
R. & M, No. 3599 

MINISTRY OF TECHNOLOGY 

d' 3' 

i . '  

AERONAUTICAL RESEARCH COUNCIL 

REPORTS AND MEMORANDA 

7"he Effects of Curvature on the Turbulent Boundary 
Layer 

By V. C. PATEL 

Cambridge University Engineering Department 

LONDON: HER MAJESTY'S STATIONER~( OFFICE 

1969 

PRICE 17S. 6d. NET 



The Effects of Curvature on the Turbulent Boundary 
Layer 

By V. C. PATEL 

Cambridge University Engineering Department 

Reports and Memoranda No. 3599* 
August, 1968 

Summary. 

Preliminary measurements in the turbulent boundary layers on a circular cylinder and the convex wall 
of a 90 degree curved duct are described. The results indicate quite significant effects of longitudinal 
surface curvature on the development of the boundary layer. In particular it is shown that (a) curvature 
has a marked influence on the velocity profiles, (b) the usual momentum integral equation for fiat surface 
flow breaks down in the presence of large static-pressure variations across the boundary layer, and (c) 
none of the existing boundary-layer calculation methods adequately predicts the development of the 
shape factor. A more general momentum integral equation has been derived from first principles. This 
gives reasonable agreement with the experimental development of the momentum thickness. 
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1. Introduction. 

In the development of two- and three-dimensional boundary-layer calculation methods, whether 
based on integral or differential equations, it has been customary in the past to assume that the curvature 
of the streamlines in planes normal to the surface, and the associated variation of the static pressure 
through the boundary layer, do not influence the flow significantly. The results of such calculation 
methods, however, have often been compared with experimental measurements in which such an assump- 
tion does not strictly remain valid. Large variations in static pressure through the boundary layer can 
arise due to the curvature of the streamlines not only in a boundary layer growing on a curved surface 
but also in the neighbourhood of separation on flat surfaces. In fact, in experiments such as those of 
Schmidbauer 22, Schubauer and Klebanoff 23, and others, which are still being used to guide the construct- 
tion of present-day boundary-layer calculation methods, it is found that the curvature of the streamlines 
is not small enough to be ignored. 

If the usual two-dimensional curvilinear co-ordinate system formed by the distances along and normal 
to a curved surface is used, and first-order curvature terms are retained, it is found that the Navier-Stokes 
equations and the simplified boundary-layer equations contain terms involving the curvature of the 
surface (see, for example, GoldsteinT). These equations therefore suggest the use of a characteristic 
surface-curvature parameter such as 6/R, where 6 is the boundary-layer thickness and R the radius of 
curvature of the surface, to correlate curved and flat surface boundary layers. For laminar flow several 
analyses have in fact been carried out in the past using ~/R as an additional parameter. It is, however, 
worth pointing out that, while this ratio gives some indication of the effects of curvature, it is unlikely, 
especially for turbulent flows, to correlate all the influences of curvature since, in general, the curvature of 
the streamlines within the boundary layer is not simply related to and uniquely fixed by the curvature 
of the surface and since it is the curvature of the streamlines which primarily influences the detail flow 
mechanisms within the layer. This distinction between streamline curvature and surface curvature is 



essential for proper assessment of curvature effects, since in many flow situations of practical importance 
substantial curvature of the streamlines can arise not as a result of surface curvature but due to other 
influences such as a rapid growth in boundary-layer thickness due to, say, an adverse pressure gradient 
or fluid injection from the surface. 

The work to be described in this Report was carried out some three years ago and at the time the 
results were not thought to be conclusive enough to merit a publication. In recent years, however, there 
has been a resurgence of interest in the effects of curvature on turbulent boundary layers and since the 
early results have not been superseded in any way it has been thought proper to make them more widely 
available. 

When the present work was started the various methods of calculating the development of the turbulent 
boundary layer were based on integral equations and from the more successful of these methods, namely 
those of Head 9 and Thompson 27, it appeared that surface curvature may have been one of the causes of 
disagreement between calculations and some of the many experimental results with which they were 
compared. In view of this, the experiments reported here were designed primarily to obtain some empirical 
information concerning the effects of curvature so that existing calculation methods could be improved 
to take account of these effects. 

Previous work on curved shear flows has been reviewed in the next Section in an effort to point out the 
need for further work in this field and to indicate the most profitable lines of attack. Two types of prelimin- 
ary experiment are then described. The first set of measurements were made in the turbulent boundary 
layer developing on a circular cylinder. This case is an ideal example of flows in which the curvature of the 
streamlines within the boundary layer is influenced both by the convex curvature of the surface and by 
the rather severe pressure gradients. The second set of measurements were made on the convex wall of a 
parallel curved duct of constant radius with a total turning angle of 90 degrees. In this case the curvature 
of the streamlines within the boundary layer could easily be related to the curvature of the surface. Quite 
substantial effects of curvature have been observed in both cases. The results showed that (a) curvature 
influences the mean velocity distribution in both the inner and the outer regions of the boundary layer, 
(b) the usual momentum integral equation for flat surface flows, namely 

~x 0 dU1 Cy 
+(H+2)  U1 dx - 2 ' 

breaks down in the presence of large static-pressure variations acro.ss, the boundary layer and (c) none 
of the existing boundary-layer calculation methods adequately p ~ . c t s  the development of the shape 
factor of the velocity profiles. A more general momentum integral equation derived from first principles 
including the first order curvature terms has been found to give reasonable agreement with the experi- 
mental development of the momentum-thickness Reynolds number. 

For reasons which will become apparent later, the restilts of the preliminary experiments referred to 
above were not considered conclusive enough and therefore a more elaborate set of experiments was 
undertaken in a parallel curved duct of constant radius with a total turning angle of 180 degrees. Although 
this investigation has not been completed, the results which have already been obtained are described 
in a separate paper 18. These results have some bearing on the measurements described here and also have 
several features of interest to workers contemplating further experiments in turbulent boundary layers 
on curved surfaces. 

2. Review of Previous Work. 
2.1. Fully Developed Flows. 

Fully developed turbulent flow in parallel channels of constant curvature has been investigated quite 
thoroughly by Wattendorf 28, Eskinazi 4, Eskinazi and Yeh 5 and Yeh, Rose and Lien a°. There are several 
features of this flow which may be expected to apply in turbulent boundary layers with curved stream- 
lines. Wattendorf made extensive measurements of mean velocity profiles and static-pressure variations 
across two curved channels, with half-width to mean radius of curvature ratios of 1/19 (Channel I) and 



1/9 (Channel II), and compared them with measurements in a straight channel. His results showed, 
amongst other things, that curvature has a marked influence on the mean velocity distribution and that 
the usual law of the wall obtained from straight channels does not apply. Wattendorf's inner-law results 
of Channel II are reproduced, along with similar measurements made later by Eskinazi, in Figure 1. 
Comparison of these results with the velocity distributions measured in severe adverse and favourable 
pressure gradient boundary layers by PateP 6 and Patel and Head ~8 suggests a startling resemblance 
between the effects of streamline curvature and those of pressure gradients : the inner-law velocity profiles 
on the inner convex surface appear to be similar to those measured in severe adverse pressure gradients 
while the profiles on the outer concave surface are similar to those obtaining in severe favourable pressure 
gradients. Notice that a small favourable pressure gradient exists on both surfaces of the curved duct and 
that this is very much smaller than the pressure gradients which were required to produce departures of 
similar magnitude from the usual, semi-logarithmic inner-law in the experiments of Patel, and Patel and 
Head. Since the observed departures from the usual inner-law are produced by two entirely different, and 
apparently unrelated, phenomena we cannot, in the absence of further evidence, draw any firm conclusions 
regarding the rather remarkable similarity between the effects of curvature and those of pressure gradients. 
Perhaps all that can be said at this stage is that under zero streamwise pressure gradient the boundary 
layer on a curved surface may still behave, in certain respects, as if it were developing on a flat surface 
under the influence of a streamwise pressure gradient. This is one point which needs to be examined by 
further experiments. 

