corrections are however considered to be more appropriate to the test conditions.
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The chief sources of inaccuracy, were however indigenous to the internal rigid drive type of rig that
was used. The inertia balancing used means that there are much larger forces generated in the rig than
those actually measured at the supports; and this suggests that the measured forces may be very sensitive
to imperfections of the rig such as backlash or deformation. In addition the use of mechanical excitation
sets quite a low limit on the maximum attainable frequency and consequently the phases of the reactions
relative to the excitation are very small. This places stringent demands on the instrumentation which
could not be met. In fact an estimate of the possible errors in the measured derivatives due to instrument
inaccuracies, given in Ref. 15, does suggest that there could be very large errors in the measured values
of the damping derivatives and smaller, though still undesirably large, errors in the stiffness derivatives.
Confirmation of this, to some extent, is given by the lack of repeatability that was sometimes found when
tests were repeated. Differences up to about 50 per cent in the damping derivatives and 10 per cent in the
stiffness derivatives were found. These figures cover in addition errors due to noise from the rig and the
tunnel. They do not imply that the average error will be so large.

3.3. Freef llght measurements.

A free oscillation technique was used for the derivative measurements made at the Weapons Research
Establishment (W.R.E.) range, Woomera, Australia using ground-launched rocket-boosted test vehicles.
Details of the Koorigal test vehicle, designed for this purpose, are given in detail in Ref. 16. Briefly it
consists of a long cylindrical body with a parabolic nose cone and a cruciform tail assembly, the overall
length of the vehicle being 18 ft. The rocket motor formed the rear half of the body. The test wings were
mounted on the cylindrical part of the forebody well away from the nose. At this point the body dia-
meter was 1025 in. and so was not greatly different from the root chord dimension of most of the test
wings (see Table 28). Break up between the forebody and the rocket motor was initiated after 65 sec of
flight, and the forebody which contained all the instrumentation was saved using a parachute recovery
system. Typical performance curves are shown in Fig. 33. For the conditions when measurements were
taken the value of the Reynolds number/ft varied between about 4 and 12 x 10°.

The test wings, one half on each side of the forebody, were free to oscillate in pitch about a diameter
of the body against an elastic constraint. In flight free oscillations were repeatedly induced by displacing
the wing, holding it still for a moment, and then releasing it cleanly. Each time the frequency and decay
of the resulting oscillations was measured. From these measurements, and similar measurements on the
stationary vehicle on the ground, values of the derivatives —my, —m,, appropriate to the axis of pitch,
were obtained in the same way as was used for the free oscillation tunnel tests (Section 3.1). Thus each
test flight provided a series of values of the derivatives over a range of Mach numbers 09 - 2-0. For
each planform measurements were made for three different axes of pitch (plus an additional one for wing
A). In the wind-tunnel experiments (Sectlons 3.1 and 3.2) the axes of pitch used always consisted of one )
about mid-root chord, and one about $ root chord or at the root trailing edge. In contrast in these free
flight experiments they were, apart from the fourth axis for wing A, in each case forward of § root chord.
A slot in the body wall was provided for connection of the wing to its mounting. In each case it extended
over more than half the wing root chord. Different slots were provided for the different wings, and to suit
the different axes of pitch. For the foremost two axes of pitch the slots were of constant width between 2
and 3 times the maximum wing thickness. The slots, for the other two axes, varied in width to accom-
modate the wing motion from about 2 to 4 times the maximum wing thickness. The gap between the wing
root and the body surface was 0-02 in. and no root fence was provided.

With these conditions at the wing root — relatively large hole in the body wall, no root fence and a
rather larger gap between the root and the body than the root-tunnel wall gap of the tunnel tests — one
would expect that their effect on the measured derivatives to be at least as large as in the other tests.
The estimation of such errors cannot yet be made with any accuracy. The authors of Ref. 16 made a rough
estimate of a correction factor of 105 to be applied to all the derivatives, though this factor has not been
included in any of the values quoted here. This factor compares with the factor 1-17 used by Orlik-
Riickemann and Laberge!” to correct their tunnel measured values of the stiffness derivatives for the
test axes for half-model effect (vee Section 3.1).

From their measured values of the pitching derivatives for three axes of pitch Baines and Rockliff'®
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attempted to derive a complete set of heave and pitch derivatives for some reference axis. Three methods
were tried. The first used the axis transfer relationships to give the direct derivatives (I,, —my, l;, —my)
and the sums of the cross derivatives (l;+{ —m,}, ly+ { —m,}) for a reference axis. The whole set could
then be obtained using two assumed relationships between the derivatives. This method failed because
the accuracy of measurement was not sufficient with the three axes of pitch used. The second method
was similar, and failed probably for the same reason. Since what was measured was the difference between
the derivatives in flight and the still air derivatives (neglecting the effect of different air density) and as
the frequency was small, one could reasonably assume that the zero frequency relationships (I, = —m, = 0,
Iy = I, —my = —m;) hold. This was in effect* what was done and there being now a superfluity of
information (6 equations, 4 unknowns) a least squares method was used. The failure of this method was
manifested by the unexpected values of (—m,)/l, that were obtained (see Ref. 16). The third method assumed
in addition values of the ratios ( — mg)/le, (— my)/ls appropriate to the reference axis. Then from the measured
values, for one axis of pitch of (— m,) and (— my), the complete set of derivatives referred to the reference
axis can be obtained. Mean values of the results thus obtained by this method using in turn the measured
pitching derivatives for each axis of pitch were therefore taken as the best estimation and are given in
detail in Ref. 16 for a reference axis though the leading edge of the wing mean chord. Comparison was
made with the theoretical results of Refs. 7 and 11 but agreement was not good**.

In view of this experience it was therefore thought best to consider in the main the measured values of
(—my) and (—my) for the test axes and make comparisons with the corresponding theoretical values.
Some derivative values referred to an axis through the wing apex have however, been included in Tables
29 to 46. These were obtained from the curves of Ref. 16 using the second method described above
(without the v? terms mentioned in the footnote) giving equal weight to all the measured b;; and ;5.

The measured values of the damping and stiffness moment coefficients, b5 and ¢33 for the test axes,
are plotted in Figs. 34 to 47. These are the coefficients used by Baines and Rockliff'® and are proportional
to the derivatives m, and m, respectively.

4. Comparisons.

4.1. Subsonic Investigations.

As one would hope, and would expect from two methods which are very similar, the two sets of cal-
culations® & yielded results which conform excellently with each other. This can be seen by examining
the entries in Tables 3 to 8 and 25 to 28 for v = 0 and v = 0-1 and noting the variation with frequency
parameter (v) indicated by the other values. No unexpected features are brought to light by these calcula-
tions. All the derivatives have a peak or trough near M = 1. Sometimes this peak is very sharp, as, for
example, with —mj for the two G wings (Tables 9 and 10), but such is the exception rather than the rule.
Nor is this peak (or trough) always at a Mach number very close to unity. It can occur at a Mach number
as low as 0-8. Such an instance is shown in the plots of I, for wing A in Fig. 48. One general trend that
is illustrated by the results is that the damping derivatives for the higher aspect-ratio wings show a marked
increase in variation with frequency parameter (v) as the Mach number approaches unity.

The only direct comparisons between the different wind-tunnel experimental results that we have
made are those shown in Figs. 18 to 25 where the pitching moment derivatives (—my), (—my) from the
two sets of tests are compared. In the subsonic free oscillation tests'” insufficient measurements were
made to enable a complete set of pitching derivatives to be determined or any axis transfer relationships
to be used (see Section 3.1). The comparisons have therefore been made for the two axes of pitch used
in these tunnel tests. These are for the two wings of aspect ratio 2 (B and E). The agreement between the
two sets of results is not at all good. In each case there is fair agreement between the measured values of

*Actually some rather doubtful terms proportional to v? were added to these relationships but their
effect should be small.
**The wing G (4 = 3 version) derivatives from Ref. 7 at M = 1-875 were however little different from
the wing G (4 = 4 version) experimental results; and values obtained at the same time for an 4 = 4-3
rectangular wing showed good agreement with theory above M = 14.
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(—m,)— Fig. 22 is the best example — but there are always big differences between the values of the damping
derivative (—my). The forced oscillation tests made by Hall and Osborne!® nearly always give much the
smaller value — usually somewhere about half the value for Ref. 17.

It is convenient here to note how these results compare with the theoretical values. For the aftmost
axis for each wing the values of (—m,) do not agree. The values of this derivative for the forward axes are
however all in fair agreement ; particularly for wing E (Fig. 22) where there is good agreement between
Olik-Riickemann’s results'” and theory. The damping derivatives (—m;) obtained by the free oscillation
technique!” are also all in fair to good agreement with Woodcock’s theoretical values®; it being particu-
larly good in this case for the aftmost axes (Figs. 21 and 25).

We have pointed out in Section 3.3 that no axis transfer procedure could be satisfactorily applied to
free flight results obtained in Australia'®. Comparisons have therefore again to be made for the pitching
moment derivatives appropriate to the test axes. The axes used by the Australians'® were in every case
well away from those used by the Canadians'’. No comparison could therefore be made between these
two sets of results. A similar comparison to that described above, and illustrated in Figs. 18 to 25, can
however be made between the British wind-tunnel results'® and Baines and Rockliff’s results'®. These
comparisons have been made for the aftmost axis of pitch, which is nevertheless well forward, in each
case, of either axis used in the tests of Ref. 17. Figs. 41 to 46 show the comparative values of the damping
and stiffness moment coefficients, used by Baines and Rockliff’®. These coefficients b;3 and c;5 are
proportional to the damping and stiffness derivatives (—my), (—my) respectively. The agreement between
the two sets of results is always very poor apart from (—m,) for wing F (Fig. 46) and occasional good
agreement at or very close to M = 1 (see e.g. Fig. 42 (cs3), Fig. 44 (b3; and c33) etc.).

In addition the free-flight results'® are always in poor agreement with the theory for each axis of pitch
(see Figs. 41 to 47). These figures incidentally show that the theoretical values of (—m,) are nearly always
in good agreement with Hall and Osborned experimental results'® for the one axis shown. The agreement
is particularly good for the two slenderest wings C and F (Figs. 43 and 46) and it is interesting to note
that it extends very close to M = 1. As regards the damping derivative (—myg) however the theoretical
values are always much larger than those measured by Hall and Osborne?”.

Some further experiment-theory comparison are given in Tables 47 to 58, this time for the direct
pitching derivatives {( —mj) and (—m,)} appropriate to an axis through the wing apex. Similar agreement,
or disagreement, between the theoretical values and the experimental ones of Ref. 15 to that noted above,
is indicated.

To sum up then it can be stated that: .

(i) The three different experimental methods have failed in general to give a convincing indication of
what are the correct values of the derivatives since they disagree so much between themselves. An ex-
ception may be the stiffness derivative (—my) for axes of pitch in the forward half of the wing where the
two sets of tunnel measurements’*!” give answers which are fairly similar. :

(ii) The free flight experimental results'® appear to be not at all reliable since they have negligible
confirmation from the other experiments, since they sometimes show big differences in values according
to whether the Mach number is increasing or decreasing (see e.g. Fig. 44), and since they often have
unexpectedly violent variation with Mach number (see e.g. Fig. 44).

(iii) The large differences between the values of the damping derivatives from the two types of tunnel
experiments are probably largely due to the inaccuracies of the forced oscillation technique in particular
the difficulty in measuring the quadrature forces with sufficient accuracy.

(iv) In view of (i), (i) and (iii) it seems that the most reliable values of the damping derivatives are those
given by the free oscillation tunnel tests'”, and of the stiffness derivatives those given by either type of
tunnel test!5 17, These confirm the theoretical results to some extent and where there are appreciable
differences there is no good reason for saying one is correct and the other is wrong. The free oscillation
tests!? have particular doubts because of the effect of fixed transition, and half-model effects (see Section
3.1); the forced oscillation test'® results are suspect especially because of instrument inaccuracies and
also because of half-model effects and tunnel interference (see Section 3.2); and the theoretical values
are of course based on the usual assumption of linearised potential flow past an infinitesimally thin plate.
It is interesting to note that Hall and Osborne’s results!’ (forced oscillation wind tunnel tests) agree
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best with theory (as regards —my) for the slenderest wings, for which one would expect tunnel interference
effects to be smallest but half-model effects to be largest. Does this indicate that half-model effects were
always small for these tests? And perhaps also that Orlik-Riickemann and Laberge’s estimate of half-
model effects in their free oscillation tunnel tests'” is rather too large?

If one takes the tunnel measured values of (—my) to be approximately correct then the disagreement
with theory for aftward axes suggests, as indeed can be seen by examination of the appropriate tables
(3 to 10, 59 to 65), that the theoretical values of [, are rather high. The difference is of the order of 10 per
cent. This confirms similar findings from previous investigations (see Ref. 53).

The damping in pitch derivative (—my) for isolated lifting surfaces has apparently usually been largely
overestimated by theory if we are to believe the evidence of previous investigations (Refs. 52 and 53).
The most reliable of the results discussed here (i.e. Orlik-Riickemann and Laberges!” values, see Figs.
20, 21, 24 and 25) do not confirm this except possibly for Mach numbers very close to 1. Some recent
results due to Garner, which are briefly referred to in Ref. 54, also show fairly good agreement between
theory and experiment. The explanation may well be that poor agreement in the past has been largely
due to experimental inaccuracies. The tunnel tests of Ref. 15 — using a forced oscillation technique with
reactions being measured — certainly appear to have greater inaccuracy and scatter in the damping deriva-
tives than is found in the free oscillation tunnel measurements of Ref. 17 (see Section 3.1). The results
of Ref. 52 — Fig. 9 were obtained by a different type of forced oscillation method® in which the derivatives
are deduced from measured values of the response and the excitation force for a full-span sting-mounted
model. With this rig the scatter in the measured values of the cross damping derivatives, l; and (—m,),
is large and this is reflected in values of { —my) for axes not close to the axis of pitch of the predominantly
pitching mode excited in the test. The values plotted in Ref. 52 are of doubtful accuracy for this reason.

The other damping derivatives J, etc. were determined experimentally only by Hall and Osborne’*.
In nearly every case they are smaller than the theoretical values and sometimes quite a lot smaller. Three
examples are shown in Figs. 48 to 50. Little value can be placed on these comparisons for, as already
indicated, the experimental errors quite possibly will be large.

Also to be mentioned briefly are the rolling-moment derivatives of which the best results are plotted
in Figs. 29 to 32. The agreement between theory and experiment is poor but since the accuracy of the
experimental results is extremely doubtful (see Section 3.2) no weight can be given to these comparisons.

4.2, Supersonic Investigations.

In Ref. 10 Harris showed that his theoretical values of the derivatives were consistent with those
obtained by Barnes’ and Garvey*!. Garvey’s results have not been reproduced here. The results of
Harris'® and Barnes’ provide a good coverage of the supersonic range of the tests for the planforms
A—F. A similar coverage for zero v only, is provided by Orlik-Riickemann’s theoretical results!”.
These two sets of results are reproduced in full in Tables 11 to 20. The agreement between them is nearly
always very good. Differences greater than 5 per cent only occur in one or two isolated instances either
for Mach numbers very near one, or for cases where the wing leading edge is supersonic. Apparent
instances of the former type occur for the two largest aspect-ratio wings A and D at M = 1-054 (Tables
11 and 14). The values of ( —my) from Ref. 17 are considerably smaller than the v = 0 values, extrapolated
from Harris’s results'®, which are given in Tables 48 and 54. These differences however may well be the
fault of the extrapolation. Differences of the latter type between Barnes’ and Orlik-Riickemann’st’
theoretical results are not unexpected since some design chart interpolation was involved in the second
case. These differences are never very great, in the worst case being about 10 per cent (see e.g. Table 17).

For the other two wings — the wings G ~— the only theoretical comparison is for the aspect ratio 3 version
{Table 23) for which calculations have been made by the box method used by Barnes’ and by the low
frequency theory of Lehrian'2, The agreement is fairly good, Lehrian’s values being consistently the
largest by about 5 per cent.