Eskinazi, Yeh and co-workers have made very detailed measurements of mean velocity and turbulence 
in a parallel curved duct of half-width to mean-radius ratio of 1/19. Their mean-flow results are qualitative- 
ly similar to those of Wattendorf. It is, however, their turbulence measurements which are of considerable 
interest since a comparison with the straight-channel data shows that the production of turbulence and the 
turbulence intensities are larger near the outer concave wall and smaller near the inner convex wall than 
those occurring at corresponding points in a straight channel. This observation is in agreement with the 
stability criterion for curved flows proposed by Rayleigh~ 9. According to this criterion, which is explained 
in some detail by Wattendorf, the motion of a fluid with mean tangential velocity U at a distance r from 
the centre of curvature of the streamline, is stable if the radial gradient of the product (Ur) is positive and 
unstable if it is negative. Thus, in the case of the curved channel the flow in the neighbourhood of the 
concave surface is expected to be unstable and show amplification in the level of turbulence. Conversely, 
near the convex surface the flow is expected to be stable and turbulence will be damped. Further experi- 
ments are needed to confirm that these observations apply also to boundary layers developing on curved 
surfaces. 

2.2. Curved Jets and Entrainment. 

Turbulence measurements in curved mixing layers and jets blowing tangentially on curved surfaces 
have been made by Margolis 1°. His results are in agreement with the observations of Eskinazi and Yeh. 
He also found that the turbulence is amplified in regions where the gradient of (Ur) indicates instability 
and damped in regions where the gradient of(Ur) indicates stability. Perhaps the most important observ- 
ation which is of immediate interest in the study of curved turbulent boundary layers is that the investiga- 
tions in curved jets made by Newman 14, Fekete 6, Sawyer 21, Stratford, Jawor and Golesworthy 26, Mar- 
golis ~°, Guitton 8 and others, all suggest that a jet on a convex wall grows more rapidly (and that on a 
concave surface grows less rapidly) than a corresponding jet on a flat surface. This result was to be expected 
from the turbulence measurements of Margolis and also from Rayleigh's stability criterion. In the convex 
wall jet there is a large outer region which is unstable and therefore the turbulent movements are amplified, 
the entrainment is increased and the jet spreads more rapidly. The converse is true for a concave wall jet. 
If these ideas are extended to boundary-layer flow they lead us to expect instability and increased entrain- 
ment in a boundary layer with concave streamlines, and stability and reduction in entrainment in a 
boundary layer with convex streamlines. This observation also needs further examination in future 
experiments. 

The theoretical studies in wall jets are restricted only to the prediction of mean flow properties and 



again the simplifying assumption of negligible static-pressure variation across the jet is made. This, 
however, is one case of curve~t flow in which such an assumption may be justified since the centrifugal 
force on the fluid elements within the jet decreases due to the decrease in velocity with distance from the 
surface. 

So far we have considered only curved wall jets developing in the absence of an external stream. It will 
be clear that quite different considerations of stability and amplification of turbulence will apply when 
an external stream is present since markedly different distributions of (Ur) may occur depending on the 
magnitude of the stream velocity. 

2.3. Turbulent Boundary Layer on Curved Surfaces. 
The well known experiments of von Doenhoff and Tetervin 3, Schubauer and Klebanoff 23 and Strat- 

ford 25, which were primarily devised to investigate the effects of pressure gradient on the development of a 
turbulent boundary layer, employed curved surfaces to produce the desired pressure distributions. Prior 
to these experiments, Wilcken 29 and Schmidbauer 22 had made measurements specifically to study the 
effects of surface curvature. The ratio of boundary-layer thickness ~ (defined as the distance from the 
surface at which U/U1 = 0"995) to the radius of curvature of the surface R did not exceed 0"025 in any of 
these experiments. With the exception of Wilcken's measurements it is found that the effects of curvature 
in these measurements are overshadowed by the rather large pressure gradients Which were present. 
Wilcken, however, did find that the boundary layer on a convex surface grew at a slower rate, and that on 
a concave surface at a faster rate, than on a corresponding flat surface. This result is in accordance with 
the observations in curved channels and wall jets on curved surfaces noted previously. 

Thompson 27 was perhaps the first author to include the influence of surface curvature in a calculation 
method for turbulent boundary layers. From an examination of the various experimental investigations 
he concluded that even though the curvature in these experiments was not large enough to cause sub- 
stantial changes in the velocity profiles calculated by assuming negligible static-pressure variation (and 
hence in the evaluation of the usual integral parameters such as the displacement and momentum thick- 
nesses) the streamwise growth of the shape factor H and the momentum-thickness Reynolds number 
Ro did show a consistent and fairly marked dependence on surface curvature. Thompson attributed this 
dependence to the effects of streamline curvature on entrainment and proceeded to refine his entrainment 
equation by including an empirical factor which was assumed to be a simple function of the ratio 6/R. The 
inclusion of this curvature term improved the agreement between experiments and the predictions of his 
calculation method. While the actual procedure followed by Thompson was neither elegant nor wholly 
staisfactory, his results suggested the important conclusion that the primary influence of streamline 
curvature was not so much on the shape of the velocity profiles, skin-friction relation, the momentum 
integral equation and the usual assumption of negligible variation in static pressure across the boundary 
layer, as on the detailed turbulent motions and the entrainment of freestream fluid into the layer. It was 
for this reason that the preliminary experiments reported here were undertaken. The main aim of these 
experiments was to establish a suitable empirical correlation between the entrainment and a curvature 
parameter such as 6/R so that the then existing entrainment methods of Head 9 and Thompson 27 could be 
improved to take account of surface curvature. It will be seen later that this aim was not realised due 
partly to the fact that the effects of curvature were grossly underestimated and partly to the difficulty of 
satisfactorily isolating the influence of curvature from that of pressure gradients. 

In a recent paper Bradshaw 1 has drawn attention to the analogy between meteorological parameters, 
such as the Richardson number, and the parameters describing the effect of streamline curvature on 
turbulent flow. Using this analogy, in conjunction with existing meteorological data obtained from the 
earth's boundary layer, Bradshaw has shown that the effects of curvature on the turbulence, and in 
particular on the apparent mixing length, are appreciable if the boundary-layer thickness is greater than 
roughly 1/300 of the radius of curvature. This limit on the ratio 6/R suggests that we may expect quite 
substantial curvature effects in the experiments of the various authors mentioned above. Furthermore, it 
leads to the conclusion that the influence of curvature can be large even when the static-pressure variation 
across the boundary layer is negligibly small. Bradshaw has incorporated the modified distribution of 
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apparent mixing length, or more precisely, the modified distribution of his dissipation length parameter 
L~, in the Bradshaw, Ferris and Atwell 2 calculation method and recalculated the boundary-layer develop- 
ments measured by Schmidbauer and Schubauer and Klebanoff. The inclusion of the curvature 
modification leads to a much better agreement between the experimental developments of 6" and C~ and 
the calculations. The development of Ro remains more or less unaffected. Bradshaw's calculations have 
therefore shown quite conclusively that the influence of surface curvature can be quite significant even in 
experiments where curved surfaces are employed primarily to produce the desired pressure distributions 
and in cases where the static-pressure variation through the boundary layer can still be regarded as 
negligible. 

2.4. General Comments on the Review of Literature. 
From the survey of previous work outlined in the last three Sections it will be clear that prior to the 

work of Bradshaw, which was published after the present work had been concluded, the information 
available on the effects of curvature on turbulent boundary layers was very sketchy. In particular it was 
not known what constituted large curvature and how the static-pressure variation through the boundary 
layer affected the various integral and differential equations which are generally used to predict the 
streamwise development of the boundary layer. From the theoretical work of Murphy 11, Schultz-Grunow 
and Breuer 24, Narasimha and Ojha 12, and others on laminar boundary layers on curved surfaces it 
appeared that quite significant curvature effects can be expected when the ratio of boundary-layer thick- 
ness to radius of curvature takes values of the order of 0.05. The recent work of Bradshaw has, to some 
extent, narrowed the gap but according to him curvature effects become significant even when the ratio 
b/R is as small as 1/300 and the static-pressure variation is still negligible. This therefore leads to the 
conclusion that when 6/R is much larger than 1/300 we may expect quite severe and first order effects of 
curvature and that we may have to revise our equations to include the static-pressure variation across the 
boundary layer. In the experiments to be described 6/R takes values as high as 0.1 and it is demonstrated 
that for such severe curvatures, which are not all that uncommon in practical aerodynamic situations, we 
need to reconsider almost all the equations which are generally used in the analysis of two-dimensional 
turbulent boundary layers. 