Thus for the whole set of planforms we have a convincing statement of the true theoretical values over
the whole range of the supersonic experiments. A little doubt may remain in respect of frequency effects.
Here we rely almost entirely on one theoretical solution for the subsonic leading-edge case (Harris’s
collocation solution?®) and one for the supersonic leading-edge case (Hunt’s method®? as applied by
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Barnes3#). Some confirmation of Harris’s results are given by the comparison with Garvey’s results*?,
mentioned above, for the two wings C and F — and also by the comparisons with Watkins’s series solution
for triangular wings** #* referred to in Section 2.6. The only confirmation of Barnes’s results’ for varying
frequency parameter v is that, for the sonic leading edge case, they are an acceptable extrapolation of
Harris’s results'® at lower Mach numbers.

It is this point — the variation of the derivatives with frequency parameter v — that is one of the most
puzzling features of the experimental-theoretical comparison. In Hall and Osborne’s experimental
results'® the actual dependence on v is obscured by experimental inaccuracies ; but the other wind-tunnel
results'” do give a consistent picture. It is a picture which shows consistently a much larger variation
with frequency parameter than that predicted by theory. For the two planforms, B and E, for which
measurements were made at three frequencies the direct pitching-moment derivatives for the test axes
are shown in Figs. 2 to 5 where they are compared with Harris’s theoretical results!. Barnes’s theoretical
results” at a higher Mach number show a similar negligible variation with v compared with the experi-
mental results. The fact that removal of the root fence produced a change in the rate of change of the
derivatives with respect to v of the same order as the measured variation (see Figs. 26 and 27) does suggest,
that the flow conditions at the root are an important factor. This appears to be the only explanation, if
indeed one is required. However, in the absence of any similar experimental evidence from any other
tests, there is little reason for considering these measured effects of frequency to be anything other than
spurious. ’

Comparisons between the different experimental results are best seen by the examination of Tables
29 to 46, where all the derivatives are compared at certain Mach numbers for an apex reference axis,
and Figs. 34 to 40, where the pitching-moment coefficients are compared for the axes of pitch used in
the free flight tests. The agreement between the different experimental results is on the whole not at all
good. The Tables show that the free-flight results are not accurate enough for any axis transfer to be
made. For the test axes the stiffness derivative ( —my) is nearly always a lot different from the tunnel results.
The damping derivative shows rather better agreement — Fig. 38 for wing E is a good example — but even
so there are some instances of large differences (see Figs. 34 and 37). The two sets of tunnel results agree
with each other rather better but here again there can be some large discrepancies particularly in the
damping derivatives (see e.g. Fig. 37 and Table 38).

In addition to these Tables and Figures comparisons of the direct pitching derivatives for an apex
axis are made for the whole range of Mach numbers covered by the tests in Tables 47 to 58 and plotted
in Figs. 6 to 17. These cover the six wings A to F. A similar comparison for the aspect ratio 3 version
of wing G is made in Figs. 51 to 52, and the derivatives Iy, I, for the same wing are compared with theory —
Figs. 53 to 54. All these comparisons are made at zero v. However for the two wings B and E comparisons
at a constant value of vM are made for the direct pitching derivatives, though this time they have to be
referred to the axes used in the free oscillation tunnel tests because of axis transfer difficulties. The free
flight results have not been included in any of the comparisons mentioned in this paragraph for the same
reason. ,

All these presentations show a common tendency for theory to give higher values of the derivatives
than the experimental results. The agreement rarely deserves to be called anything better than fair. The
two unswept wings — the aspect ratio 3 and aspect ratio 4 versions of wing G — show probably the best
agreement. At Mach numbers above about 1.2 it is on the whole fairly good (see Figs. 40, 51 to 54), and
Lehrian has shown'2, for the aspect ratio 3 version, that agreement can be improved by including thick-
ness effects in the theory. For this wing the experimental values of I, are in poor agreement with the
theoretical values; and also with the experimental values of [, which one would expect to be little different
at the low frequency parameter value of the tests. This produces poor agreement in the theoretical and
experimental values of (—m,) for axes well away from the apex. With the aspect ratio 4 version of wing
G the comparisons (Fig. 40) have perforce to be made for the axes of pitch used in the free-flight ex-
periments!'® (see Section 3.3). These three axes were all forward of the wing apex and the measure of
agreement was similar in each case. One would of course expect the best agreement for these two planforms
since they both have supersonic leading and trailing edges at all the supersonic test points and previous
experience has shown that theory usually predicts the experimental values better in this case than at
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lower supersonic speeds.

The change from subsonic to supersonic leading edge is not however shown by the present results to
be an approximate boundary between poor and good experimental-theoretical agreement. For the
two planforms just mentioned the leading edges are well supersonic before the agreement becomes
fairly good. In contrast Fig. 6 shows, for wing A, for (—myg), such a changeover at a Mach number well
below that at which the wing edge conditions change. Furtliermore there is another example (Fig. 8,
(—my) for wing B) for which the agreement is similar over the whole range of supersonic tests covering
both types of leading-edge condition.

Above a Mach number of about 14, for the cropped delta and tapered swept back wings (A to F), the
tunnel results*®-7 are practically never in poor agreement with theory, and, Orlik-Riickemann has
shown!” that in this range the addition of a thickness correction to the theoretical values generally
improves the agreement. The free flight results'® for these planforms (Figs. 34 to 39) are generally much
different from the theoretical predictions particularly in respect of the stiffness derivatives; and because
of their lack of agreement with the other experimental results they can be discounted. At lower supersonic
Mach numbers, for these six planforms (A to F), there is the expected large difference between theory
and experiment and also between the different experiments (see Figs. 21, 36 for example).

5. Conclusions.

The numerical results of this exercise are somewhat disappointing in that the agreement obtained
between experimental and theoretical values of the derivatives is on the whole only fair. However, the
accuracy of the experimental results is not of sufficient certainty for one to conclude that the theoretical
treatment is generally inadequate. All the tests were made with half-span models and the results indicate
that root effects can have a significant, though as yet unpredictable, effect on the measured values. Other
significant errors* resulted in some cases from failure to fix transition, amplitude dependence and tunnel
interference. The experimental results from the three techniques also provided little confidence in the
accuracy of any set of results because of their usual lack of agreement among themselves. Nevertheless
there is sufficient evidence to conclude that theoretical values of the derivatives given by linearised
potential flow theory are usually not very good estimates of the true physical values at near sonic and low
supersonic speeds. To establish empirical methods of correcting the theoretical values in such cases
one requires better experimental values than those reported here.

Of the three experimental techniques used the free oscillation wind tunnel method®® of measurement
looks easily the best as regards accuracy, efficiency and simplicity. The free flight version ' 1° of this
technique obviously needs appreciable development before it is of much use for low aspect-ratio wings.
Here there is certainly room for improvement in the root arrangements to make the flow more similar
to that of the full-span wing without fuselage. The internal rigid drive type of inexorable forcing tech-
nique*® used in the other tunnel tests is also of inadequate accuracy. Careful design and development
did not c¢liminate a severe demand on instrumentation accuracy which could not be satisfactorily met.
As aresult the damping derivatives, particularly, as determined by this method, are of uncertain accuracy®*
The obvious conclusion is that a free oscillation technique using sting mounted full-span wings is the
most promising method of derivative measurement especially in supersonic flow. Such a method pre-
cludes the determination of the cross derivatives, other than in combinations such as {ly+(—m,)},
except when the frequency tends to zero. It is also necessary to ensure that the motion is only in the one

*1t is assumed that the object of the experiments was to determine the derivatives for a full-scale wing,
undergoing infinitesimally small sinusoidal oscillations,

**]t is interesting to note that other experimenters using forced oscillation techniques have found the
same difficulty. For example in respect of a very recently developed testing system we read in Ref 8.
‘It is apparent that the rate-dependent aerodynamic terms cannot be measured accurately at low oscilla-
tion frequencies . . . The phase angle . . . cannot be measured with sufficient accuracy .. .".
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desired degree of freedom. This may be more difficult with sting-mounted than with wall-mounted
models.

Following from these conclusions we have therefore the following two recommendations.

(i) The possibility of improving the accuracy of derivative measurement at transonic and supersonic
speeds, by the use of a free oscillation technique with a full-span sting mounted model, should be con-
sidered.

(i) The improvement of theoretical predictions of the oscillatory airforces at near sonic and low
supersonic speeds, either by a more adequate representation of the physical system or by the development
of satisfactory empirical methods of correction, requires urgent consideration.
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LIST OF SYMBOLS

A Aspect ratio
M Mach number
S Total wing area (tip to tip)
Vv Airspeed
bas Damping-moment coefficient used in analysis of free-flight results,
proportional to (—mg)
Co Root chord
cy Tip chord
Cos Control-surface root chord
Ciy Control-surface tip chord
Ca3 Stiffness-moment coefficient used in analysis of free-flight results,
proportional to (—my)
¢ First mean chord = §/2s
g Distance of axis of pitch aft of apex ¢
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lza lz'o 109 léo lﬁ; lﬁa l¢! lq)
m

m

M, My, My, My, Mg, My, My, M

n

Hinge-moment derivatives (see Appendix)
Lift derivatives (see Appendix)
Number of spanwise collocation points

Number of spanwise integration stations in subsonic collocation
method

Pitching-moment derivative (see Appendix)

Number of chordwise collocation points
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LIST OF SYMBOLS—continued

Derivatives expressing forces in mode of linear flexure symmetric
(see Appendix)

Rolling moment derivatives (see Appendix)
Semi-span

Downward displacement in heave
Sweepback angle of leading edge
Sweepback angle of trailing edge
Sweepback angle of control-surface leading edge
Angle of pitch (nose up)

Incidence of control surface relative to wing
Angle of roll x s/¢ — starboard wing down
w ¢/V frequency parameter

Air density

Downward displacement of tip (= ¢) in mode of linear symmetric
flexure

Angular frequency
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APPENDIX

Derivative Definition

We use a frame of reference Oxy where the origin 0 is g¢ aft of the wing apex, Ox is aft and O y to star-

board. Motion of the form e

(i) Symmetric motion
If the downward displacement of a point (x, y) is, with H the unit step function, and x =  the control
leading edge,

is assumed. This factor is omitted in the following definitions:

zo = z+x0+(x—xg) H (x—xg) H <[y[—%) ﬁ—l-—i:]y[qb (A.1)

(the control surface in each case extending from mid semi-span to the wing tip) then we write
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L= pVZS{ (lz+ivli)§+(lo+ivléﬁ9+(l,,+ivz,;) B
+(ly+ivly) }
tt = pV3Sc ) e iom) - ivm) 0+ -+ )
(g tivmg) & ’(
H = pVSe % (hz+ivhé)g+(h9+ivhé) 0-+(hy-+ivhy) B
+ (hy+ivh) i

N = pV38¢ 3 (nz+ivni)%+(n6+ivno];9+(n,,+ivn,3)ﬁ

+(ny+ivng) ¢ }

where L is the lift on the wing (including the control surface)

M is the pitching moment (nose up) on the wing (including the control surface)

# is the control surface hinge moment* (nose up)
N is the generalised force for the mode of linear symmetric flexure.

(i) Antisymmetric motion
If the downward displacement of a point (x, y) is

zo = gwﬂgn(y) (x—xg) H (x—xz) H (M—%— )8
where
sgn(y) = H(y)— H(—y) = 2H(y)—1
then we write
R = pV2Se {(ry +ivry) Y+ g+ ivry) B}

H = pVSE {(hy+ ivhy) ¥ +(hy+ivhy) B}

(A.3)

(A.5)

(A7)

(A.8)

(A.9)

where sR/¢ is the rolling moment, starboard wing up, and J is the generalised force for the control

surface rotation mode.

*What is described as a hinge moment is not strictly a hinge moment because of the hinge sweep, but
the generalised force when the control surface displacement is measured not by its angle of rotation
about the hinge but by the ‘projection’ § of this angle in the vertical plane of symmetry of the wing (see

e.g. equation (A.1)). It is the force on both control surfaces.
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TABLE 1

Details of Planforms.

Wing Al Atan A | Atan A, | Atan Ay| A A, Ay 01/60 cz‘,lf/cof sec Ao*
A 3 3, L60 0 0.464 | 49.1° 0 8.8° |0.0718 | 0.536 1,528
B 2 3,460 0 0.464 | 60° 0 13,07° | 0.0718 | 0.536 2

c 1,25 3 L6l 0 O 46k | 70.13° 0 20,3%9° | 0.0718 | 0.536 2,946
D 3 3,46L 1 1.5 49,1° 18.43° | 26.57° | 0.238 0.5 1.528
E 2 L6l 1 1.5 60° 26.,57° | 36,87° | 0.238 0.5 2

F 1625 3e46k 1 145 70.13° | 38,679 | 50.2° |0.238 0.5 2,946
o L 0.75 -0.75 - 10.62° | =10,62° | - 5/11 - 1,017

3 0.75 -0.75 =0.375 | 14,040 | =14.04° | -7,13° 5/11 _ 5/8 1,031

A = aspect ratio
Ao = sweepback angle of leading edge
A, = sweepback angle of trailing edge
Ay = sweepback angle of control-surface leading edge
¢y = tip chord, ¢, = control-surface tip chord
¢o = root chord, ¢o, = control-surface inboard chord
The control surface on each wing runs from half span to the tip, has an inboard chord equal to 1/4 wing
mean chord, and is hinged along its leading edge.

*The wing leading edge is sonic when M = sec A,




TABLE 2

Comparison of Subsonic Low Frequency Derivatives Jor Wing E Obtained by Different Procedures.
M = 0-7806, v = 0, axis at apex (g = 0).

m, n, m 66 =mg ﬂb -mg
(a) By method of Ref, 21

15, 3, 15 1281 10381 2,32% 2,927
15, 3, 31 1.261 1.377 2,347 2,963
15, 3, 63 1.265 1.377 2.370 2.987
15, 3, 95 1426k 1377 2.371 2,989
15, 3, 127 1,264 16377 2.372 2,990
31, 3, 63 1.273 1.376 2,315 2,917
(b) By method of Ref,21 for wing in reversed=flow
followed by application of reversed-flow theorem22
15, 3, 15 1,280 1.359 2.332 2.910
15, 3, 31 1281 1.367 2.295 2.882
15, 3, 63 1.279 10370 2,280 2.871
15, 3, 95 1.279 1,368 2,282 2. 871
15, 3, 127 1.280 1.367 2,283 2.872
31, 3, 63 1,273 1.377 2,298 2,898
(¢) By method of Ref,18 - i.e. Hornsby's™ results,
15, &, 15 10291 1.358 2,378 2,964
(d) By method of Ref,24 = Woodcock's > results,

by 8, 4 1.290 16331 20395 20955
8, 6, 8 14297 14351 2.383 2. 960
8, 8, 8 1.288 1352 2,364 2,938
12, 4, 12 1,291 1.352 2,401 2.987
16, 2, 16 1.263 1,37k 2,268 2.840
20, 4, 20 1,287 1.371 2,357 2,955

*
m=15
rounding

*
m =15
rounding

*This refers to the rounding at the central kink (see Ref, 21). Thus the same rounded planform is con-
sidered in the calculations with m = 15 and with m = 31.
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TABLE 3

Subsonic Theoretical Derivatives.

Wing A, Symmetric, Axis at Apex (g = 0).