3. Experiments on a Circular Cylinder. 

The first set of experiments was performed on the boundary layer developing on a 6 in. diameter 
circular cylinder. This set-up was chosen mainly for its simplicity. A 4 ft. long cylinder was mounted 
vertically in the 4 ft. x 5½ ft. working section of the Cambridge University Engineering Department's 
low-speed wind tunnel. The maximum tunnel speed was in the region of 180 ft./sec. The static pressure 
on the cylinder surface was measured by means of a row of static tappings spaced at 5 deg. intervals at mid- 
span. Transition of the boundary layer was fixed by means of two 0.040 in. diameter wires at ~b = + 45 ° 
from the forward stagnation line. A typical pressure distribution with the trip wires in position is shown 
in Figure 2. 

The top 1 foot length of the cylinder was sprayed with china-clay to investigate transition and separation 
positions. Transition was found to be complete immediately behind the trip wires and separation, as 
detected by the evaporation of paraffin uniformly spread on the china-clay, occurred at ~b = 110 °. The 
position of the separation point was constant along the 1 foot length except very close to the tunnel wall, 
and no noticeable change in this position occurred over the Reynolds-number range in which the 
boundary-layer developments reported below were measured. 

The traverse mechanism used to measure the total-pressure profiles consisted of a stem with a stream- 
lined leg spring-loaded on to the cylinder surface. Inside this stem was fitted a micrometer screw which 
carried a flattened pitot with a mouth 0.0076 in. deep. The stem was supported from a vertical streamlined 
strut spanning the tunnel approximately 15 in. away from the cylinder. The spring-loaded leg on the 
cylinder was kept 2 in. away from the circumferential line along which the development of the boundary 
layer was measured. Thus the interference from the strut and the stem was negligible. The micrometer 
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screw and the pitot were actuated in 0.001 in. steps from outside the tunnel by means of a flexible cable 
drive. 

3.1. Measurements. 

Total pressure traverses were made at six circumferential stations (q~ = 60 °, 70 °, 80 °, 90 °, 95 ° and 100 °) 
at mid-span for two cylinder Reynolds numbers (Re = Uo~ D/v = 3.53 x 105 and 5"01 x 10 s, where 
Uoo is the undisturbed free-stream velocity, D is the cylinder diameter and v the kinematic viscosity). 
Because of the rather small thickness encountered it was not possible to measure the static-pressure 
variation through the boundary layer directly. Therefore the velocity profiles and corresponding integral 
parameters 6* and 0 were all evaluated assuming that the static pressure remained constant through the 
boundary layer and equal to its value measured at the surface of the cylinder. The justifications for making 
this assumption are discussed later on. Velocity profiles at the higher Reynolds number are shown in 
Figure 3 and the corresponding H and R o developments and U1 (the velocity at the edge of the boundary 
layer) variation are shown in Figure 4. Figure 5 shows the H, R o and U1 values at the lower Reynolds 
number. 

3.2. Ro Development. 

Using the measured value of Ro at q~ = 60 °, the measured H distribution, Thompson's 2v skin-friction 
charts and the usual flat-surface momentum-integral equation, 

dRo b(H+l) R° dU1 _ U1 C I 
dx U1 d ~  v 2 ' (1) 

the subsequent development of R o has been predicted by quadrature for both Reynolds numbers. These 
predictions are compared with the experimental values in Figures 4 and 5. The agreement between the 
two can be considered satisfactory even though the predicted values tend to be slightly higher than the 
observed ones. This agreement can be interpreted in at least two ways: (a) if the flow is assumed to be 
two-dimensional then equation (1) can be considered satisfactory, and (b) if the validity of equation (1) is 
accepted then the flow can be considered two-dimensional. At this stage, therefore, the experimental 
evidence for or against the validity of the flat-surface momentum-integral equation cannot be considered 
conclusive. This is particularly so since we have taken no account of the static pressure variation through 
the boundary layer even though the surface curvature is quite large (0-030 < 6/R < 0.051) compared 
with the previous measurements of Schmidbauer and others. The procedure followed here does, however, 
illustrate what conclusions may be drawn from using the standard approach of neglecting curvature 
effects. The static-pressure variation has not been considered in this first experiment for several reasons: 

(1) Such variations could not be measured directly owing to the very thin boundary layer. 
(2) No reliable estimate for the curvature of the streamlines could be obtained. It will be clear that the 

curvature of the streamlines is not simply related to that of the surface owing to the rather severe pressure 
gradient effects. In fact, for ~b > 90 ° the rapid growth of the layer towards separation cancels, to some 
extent, the curvature imposed by the surface. This may indeed lead to negligible pressure variation across 
the boundary layer. 

(3) Thompson's reanalysis of Stratford's zs measurements had shown that the inclusion of pressure 
variation led to differences in the values of 6* and 0 only of the order of 3 per cent. Thus, it was thought 
that the direct effect on H and R o due to the evaluation of velocities using the wall static pressure will 
be negligible. 

3.3. H Development, Velocity Profiles and Entrainment Considerations. 

Head 9 suggested a simple method of calculating H development based on considerations of the entrain- 
ment of freestream fluid into the layer. IfQ is the quantity of fluid within a unit width of the layer, the rate 
of entrainment is 



- u dy = ( u ~ ( 6 - 6 . ) }  = v (H* Ro), (2) 
dx 'dx o 

where H* = (6 -6" ) /0 .  Head proposed that the rate of entrainment is a function of the local velocity 
profile shape, the external velocity U1 and some measure of the boundary-layer thickness. Assumption 
of a one-parameter family of profiles allowed the choice of either H* or H as the parameter specifying the 
profile shape, and the quantity (3-6")  was conveniently chosen as the measure of the boundary-layer 
thickness. Thus, 

d {U~ ( 6 - 6 " ) }  = f(H* or H, 6-6",  U~) 
dx 

1 d {UI (6-6*)}, = F(H*) 
"" U1 dx 

(3) 

and H* = G(H). (4) 

Functions F and G were obtained by Head from the experimental data of Newman 13 and Schubauer and 
Klebanoff 23. Thompson has applied Head's method as outlined here to boundary layer developments 
measured by several authors and found it to be generally satisfactory provided three-dimensionality and 
curvature effect are absent. He also put forward a more refined calculation method, also based on the 
entrainment process, and made empirical allowances for curvature and three-dimensionality. To obtain 
agreement between the measurements of Schubauer and Klebanoff, Schmidbauer and von Doenhoff and 
Tetervin and his new auxiliary equation he found the need to decrease the entrainment for convex surfaces 
and to increase it for concave surfaces. The ratio 6/R was used as the curvature parameter in these con- 
siderations. 

For the present experiments, the measured R o values and the value of H at ~ = 60 ° have been used in 
Head's method to predict the subsequent development of H on the cylinder. Comparison of these calcula- 
tions with the measured developments, as shown in Figures 4 and 5, indicates that the measured values 
are consistently higher than the predicted ones. From Head's curves of F and G, reproduced in Figure 6, 
it is seen that higher H values indicate a reduction in the rate of entrainment. Thus, the present results 
can be interpreted as confirmation of the trends observed by Thompson and also, indirectly, the expect- 
ations from the experiments on wall jets and fully-developed flows. As mentioned earlier, convex curvature 
is expected to suppress the turbulence and therefore reduce the amount of fluid entrained by the large 
eddies in the outer region of the boundary layer. 