M 0.745 0,909 0.968

v o* 0.1 0.25 0.5 o* 0.1 0,25 0.5 o* 0.1 0,25 0.5 0.1 0.25 0.5
&, 0 -0,003 0,021 =0, 109 0 ~0,001 -0,010 =0,073 0 0.003 0,012 0.029 0,008 0,046 0.090
Ly 1.506 14492 1,449 1,306 1754 1.747 1.731 1.697 1,979 1.981 2,018 2,152 2,159 2,229 2,243
2 0.366 0.358 0.352 0. 3%1 0,460 0,453 0.4h2 0.421 0.566 0.557 0.522 0.413 0.651 0,519 0.366
24 0.016 0,03k
-z, 0 -0,00% =0.028 0,136 o} ~0,003 -0,026 ~0.138 0 «0.002 ~0.015 ~0.052 0.001 0,02k 0.054
~ng 1.536 1,519 12460 1.278 1.825 1.807 1.771 1.670 2,105 2,090 2,128 2,322 2,334 2,494 2,586
-ng 0.530 0.519 0.513 0.499 0.683 0.674 0,665 0.649 0.869 0.860 0.837 0.720 1,054 0.897 0.625
-ny 0,007 0.032
-, 0 =0 ~0.0001 -0,0005 0 -0 ~0,0002 | =0.0010 0 =0,0001 ~0,0005 | ~0.0021 -0,0002 | ~0,0010 | -0.0027
~hg 0,003 | 0,003 0.0029 0,0022 0.00L0 0.,0037 0,0033 0.0020 0.0045 0,0042 0.0036 0.0021 0.0039 0.0050 0.0061
-hy 0,0057 | ©.0054 0,0054 0.0054 0.0077 0.0075 +| 0.0075 0.0075 0.0102 0,0101 0.0103 0.0108 0.0132 0.0144 otou&
~h s =0,0003 ~0.0005
% 0.013 0,027
) 0.854 0,941
1 0.301 0.307
i) 0,007 0.01h
&y 14506 1.493 2,465 14408 1.754 1,743 1,715 1.682 1,979 1.966 1.936 1.879 2.130 2.055 1.861
£y 2,673 2,685 2,704 2,70k 2,896 2,940 2,982 3.032 2,962 3.031 3.036 2,868 2,914 2,674 2,460
4 =0,027 | ~0.017 ~0.003 0.016 =0.189 -0.172 0,148 ~0,118 -0.537 =0,511 =0.470 -0.349 =-1.118 =089 =0.318
efﬁ 0.779 0.820
-, 1.536 1.522 1.491 1,428 1.825 1.806 1.778 1.752 2,105 2,082 2.081 2,107 2.312 2,315 2,131
-ng 3,119 3,122 34143 3,94 3.642 3.679 3,732 3.816 4a139 4,212 by 254 4,109 4.582 4e 106 3.542
- 0,00k 0.012 0.027 0,048 =0,158 ~0,141 -0.118 -0,090 =0, 5l -0.523 ~0.523 -0,483 -1.360 -1,337 =0.543
-m‘;, 0.953 1.055
~h, 0,0034 | 0.0032 0.0031 0,0029 0,0040 0.0038 0.0037 0.0036 0.0045 0.00k3 0.0045 0.0052 0.0052 0.0065 0.0089
b 0.0093 | 0,0089 0.0090 0.0090 0.0135 0.0132 0.0133 0.0136 0,0208 0.0208 0.0215 0.,0232 0.0338 0.0359 0.0341
=ng 0,0025 | 0.002% 0,0024 0.0025 0.0043 0.0041 0,0042 0.0042 0.0077 0.0076 0.,0075 0.0067 0.0138 0.0098 0,0069
-h(; 0,0026 0.0038
fy 0.813 0.863
ng 1.155 1,014
né «0.180 «0, 346
“9§ 0. 380 0.398

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).
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Subsonic Theoretical Derivatives.

TABLE 4

Wing B, Symmetric, Axis at Apex (g = 0).

¥ 0.781 0,927

v o 0,1 C.25 0.5 o* Out 0.25 0.5 0% 0.1 0425 0.5

. o] =0, 004 -0,027 -0.119 0 -0.00kL -0,026 =0.113 ~0.003 ~0,020 ~0.077
12 1.169 14164 14125 0.999 1,320 1.315 1,296 1.239 1.430 1ohk2 14504
@ﬁ 0. 306 0.303 0.301 0.295 0.378 0.376 0.373 0.367 0,448 0.438 0.392
“n, 0 ~0,005 ~04 034 0,147 o] ~0,006 =0.0L0 =0.171 -0.007 0,042 -0.152
~-m 1217 14201 14154 1.487 140k 14384 14348 1.229 1.530 1.535 1.598
~-mB 0,458 0.451 O bk 0.4t 0,580 0.576 0.575 0.574 0.711 0.709 0.666
-, 0 ~0 =0, 0001 -0.0006 0 -0 ~0.0003 -0,0011 -0,0001 -0.0005 -0.0021
~hg 0.0027 0.0025 0.0023 0.0015 0.0030 0.0028 0,002k 0.0010 0.0032 0.0025 0.0006
-h[3 0.0051 0.0050 0.0050 00,0049 0.0068 0.0067 0.0067 0.0067 0.0086 0.0088 0.0094
2 1,169 14165 1.154 16129 1.320 1.317 1.312 1.317 1.428 143k 14461
eé 2,327 2.337 2,342 2,336 2.581 2,607 2,627 2,665 2,789 2,800 2,76k
Eé 0.022 0.025 0,031 0.039 ~=0.071 =0.065 ~0.057 -0.049 -0.238 -0.237 -0.220
~my 14217 14207 14194 1.166 1,404 1,390 1,386 1,396 1.533 1.556 1,634
~my 2,775 2.775 2.780 2,772 3.273 3.291 3.319 3,384 3.756 3.79% 3,804
-ng 0.056 0.059 0.065 0.074 ~0.036 -0.029 ~0.022 -0,017 ~0.232 -0.256 -0.293
~ty 0,0027 0.0025 0.0025 0.0024 0.0030 0.0029 0.0029 0,0028 0.0033 0.0034 0.00LO
~g 0,0089 0.0086 0.0086 0.0086 0.0127 0.0125 0.0126 0.0129 0,018k 0.0189 0.0208
-y 0,0027 0.0026 0.0026 0.0026 0.0043 0.0043 0.0043 0.00L3 0.0071 0.0069 0.0062

[

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).
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TABLE 5
Subsonic Theoretical Derivatives.
Wing C, Symmetric, Axis at Apex (g = 0).

M 0.8 0.9165 0,9798
v 0* 0,1 0.25 0.5 0.1 0,25 0,5 0* 0.1 0.25 0.5 o* 0.1 0.25 0.5
¢, 0 =0, 00k «0,026 -0,107 -0, 004 -0,028 -0.115 ~0,005 0,114 =0.005 -0,105
I3 0,825 0,818 0,789 0,684 0.888 0.865 0.783 0,924 0.856 0.961 F 0,947
]
46 0.236 0.235 0,234 0.232 0.281 0.281 0.282 0.3k 0.312 0.359 0.326
2 s =0,008 -0,008
-n, o] =0.005 -0.033 -0.13k ~0.006 «~0,039 ~0.160 =0,007 =0.170 -0,007 -0.161
~ng 0.877 0.862 0.822 0,681 0.949 0.911 0.777 0,997 0.868 1.051 1.018
~mg 0.362 0.360 0,359 0.356 (O 0, 4ksH 0.449 0.506 0.515 0,594 0.556
~my ~0,011 -0,012
-h, 0 -0 -0, 0001 ~0,0006 -0 ~0,0002 «0.0009 ~0,0001 ~0,0013 -0.0001 -0,0018
“hy 0.0019 0.0018 0.0016 0,0008 0.0020 0,0017 0,000k 0.0023 0.0001 0.0029 0.0013
-h 8 04,0042 0.0042 0.0042 0,004 0.0054 040054 0,005k 0.0063 0,0066 0.0079 0.0088
-h " ~0,0001 -0,0001
n, -0.007 -0,008
ng 0,338 0.370
0y 0,133 0.154
ny ~0,003 «0,003
2y, 0.825 0.823 0.820 0.812 0.893 0.894 0,903 0.928 0.956 0,964 1.005
23 14797 1.806 1.807 1.803 1.990 1.999 2,024 2,093 2.139 2.193 2,192
LB 0,043 0.045 0,047 0,049 0,009 0,010 0,011 ~0.035 -0,041 -0.136 =0.133
6&, 0.333 0,369
-n, 0,877 0.869 0.865 0.855 0.957 0.958 0,969 1,004 1,050 1.058 1,136
- 2,201 2,201 2.202 2,197 2,536 2,549 2.587 2,746 2,835 2,983 2,986
-ng 0.077 0.079 0,081 0,083 0,047 0,048 0,048 =0,002 0,027 -0.147 -0.199
g 0.398 0,448
=h, 0.0019 0,0018 0,0018 0,0018 0,0021 0.0021 0,0020 0.0024 0,0025 0,0031 0.0041
~hg 0.0076 0.0074 0,007k 0,007k 0.0103 0.0103 0,0104 0.0129 0.0137 0.0180 0.0199
-hB 0,0025 0,002 0,002l 0,0024 0.0036 0.0037 0,0037 0,0048 0.0047 0.0069 0.0040
-—h& 0,0010 0,0012
n, 0,347 0.378
ng 0.709 0.787
ng 0.027 0,014
né 0,163 0.478

*The v = O values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).
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Subsonic Theoretical Derivatives

TABLE 6

Wing D, Symmetrics, Axis at Apex (g = 0)

M 0. 745 0.909 0.968

v o* 0.1 0.25 .5 0* 0.1 0.25 0.5 o* 0.1 0.25 0.5 o* 0.1 025 0.5
¢, o] -0.002 ~0,017 0,091 0 +0 ~0,005 ~0,053 o] 0,004 0.018 0,038 0,009 0.04L9 0.078
£g 1.498 1.485 1445 10314 1.729 1.723 1.707 1.672 1.936 1.937 1,960 2,037 2,096 2,116 2,085
CB 0.334 0,329 0.323 0. 314 0.398 0. 394 0.384 0.365 0.455 0450 Q.45 0,329 C.473 0,374 Q. 32k
e¢ 0,015 0.032
-, o] =0,003 ~0,022 =0,113 o] -0,002 -0,018 ~0,108 o] ~0 -0.005 0,034 0,00k 0,030 0,030
-mg 1.535 1.520 1,469 1,300 1.79% 1,780 1. 746 1.651 2.036 2,027 2,049 2,453 2.231 2,305 2.296
-ug 0.511 0.502 0,496 0,485 0.624 0,618 0.610 0.5% 0.736 0,732 0,703 0,600 0.804 0.772 0.580
-my 0.006 0,028
=h, o] =0 ~0,0001 -0,0005 o] -0 ~0,0002 ~0,0010 o] ~0,0001 =0,0005 | «0,0018 ~0.0001 ~0.0007 ~0,0025
-hg 0,0021 0,0020 0.0018 0,0010 0,0022 0,0021 0.0017 0,0004 0,0020 0.0018 0,0012 | -0,0008 0,0013 0.0007 0,0009
) 0,0055 0.0053 0.0053 0,0052 0,0074 0,0073 0.0073 0.0073 0.0096 'o. 0096 0,0097 0.0101 0,0116 0.0122 0.0127
-h ¢ «0,0003 «0, 0004
n, 0.012 0,024
ng 0.840 0.905
ng 0. 264 0.259
n 0,005 0.071

¢
Ly 1.498 1.486 1.457 1.397 1.729 1.718 1.687 1.642 1.936 1.922 1.879 1.792 2,066 1.961 1.77%
4 2,522 2,540 2.561 2,563 2.686 2,738 2.778 2.818 2,661 2,743 2,749 2,622 2.488 2,355 2,329
eé =0.014 ~0.006 0.007 0.023 -0.152 -0.137 ~0,117 -0.089 =0.421 ~0,400 -0.347 -0, 207 0,787 -0.467 =0,132
% 0.756 0.777
-n, 1.535 1.522 1.490 1423 1.7 1.778 14746 14705 2.036 2,017 1.998 1.969 2,209 2.152 1,973
-mg 2.937 2,951 2.972 2,974 3.352 3,403 34451 3.517 3.671 3.768 34794 3.672 3.858 3.523 3.312
-ng 0.022 0.029 0,043 0.060 -0.148 ~0,10k ~0.083 -0.058 ~0.431 ~0.415 ~04391 ~0,283 ~0.990 -0.698 -0.199
~me 0,918 0.979

$

-k, 0,0021 0.0021 0,0020 0.0019 0,0022 0,0022 0.0021% 0,0021 0.0020 0.0019 0.0020 0.0024 0.0016 0.0021 0.0032
=ng 0.0077 0,0075 0.0075 0,0075 0.0106 0.0106 0,0107 0,0109 0.0145 0,Q149 0,0153 0,0162 0,0200 0.0210 0.0220
-hé 0,0626 0,0024 0,002 0,0025 0,0040 0.0039 0.0039 0.0039 0.0061 0,0061 0,0059 0.0055 0,0085 0.0068 0.0053
-hé 0,001 0,0013
ny 0,80k 0,841
ng 1,146 1,016
né =0, 131 =0,191
ag 0.378 0,390

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).




TABLE 7

Subsonic Theoretical Derivatives.

Wing E, Symmetric, Axis at Apex (g = 0).

M 0.781 0.927

v o* 0.1 0.25 0.5 0* 0.1 0.25 0.5 o* 0.1 0.25 0.5

; 0 0, 004 ~0,024 =0. 10l ¢] ~0.003 ~0,021 =0.094 ~0.002 -0,013 -0.057
24 14153 1.146 10113 1.000 1.291 1.287 1,271 1.220 1.393 1,402 1e435
68 0.265 0. 261, 0,262 0.257 0,303 0. 304 0. 301 0.294 0.330 0.317 0.276
~-m 0 =0.00k ~0,029 -0.127 0 -0.005 ~0.,032 0,141 ~0.005 -0.031 -0.115
=g 1.196' 1e184 141441 0.993 1.358 14344 1.313 14209 1471 1472 1,494
-ng 0.416 0,413 0. 411 0,405 0.491 . 0,491 0.489 0.485 0.550 0.539 0.488
-h_ 0 -0 ~0,0001 -0,0006 0 -0 ~0.0002 ~0.0009 -0.0001 =0.0003 -0,001%
-hy 0,0015 040014 0.0012 0.000k 0,0013 0.0012 0.0008 =0, 0004 0.0009 0.0004 =0.0014
-hB 0.0050 0.0048 0.0048 0.0048 0.0064 0,006 0,0064 0,006 0.0077 0.0078 0,0080
2y 14153 1.150 1.138 1,112 14291 1,288 1.281 1.278 14391 1.388 1.387
£y 2,185 2,201 2,206 2,201 2.378 2,414 2,431 2.457 2.515 2.517 2,472
6;’3 0.025 0,028 0,033 0,039 =0.054 ~0.049 ~0,042 -0.035 ~0.179 -0,165 ~0.118
~m, 14196 1.189 1,176 1.146 1.358 1.349 10342 14342 1472 1.482 1.513
-ng 2,581 2.593 2,598 2,591 2,96l 3,002 3.024 3.070 3.310 3.325 3.297
-mé 0.061 0.065 0.070 0.077 0.022 ~0.016 -0,010 ~0, 00k ~0,180 -0.183 -0.151
“h, 0.0015 0.0014 0,0014 0,001 0.0013 0.0012 0.0012 0.0012 0.0010 0.0010 0.0012
=hy 0,0067 0.0067 0.0067 0.0067 0.0085 0,0087 0.0087 0.0088 0,0106 0.0107 0.0114
-hé 0,0025 0,0024 0,002k 0,0025 0.0036 0,0036 0.0036 0.0036 0,0047 0.0047 0,001

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).
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TABLE 8

Subsonic Theoretical Derivatives.

Wing F, Symmetric, Axis at Apex (g = 0)

M 0 0.6 0.8 0.9165 0.9539 0,9798 0.9902

v o 0.1 0425 0.5 0.1 0.5 0.1 0425 0.5 0,03 0.1 0.3 0.5 0.1 0.5 0.03 0.1 0.3 0.5 0.1 0.5

¢, |0 ~0,004 |=0,023 [=0,095 [-0,00k [|-0.098 |-0.00k |=0,02k [=0.098 [=0 ~0,004 |-0.033 |[=0,093 [-0.,004 [-0.088 |=O «0,003 |=~0,030 {-0.084 |-0,003 [-0,082

&g |0.807 | 0.802 | 0.775 0.683 | 0.8335 | 0.725 | 0.867 | 0.847 | ©.777 | 0.903 | 0.900 | 0.880 | 0.842 | 0.916 | 0.874 | 0.932 | 0.951 | 0.920 { 0,895 0.938 | 0,901

eﬁ 0.190 | 0,190 | 0.190 | 0.188 | 0,200 [ 0,198 } 0.208 | 0,208 | 0.207 | 0.216 | 0.215 [ 0,212 0.206 | 0.218 | 0,199 | 0.220 | 0.218 | 0.20% | 0,193 | C.297 | 0.192

2 N -0,008 0,007

-m_ [0 —0.00k |=0,028 |=04117 |=0.005 |-0.125 ]~0,005 }=0.032 |-0.132 |=O ~0,005 [-0.048 |-0.134 |-0,005 |~0,129 {-O 0,005 |=0.045 ]-0,124 |=0.005 }-0.122

-mg [0.849 | 0.838 | 0,803 0.680 | 0.875 } 0.720 | 0,944 | 0.882 | 0.771 | 0.959 | 0.954 | 0.917 | 0.850 | 0,974 | 0.895 1 0.995 | 0.993 | 0,973 | 0.925 | 1.003 0,936

g 0.307 | 0,307 | 0.307 | 0.304 | 0.326 | 0,325 | 0.345 | 0.344 | 0.345 | 0.362 | 0.362 0.360 | 0.353 | 0.368 | 0.346 | 0,374 | 0.372 | 0.355 | 0.338 | 0.371 | 0.335

) =0.011 =0,012

~h |0 ~0 =0, 0001 [=0, 0005} =0 ~0.0006 |=0 =0, 0002 |=0,0007 |-0 -0 -0,0003 |-0,0008 |=0 w01, 0008 | =0 -0 -0,0003]=0,0009 |=0 ~0.0009

-h; 0.0008| 0.0007} 0.0006|-0,0001] 0,0007[-0,0003{ 0.0006] 0.0003}=0,0006| 0,0005} ©,0005|=0 -0,0009{ 0.0004|~0.0011{ 0.,0004| 0,000k4{-0,0002{=0.0012| 0,0003 |=0,0011

-hB 0.0050| o.00k0} 0,0040] 0.0040| .00k | 0.00ML| 0.0028| 0,0048] 0.0048| 0.0052| 0.0052{ 0.0052| 0.0053| 0.0054| 0.0055| 0.0055} 0,0055( 0,0057} 0.0057 0.0056 | 0,0058

-h¢ =0.0001 ~0,0001

n, =0, 007 =0,007

ng 0.336 0,365

ng 0,117 0.128

ay ~0,003 ~0,003

£y |0.807 0.806 | 0.802 | 0.79% | 0.857 | 0.833 | 0.870 | 0.870 | 0.875 [ 0.903 | 0.903 | 0.907 | 0.918 | 0.919 | 0.93k | 0.932 | 0.932 | 0.935 | C.942 0,938 | 0,944

i,é 1.670 | 1.685 | 1.686 | 1.683 | 1.756 | 1,767 | 1.826 | 1.833 1.850 | 1.884 1 1.888 1 1.898 | 4,910 | 1.909 { 1.915 | 1.91& | 1.914 | 1,908 1.906 | 1.902 | 1.900

"{3 0.036 | 0,038 | 0.039 | c.out | 0,025 | 0,028 | 0,004 | 0,005 | 0.007 |=0,031 |~0,030 {~0.028 |-0.025 [-0.056 |=0,034 [=0.094 |-0.089 |-0.058 j~0.033 ~0,106 [-0.032

% 04326 0,357

=N 0.849 | 0.843 | 0.839 | 0.829 | 0.881 | 0.879 | 0.920 | 0.920 | 0.926 | 0,959 | 0.960 [ 0,968 | 0.986 | 0.979 | 1,011 } 0.995 | 0.998 | 1.008 | 1.023 1,006 | 1,027
-1 -mg 2,010 | 2,023 | 2,024 | 2,019 | 2,14k | 2,156 | 2.272 | 2,282 | 2.307 | 2.398 | 2.403 | 2.422 | 2,447 2,461 2.477 | 2,50k | 2,496 | 2.477 | 2.478 | 2.L89 | 2.476

-mh 0.068 | 0,070 | 0.072 | 0.07t | 0,057 | 0,061 | 0,033 | 0.034 | 0.035 [=0,012 |=0,011 [=0.014 |-<0.015 |-0.049 }-0,035 [-0.102 =0.105 ~0,071 {=0,038 |=0,137 |=0,037

-y ) 0.387 04428

—h.z 0.0008| 0.0008| 0.0008} 0.0008| 0,0007] 0,0007 | 0.0006| 0.0006] 0.0006| 0,0005| 0.0005{ 0.0005| 0,0005| 0,0005 0,0005| 0.0004} 0.0004| 0.0005 0.0006| 0,000k| 0.0006

=h10.0050] 0.0050( 0.0050| 0.0050 0.005% | 0,0054 | 0,0058{ 0.0058} 0.0058| 0.0061| 0.0061| 0,0062| 0.0063| 0,006 0,0067| 0,0067| 0.,0067| 0.0069; 0.0072| 0.0070| 0.0074

'hé 0.0021] 0.0024| 0.0021 | 0.0021| 0,0023 | 0,0023 | 0.0026| 0,0026| 0,0026| 0.0030} 0.0030| 0,0029 0.0029| 0.0031} 0.0029| 0.0034| 0,003k | 0.0030} 0.0028) 0,003k 0.0028

~h ¢ 040004 0,0004

ny 0. 345 0.373

ng 0,696 0.758

g 0,025 0.013

n‘;5 0.163 0.176

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).




Subsonic Theoretical Derivatives.

TABLE 9

Wing G (A = 3 Version), Symmetric, Axis at Apex (g = 0).

M 0.8 0.9 0,95 0,99
v 0,01 0,01 0,01 0.01
Ez +0 +0 +0 +0
56 10939 2,100 2,215 2.331
66 0.538 0.615 0,686 0.810
6¢ +0 +0 +0 +0
-, =0 «Q =0 -0
~Ig 0.736 0.755% 0.748 0.682
-111‘3 0.393 0.469 0.546 0.697
=T =0 =0 -0 -0

$
-hz =0 -0 =0 -0
—he 0,0020 00,0019 0.0015 0.0005
~hg 0.0078 0.0090 0.0100 0.0120
~h =0 ] =0 -0

¢
n, +0 +0 +0 +0
ng 0.820 0.888 0.937 0.989
nB 0.298 0,334 0.366 0422
n +0 +0 +0 +0

$
Lo 1939 247100 2.21% 24,331
ey 1.773 1,834 1.958 2,50
&é -0, 281 ~0,522 =-0,843 ~1,788
&é 0.820 0.888 0.937 0.988
- 0.737 0.755 0.748 0.682
-y 1.483 1.915 2.b32 4 406
—mé ~0,034 =0,082 =0.137 ~0,272
-mé 0,330 04 341 0. 342 0.320
--h2 0.0020 0.0019 0.0015 0,0005
'hé 0.0130 0,0189 0.0265 0.0426
~hs 0.0059 0.0096 0.0155 0.0456
—hg 0.0009 0.0008 0.,0007 0.0002
n. 0.820 0.888 0.937 0.988
ng 0.692 0.701 0.735 0.939
né =0, 104 =0, 209 =0.350 -0.798
né 0,399 0.428 0.450 0.472
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TABLE 10

Subsonic Theoretical Derivatives

Wing G (A = 4 Version), Symmetric, Axis at Apex (g = 0)

M 0.8 0.9 0,95 0.99
v 0.0 0,01 0.01 0.01
ZZ +0 +0 +0 +0
Ee 2,336 2.609 2.825 3.077
' +0 » +0 +0 +0
¢
-m_ =0 0 -0 -0
~ng 0,925 0.986 1,008 0.944
—m¢ —0 -O —O "0
2 +0 +0 +0 +0
ng 0,989 1,104 1.195 10304
n¢ +0 +0 +0 +0
Lo 2,336 2,609 2,825 3,077
A
&é 1272 0.963% 0,709 1,033
5% 0.988 1.103 12195 1. 304
-m. 0,925 0.989 1,008 0,942
4
-mé 10374 1.826 2.643 6.132
~ng Ool12 Oolhs2 0.456 0.439
Ne 00989 10103 1-195 1-304
ng 0.480 0.327 0,187 06251
né 0.488 " 0.b37 0.576 0.623

34
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TABLE 11

Supersonic Theoretical Derivatives

Wing A, Symmetric, Subsonic Leading Edge, Axis at Apex (g = 0}

1,05k 1,118 14202 1,302 1.414
v O [} 0.25 | 0.5 o* Ou1 0.25 | 0.5 [oid 0.1 0.25 | 0.5 o* 0.1 0.25 | 0.5 o [eR] 0.25 | 0.5
az' 0 0.03 |0.08 |0,k |0 0.02 | 0,08 | 0.15 | © 0,02 }0.08 {0.15 | o 0.01 | 0.06 [0.16 | © 0.01 {0.05 | 0,15
g 2,37 2.29 | 2,49 [2.16 | 2.23 2.20 | 2.11 | 2.07 | 2.08 2,07 | 2.02 | 1.95 | 1.94 1.93 | 1.90 | 1.84 | 1.82 1.81 [1.79 [ 1.74
(2.388) (2.241) (2.087) (1.939) (1.801)
-n, | O 0.03 [ 0.10 | 0,14 | O 0,03 § 0.10 | 0.15 | © 0.02 {0.09 0.17 | © 0.01 | 0.08 |0.18 | O 0.01 |0.07 |0.19
-ng 2,83 2,72 | 2.61 j2.58 2.67 2,63 | 2,52 | 2,49 2,51 2,49 | 2.42 | 2.3k 2,33 2,33 | 2,29 | 2.21 2,18 2.18 }2.15 | 2.08
(2.903) (2.733) (2.550) (2.372) (2.205)
123 2,37 2.2h [1.99 }1.78 | 2.23 2,47 | 1.95 | 1.73 | 2.08 2,05 | 1.90 | 1.65 [ 1.94 1.92 | 1.82 | 1.60 | 1.82 1.80 [ 1.73 ] 1.55
g 1.13 }{1.82 |2.08 1,33 | 1.67 | 1.95 1.45 [ 1,57 11.78 1.46 | 1.51 | 1,62 1.38 | 1.40 |1.48
(0.336) (1.108) (1.380) (1.240) (1.408)
-n. 2.83 2.6 12.33 |2.08 | 2.67 2.58 | 2.29 | 2.03 2.51 2.46 | 2.25 |1.93 2,33 2.31 | 2.17 |1.87 2.18 2,16 {207 |1.82
~u 1.73 | 2.67 |2.97 1,96 | 2,44 | 2,80 2,08 |2.25 |2.55 2,08 | 2.15 | 2.31 1.96 | 2.00 }2.11
(0.496) (1.557) (1.931) (2.012) (1.966)

*The v = 0 values in brackets are from Ref. 17 (Orlik-Riickemann et al); the remainder are from Ref. 10 (Harris).
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TABLE 12

Supersonic Theovetical Derivatives

Wing B, Symmetric, Subsonic Leading Edge, Axis at Apex (g = Q)

M 1.118 1.25 1,414 1.601 1.803

v O* 04 0,25 0.5 0% 0.1 0.25 0.5 o* 0.4 0.25 0.5 o* 0.1 0.25 0.5 o* 0.1 0.25 0.5

£, o] 0.00 | 0.02 |0.02 0 0,00 | 0,02 | 0,03 0 0,00 | 0,02 { 0,06 | O 0,00 | 0,01 | 0.04 0 0.00 | 0.01 | 0.05

N 1.58 1057 | 1.56 | 1.59 149 1.49 | 1.49 | 1.49 1,39 1.39 | 1.39 | 1.40 1.29 1.29 §1.29 | 1.30 1.21 1.21 11.29 | 1.21
(1.592) (1.494) (1.392) (1.293) (1.201)

-m, 0 0.01 | 0.02 |0.00 o] 0.00 }o0.,02 | 0,02 o} 0.00 | 0.02 | 0.04 0 0.00 | 0,02 | 0,05 0 0.00 0,02 | 0,05

—mg 1.89 1,88 | 1.87 [1.91 1.78 1.78 | 1.78 | 1.80 1.67 1.67 | 1.67 | 1.68 1.56 1.56 | 1.56 | 1.57 1.46 146 | 1.46 | 1046
(1.935) (1.822) (1.700) (1.581) (1.470)

€, 1.58 1.56 | 1.50 | 1.43 1.49 148 | 1.4 | 1,37 1.39° 1.38 | 1.36 | 1.30 1029 1,29 |1.27 | 1.22 1.21 1.24 [ 1.19 | 1.15

£y 2,09 | 2.15 | 2.16 1.92 |1.92 | 1.93 1.70 | 1.70 | 1.70 1,50 {1.50 | 1.50 1.31 {131 | 1.3
(1.954) (1.856) (1.677) (1.491) (1.322)

-, 1.89 1.86 [ 1.78 [1.70 1.78 177 | 1.72 | 1.63 1.67 1.66 | 1.63 | 1.55 1456 1.55 [ 1.53 | 1.46 1,46 1.45 | 1.43 | 1.38

-m 2,92 { 3,00 |3,01 2.68 | 2,69 | 2,70 2,38 | 2.38 | 2.37 2.10 }2.10 | 2,09 1.84 {1.84 | 1.84
(2,702) (2.581) (2.334) (2.076) (1.842)

*The v = 0 values in brackets are from Ref. 17 (Orlik Riickemann et al); the remainder from Ref. 10 (Harris).
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TABLE 13

Supersonic Theoretical Derivatives.

Wing C, Symmetric, Subsonic/Sonic Leading Edge, Axis at Apex (g = 0).

M 14281 14562 1.887 2,236 2,600 2.946
v o* 0ot 0025 0.5 o* 04 0.25 0.5 O* 0.1 0.25 0.5 o* o* o*
£, 0 0,00 | -0.01 ~0,05 0 0.00 | =0.01 -0.03 0 0.00 0.00 -0.01
g 0.99 0.98 0,98 0,98 0.93 0.93 0.93 0.93 0.87 0,87 0.87 0.87

(0.995) (0.934) (0.870) (0.808) (0.751) (0.702)
-n, 0 0.00 | =0.02 | =0.08 o} 0.00 | -0.01 -0,05 0 0.00 -0.01 -0.03
-ng 1.18 1,18 1,17 1.17 1.1 1.11 1011 1,12 1,04 1.05 1.05 1.05

(1.210) (1.139) (1.063) (0.988) (0.919) (0.860)
Lo 0,99 0.98 0.98 0.99 0.93 0.93 0.93 0.93 0.87 0.87 0.87 0.87
K4
2 1.78 1478 1.78 1.53 1.53 1.52 1.29 1.29 1.29

(1.739) (1.500) - (1.279) (1.093) | (0.943) | (0.830)
-m, 1.18 1.18 1417 1418 14114 1441 1,11 1412 1,0k 140k 1.06 1,05
-y 2,47 2,47 2.46 2,12 2,12 2.11 1.80 1.80 1.79

(2.412) (2.083) (1.778) (1.521) (1.313) (1.157)

*The v = 0 values in brackets are from Ref. 17 (Orlik-Riickemann et al); the remainder from Ref. 10 (Harris).
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TABLE 14

Supersonic Theoretical Derivatives

Wing D, Symmetric, Subsonic Leading Edge, Axis at Apex (g = 0)