The cylinder results are also in agreement with the conclusions of Bradshaw 1 who showed that his flat 
surface calculation method consistently underestimates the development of H in the convex surface 
measurements of Schmidbauer 22 and Schubauer and Klebanoff 23. 

The dependence of entrainment and the development of H on curvature had in fact been suspected at 
the start of the present series of experiments. Examination of Head's F versus H* relationship (Figure 6a) 
shows that the points corresponding to the convex surface in Schubauer and Klebanoff's measurements 
lie below the mean line drawn by Head, indicating a decrease in entrainment, while Newman's results 
lie above the mean line, indicating an increase in entrainment due to the concave curvature of the stream- 
lines associated with the rapid growth of the boundary layer towards separation on a flat surface. Initially, 
therefore, it was thought that Head's calculation method could be extended to take account of curvature 
effects if the dependence of the entrainment function F on a suitable curvature parameter could be 
established by experiment. The use of 6/R as this parameter cannot really be justified simply because the 
increase or decrease of entrainment (which results from an increase or decrease in mixing due to the 
centrifugal forces) depends on the curvature of the mean flow streamlines and not that of the surface. 
As was mentioned previously the assumption of nearly-constant streamline curvature through the 
boundary layer could lead to serious errors especially in regions where the rate of growth of the layer is 
large. 



In spite of these difficulties, it is interesting to compare the F and G functions given by Head with those 
required to give agreement with the present measurements. Figure 7 shows the experimental values of the 
quantity H*Ro (which is a measure of the total flux in the boundary layer, since 

f x  U1F H*Ro = __U1 (6-~*) = dx) 
V xo Y 

compared with those predicted by using measured R0 and ~ead's F(H*) relationship. The rather close 
agreement between the two indicates that the correctio~ 'required in the original F curve to account for 
curvature effects is small. Head's G curve is compared with the measurements of H* and H in Figure 6b. 
The large disagreement shows that the assumption of a single-parametric set of velocity profiles is not a 
very good one. Thompson has constructed a two-parameter family of profiles using the law of the wall 
and Sarnecki's 2° intermittency correlation, and found it to be in excellent agreement with the measure- 
ments of Newman, Schubauer and Klebanoff, and others. The function G deduced from this family is now 
dependent on H and Ro, and is also shown in Figure 6b. It is seen that Thompson's curves represent the 
data of Newman and Schubauer and Klebanoff better than Head's, especially at low H values. Present 
measurements are, however, in good agreement with Thompson only at low H values. Thus, there appears 
to be a dependence of H* versus H curves on both Ro and curvature. The Ro dependence is more marked 
and obscures the effects of curvature. 

The measured velocity profiles (at the higher cylinder Reynolds number) are compared with those 
obtained from Thompson's charts in Figure 3. It is seen that the measured profiles tend to be fuller and 
indicate a consistent departure from Thompson's in both the inner and outer regions. 

3.4. Conclusions from Cylinder Measurements. 
From the experiments on the circular cylinder the following general comments can be made. 
(a) The effect of curvature on the growth of Ro can only be established by direct measurements of 

static-pressure distribution through the boundary layer and comparing the rates of change of the pressure 
forces with the other terms in the momentum integral equation. Experiments should be devised such that 
the radius of curvature of the mean-flow streamlines within the boundary layer can be easily estimated. 

(b) The effect of curvature on entrainment has not clearly been verified. The fact that Head's F curve 
can be used to give agreement with measured H* without any major changes while the H* versus H 
relationship exhibits greater dependence on R o than on curvature, does not confirm the drop in entrain- 
ment for convex surfaces as was expected from previous work. 

(c) The measured velocity profiles indicate a systematic effect of curvature. Comparison with Thomp- 
son's profiles suggests that a curvature parameter is required to account for the differences. 

4. Experiments on the Convex Surface of a Curved Channel. 
4.1. Introductory. 

After the experiments on the circular cylinder it was felt desirable to make measurements in fairly thick 
boundary layers so that accurate static-pressure traverses could be made. This would enable a direct 
check to be made on the momentum integral equation. A constant-radius curved channel was available 
and was considered very suitable for the proposed experiments since the potential flow outside the 
boundary layer closely follows that of a free vortex, so that the static-pressure variation in the outer region 
could be predicted and compared with measurements. Secondly, the pressure gradient in the streamwise 
direction would be small and the streamlines in the boundary layer nearly parallel. The radius of curvature 
of the streamlines is then simply (R + y), R being the radius of curvature of the wall and y the normal 
distance from it. 

4.2. Description of the Apparatus. 
The general layout of the apparatus is shown in Figure 8. It consisted of a blower tunnel with a con- 

ventional 5:1 contraction and several screens. The tunnel working section was a straight duct 10 ft. long, 



1 ft. wide and 5 ft. high. A 90 degree curved duct of the same 5 ft. x 1 ft. cross-section and inner-wall 
radius of 2 ft. was fitted on the end of the straight duct. Care was taken to ensure that the join between the 
tunnel and the curved section was smooth and free from leaks. Satic-pressure tappings were provided 
along the mid-span of the convex surface and the straight wall of the tunnel continuous with it. The 
boundary-layer measurements described below were made on these surfaces. 

Transition was promoted at the end of the tunnel contraction by means of a 3 in. wide glass-paper strip 
and a ½ in. diameter trip wire (the latter being introduced primarily to thicken the boundary layer) on the 
test side and only the glass-paper strip on the opposite side. 

Both the static probe and the total-head tube were made of 0.040 in. diameter hypodermic tubing and 
were mounted on ½ in. diameter stems attached to the traverse gear situated outside the tunnel The mouth 
of the total-head tube was flattened to an overall height of 0"008 in. The traverse gear consisted of a dial- 
gauge capable of registering distances up to 2"2 in. within 0.001 in. One end of the gauge spindle carried 
the pitot (or static) stem and the other was moved by means of a screw-thread. 

4.3. Measurements. 

Total and static-pressure traverses were made on the test wall boundary layer at 16 stations situated 
on the tunnel centreline. The Reynolds number per foot at Station 1 (42 in. downstream of transition) was 
kept constant and equal to 2.42 x l0 s. The positions of the measuring stations and the static-pressure 
variation along the test wall are shown in Figure 8, and further details are given in Tables 1 and 2. The 
favourable pressure gradient at the join between the flat and convex surfaces is associated with the change 
in curvature of the streamlines and is therefore unavoidable. An adverse gradient of similar magnitude 
exists on the outer surface. Conversely, an adverse gradient on the convex wall and a favourable gradient 
on the concave wall exist at the exit from the curved channel. The magnitudes and the effects of these 
pressure gradients are discussed at a later stage. 

As a typical example of the measurements on the convex surface, Figure 9 shows the total and static- 
pressure variations through the boundary layer at Station 14 (where x - x o  = 92.25 in. and q5 = 44.3°), 
and the corresponding velocity profile is shown in Figure 10. 

4.4. Evaluation of b, 6" and O. 

From the typical velocity profile shown in Figure 10, it will be clear that the velocity in the potential 
flow outside the boundary layer is not constant with distance from the surface. For this reason we cannot 
obtain fi, ~* and 0 in the usual way. To calculate meaningful values of these quantities we need to consider 
the difference between the measured velocity distribution and the velocity distribution obtaining under 
identical conditions if the flow were potential. 

Using a curvilinear co-ordinate system formed by the distances along (x) and normal to (y) a wall of 
radius of curvature R (R being positive for convex curvature) it is easily shown that, for two-dimensional 
flow, the condition for zero vorticity in the potential flow for (y/R) 2 < < 1 can be written 

Uv 4 oUr R ~Vv 
R + y  Oy R + y  ~x - 0 "  (5) 

Suffix p denotes potential flow and U and V are the velocity components in the x and y directions 
respectively. By taking examples such as the flow past a circular cylinder it can be shown that the third 
term in this equation is small provided terms of the order (y/R) 2 can be neglected in comparison with 
unity. Thus, the potential-flow velocity field can be approximated by 

OUp Up - O, (6) 
Oy ~ R + y  

i.e. Uv(1 + y/R) = Uvw , (7) 
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where w denotes the value at the wall (i.e. at y = 0). The velocity distribution in a boundary layer on a 
curved surface must therefore approach Up at its outer edge in the manner shown in Figure 10. 

We now adopt the conventional definitions of 6, 6* and 0. The boundary-layer thickness 6 is defined 
as the value ofy at which U/Up = 0.995.6* and 0 represent the mass and momentum flux defects within 
the boundary layer, and are therefore defined by the relations. 

f 6* f ,J 
Updy = (Up- U)dy (8) 

0 0 

and f o U~dy f '~ = U(Up- U)dy. (9) 
0 0 

Substitution of Up from equation (7) then leads to 

f' (up-v) R In (1 + 6*/R) = dy (8.1) 
0 Upw 

0 f, and I+O/R- o-U--~w,, -O~p,~ dy. (9.1) 

So far in the analysis we have retained terms of the order 6/R. But since from flat surface boundary layers 
we expect 6*/6 and 0/6 to be of the order of 1/5 to 1/10, a*/R and O/R will be small in comparison with 
unity provided 6/R does not exceed 1/10. We can therefore approximate equations (8.1) and (9.1) by 

Ups, ) dy (8.2) 

and o = f '~ u@~ ( Up- U ) dy Up,,, (9.2) 

In the present experiments, the distribution of UJUpw was first found using equation (7) in conjunction 
with the observed velocity at some y greater than 6. The values of 6* and 0 were then computed from the 
measured profiles with the use of equations (8.2) and (9.2). For the measurements on the flat surface 
6" and 0 were obtained in the usual way by assuming Up = Upw = U1, the free-stream velocity. The 
entire development of momentum-thickness Reynolds number R o (defined as U~O/v) and the shape 
parameter H (= 6"/0) is shown in Figure 11. 

It will be recalled that the values of 6* and 0 quoted earlier for the circular cylinder measurements were 
not evaluated in the manner described above. To assess the effects of assuming constant static pressure 
through the boundary layer in those results, the measurements on the present convex surface have been 
reanalysed using only the wall static pressure and the total-pressure profiles. This procedure was found 
to give values of 6* and 0 which are approximately 10 per cent and 12 per cent, respectively, LOWER 
than the values computed using the correct definitions of equations (8.2) and (9.2). The corresponding 
values of Uo/v were about 4 per cent HIGHER than the correct ones and therefore the net result was an 
overestimation in Ro of about 8 per cent and an underestimation in H of about 3 per cent. 

These calculations suggest that the H development in the cylinder experiments would remain sub- 
stantially unaltered but the measurements of Ro, if corrected for static-pressure variation, would lie below 
the values shown in Figures 4 and 5. The correction will of course be smaller than the 8 per cent in the 
channel results due to the reduction in streamline curvature caused by the rather strong adverse pressure 
gradients on the rear of the cylinder. 
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4.5. Comparison of Measured R o and H with Flat-Surface Predictions. 

Following the procedure outlined in Sections 3.2 and 3.3 for the cylinder experiments, two calculations 
have been performed: (a) the flat-surface momentum-integral equation (1), the Ludwieg-Tillmann 
skit#friction formula and the measured H distribution have been used to predict the growth of Ro down- 
stream of the first measuring station, and (b) the measured Ro has been used along with Head's F and G 
curves to predict the development of H. The results of these calculations are compared with the measure- 
ments in Figure 11. It will be seen that the flat surface predictions are in good agreement with experiment 
only up to (x-x0) = 50 in., and that thereafter the momentum integral equation gives R o values which 
are too high while Head's method considerably underestimates H. We also notice that the favourable 
pressure gradient which, as seen from Figure 8, exists from (X-Xo) = 50 in. to 85 in. is not large enough 
to account for the sudden drop of R o in this region. 

Thompson 27 and others have suggested that any disagreement between R o predicted by using the flat 
surface momentum integral equation and the measured R o can be explained by the existence of three- 
dimensionality. Following Thompson, then, the rather low values of R o measured on the convex surface 
lead to the conclusion that the flow is divergent. This, however, is contrary to what will be expected from 
considerations of secondary flows within the curved duct. The radial centrifugal pressure gradient will 
give rise to inward (i.e. from the concave to the convex surface) cross-flows within the boundary layers 
on the roof and the floor of the channel and these in turn lead to cross-flows towards the outer corners 
on the concave surface and away from the inner corners on the convex surface. Thus, the flow on the 
centreline of the convex surface, if at all influenced by the inner corners, is expected to be convergent , 
leading to measured values of Ro higher than those predicted by the momentum integral equation. In the 
present experiments no check on the two-dimensionality of the flow has been made but later experiments 
with a 180 degree channel (of the same cross-section and mean radius) which are described in a separate 
paper by the author I v have substantiated the cross-flow picture just outlined and in particular shown 
that the flow in the region of the centreline of the convex wall is fairly two-dimensional for at least the 
first 80 degrees. The disagreement in R o development of the present experiments cannot therefore be 
attributed to three-dimensionality. 

The above considerations are of course based on the assumption that the usual momentum integral 
equation, equation (1), is valid for two-dimensional flow in the present situation. The rather gross dis- 
agreement in the Ro development therefore leads one to question the validity of this equation. Newman 13 
has in fact observed that the static-pressure variation through a rapidly growing boundary layer can 
make a significant contribution to the growth of R o. By integrating the equations of motion on a flat 
surface and assuming p = p(x,y) within the boundary layer, he has shown that the integrated momentum 
equation can be written 

dO 0 dU1 Zw 1 d (" ~ 
- - -  J (p~-p)  dy ,  (10) dx~' (H+Z) u a dx pU 2 pU~ dx o 

where po is the static pressure at y = 6. This equation is applicable only if the pressure remains constant 
with y outside the boundary layer. While this condition is not strictly satisfied in the present experiments 
on the convex surface, it is possible to estimate the influence of the additional pressure variation term for 
the flat surface boundary layer between (x-Xo) = 55 in. and 73.75 in. Since the radius of curvature of the 
streamlines (and hence the centrifugal pressure field) changes very abruptly in this region, the correction 
term, which is a rate of change of the integrated pressure force across the boundary layer, is large in 
comparison with both the pressure gradient and the skin-friction terms in the momentum integral 
equation. Figure 12 shows the measured static-pressure distributions at Stations 10 to 16 and Figure 13 
shows the variation of the integral in the last term of equation (10). This latter figure has been used to 
obtain plausible estimates of the last term in equation (10) and starting from Station 7 the subsequent 
development of R o has been calculated using the same procedure as before. The result of this calculation 
is shown in Figure 11. It will be clear that owing to the rather large streamwise distances between the 
measuring stations and graphical differentiation of the faired curve in Figure 12, the accuracy of such a 
calculation is very small. Nevertheless, the agreement between the calculated and measured development 
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of Ro in the region 55 in. < (X-Xo) < 73.75 in. is quite encouraging and leads unmistakably to the 
conclusion that the usual momentum integral equation, equation (1), cannot be used not only on flat 
surfaces where static pressure does not remain constant through the boundary layer but also on heavily 
curved surfaces. 

The development of the shape factor, H, measured on the flat and convex surface is compared in 
Figure 11 with that predicted by using Head's method. As in the cylinder experiments it is observed that 
the measured values are considerably higher than the predicted ones on the convex surface. The velocity 
profiles measured on the convex surface when compared with Thompson's two-parameter family also 
indicate the same trends as those observed for the cylinder (Figure 3). This suggests therefore that a 
curvature parameter is required, in addition to H and Ro, to describe these profiles completely. For 
reasons mentioned previously the fact that the measured H values are lower than those predicted by 
Head's method cannot be regarded as sufficient evidence for the expected reduction in entrainment. 