M 1,054 1,118 1.202 1.302 1oh1h
v o* 0.1 | 0.25 | 0.5 or | 0.4 | 0.25 | 0.5 o 0.1 | 0.251 0.5 o* 0.1 §0.25 | 0.5 0* 0.1 {0.25 | 0.5
¢, 0 0.2 (0.8 013 | 0O 0.02 | 0.08 { 0,14 | © 0.02 | 0,08 0.15 | © 0.01 |0.06 |0.16 | © 0.01 | 0.06 | 0.16
2 2,28 2.21 | 2.12 | 2,10 | 2.19 2,16 | 2,07 | 2.02 2,06 2.05 | 1.99 | 1.9 1.92 1.92 1 1.89 |1.82 1.81 181 | 1,79 | 1.7k
(2.313) (2.186) (2.047) (1.910) (1.782)
-, |0 0.03 | 0,08 | 0.1 0 0.02 | 0,09 | 0.1k | © . 0.02 | 0.10 | 047 | © 0,02 |0.08 [0.19 | © 0,01 | 0,07 | 0.19
-ng 2,67 2,58 | 2.48 | 2,47 | 2.58 2,54 | 2,43 12,39 | 2,47 2.45 | 2.37 | 2.27 | 2.32 2,31 ] 2.27 | 2.18 | 2.18 2.18 | 2.15 | 2.08
(2. 774 (2.640) (2.486) (2.329) (2.178)
2y 2.28 2.16 | 1.9 | 1.75 | 2.19 2,12 | 1.91 | 1.69 | 2,06 2.03 | 1.88 | 1.62 | 1.92 1,90 | 1.81 |1.58 | 1.81 1.80 | 1.73 | 1.55
o3 1,18 | 1.82 | 2,06 1427 | 1461 | 1.90 1.36 | 1.49 F 1.7 11 ] 1,45 | 1.57 1,34 | 1,36 | 1.43
(0.357) (1.090) (1.348) (1.403) (1.371)
-m, 2.67 2.51 | 2.24 | 2,04 | 2.58 2,50 | 2.22 |1.98 | 2.47 2.42 | 2,21 | 1.8 | 2.32 2,29 | 2.15 ] 1.85 | 2.18 2,16 | 2,06 | 1.81
e 1.86 | 2.70 | 2 .96 1.91 1 2.39 [ 2.75 1.96 | 2,14 | 2,46 2.00 | 2.07 | 2.23 .91 1.9k | 2,04
(0.551) (1.545) (1.892) (1.966) (1.920)

*The v = 0 values in brackets are from Ref. 17 (Orlik-Riickemann et al); the remainder from Ref. 10 (Harris).
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Supersonic Theoretical Derivatives

TABLE 15

Wing E, Symmetric, 'Subsonic Leading Edge, Axis at Apex (g = 0)

M 1.118 14250 1alelly 1.601 14803

v 0% [oX] 0.25 | 0,5 o* 0.1 0,25} 0.5 O* 0.1 0.25 | 0,5 o* 0,4 10.25 | 0.5 o* 0.1 0,25 | 0.5

¢, 0 0,00 | 0.02 | 0,01 0 0,00 {0,021 0.03 0 0,00 | 0,02 | 0.05 | © 0.00 | 0.02 | 0.05 0 0.00 | 0,02 | 0.05

24 1.52 1.51 | 1.51 | 1.52 | .46 146 | 1451 146 | 1.37 1.37 | 1.37 | 1.38 | 1.28 1,28 | 1.28 | 1.29 | 1.2 .21 1121 | 1.2
(1.542) (1.457) (1.365) (1.274) (1.188)

-m, 0 0.00 | 0,01 { 0,01 o} 0,00 | 0.02 | 0,02 o] 0,00 | 0.02 {0,05 | © 0,00 |0.02 | 0,05 0 0,00 | 0.02 | 0.06

-g 1.78 1.77 | 1.76 | 1.79 1.72 1.72 1 1.72 ] 1.72 1.65 1,65 | 1.65 | 1.65 1454 1e54 | 1.55 1 1.55 1.45 1.45 | 1,45 | 1.45
(1.849) (1.760) (1.657) (1.552) (1.452)

&% 1.52 1.50 1 1.45 1 1.39 1.46 1.45 [ 1.41 | 1.33 1.37 1.37 | 134 | 1.27 1.28 1.28 [1.26 | 1.21 1.24 1.21 ] 1,19 | 1.15

25 2.02 | 2,08 | 2.10 1.84 |1.85 | 1.86 1.64 | 1.64 | 1.64 146 | 1,46 | 1,45 1,28 | 1,28 | 1.28
(1.873) (1.795) (1.627) (1.450) (1.288)

-, 1.78 1.76 | 1.69 | 1.63 1.72 1,71 1 1.66 | 1.57 1.65 1,64 | 1.60 | 1.54 1454 1,56 11.52 | 1.45 1.45 1.45 | 143 | 1.37

~mg 2,81 | 2.89 | 2.91 2,57 |2.59 | 2.60 2,28 | 2.28 | 2,28 2,05 | 2,03 | 2.03 1.80 | 1,80 | 1.79
(2.594) (2.492) (2.263) (2.020) (1.797)

*The v = 0 values in brackets are from Ref. 17 (Orlik-Riickemann et al); the remainder from Ref. 10 (Harris).
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TABLE 16

Supersonic Theoretical Derivatives

Wing F, Symmetric, Subsonic/Sonic Leading Edge, Axis at Apex (g = 0)
i 1,281 1,562 1.887 2.236 2,600 2.946
v 0* 0.1 0,25 0.5 O 0ot 0.25 0.5 o* R 0.25 0.5 O* 0% o*
2, 0,00 | =0.01 -0,05 0.00 | =0,01 =0,03 0,00 0,00 -0.01
24 0.95 0.95 0.95 0.94 0.91 0.91 0,91 0.91 0.86 0,86 0.86 0.86
(0,964) (0.911) (0.853) (0.796) (0.742) (0.696)
-u, 0,00 | =0.02 |-0,08 : 0.00 | ~0.01 -0.05 0.00 0.00 «0.02
-0y 1411 1.1 1.11 1.10 1,08 1.08 1.08 1,07 1.03 1,03 1.03 1.03
(1.156) (1.100) (1.036) (0.970) (0.908) (0.854)
L. 0.95 0.95 0.95 0.91 0.91 0.91 0.86 0.86 0.85
2
(29 1.71 1.7 1,70 1.47 1,47 147 1.25 1.25 1.24
(1.669) (1.448) (1.239) (1.063) (0.919) (0.810)
-n, 1411 111 1.12 1,08 1,08 1.08 1,03 1403 1,02
~mg 2,3k 2.3k 2,34 2,03 2,03 2.02 1.73 173 1¢72
(2.300) (2.003) (1.719) (1.478) (1.280) (1.130)

*The v = 0 values in brackets are from Ref 17 (Orlik-Riickemann et al); the remainder from Ref. 10 (Harris).




8%

TABLE 17

Supersonic Theoretical Derivatives

Wing A, Symmetric, Sonic/Supersonic Leading Edge, Axis at Apex (g = 0)

M 1.53 1.67 1495 2.0 2,53
v o* Oe1 0.25 0.5 o* o* o* 0.1 0.25 0.5 o* 0o 0.25 0e5

Z o] 0.028 0,01 0 0 o} 0.008 0.011 0,039 0 0.001 0,008 0.028
24 1.685 1,645 1.635 1,608 1.47 1.20 1,06l 1,06k 1,063 0.884 0.879 0.872
*’9;3 0.157 0,157 0.157 0.103 0.103 0.103 0.077 0.077 0.077
-, 0 0,009 0.055 0 0 0 0,002 0.014 0.082 0 0.002 0.011 0,041
~mg 2,064 1.969 1.954 1.927 1.79 1.46 1,286 1.286 12284 1.132 1.120 1. 114
-mB 0,024 0,024 0,024 0.016 0.016 0.016 0.012 0.012 0,012
-h, 0 0.0002 0.0006 0 0 0 0.0002 0,0008 0.0139 o] 0.0001
-hy 0.0145 0401444 0.0218 0.0219 0.0221 0.0018
--h’a 0.0146 0.0146 0.0146 0.0104 0,010l 0,0104 0.0080 0.0080 0.0080
zé 1.685 1.638 1.595 1.515 1el7 1.20 1,062 1,053 1.024 0.877 0.872 0.855
23 1.343 1308 1.317 1.335 1.26 1.21 1.135 1.134 1443k 0.97 0.967 0.966
% 0,004 0.00L 0,004 0.006 0.006 0,006 0.006 0.006 0,006
-, 2,064 1.954 1.897 1.790 1.79 1.46 1.288 1.274 1.245 14116 1,109 1,083
~ng 1.876 1.798 1.813 1.842 1.83 1.65 1.576 1.575 1.575 1.376 1.371 1.368
- 0,001 0,001 0,001 0.001 0,001 0,001 0,001 0.001 0,001
-h, 0. 011y 0.0136 0.0266 0.0211 0.0019 0.0019 0,0020
-hy 0.0134 0.0136 0.0172 0.0171 0.0170 0,0093
-h 5 0.0007 0,0007 0, 0007 0.0010 0.0010 0.0010 0.0009 0,0009 0,0009

*The v = 0 values are from Ref. 17 (Orlik-Riickemann et al); the remainder are from Ref. 7 (Barnes).

&
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Supersonic Theoretical Derivatives.

TABLE 18

Wing B, Symmetric, Sonic/Supersonic Leading Edge, Axis at Apex (g = 0).

M 2.0 2,46 2.69

v 0% 0e1 0.25 2.5 0,1 0,25 0.5 o 0.25 0e5

, 0 0,002 0,014 0,038 0,001 0.007 0,025 0,004 0,003 0,014
66 10123 1.080 1,080 1.079 0.893 0. 894 0.899 0.738 0.7%9 0. 741
EB 0,101 0,101 0,101 0,077 0.077 0,077 0.068 0,068 0,068
-, o} 0,002 0,043 0,402 0.002 0.010 0,058 0,001 0,004 0.050
-mg 1,376 1,280 1,279 1,277 1,124 1,127 10134 0,899 0.900 0,902
—mB 0,016 0,016 0,016 0,013 0.013 0.013 0,011 0,011 0,011
~h 0 0 0,0065 0.0043 0.0001 0.0005 0.0019
by 0,0049 0,0049 0.0048 0.0466 0,015 0.0168
—hB 0,0088 0.0088 0,0087 0.0081 0.0081 0,008 0.0071 0.0071 ! 0,0074
e, 1,123 1,078 14069 1,040 0.892 0.887 0,872 0.738 0.736 0.728
&g 1,187 1,143 1,143 1,143 1,004 1,003 1,001 0,872 0.872 2,871
zé 0,006 0,006 0,006 0.006 0,006 0.006 0,005 0,005 0.005
-m, 1,376 1,278 1,265 1,246 1.122 1.153 1,102 0.899 0,895 0,88l
~mg 10654 1,564 14564 1,563 1,415, 1,410 1.410 1.212 1.211 1.211
-mg 0,001 0,001 0,001 0,001 0,001 0.001 0,001 0,001 0,001
~h, 0,0049 0,0048 - 0. 2640 0.0162 0.0034
-hg 0,010k 0,010k 0,0104 0.0100 0.0101 0.0102 0,0150 0,0150 0.0149
—hé 0.0009 0,0009 0.0009 0.0009 0.0009 0,0009 0.0009 0.0009 0.0009

*The v = 0 values are from Ref. 17 (Orlik-Riickemann et al); the remainder are from Ref. 7 (Barnes).
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Wing D, Symmetric, Sonic/Supersonic Leading Edge, Axis at Apex (g = 0)

TABLE 19

Supersonic Theoretical Derivatives.

M 1.53 1467 1.95 2,0 2,53
v o* 0.1 0425 0.5 o* o* o* Oe1 0.25 05 o Oe1 0.25 0.5

. 0 0,008 0,045 0 0 0.003 0,017 0.060 0.001 0.007 0.028
Ly 1.671 1.686 1.687 1.687 1.49 1.2k 1.132 14132 14132 0.852 0.856 0.858
25 Ou 1kl TN 0u1hh 0,092 0,092 0.092 0.068 0,068 0.068
-m, 0 0.010 0.069 0 0 0,00k 0,025 0.139 0,002 0.011 0,082
~mg 2,048 2,052 2.057 2.060 1.82 1.50 1,430 14430 1.428 1.076 1.082 1.084
~ng 0.039 0.038 0,038 0.025 0,025 0.025 0.018 0.018 0,018
~h, 0,0001 0.0047 0.0001 0.0009 0.0227 0.0001
~h 0.0131 0.,0130 0,0209 0.0210 0.0210 0.0006
-h6 0.0113 0.0142 0.0112 0.0085 0,0085 0,0085 0.0063 0,0063 0,0063
2 1.671 1,690 10604 1.571 1eL49 1.24 1.129 1117 1,076 0.854 0.849 0.834

Z
£y 1.309 10322 1.331 1.346 1420 116 1.109 1.108 1,106 0.93 0,930 0.93
% 0,002 0.002 0,002 0.005 0,005 0,005 0,005 0,005 0.005
-n, 2,048 2,062 2.056 2,039 1.82 1.50 1.427 1,407 1.380 1.079 1.072 1.050
-mg 14832 1,846 1.859 1.880 1.70 1451 1.543 10542 1.539 1.316 1.315 1.312
-mg +0 +0 +0 0,001 0.001 0.001 0,001 0.001 0.001
=h, 0,0130 0,0208 0.2017 0.5471 0.0002 0.0002 0,0002
-hg 0.0173 0.,0174 0.0161 0.0161 0.0160 0.0053
~he 0,000%4 0.0004 0.000k 0.0006 0.0006 0.0006 0.0006 0.0006 0,0006

*The v = 0 values are from Ref 17 (Orlik-Riickemann et al); the remainder are from Ref. 7 (Barnes).
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Supersonic Theoretical Derivatives

TABLE 20

Wing E, Symmetric, Sonic/Supersonic Leading Edge, Axis at Apex (g = 0)

M 2.0 2.46 2,69

v 0% Oe 0.25 0e5 041 0.25 0.5 0,1 0.25 0s5

. 0 0,002 0.012 0.042 0.001 0.006 0.021 0.00k 0.015%
36 1e114 10101 14101 14101 0.820 0.820 0.8418 0.748 0.746 0.744
eB 0,086 0.086 0,086 0.065 0.065 0. 065 0,056 0.056 0.056
~n_ 0 0,003 0.016 0.125 0.001 0.009 0.069 0.006 0.049
- 1.366 14340 1a 3y 1,343 14004 1,003 0.998 0.925 0.924 0.924
g 0.023 0,023 0.023 0,018 0.018 0.018 0.015 0,015 0.015
“h_ 0.0207 0,0052
~hg 00,0060 0.0060 0,0059
--hB 0.0062 00,0062 0.0062 0.0053 0.0053 0.,0053 0.0046 0.0046 0.0046
2 1ok 1,099 1,089 1,057 0.819 0.815 0,800 0.748 0.746 0.736
123 14157 1,168 1.167 1,165 0.909 0.909 0.909 0.86 0.86 0.858
eé 0,005 0,005 0,005 0.004 0,004 0,004 0,004 0.004L 0,00k
--mé 1.366 16341 1.326 1.299 1,003 0.996 0.993 0.925 0,920 0.910
~ng 1.616 1,639 1.638 1,633 1,249 1,249 10249 1.192 1.192 1192
~mg 0,001 0,001 0.001 0.001 0.001 0.001 0,007 0,001 0,001
~h2 0.0060 0.0059
~hg 0.0157 0.0157 0.0156 0.,0050 0.0051 0.0053
~hé 0.0006 0.0006 0,0006 0.0005 0,0005 0,0005 0,0005 0,0005 0,0005

*The v = 0 values are from Ref. 17 (Orlik-Riickemann et al); the remainder are from Ref. 7 (Barnes).
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TABLE 21

Supersonic Theoretical Derivatives

Wing G (A = 3 Version), Symmetric, Axis at Apex (g = 0)