5. The Momentum Integral Equation for Boundary Layers on a Curved Surface. 
The experimental evidence of the last two sections shows quite conclusively that the usual momentum 

integral equation, 

d ~ + ( H + l )  0 dU1 zw 
u1 dx pu~ - O' (1) 

breaks down whenever there is a large variation of static pressure across the boundary layer. It has 
also been shown that Newman's modified relation, equation (10), can be used where static-pressure 
variation arises on flat surfaces due to streamline curvature caused by a rapid growth of the layer. There 
remains, however, a need to reconsider the boundary layer on a curved surface where substantial static- 
pressure variations can occur when the growth of the layer is negligibly small. 

Two separate attempts were made to obtain a momentum integral equation for curved-surface boundary 
layers. In the first attempt, boundary-layer equations in curvilinear co-ordinates (retaining first order 
curvature terms) were integrated. The result, however, was a rather elaborate integral equation in which 
the various correction terms could not be reduced to closed forms and had to be estimated by making 
arbitrary assumptions about the boundary-layer velocity profiles. The details of this equation have been 
described by Patel '5. In the second and more fruitful attempt boundary-layer equations in polar co- 
ordinates have been considered. The details of the derivation of the corresponding integral equation are 
set out in the Appendix. There it is shown that for a surface of CONSTANT radius of curvature, R, 
the momentum (or angular-momentum) integral equation can be written 

d19 l d ~  ~ R  2 1 d {1 ~2 r~ ffS r t dq~ ~-(A*+219) ddp p - ~ - - - p - ~  ~ 2P In-~+ prd , (11) 

where "~ ¢0 dr 
=Ulrl, o) = Ur, 19 = 1 -  - -  

A * =  1 -  - -  

R r 

and the suffix 1 refers to conditions on a line of CONSTANT radius r 1 immediately outside the boundary 
layer. In the outer irrotational flow f~ is constant with r and therefore the values of 19 and A* are inde- 
pendent of the outer limit of integration. 19 and A* are related to the usual defect thicknesses 0 and (5* 
of equations (9) and (8) by 

o - (] + ~/R) O/R 

and zX* = ,WR.  (12) 

13 



Using these relations it is easy to show that the left-hand side of equation (11), when put equal to zero, 
reduces identically to equation (1) for sufficiently small values of ~/R. The curvature correction term 
on the right-hand side of equation (11) is similar to the pressure term introduced by Newman in equation 
(10) and can readily be calculated either from the known static-pressure profiles or from the measured 
velocity profiles using the radial equilibrium equation, 

U z 1 ap 

r p dr '  (13) 

to relate the velocity and static-pressure fields. 

Profiles of 09/f2 measured at the six streamwise stations on the 90 degree convex wall are shown in 
Figure 14. These were integrated to obtain the experimental development of ® and A* shown in Figure 
15. To calculate the development of ® according to equation (11), use has been made of (a) r~ = 26 inches, 
(b) the measured distribution of fR~b), (c) the measured development of A*, (d) the measured static- 
pressure profiles shown in Figure 12, and (e) the Ludwieg-Tillmann skin-friction formula to relate Zw/~pl U2 
to H ( _= A*/®) and R o ( =- U 1 ® R/v). Equation (11) was integrated in the usual way by a step-by-step 
procedure starting with the experimental value of® at Station 11. The development of® predicted in this 
manner is compared with the experimental results in Figure 15. A similar calculation was performed 
using 

dO 1 dO % R  2 
d--~ + ( A * + 2 o ) f ~  dq~ p f ~  = 0 (14) 

in place of equation (11) to show clearly the effect of the last term in equation (11). The result of this 
calculation is also shown in Figure 15. Even though the graphical differentiation of experimental data 
somewhat reduces the accuracy of these calculations, it will be seen that equation (11) gives quite good 
agreement with the measured development of ® while equation (14) gives values of ® which are very 
much higher than the measured ones. The difference between the two calculated developments shows 
quite conclusively that the static-pressure variation through the boundary layer has a marked influence 
on the overall growth of the layer. For surfaces of large curvature it is therefore necessary to include the 
curvature (and static-pressure variation) terms in both the integral as well as the differential forms of the 
boundary-layer equations. 

6. Discussion and Conclusions. 

The preliminary experiments on the circular cylinder and the 90 degree convex wall reported here 
suggest that we may expect quite substantial effects of streamline curvature on the overall development 
of the boundary layer when the ratio of the boundary-layer thickness, 6, to the radius of curvature of the 
surface, R, is in the region of 1/30 to 1/10. The values of 6/R occurring in these experiments are somewhat 
higher than those encountered in previous measurements and very much higher than the 1/300 quoted by 
Bradshaw 1 as being the highest value below which curvature effects may be neglected. 

For sufficiently large curvature it becomes necessary to re-define the conventional integral parameters 
6* and 0 owing to the fact that the velocity in the irrotational flow immediately outside the boundary 
layer no longer remains constant with distance from the surface. In the present work logical definitions 
are suggested and these have been used wherever possible. 

It has been shown that the usual fiat-surface momentum integral equation breaks down in cases where 
the static pressure does not remain substantially constant across the boundary layer. Newman's modified 
relation has been shown to apply in boundary layers where large static-pressure variations occur as a 
result of streamline curvature on flat surfaces. A new integral equation has been obtained for the boundary 
layer on a surface of constant curvature. This equation gives good agreement with experiments. 

Values of the shape factor H measured on convex surfaces are found to be very much higher than those 
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predicted by the method of Head 9. Since this method has been shown to be fairly successful in predicting 
the development of H on flat surfaces, it is concluded that the observed differences between calculation 
and measurements are a direct result of curvature effects. Such differences have also been observed in the 
convex surface boundary-layer measurements of Schmidbauer 22 and Schubauer and Klebanoff 23 by 
Bradshaw. The observation that the values of H measured on convex surfaces are consistently higher than 
flat-surface predictions superficially suggests that convex curvature reduces the entrainment of free-stream 
fluid into the boundary layer. This result was to be expected from considerations of Rayleigh's stability 
criterion for curved flows and also from previous measurements in curved wall jets and in fully developed 
flow in curved channels, but it has not been possible to obtain any direct evidence of this here. 

The measured velocity profiles show a marked dependence on curvature in both the inner and the outer 
regions. In particular, it is found that they are not adequately described by the two-parameter family of 
profiles constructed for flat surface boundary layers by Thompson 27. The influence of curvature on the 
entire profile suggests that the detail turbulent motions within the boundary layer are affected by stream- 
line curvature. Some evidence in support of this observation has already been put forward by Bradshaw. 

While the present investigation has led to many important conclusions it will be obvious that much 
further work is required to clarify several points. The experiments reported here, being preliminary in 
nature, have suffered from several drawbacks: (a) We had grossly underestimated the influence of curvature 
and therefore employed rather large values of 6/R. In future experiments it will be more profitable to work 
with smaller curvature, say 1/50 > 6/R > 1/300. (b) It has not been possible to isolate satisfactorily the 
effects of streamwise pressure gradients from those of curvature. In the cylinder experiments the curvature 
of the streamlines could not be estimated accurately enough, while the pressure gradients associated with 
the abrupt changes in surface curvature in the duct experiments made the interpretation of curvature 
effects rather difficult. In future work, therefore, it is suggested that an attempt should be made to produce 
a predominantly zero streamwise pressure gradient boundary layer on a curved surface. Comparison of 
measurements in such a layer with the well-established results of flat plane boundary layers will shed 
much light on the influence of curvature. (c) To obtain the conditions just mentioned it is necessary to 
use curved ducts. Other experiments reported by the author 17 suggest that the absence of three- 
dimensionality must be rigorously checked and if necessary the end-wall boundary layers must be con- 
trolled. (d) Experiments have not so far been carried out to assess the influence of concave curvature. 
In future attempts to study boundary layers on concave surfaces the G6rtler-Taylor type instability 
vortices must be taken into account. A study of such vortices in turbulent boundary layers may in itself 
be profitable. (e) More refined and detailed measurements are obviously needed to check (i) the new 
momentum integral equation, (ii) the expected dependence of entrainment on streamline curvature, and 
(iii) the influence of curvature on the turbulence properties and mean velocity distributions in order to 
provide more direct evidence for Bradshaw's mixing-length modifications. 
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APPENDIX 

Momentum Integral Equation for a Boundary Layer on a Surface of Constant Curvature. 