M 1,031 1.100 14202 1425 1ol 1.875 2.5

v 0% o* o* o* 0.1 0,25 0.5 o* o* 0.4 0.25 0.5 ol 0.1 0.25 0.5
L, o] 0 ¢] o] 0.015 0,082 0 0 0,002 0,013 0.0L8 0.001 0,005 0.019

o 2,780 2.788 2,377 2,205 2,049 1.976 14773 1.184 1a141 1.139 1.129 0.806 0.806 0,804
eﬁ 0,270 0,269 0.266 0.122 0.122 0.122 0,083 0.083 0.083
~m, o] 0 0 0 0.010 0.085 0 o] 0.002 0.010 0.063 0.001 0,004 0.015
-mg 0,986 1.569 1.502 14420 1,188 1.127 117k 0,800 0.766 0.763 0.754 0.557 0.556 0.555
~n 0,021 0,021 0.020 0,009 0.009 0.009 0.007 0,007 0.007
-h, 0 0 0 0 0 o] 0.0001 0.0054 0,0122 o] 0.0000 0.0000 0,0000
“hg 0,0262 0.0261 0.0258 0.0052 0.0052 0.0052
-h;3 0,0235 0,023 0,0232 0.0125 0,0125 0.0125 0.0009 0.0009 0.0009
2y 2,780 2,788 2,377 2,205 2,041 1.929 1.773 1.484 1.156 1.148 1.105 0,806 0.803 0.79%
173 -3.838 =2.483 =0.529 ~0,118 0.455 0,612 0,572 0.57k 0.579 0,482 0.482 0.483
4;‘3 «0,031 ~0,030 ~0,030 0,007 G, 007 0.007 0,006 0.006 0.006
-m, 0,986 1.569 1.502 1.420 1,182 117k 0.800 0.776 0.768 0.557 0.554
-mg 1.252 =1.565 ~0,403 -0,095 0.365 0,501 0,483 0, 484 0.489 0,402 0,402 0.403
~ng =0,005 -0,005 -0.005 0,001 0,001 0.001 0.001 0,001 0,001
~hy 0.0262 0.0173 0.0241 0,0052 0.0052 0.0051
“hg 0.0201 0.0207 0,007% 0,0074 0.0076 0.0069 0.0069 0.0069
—hé «0,0021 -0,0021 -0,0020 040011 0.0011 0.0011 0,0010 0.0010 0.0010

*The v = 0 values arc from Ref. 12 (Lehrian); the remainder from Ref. 7 (Barnes).
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Wing G (A = 4 Version) Symmetric Axis at Apex (g

1

TABLE 22

Supersonic Theovetical Deriratives

M 1,017 1.057 1,118 10250 1,505 1,803 2.125 2,462
) 0 0 o] 0 0 0 0 0

¢, 0 0 0 0 0 0 0 0

ee 3,707 3,718 3,169 2,363 1.661 10273 1,030 0, 86l
~n, 0 0 0 0 0 0 0 0

~mg 1.315 2,093 2,003 1.566 1,121 0,865 0,703 0,590
45 3.707 3.718 3.169 2,363 1,661 102753 1,030 0.86L
€5 -13.959 -8.957 =3.359 =0,323 0.528 0,612 0.573 0.517
-ms 1315 2,093 2,003 10566 1.121 0.865 0.703 0,590
-mg =0,970 -6,292 -2.,717 =0, 302 0,418 0.497 0,469 0.423

All these values are from Ref. 11 (Lehrian).
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Subsonic Theoretical Derivatives

TABLE 23

Wing A, Antisymmetric, Axis at Apex (g = 0)

M ¢} 0,745 0,509 0.968

v o* 0.1 0.25 0.5 o* 0.1 0,25 0.5 o 0.1 0425 0.5 o* 0.1 (5. 25 0.5
r" o . =0.001 =-0,00L -0,015 ¢} ~0,001 -0,004 =0,016 o =0.001 -0,005 -0.017 -0,001 =0.005 -0,013
rﬁ 0,190 0.191 0.991 0,189 0.227 0.231 0.231 O.232 0, 264 0.271 0.273 0.279 0,305 0,312 0,308
-h‘y [¢] -~0,0000 =0,0001 =0, 0004 0 ~0.0000 =0,0002 ~0,0006 o] =-0,0000 ~0.0003 -0,0012 =0.0001 -0,0005 =0.0021
-hB 0,005 0.0054 0.,0053 0.0073 0.0073 0,007% 0.0097 0,0098 0.0104 0.0121 0.0129 06,0169
Ty 0,229 0,234 0,234 0,232 0.255 0.262 0,262 0,263 0.275 0,283 0.285 0.29% 0.296 0.302 0.319
ré 0.031 0,029 0,029 0.030 0.017 0,014 0,015 0.015 -0,006 ~-0.011 =0.015 =0,027 =0, 01 =0,062 =0.12k
-h& 0,0015 0.0015 0,0015 0,0017 0.0017 0,0017 0,0018 0.0018 0,0019 0.0020 0,0021 0,0032
-hé 0.0025 0.0025 0,0026 0.00L5 0.0045 0,0045 0.0083 0,0084 0,0085 0,0150 0.0154 0.0120

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 (Woodcock).
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Subsonic Theoretical Derivatives.

TABLE 24

Wing B, Antisymmetric, Axis at Apex (g = 0)

M 0,781 0.927

v o* 001 0625 0.5 o* 0.1 0,25 0.5 ox 0.1 0,25 0.5
r, 0 =0,001 «0, 004 0,014 0 =0.001 =0,004 ~0,017 =0,001 =0,005 -0,019
T 0,152 0.151 04151 0,150 0.176 0.176 0.177 0,178 0.197 0.159 0. 204
~h v 0 -0,0000 -0.0001 =0, 0004 0 =0,0000 =0,0001 -0,0006 =0, 0000 =0, 0002 =0,0009
=h 8 0,0048 0.0048 0.,0048 0,0064 0,006 0.006L 0.0079 0.0079 0.0082
ry 0.170 0.170 0,170 0.170 0.183 0.183 0.183 0,184 0,191 0,192 0.195
r3 0,034 0,034 0.03% 0,034 0.031 0.031 0.031 0,031 0.028 0.027 0.024
-hq-, 0.0011 0,0011 0.0011 0,0012 0.0012 0.0012 0,0013 0.0013 0.0013
~h B 0,0027 0.0027 0,0027 0,004 0.00LL 04001 0,0070 0.0071 0.0072

*The v = 0 values are from Ref. 6 (Hornsby); the remainder from Ref. 8 {(Woodcock)
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TABLE 25

Subsonic Theoretical Derivatives

Wing C, Antisymmetric, Axis at Apex (g = 0)

M 0.8

v o* 0.1 0.25 0.5 O* 0.1 0.25 0.5
r¢ 0 =0,000 =0.003 -0.012 ~-0,001 -0.003 =0,013
rB 0.110 0.140 0,110 0.110 0.123 0.123 O.124
-h v 0 -0.0000 | -0,0001 ~0,0003 =0,0000 | =0.0001 -0, 0004
-h 8 0.0040 0.0040 0.0039 0.0049 0.0049 0.0049
I‘é 0.030 0.030 0,030 0.030 0.032 0,032 0.032
-hIII 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008
-hé 0.0024 0.002% 0.0024 0.0036 0.0036 0.0036

*The v = 0 values are from Ref. 6 (Hornsby); the remaindet from Ref. 8 (Woodcock).
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TABLE 26

Subsonic Theoretical Derivatives

Wings D, E, F, Antisymmetric, Axis at Apex (g = 0)

Wing D F
M 0 Qs 745 0.909 0 0.781 0
v 0 0 o] 0 0 0
0 0 0 o] o} 0
Ty
rg 0,186 0.217 0.245 Oo1hdy 0,163 0.102
rﬁ 00243 0.265 0,280 0,176 0.186 0.117
T4 0,034 0,019 -0.007 0,034 0,028 0.028

All these values are from Ref. 6 (Hornsby).




Tunnel

Type
Working section

(breadth x height)

Mach numbers

Stagnation pressure
Reynolds number/ft

Model mounting

*See Ref. 45 for further details.

TABLE 27

Tunnel Details
N.AE. 16in. x 30in.
(Ottawa)

Intermittent suction
(run duration about 15 sec)

Not available

0-5— 1-1 (slotted liner);
discrete values 1-2 - 20
(fixed liner)

1 atmosphere approx.
2:6 46 x 10°

Half-model side wall with re-
flection plate 1in. away from
the wall

51

H.S.D. 20 in. x 22 in.
(Coventry)*

10000 hp continuous

20 in. x 22 in. (transonic) reducing
to 14} in. x 16in. (M = 2-96)

03— 1-3 (slotted liners); discrete
values 1-4 — 2-96 (fixed liners)

0-25 — 2-8 atmospheres
25580 x 108 (for test conditions)

Half-model from support disc form-
ing part of tunnel side wall



TABLE 28

Model Details

All the wing models have biconvex chordwise sections of 5 per cent thickness — chord ratio.

Tests N.A.E. and W.R.E. H.S.D.
Root chord
Wing A 9-55 in. 12 in,
Wing B 10-93 in. 12 in.
Wing C 12-82 in. 12 in.
Wing D 8:56 in. 12 in.
Wing E 9:77 in, 12 in.
Wing F 11-41 in. 12 in.
Wing G (4 = 3 version) — 11 in.
Wing G (4 = 4 version) 6-82 in. —
Semi-span
Wing A 771 in. 9-65 in.
Wing B 5-89 in. 6-43 in.
Wing C 4-30 in. 4-03 in.
Wing D 7-99 in. 11-14 in,
Wing E 6-09 in. 7-43 in.
Wing F 4-42 in. 4-64 in,
Wing G (4 = 3 version) — 1200 in.
Wing G (A = 4 version) 991 in. _
Material Solid dural Not recorded
Boundary-layer transition 0008 in. grain size Kyanite Carborundum grit 0-25 in. wide at
forcing strips sand in 0-30 in. wide strip at 10 per cent chord approx. roughness
10 per cent chord approx. height 0-006 — 0-008 in.

52
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TABLE 29
Wing A, M ~ 1-2, Axis at Apex (g = 0)

Experimental Theoretical M = 1.20
Baines Orlik=Rlickemann Harris* . "
& Rockliff & Laberge Halﬁ 8_° 331;(0)rne Harris (Jones & Orl;k;R;:ic‘exenann
M= 1.2 M o= 1,22 = 1. Cohen) abete
v (0] 0] 0] 0,042 0,056 0.069 0 | 01 0 0]

('z =-0,01 ~0,02 =0,01 0,02
A 1ol 1.86 1.75 | 1.71 1.68 | 1.67 |2.08{ 2.07 2,05 2,09
-m -0,02 -0, 04 0.01 0,02
-, 1okt 2,30 2,071 2.08 2,01 2,05 [2.51] 2.49 2.49 2.55
&% 1498 1e Tl 1.68 2,05
flé 0.5 1’28 1.88 1-09 0.74 1.}4'5 1038
-y 2.1 1.73 1el6 1.42 1431 2,08 1.93

*These are values given by Harris in Ref. 10 which he obtained by the method of Ref. 29.
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Wing A, M = 1-:5- 16, Axis at Apex (g = 0).

TABLE 30

Experimental

Theoretical M = 1.53

Baines Orlik=Riickemann . o
& Rockliff & Laberge Hahldl_&1022°rne Barnes | °F 1;k£§§21;e‘gam
M= 1,5 M= 1.56 = e &
v 0 0 0 0,034 0,046 0,057 0.1 0
2 -0,01 -0.03 -0,01 0,03
ee 1.7 14D 1.51 1034 16371 1.33 1.65 1,69
- 0.02 «0,06 0.0k 0,01
Lad i1 1.1+ 1.77 1065 1.68 1.56 1.66 1-97 2;06
&% 1,63 1,65 1,62 1,64
8 0.6 1.25 1,42 1,52 1e 37 1, 34
"qu 1.83 1093 1091 1995
“=me 1e7 1.68 1,92 1.87 1.82 1.80 1,88
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Wing A, M = 1920, Axis at Apex (g = 0)

TABLE 31

Experimental Theoretical
Baines Orlik-Rickemann Orlik=Riickemann
& Rockliff & Laberge Hall\]& cic E‘)s‘ggrne MBeirngso & Laberge
M=20 M= 2,0 -t T M =1.95
v 0 o] 0 0.030 0,041 0.051 0.1 0
62 =0,05 0,08 -0,07 0.01
(oe 1o 1.29 1.16 1.09 1.03 1,07 1.06 1.20
-1 ~0,05 =0,08 =0.18 0.00
~m 141 1.56 1441 1.33 1.29 1413 1429 1.46
«‘52 1.28 1.06
Eé 0.4 1632 0.98 1413 121
-m, 1.63 1.29
-mé 1.3 1.78 1.67 1.58 1.65
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TABLE 32

Wing B, M = 12— 125, Axis at Apex (g = 0)

Experimental

Theoretical M = 1.25

Baines Orlik-Riickemann Harris . .
& Rockliff & Laberge Hal;[ {c g)sggrne Harris (J ones & Orl;k;l;ggl;enelann
M= 162 M= 1,22 = le Cohen) &
v 0 0] 0 0.042 0,056 0.069 0 Qe 0 0

Ez «0Q,02 |=0,03 |-0,08 0,00
ee 2.4 1624 1633 1629 1629 1018 1.49 | 1.49 Tad7 149
~=m «0,06 |=0,11 |=0.16 0,00
~-m 105 1-5)4- 1.27 1055 1050 1-38 1.78 1-78 1.78 1382
!’E 1.49 1.46 1.22 1.48
&é 162 1.83 1.95 1e 77 P 1.92 1.86
-mé 2,0 2.52 2,18 2. 14 0.98 2,68 2.58
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TABLE 33

Wing B, M = 1-55—1-6, Axis at Apex (g = 0)

Experimental Theoretical M = 1.60
Baines rlik=-Riickemann Harris ‘1 Tyas
& Rockliff & Laberge Ha‘]‘;’[' {c ?s’ggrne Hearris (Jones & Orl;lc;lzgce:l;ezann
M= 1.5 M = 1.56 = e Cohen) g
v 0 0 0 0,034 | 0.046 | 0,057 0 0.1 o) 0
‘&Z -0103 -0005 .0005 O-OO
Ee 1.9 0.99 1e14 ] 1.10 1.05 1.03 }1.29 [1.29 1.26 1.29
~-m =0,03 |-0.11 |=~0.08 0,00
~mg 1.3 1.20 1,40 | 1.36 1.24 1424 [1.56 |1.56 1454 1.58
62 1419 1.19 1+29
&é 1.0 1432 131 1. 38 1.50 1.49
-, 1.38 1,63 1.55
~mg 1e7 1.81 1.73 2,02 2.10 2,08
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TABLE 34

Wing B, M = 19— 2-0, Axis at Apex (g = 0).

Experimental Theoretical M = 2,0
Baines Orlik-Riickemann . o
& Rockliff & Laberge Hallf\lﬂ. % ?sggrne Barnes Orl;ck;igzlgezann
M= 2,0 M = 2,00 =t g
v 0 0 0 0,030 0.041 0,051 0.1 0

&Z «0,03 ~0,03 =0, 01 0,00
“0’6 1ed 0.89 0.97 0,90 0.89 0.91 1,08 1.12
) -0,0k 0,05 0.00
- 161 105 117 1,09 1.07 1.28 1.38
62 1,08 1.07 1,08
&6 Oa5 1.14 1-21 1.27 1'14 1-19
-mé 1.2 1652 1.73 1653 1.56 1.65
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TABLE 35

Wing C, M = 12— 13, Axis at Apex (g = 0)

Experimental Theoretical M = 1.28
Baines Orlik~Riickemann .
& Rockliff & Laberge Hall & Os;orne R (Harrls& Orlik-Riickemann
Mox 102 M = 1,22 W= 1. Harris Jones & Leberge
* . Cohen)
y 0 0 0 0,042 | 0,0561 0,069 0 1 0.1 0 0
&Z -0,04 | =0,03 | -0,06 0,00
86 -1 1403 0,97 | 0.89 0.89 0.85 |0.991 0.98 0,99 1,00
- ~0,07 | =0.02 |=0.09 ] 0.00
-me Oe1 1e 31 1el?d 1.09 1012 100 1.181] 1.18 1419 1621
'62 "'1.34 1.3)4- 10)+L|' 0098
&é 0.5 1.58 2.09 2,00 2.06 1.78 1ok
-, 1422 172 1.88 1.18
Z
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TABLE 36

Wing C, M = 1-56, Axis at Apex (g = 0).