Using the notation and the co-ordinate system shown in Figure 16, the two-dimensional boundary- 
layer equations can be written 

u OU + v OU.+ UV 1 Op f o2u l OU u ~ 
~o~ a~ - 7 -  = p r ~  ~ ~ ~ - J + 7  Or rTJ 

(A.1) 

U 2 1 Op 
and - (A.2) 

r ' p Or " 

The continuity equation is 

0U l~r ra~F~ (Vr)=O. (A.3) 

We now consider boundary-layer flow on a surface of constant radius of curvature, R, and assume that 
the boundary-layer thickness, 6, is small enough for terms of the order (6/R) 2 to be neglected in com- 
parison with unity. Then it is readily shown that in the irrotational flow outside the boundary layer the 
product Ur becomes independent of r, i.e. 

Ulr~= f~ (q~), (A.4) 

where the suffix 1 represents conditions outside the boundary layer. Notice that equation (A.4) is exact 
when the streamlines in the outer flow are circular. 

With the use of the substitution 

Ur = co, (A.5) 

the boundary conditions 

O U _  z,,,at r =__R 
U = ,0, Or /~ 

and U --~ U1, Ulr  I = ~~ (~) for r = r l ,  

and the equation of continuity, equation (A.1) can be integrated with respect to r from the wall (r 
to some r (r. = rl)  outside the boundary layer to obtain, 

c3q5 R -~--dr-f~ --°9dr " 
R r  ' P O ~  R 

(A.6) 

R) 

zwR 2 plrl dr1 
pr dr - - 2vf~-t . (A.7) 

p p d4, 

This equation can also be derived by considerations of the flux of angular momentum through a small 
control volume in the usual way. The third, viscous term on the right-hand side of this equation arises 
from the fact that the flow outside the boundary layer is not free from shear. This term can, however, be 
neglected since it is reciprocal of the Reynolds number based on the velocity and radius of curvature of 
the streamlines outside the boundary layer. 

If we now define two integral length scales by the relations 
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;(, ) f o( A * =  co d r a n d O  = g l_O~dr 
R 1 - ~  r R flJr' 

(A.8) 

equation (A.7) can be reduced to the form 

d® idf~  zwR2 1 d f ~ f ~  } 
dq~ ~-(A* + 20) de pf~ 2 pf~2 de ½pf~2 In + prd r 

R 

1 I 2 I dr1 
p~z (~P~ + Pl r2) r~ d--C" (A.9) 

This is the basic form of the new momentum integral equation. Some of the notable features of this 
equation are listed below. 

(1) The integral parameters A* and ® are based on the defects of Ur and are defined to ensure that 
their values are independent of the choice of r~. It is, however, easy to show that they are related to the 
usual mass and momentum-flux defect thicknesses (defined by equations (8) and (9) in the text, Section 
4.4) by the relations 

A* = 6*/R 

and ® (1 + ~5/R) O/R + terms of order ( ~ / R )  2 . 

(2) Since dx = Rd¢, 6" = RA*, 0 - (1 + 6/R)- 1 R @, f~ = Ulrx and (r 1 - R) is of the order of 6, it can 
readilly be shown that the left-hand side of equation (A.9) (when put equal to zero) reduces identically to 
the usual flat surface momentum integral equation, equation (1), for sufficiently small values of 6/R. 

(3) The first term on the right-hand side of equation (A:9) includes the static-pressure variation across 
the boundary layer and is in many ways similar to the pressure term occurring in the modified integral 
equation (10) suggested by Newman. The 90 ° convex wall boundary-layer measurements described in the 
text suggest that this term can be quite large in comparison with the other terms on the left-hand side. 
The magnitude of this term depends on rl. 

(4) The last term in equation (A.9) arises due to the fact that the choice of the outer limit of integration 
(r = rl) has been left arbitrary with the only restriction that (rl - R )  is of the order of the boundary-layer 
thickness. We can of course choose r 1 = 6, as is customary, but then this term cannot be evaluated with 
any great accuracy due to the uncertainty of defining 6. It is therefore better to choose r~ = constant 
with ¢ so as to make this term zero. Notice also that the quantity within the brackets in the laSt term is 
no more than 2 pours, Po~ being the total pressure at r = rl. 

(5) Equation (A.9) can be re-cast into several different forms. In particular, we may substitute the 
static-pressure variation given by the equation of radial equilibrium, equation (A.2), in the integral 
occurring in the second term on the right-hand side to obtain terms involving A*, O and other quantities. 
We have, however, choosen the above form since (a) it shows how the usual flat surface equation is re- 
produced for small 6/R, (b) a single 'curvature correction term' is obtained when r~ = constant, and (c) 
this correction term can easily be evaluated from the measurements which have been made. 

(6) Equation (A.9) with constant r~ has been used in the text to calculate the development of ® on the 
90 degree convex surface. 
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TABLE 1 

Details of Measuring Stations in 
the 90 de#ree Curved Duct 

Station 
number 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Distance 
from 

transition 
x inches 

42-0 
53.0 
62-0 
71.0 
77-0 
83"0 
~89.0 
95.5 

102.0 
108.0 
116.25 
122.25 
128.25 
134.25 
140.25 
146.25 

Distance 
from 

Station 1 
( x -  xo) inches 

0 
11-0 
20.0 
29"0 
35.0 
41.0 
47-0 
53-5 
60"0 
66"0 
74.25 
80"25 
86.25 
92.25 
98.25 

104.25 
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TABLE 2 

Static Pressure Distribution on the Test Wall 
of the 90 degree Duct 

x 

inches 

42 
45 
48 
51 
54 

P s t  - P r e f  

mm water 

3'37 
3.34 
3.33 
3"29 
3.28 

P s t -  P1 
Cp - T 2 7 7 ~  ~pU1 

0 
- "0033 
- .0045 
- .0089 
- .0100 

57 
60 
63 
66 
69 
72 
75 
78 
81 
84 
87 
90 
93 
96 
99 

102 
105 
108 
111 
117.75 
120"75 
123.75 
126.75 
129.75 
132.75 
135.75 
138.75 
141.75 
144.75 
147.75 
150.75 

3.27 
3.27 
3.23 
3.25 
3-27 
3-26 
3.21 
3.20 
3.26 
3.25 
3.21 
3.16 
3.07 
3.01 
2-93 
2.78 
2.60 
2.42 
2"09 
0 

-0 .84  
- 1.51 
- 1 " 9 3  

- 1 - 9 9  

- 1 . 8 9  

- 1 . 9 0  

- 2.04 
-2 .20  
-2 .24  
-2 .11 
-1 .51  

- .0106 
- .0106 
--0162 
- -0134 
- .0112 
- .0117 
- .0178 
- .0190 
- .0123 
- .0139 
- .0178 
- .0234  
- .0334  
--0401 
- .0490 
- .0652 
- ' 0859  
- .1060 
- .1428 
- .3760 
- .4700  
--5445 
- .5905 
- .5980 
- ' 5 8 6 0  
- .5875 
- .6040 
- .6210 
- .6260  
- .6110  
- .5445 

Suffix 1 refers to Station 1 

22 



l ' -O 

30 

25 

2O 

15 

I0 

m 

0 

I0 

I I I I I I ! I I J I I I I 1 I I 1 I I I I I I I I 

A A& 

A A ~  
-u A =u_y_Z. ,, Ao A 

/ ~ o 

~ ~ ~  I ~ ~ ~ u  A 0 = ESKINAZl (1954} 
u ~ 0 u WATTENDO~F (1935) _ 

u ~ OUTER CONCAVE WALL 
o e STRAIGHT CHANNEL 
A ,~ INNER CONVEX WALL 

I I ! 1 ! I I 1 1  I 1 I I I I w ~ I 1 

~o ~ ~o ~ 

FIG. 1. Law of  the wall  in curved channel  flows. 