Experimental Theoretical M = 1.56
Baines Orlik=Riickemann Harris . v
& Rockliff | & Laberge Hal\lﬁl_& ; ngwne Harris  |(Jones & Oﬂlz iﬁﬁ:ﬁmim
M = 1.5 M = 1,56 =t Cohen) g

v | 0 0 o | c.om| o.ous | 0.057| o {o.1 0 0

z "'Oa 05 -Oo 08 -Oo 01 0.00
‘66 "'1.1 0085 0983 Oo 78 0072 0'83 0095 0095 0092 O¢93
—mz -0,02 =), 02 0,06 0,00
-me 0.1 1.05 1.0k 1604 1601 1617 111 | 111 1e12 1ok
Lo 0.78 0,91 0,93

z
‘Eé 1.0 1025 1.05 1917 1.53 1050
-m?2 165 1e 7l 1494 189 2:12 2,08
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Wing C, M = 1-89 — 2:0, Axis at Apex (g = 0)

TABLE 37

Experimental

Theoretical M = 1,89

Baines Orlik-Rlckemann Harris . o
& Rockliff & Laberge Ha.l& (f_c 10519)8rne Harris (Jones & Orl;ckER}; clrc.e:ann
M= 2,0 M = 2,00 = e Cohen) avere
v 0 0 0 0,030 0,041 0.051 0 0.1 0 0
7 -0001 0.01 "0001 0.00
66 =-1.0 0.73 0.73 0.72 0,76 0.76 0.87 ] 0.87 0.85 0.87
-m_ -0.03 |-0,01 | ~0.04 0.00
---me 0,0 0,91 0.88 0.88 0,91 0,87 104 | 1.05 1,03 1.06
6% 0.82 0.84 0.82 0.87
f;é 1e7 14153 1ol 1¢15 1¢29 1628
-m% 1,06 0.79 1.04
~mg Tolks 1456 1459 1.28 1.80 1,78
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TABLE 38

Wing D, M ~ 12, Axis at Apex (g = 0).

Experimental Theoretical M = 1,20
Baines Orlik-Riickemann Harris . o0
& Rockliff & Laberge Hal]:vt f_c g)sggrne Harris (Jones & Orl;.ckziggienexann
M= 12 M o= 1022 =1 Cohen) &
v 0 0 0] 0,052 | 0,069 [ 0.087 0 10,1 0] 0
62 ~0,07 =0, 04 0.00 0.02
£q 1,0 177 1675 | 1.67 1. 70 1.76 |2.,06 | 2,05 2,05 2.05
- ~0,07 ~0.02 0012 0.02
"’me 193 2.23 2013 2006 2910 2528 2.Ll-7 2.45 2.49 201+9
Eaz 2.46 2626 2.15 2,03
I;é 1e3 1415 2.38 1.68 1.36 1036 1.35
-m% 3030 3,00 3.01 2,42
"mé 2.1 1946 3. 36 291-!-9 25 21 1 g96 1 089
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TABLE 39

Wing D, M = 1-5— 1:6, Axis at Apex (g = 0).

Experimental Theoretical M = 1.53
Baines Orlik~Riickemann . .
& Rockliff & Laberge Hali/[' ‘f_c ?sl;grne Barnes Orl;c_kzigzlietenann
M= 1.5 M = 1,56 - 8
v 0 0 0 0,040 0.053 0.066 0,1 0
&Z (), Oly =0,01 =0,06 0,01
4 1e7 1.37 1436 1431 133 1.31 1,69 1.67
=n 0,03 -0,03 0,01
~ng 145 1.68 1.63 1.69 2,05 2.05
&2 1.60 1.63 1.78 1.69
6é 0.6 0499 1,30 1.36 141 1632 1434
=Me 1.79 1.89 1.89 2006
Z
—mé 1.5 1e4 1.60 1.72 1.62 1.85 1.83
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Wing D, M = 1-9— 20, Axis at Apex (g = 0)

TABLE 40

Experimental Theoretical
Baines Orlik~Rickemann Orlik-Riickemann
& Rockliff & Laberge fal & a0 e pones & Laberge
M= 2,0 M= 2,00 T - M =1.95
Y, 0 0 0 0,035 0,047 0,059 0.1 0]

@Z =0,02 ~Q, 01 0.00 0,00
66 1ok 1623 115 1.08 1,09 1611 1e13 1424
~m 0,01 0.03 0.09 0,00
"‘"me 103 1952 1.41 1-55 1037 1.14‘5 1043 1050
&5 107 1o 2L 1e711 1613
1] =043 1,04 1,00 1420 1,00 1011 1,16
-m.z 1.17 1.46 1.24 1-43
"'mé 1.5 1045 1.31 1.)4-1 1-17 1a54 1.51
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TABLE 41

Wing E, M = 12— 1-25 Axis at Apex (g = 0)

Experimental Theoretical M = 1.2b
Baines Orlik=-Rickemann Harris . o
& Rockliff & Laberge Habitl_& ; Ozgorne Harris (Jones & Orl;ckziﬁglxc‘ex:ann
M= 1,2 M= 1,22 = 1. Cohen) g
Y 0 0 0 0.052 | 0,069 | 0.087 0 | 0.1 0 0
2 w0, 04 | =0,02 0,00 0,00
g 346 1.27 1.3k | 1.27 1.27 1.29 | 1.46] 1.46 1446 1.46
-, =0,05 | ~0,02 0,05 0,00
-n, 1.9 1.60 1,36 | 1.5k 1.56 1.6 | 1.72] 1.72 1.76 1.76
c% 1.72 1,49 1.55 145
(/é 1.)4- 1'57 2.07 1.70 1.56 1.84 1.80
-m% 1.98 191 2,02 1ed
~my 1.9 24 24 2.62 2.27 26711 2,57 2,49
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TABLE 42

Wing E, M = 1-55- 16, Axis at Apex (g = 0).

Expérimental Theoretical M = 1.60
Baines Orlik-Riickemann Harris c1 e
& Rockliff | & Laberge fell & ?Sggrne Herris | (Jomes gf 0¥ H—itckenamn
M=1.5 M = 1,56 =0 Cohen) abers
v 0 0 0 0,040 | 0,053 | 0,066 0 0o 0 0
2 «0,01 0.0 0.05 0,00
«?;e 369 1.10 1ol 1613 11k 1.20 1.28 | 1,28 1.27 1.27
=1 =0,03 0,05 0,00 0.00
~og 2,0 1637 1.42] 1.38 1.45 1.38 1e54 | 1.04 1.55 1655
-6% 1.32 1436 129 1.28
L8 Ok 1.28 1.36 1.46 1,46 Te45
-m; 191-1—0 1.60 1.54
-mg Tk 1,78 1,69 2,03 2,04 2,02
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TABLE 43

Wing E, M = 1920, Axis at Apex (g = ),

Experimental Theoretical M = 2,0
Baines Orlike~Riickemann . o
& Rockliff & Laberge Halblk fc Ss’;grne Barnes Orl;.ckzig Zﬁe:;ann
M = 2,0 M = 2,00 =1 &
y 0] 0 0 0,035 0.047 0,059 0.1 0

62 «0,03 ~-0,02 =0, 0l 0.00
66 3.5 1,03 1,00 0.91 0.93 0,91 110 1.1
- =0,03 . =(0,01 =0,01 0.00
=hg Te7 1.27 124 1.13 115 1ol 163k 1437
6% 1.01 0,96 1.10
«Gé Oo e 1622 1e 1k 1.08 117 1616
-mé 1.0 1.66 1.45 1.10 1.60 1-6Ll- 1.62
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TABLE 44

Wing F, M = 12— 1-3, Axis at Apex (g = 0)

Experimental

Theoretical M = 1.28

Baines Orlik-Riickemamn Harris . oe
& Rockliff & Laberge Haﬁl_& 1 Ozgorne Harris (Jones & Orl;;kiRg :iegam
M= 1,2 M= 1,22 = 1. Cohen) abers
v 0 0 0] 0.052 0,069 0,087 O | 0e1 0 0
82 «~0,03 001 0,02 0,00
ze =0, 8 0.97 0.941 0.87 0.92 0.93 [0.95] 0.95 0.96 0,96
= =0, 0l 0,03 0.00 0,00
“Og 0.2 1018 1610 1,03 1612 1,09 1e111 111 115 1.16
2 1,16 1613 1,01 0.95
@‘6 -0.2 1o)+7 1-73 1.65 '1.[‘-3 1071 1.67
e 1021 0075 1963 111
Z
"mé 1.1 2.03 158}4- 1033 2-41 2.34 2:30
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TABLE 45

Wing F, M = 1-56, Axis at Apex (g = 0).

Experimental Theoretical M = 1.56
Baines Orlik-Rickemann Harris . o
& Rockliff & Laberge Hailﬂ.l_& y O;’Zorne Harris (J ones & Orl;c.kLigzier;ann
M= 1.5 M = 1,56 - Cohen) &
v 0 0 0 0,040 | 0,053 0,066 0 ] 0.1 0 0
7 0.0k 0.07 0,05 0.00
66 ~0,6 0,76 0.84 | 0,89 0.93 0.88 0,911 0.9 0,91 0,91,
- 0.07 0,03 0.11 0,00
~Ig 0.2 0.96 1¢04 1 1413 105 11l 1.08 | 1,08 1.10 110
Le 0.88 0,89 0,91
Z
f’é 0,2 1622 1,20 1.19 Tel? 1etH
-mé 1-2 1.74 1.52 1.75 1.61 2.03 2.00
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TABLE 46

Wing F, M = 1-89 — 2:0, Axis at Apex (g = 0),

Experimental

Theoretical M = 1,89

Baines Orlik-Rlickemann Harris . e
& Rockliff & Laberge Hall\lz fc 10519381-115 Harris (Jones & Orl;c_klegglsezann
M = 2,0 M = 2,00 = e Cohen) g
v 0 0 0 0,035] 0,047 1 0,059 0 | 0.1 0 0
62 0,01 0,00 =0,02 0,00
66 =0,7 Q.77 Oo72 0,76 O.7h 0.72 0.86 | 0.86 0.85 0.85
-n ~0,02 | =0,03 | =011 0.00
=T 051 0095 Oe91 0389 0578 1.05 1503 1005 1.0l|_
8% 0.81 0.86 0,86
‘Eé Oe1 1013 1.07 1017 1925 1.24
-1, 0. 71 1,03
ﬂmé 1.0 1,58 111 1e73 172




TABLE 47

—mg, Wing A, v = 0, Axis at Apex (g = 0)

' Theoretical Experimental
A 1-M2
i . ¥ Wbodc?ck Hornsby Hall Orlik-Riickemann
AVM =1 Harris Orlik=-RUckemann | Osborne Laberge
Barnes
3.0 0 1403 154
2.0 O.745 1.82 1.82
1.8 0.8 1.65
1..31 0.9 1.85
1.25 0.9 2.10 2.10
0.75 0.97 2.18
10 “ 1.0 1.78
1.0 . 1.05 2.83 2.90
1357 1e1 2,05
1.5 1412 2,67 2,73
2 1.2 2-51 2055 2007
2,09 + 1.22 2,30
2.5 1.30 2.35 2.37
2.72 1435 _
3 1.4 2.18 2. 21
3419 1.46
3.460% | 4,53 1.98 2,06
3¢59 1.56 1465 177
4 1.67 1.79
L42 1.78
4,85 190 1.4
5.02 1,95 1.46
5420 2,0 1.29 1.56
6.87 2.5 1.00
6.97 2.53 1ok

*Leading edge sonic.

The horizontal lines in the theoretical columns of Tables 47 to 58 separate the results of different
methods of calculation. Orlik-Riickemann'” made calculations both by the method of Malvestuto33:36:37,
for the subsonic leading-edge case, and by the method of Martin3® and Cole??, for the supersonic leading-
edge case.
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TABLE 48

—my, Wing A,v = 0, Axis at Apex (g = 0)

A 1-u® Theoretical Experimental
Jﬁ;__ i Wgzggzgk OrliEOEESby Hall Orlik=Rickemann
AN E =1 Barnes s -Ruckemann | Osborne Laberge

360 0 5610 3612

2.0 O 745 3464 306k

1.8 0.8 2,92

1. 31 0.9 2093

1.25 0,91 Lo13 bol

0.75 0,97 4,96

0 1,0 1033

1.0 1.05 0.79 0,50

1637 101 191

145 1012 1.53 1056

2 102 1.97 193 140

2,09 1622 1673
2.5 1.30 2,04 2,01

2,72 135

3 1ol 1o 9l 1.97

3619 1046

3olbh* 11,53 179 1.88

3059 1.56 1,87 1,68

L 1.67 1.83

Loli2 1.78

4o 85 1690 1.67

5.02 1,95 1,65

5,20 2.0 1.58 1.78
6.87 2,5 1048

6.97 2653 1038

*Leading edge sonic.
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TABLE 49

—my, Wing B,v = 0, Axis at Apex (g="0)

& ‘/1—:1—/1.2‘ Theoretical Experimental
Pl T vl O - oy
AV -1 Barnes i &8¢
2.0 0 1421 1,22
0.49
0.62
0.71
1.25 0.78 1.39 1640
1.2 0.8 ' 1.37
0,83
0.89
0.87 0.9 142
0.75 0,93 1.5k
0.95
0,96
0.99
0 1.0 0,98
0492 141 171
1.0 1412 1.89 149k
1.33 142 1.27
1ok 1.22 1454
1¢5 1.25 1.78 1.82
2.0 1ol 1.67 1,70
2.4 1.56 1.40 1.20
2.5 1.6 1.56 1.58
3.0 1.8 1446 1,47
3.23 1.9 1.17
3.464*% | 2,0 1,28 1.38 1,05
L.5 2.46 1.12
Le58 2,5 0.92
5.0 | 2.69 0,90

*Leading edge sonic.
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TABLE 50

—my, Wing B,v = 0, Axis at Apex (g = 0)

qu:iE Theoretical Experimental
or M WOOdc?Ck Hornsby Hall Orlik=Rlckemann
2 Harris Orlik-RUckemann |Osborne Laberge
AVM -1 ~ Barnes
2,0 0 2,27 2,27
0.49
0,62
0. 71
1.25 0.78 5028 3e27
1.2 0.8 2,12
0.83
0,89
0.87 0.9 1697
0.75 0.93 3672
0,95
0,96
0.99
0 1.0 1.50
0,92 1.1 1.80
1.0 1012 2,84 2,70
1633 102 177
Tkt 122 2652
1.5 1.25 2.67 2.58
2,0 1o41 2,38 2.33
2.4 1656 1.83 1481
2.5 1.6 2,10 2,08
3.0 108 108k 1084
3.23 1.9 1.63
3.h64* | 2,0 1456 1,65 1052
k.5 2,46 To42
4,58 2,5 1. 70
5.0 2.69 121

*Leading edge sonic.
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TABLE 51

— g Wing C,v = 0, Axis at Apex (g = 0)

AJ::&E Theoretical Experimental
02 M Woodcock Hornsby Hall OrlikeRickemann
AVM -1 Harris Orlik-Rickemann |Osborne Laberge
1e25 20 0.87 0,88
0.75 0.8 0.96 0. 9%
0.55 - 0.9 0.93
0.5 0.92 1.02
10.25 0,98 1,06
0 1.0 1.07
-0.57 161 1.17
0.83 1e2 1,47
0.87 1422 1¢31
1.0 1.28 1.18 1.21
1.5 1,56 1.11 1.1k 1004 1,05
2.0 1,89 1.04 1.06
2,02 1.9 0.88
2,17 2,0 0s 91
2.5 . 2424 0.99
2.86 245 0,84
3.0 2.6 0,92
3.464% | 2,95 0.86 |

*Leading edge sonic.
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TABLE 52

—my, Wing C,v = 0, Axis at Apex (g = 0).

AJQ:&E _ Theoretical Experimental
og i Woodcock Hornsby Hall Orlik-Rickemann

AVM -1 Harris Orlik-Rlickemann |Osborne Laberge

1625 0 2,20 2,20

0.75 0.8 2655 152

0.55 0.9 1651

0.5 0692 2072

0.25 0,98 2.98

0 1.0 143

0.57 1e1 2,07

0.83 12 242h

0.87 1022 2,18

1.0 1028 2,47 2,41

1.5 1456 2,12 2,08 1.92 1o 7k

2.0 1.89 1.80 1.78

2,02 1.9 1ol

2,17 2.0 1.56

2.5 2.2 1.52

2.86 2.5 1.04

3.0 2,6 1431

3.464% | 2,95 1,16

*Leading edge sonic.
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TABLE 53

—mg, Wing D, v = 0, Axis at Apex (g = 0)

AJG:&E Theoretical Experimental
o i Wﬁ:i;zzk Hornsby Hall Orlik-Riickemann

v - Barnes Orlik-Riickemann | Osborne Laberge

360 0 1453 153

2.0 Os 745 1.79 1.79

1.8 0.8 1,67

1¢31 0.9 1.81

1.25 0.91 2,03 2.0k

0.75 0.97 2.15

0 1.0 1.87

1.0 1.05 2.67 2. 77

1.37 1e1 2.12

15 1012 2.58 2.6k

2.0 1.2 2,47 2.49 2.13

2.09 1.22 2.23

2.5 1.30 2.32 2.33

3.0 1.4 2,18 2.18

3o L6l* 1.53 2.05 2.05

3.59 1.56 1,63 1.68

4.0 1.67 1.82

4.85 1.90 1447

5,02 1.95 1.50

5.20 2.0 1.43 1.52

6.87 2.5 1.05

6.97 2.53 1.07

*Leading edgé sonic.
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TABLE 54

—my, Wing D, v = 0, Axis at Apex (g = 0)

Afg:;? Theoretical Experimental
o i Wﬁ:i;z:k Hornsby Hall Oflik-Rﬁckemann

A M2—1 Rarnes Orlik-Riickemann | Osborne Laberge

3.0 0 2,93 2,94

2.0 0.745 3637 3435

18 0.8 2,85

1e31 Q.9 2,96

1.25 0097 3¢ 17 367

0.75 0.97 be7

0 1.0 2421

1.0 1.05 1.02 0a55

1.37 1o 2,38

1¢D 112 1.48 15k

2.0 102 1.85 1.89 2.69

2.09 1,22 146

2.5 1630 1,96 1.97

3.0 1ol 1.90 192

S 4blh*  [1,53 1.8k 1,83

3459 1.56 1.65 141

4,0 1.67 1.70

ke85 1.90 130

5.02 1.95 151

5.20 2.0 1.54 TeU45

6.87 2.5 0.75

6.97 2.53 1632

*Leading edge sonic.
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TABLE 55

— g, Wing E, v = 0, Axis at Apex (g = 0)

A 1—M2 Theoretical Experimental
25__ M W;Zi;ggk 'HorEsby Hall Orlik«Rlickemann
A /MZ_ " Barnes Orlik-~RuUckemann | Osborne Laberge
2,0 0 119 1.20
0.49
062
0.71
1425 0.78 1.35 1.36
1.2 0.8 1.30
0.82
0.83
0.89
0.87 0.9 139
0.75 0.93 1el7
0.95
0.96
0.99
6] 1.0 1653
1.04
1,07
0.92 11 1.59
1.0 112 1.78 1.85
1.33 1.2 1.36
ok 1,22 1,60
1.5 1.25 1672 1,76
2,0 1ol 1465 1.66
2.k 1456 1.42 1e 37
2.5 1.6 145k 1455
3.0 1.8 1e45 145
3623 1.9 1.2k
3.464* | 2,0 13k 1.37 1.27
4,50 2.46 1.00
4,58 2.5 0.97
5.0 2.69 0.93

*Leading edge sonic.
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TABLE 356

—mg, Wing E, v = 0, Axis at Apex (g = 0)

2 Theoretical Experimental
AV1-M
or u Wbodc?ck Hornsby Hall Orlik~Rickemann

AU g:iiz: Orlik-Riickemann | Osborne Laberge
2,0 0 2,59 2,58

Oe49

0,62

071
1.25 0.78 2,99 2.96
1.2 0.8 2,32

0,82

0.83

0.89
0.87 0.9 2.17
0.75 0,93 3.29

0,95

096

0.99
0 1.0 2,25

1,04

1.07
0,92 1e1 2,23
1.0 112 2,753 2.59
1633 1.2 2033
1.4 1022 24 2
1.5 1.25 2,55 2449
2,0 1o41 2,28 2,26
2.4 1,56 1,86 1.78
2,5 1,6 2,04 2,02
360 1.8 1,80 1.80
3.23 109 ' 1.38
Jolbl* 12,0 1464 1,62 1,66
4,50 2,46 125
4,58 2.5 1.12
5.0 2,69 1.19

*Leading edge sonic.
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TABLE 57

—mg, Wing F,v = 0, Axis at Apex (g = 0)

AJq:iE Theoretical Experimental
or % | woodcock Hornsby Hell | Orlik-Riickemann
A M2~1 Harris Orlik-~Rlickemann | Osborne Laberge
1.25 0 0. 84 085
1.0 0.6 0.90
0.75 0.8 0.92 00 94
0.55 0.9 0.95
0.5 0.92 0.96 '
0.375 0.95 0.98
0.25 0.98 0.99
0.175 0.99 1007
0 1.0 1.05
0.57 Te1 113
0.83 1.2 110
0.87 1422 1.18
1.0 1.28 1.11 1,16
1.5 1.56 1.08 1.10 140k 0.96
2,0 1.89 1.03 1.04
2.02 1.9 0.86
2.17 2.0 0,95
2.5 2,20 0.97
2.86 2.5 0.83
| 3.0 2.6 0.91
| 3.h64% | 2,95 0.85

*Leading edge sonic.
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TABLE 58

—my, Wing F,v = 0, Axis at Apex (g = 0),

AJ::&E Theoretical Experimental
or M Woodcock Hornsby Hall | OrlikeRtickemann

AN&Ez; Harris Orlik-Rlckemann | Osborne Laberge

1,25 |0 2,02 2,01

1.0 0.6 2,14

0.75 0.8 2.27 1,82

0,55 0.9 1,86

0.5 0,92 239

0.375 0.95 2.45

0.25 0.98 2,50

0,175 0.99 2,49

0 1.0 1.95

0. 57 161 1.85

0.83 162 1,86

0. 87 1.22 2,03

1.0 1.28 263k 2,30

165 1,56 2,03 2,00 1,63 1.74

2.0 1.89 1673 1.72

2,02 1.9 111

2.17 2.0 1.58

2.5 202k 1e48

2,86 2.5 1,36

3.0 2.6 1.28

3.464% | 2,95 1.13

*Leading edge sonic.
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TABLE 59

Wing A,v = 0 01*, Axis at Apex (g = 0) Hall and Osborne’s'> Experimental Results

M 0.8 0.5 1.0 161 1.2 1.56 1.90 2.5

2 0.02 =0,06 -0,02 =0,06 =001 =~0.01 =0,07 0,00
&e 1¢59 1.72 1.65 1,76 1.75 1.51 1.16 0.82
-, -0, 0l -0,10 ~0e01 =0,05 -0,02 0.00 =0,10 0.00 |
-me 1.65 1085 1‘78 2005 2.07 1.65 1-)4-1 1.00
Lo 1456 1451 1ol 1.87 1.80 1.63 1.28 | 0.95

Z
~mg 2.92 2.93 1433 1491 1440 1.87 1,67 1048

*The values tabulated in Tables 59 to 65 are either values for v = 0 (where measured) or else the mean
of up to three measured values for different v between 0 and 0-1.
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TABLE 60

Wing B,v = 0—0-1, Axis at Apex (g = 0) Hall and Osborne’s'® Experimental Results

M 0.8 0.9 1.0 1e1 1.2 1.56 1.90 2.5

, 0,03 0,01 «0,03 ~0,08 =(0,05 «(, 0 «(,02 w(),03%
g 1.27 1,31 1,18 1okd 1.33 1.4 0,97 0.77
~m_ 0,02 «0,03 =~0,10 -0.16 =0, 11 =0,07 ~0,0 =0, 0L
=g 1.37 1okt2 0.98 1ed] 1627 1.40 1.17 0.92
Eﬁ 1002 0.99 1,06 1038 1639 1616 1,08 0. 81
65 2,00 1.83 1.49 1087 1.68 1634 102k 1,06
—m.,Z 0.83 0080 0093 1.56 1054 1.61 1‘34 1.121-
-mé 2.12 1.97 1@50 1.80 1-77 1.83 1063 1070

TABLE 61
Wing C,v = 001, Axis at Apex (g = 0) Hall and Osborne’s'® Experimental Results

M 0.8 0.9 1.0 101 162 1056 1.90 2.5

2 0,00 «0,02 =0,03 =(0,02 ~0,04 «0,05 0,00 =0,03
66 0.86 0.85 0691 0. 94 0,97 0.83 0.753 0.61
= =0,01 =0, 0l =0,03 =0,02 «0,06 0.01 «0,03 =0,05
"’me 059)4- 0093 1007 1.17 1017 1.0)4- 0-88 00811-
62 0.90 0.8l 0,94 133 1637 0.84 0,83 0.63
6é 106k 1.67 1,63 2,0k 2,05 1e711 1o14 0.76
-m2 0.59 0.55 0,64 1.38 1061 1620 0,93 0.86
-mé 1.52 1.51 1045 2.07 202)+ 1.92 1.L|-zi- 1004
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TABLE 62

Wing D,v = 0— 01, Axis at Apex (g = 0) Hall and Osborne’s*®> Experimental Results

M 008 0-9 1.0 101 1.2 1.56 1.90 2-5
. -0,09 -0.06 ~-0,05 =0,06 -0,04 -0,04 ~0,01 0.00
&e 1.57 1.68 1.69 1.79 1.75 1436 1415 0.86
-n, -0.07 ~0,03 -0.01 0,03 0.01 0.00 0.0k 0.07
—Hle 1.67 1.81 i 1087 2.12 2.13 1-63 1.)4-1 1-05
&2 1.67 1.72 1.78 1.95 2.29 1,67 1014 0.86
zé 2.37 2.26 17k 1481 1481 1436 1,07 0.82
~m, 1.68 149k 2.02 2.28 3,10 1.86 1.29 0.90
-mg 2.85 2,96 2.21 2.38 2.69 1.65 1.30 0.75
TABLE 63
Wing E,v = 0—0-1, Axis at Apex (g = 0) Hall and Osborne’s'® Experimental Results

M 0.8 0.9 1.0 167 142 1.56 1.90 2.5

; ~0,01 =0,03 0.01 =0,01 ~0,02 0.02 «0,03 =0,02
Ly 1420 1427 143k 1435 1o 3k (P 1,00 0.78
-n, 0,02 «0.12 0.00 0.0 ~0,01 0.0 -0,02 ~0,01
_m6 1:30 1.39 1.53 1.59 1.36 ‘1-14-2 1.2LI— 0.97
2, 1.02 1415 1.33 140 1459 1.32 0.99 0.91
25 1.83 1.88 1473 1ol 1.78 i 1e11 0.93
-m, 1.09 1.08 1.58 1.69 1.97 1.50 1.07 1.20
~mg 2.32 2.17 2.25 2,23 2.33 1.86 1.38 1.10

85




Wing F,v = 001, Axis at Apex (g = 0) Hall and Osborne’s'® Experimental Results

TABLE 64

0.8 0.9 1,0 1e1 142 1,56 1,90 2,50
0,02 0,01 0,04 0,00 0,00 0,05 0,00 =0, 03
0. 86 0,85 0.90 0,98 0,94 0. 84 0. 74 0.62
0,02 0,05 0,07 0,01 0,00 0,07 =0,05 «0,05
6 0,94 0,95 1,05 1013 1010 104 0.86 0.83
0.88 0.95 1,06 1.18 1210 0.88 0.83 0.74
1,60 1464 1,67 1675 1,60 1,20 1012 0,95
—mé 0.85 0.97 119 1.16 1020 1,03 0. 74 1.26
-mé 1.82 1.86 1.95 1.85 1.86 1.63 1+11 1.36
TABLE 65
Wing G, (A = 3 Version), v = 0— 01, Axis at Apex (g = 0) Hall and Osborne’s'® Experimental
Results
0.8 0.9 1,0 107 102 1,56 1.90 2.50
0,03 ~0,03 -0,07 =04 OL 0,18 ~0,10 -0,04 0.00
1,65 1¢78 187 2,09 2,20 1253 117 0.77
0,03 =0,02 «0,02 ~0,05 0.07 «0,07 =(0,02 0,00
6 0,57 0,61 0.76 1.05 1419 0, 9 0.72 Oolih
1095 2,06 1.87 2691 1084 2,04 1.58 0.74
192 2,03 0.16 0.90 1o 77 0.51 0,63 0. 31
—m% O. 83 0087 Oo 81 1.614- 1.25 1934 Oo 96 0008
-mg 1o 5l 1ed2 1632 1,08 0.89 043 0. 37 0. 11
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TABLE 66

Slotted Wall Interference, Corrected Vales for the H.S.D. 20 in. x 22 in. Tunnel, Axis at Apex (g = 0).

L3

Wing M &e ~ng 6é -mg
Corrected Gorrected Corrected Corrected Corrected Corrected Corrected Corrected
Experimental* Tunnel open closed Tunnel open closed Tunnel open elosed Tunnel open closed
slots slots slots slots slots slots slots slots
N 0.8 1.59 1.78 1,50 1.65 1.85 1456 | 2.46 2,78 2,33 2.92 3,30 2.76
0.9 1.72 1,94 1.62 1,85 2,09 1.7% 2,14 2,49 2,02 2.93 3.39 2.76
B 0.8 1.27 1435 1.23 T 1437 1.45 1433 2.00 2.13 1.9% 2,12 2.26 2,06 .
0.9 131 1.39 1.27 1ali2 151 1.38 1.83 1496 177 1.97 2.11 1.91
¢ 0,8 0.86 0.88 0.85 0.9% 0,96 0.93 1464 1468 1.62 1.52 1456 1.50
0.9 0.85 0.87 0.8k 0.93 0,95 0.92 1.61 1465 1.59 1.51 1.55 1.49
D 0.8 1.57 1.83 1,46 1.67 1494 1.55 2.37 2.77 2,20 2,85 3.33 2,65
0,9 1,68 1,98 1.55 1.81 2,13 1.67 2,26 2,69 2,09 2.96 3.51 2.7k
E 0.8 1620 1429 1,16 1.30 1440 1425 1483 1497 1.76 2.32 2,50 2,23
0.9 127 1037 1.22 1.39 1.50 1.34 1.88 2,04 1e81 2,47 2.35 2.09
P ‘0.8 0,86 0,89 0.85 0,94 0,97 0,92 1.60 1465 1457 1.82 1.88 1.79
0.9 0,85 0.88 0.84 0.95 0,97 0.92 1.6k 1469 1461 1.86 1492 183
G 0.8 1465 1499 1451 0.57 0.69 0.52 1492 2.32 1.76 134 1.62 1.23
3 version) 0.9 1.78 2,18 1,62 0.61 0.75 0.55 2,03 2,51 1.85 1.72 2,12 1.56
Tunnel Tunnel Tunnel Tunnel Tunnel Tunnel Tunnel Tunnel
Theoretical** closed opsn _Eze closed open Eree closed open i‘ree closed open z:::m
slots slots e ‘ e slots slots stream slots slots streanm slots slots 8
[+ 0.8 Qe 0,86 0.89 1.03 0.96 1.00 2,05 2,03 2,02 2.67 2.63 2,63
D 0,8 2,01 1eh2 1.7h 2.21 1.50 1.88 2,80 2,95 2,69 3,68 3,71 3.50

*The experimer{tal values are from Ref. 15. The corrected values have been obtained from Garner’s
approximate formula (eqn. (70) Ref. 46) assuming closed sides and either open roof and floor (‘corrected
open slots’) or closed roof and floor (‘corrected closed slots’). The values of the interference parameters

were
(60, 05) = —0-2379,0-1446
and .
= 0-1285, —0-0061 respectively.

**The theoretical frec-stream values were obtained by the method of Ref. 21. The tunnel corrections were
obtained by the full theory of Ref. 46 using the following values of the interference parameters.

(80, 61, 0) = —0-2380, —0:3477, 0-1447 (open)

0-1285, 0-2706, —0-0061 (closed).
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FiG. 54. Variation of I; with M. Wing G (4 = 3 version), axis at apex (g = 0).
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