I 

~__L 

t I J t I I  

~c~ 



P-R Cp= 

O 

-I 'O 

FIG. 2. 

i i I i I t 

u~ 

• 040 dia 
/ t r i p  wires " • / .  pitot traverse 

mechanism 

Cp: l -4  sin = 

,I ¢t =45 ° ~= 110 ° 

\ ~,\ !/ observed separat ion 
\ ~? six measuring I position 

- . - 0 -  - 0 . -  - 0 . , . - 0 -  - 

Re = 5-01 x IO s 

I I 
20 ° 4 0  ° 60  ° 8 0  ° 100 ° 120 ° 140 ° ~ 160 ° IBO ° 

Experimental arrangement of cylinder and a typical pressure distribution. 

~4 

12 

10 

8 

0 

¢* 

6O 

70 

8O 
90 
95 
I00 

I 
0"2 

0 0.2 0.6 O.B 1.0 
I I I I 

inches ) 
s ° e ~.~ ~ ¢ ~°°  ~ ° °  90  ° 9s ° ~d  

.0102.0073o91 o3o 
I 

'0101 "0071 '091 "030 
.0112 -0078 .C)97 -032 
~DI48 "(3100 "109 "036 
.0210 "0136 '130 "043 / 

'0369 "0191 "154 "051 ] 

o EXPERIMENT / 
° "  

~ t - - " -  ~-----! ~--I-- 

FIG. 3. 

0-4 

) I80o 
) 

' 0 
/ 

/ i ,  
%.-e 

0.4 o ~  O.B I'O I-O tO 

%, 
Velocity profiles in cylinder experiments, Re = 5"01 x 105. 

? 

/ 

1.0 I'O 

( 

( 

G 
Q 

I'0 

24 



bo 

2 0 0 0 -  

R 0 

I 000  

0 

ZgO-  

Z T O -  

250-  

U I 

11)~ 
",measured 

50 do "/o ~ ,;b ~6o 
degrees 

FIG. 4. Boundary- layer  development  on circular 
cylinder, Re = 5.01 x 105. 

-2.0 

-1"8 

H 

-1'6 

-I.4 

I 
I10 

,~o: 

Re 

1200- 

800- 

400- 

0 
50 

~.oo- 

Ul 

:80  - 

160-  

7 - - - - - - j  M~d~ II 
memod II 

" .,.,,.~meosured 

--o ~ 
Re 

I I I I I 

6 0  7 0  8 0  9 0  IOO 
¢ degrees 

FIG. 5. Boundary- layer  development  on circular 
cylinder, Re = 3.53 x 105. 

-2.C 

-I'8 

H 

-I,6 

-1.4 

| - 

I10 



F 

. 0 5 -  

, 0 4 -  

' 03  

. 0 2  ¸ 

' 0 1 -  

o 
0 

(a} 

0 

0 

o Newman (1951) 
x+ Schubaucr and 

Klebonoff (1951) 

G 

12- 

I0- 

B- 

6- 

4- 

2- 

o 

H * 

I I I ~ / o & : = O . 0 3  
• l ~¢;'~ 
II ~ ,  ~ • R¢:B'OtxlO 5 

.~L \ e a¢=3"53xlOS 

61R'=-0 ' 0 4  

>' 
• ~ \ \ % = 2 o o o  

',, ~ 7 ~ :  400 
+~N' \ ' x - - ~  / / - - - - -  : I0  "~ 

+ - o ~ . . - - ~ Z  ~ . . . .  

-g 

Heads mean 
curv~ 

"(~ 

,',4 ,~ ~.2 2;.s 
H 

3<) 

FIG. 6. Head's 19 F(H*) and G(H) functions. 

14 

1 2 -  

I 0 -  

8 - 

6 

FIG. 7. 

I I I I 

0 O 

: • I 0  ~' - 

• . ~ 1 0  s 

I I I I I 

6 O  7 O  8 0  9 0  ~ ) 0  
% d e g r e e s  

Comparison of measured mass flux with that predicted from Head's 
F vs. H* relation. Cylinder experiments. 

i 10  

26 



contraction__,. 
screens 

ctc ~ - - * -  X 

glass paper 
and t r ip  wire 

4 

3 

Ps" Pr¢ f 2 
rnH3 

water I 

0 

-I 

-2 

-~" -0.6~5 

O 

~ f  

O 

7-.I 
<]L ol 
_ ~ R  4 

--,~ 

- , 6  

- , 7  --3 I I I I ~' I I I ! I I I I I 

O 2 0  4 0  6 0  8 0  IOO 1120 140 I 160 
x Inches ~ CONVEX 

WALL 

FIG. 8. General  layout  of  90 degree curved duct  and wall static-pressure distribution. 

2"4 i t ~ I t I / 
2"0-  

3 
inche~. 2 _ 

(Pu~t°l- Pr¢f) 

O ~ -  
STATION 14 

0 .4-  

0 ~ " , ' , , ~ o i 
- 2  0 2 4 6 8 IO 12 

mill wa'~r 

FIG. 9. Typical measurements  of  total and static-pressure distributions. 

27 



2,0 

1.6 

inches 

1'2 

H =1'33 

potentiol 
flow v~1ocit 
distribution 

EQN. 7 

= 2980 

0.8 0 

5000-  

RO 
4000 -  

3000"  

2000- 

I000- 

0 

0-4 

0 l 
0 

FIO. 10. 

0 
0 0 

o 

o 

o 

o 
o 

o 

0 2  0 .4  0-6 0.8 1.0 

U/U ITIQX 

Typical velocity profile (derived from data of Figure 9). 

I I I I I t I I l I 

FLAT I~,~ -SURFACE. = CONVEX WALL 

13 14 15 -I,6 

-1"5 

o 

• - ~ . _ ~  

I 

o l~ 2b 30 1o so ~ 76 8b 9'0 J6o 
(X-Xo) inch~s 

FIG. 11. H and R o developments for 90 degree curved duct. 

-1"4 
H 

-13 

-I'2 

-I'I 

I'0 

28 



bO 

I 

0 . 1 ( ~  OOoo 
- -v,~l l  

static 

O ,, 

0.1 OOoo 

0 

0.1 

0 

0-1 

(p~- p) 

0'1 

0 

0"1 

0 

05  

0 
0 

I I I I . . . . .  I 

STATION 16 
O o  

O o  
O 

O 

15 
0000 

O 

14 O C ~  O O O O 

o 8 

o L 

o 8 

° o~ o 

of 
0 

0 
0 

0 

0 
0 

0 
0 

0 
0 

~° ° o d~o o o 
8 

o ol 

12 °°°o o o o ° 

0 
o g 

o~ 

II 0 0 0 0 0 0 0  0 

O 
O 

O 
O 

O 
O 

O 
O 

0 f o o 
o ~ o o 

o 
IO 8 

Oooo o o o o o 2~ 4 
I I Q 0 0 0 

0'4 O~ 1"2 1"6 
inches 

FIG. 12. Static-pressure variation convex wall, 
90 degree curved duct. 

1"5 

I'0 

arbitrary 
hnits 

0.5 

O 

I I l a i l 
- F L A T  SURFACE -- -~CONVEX WALL--~ 

measured l / / ° ' + + ' ~ ~ " ~ - ~  

I 6 "'%ou 2, -'-'P__a ~ z k. e 

/ - ' ~ e x  t rapolated 
-.at" I I I I 1 I 

50 60 70 80 90 I00 

(x-xo) inches 

14 

13 

m~ 
II wc.t.er 

1o 

IIO 

FIG. 13. Evaluation of static-pressure variation 
term in equation (10). 



o 

O O O O O O 0.2 O.4 0-6 O'8 

2 . C -  

inch¢s 

1-6- 

i . 2 -  

0 " 8 -  

0 4 -  

0 
0 

I 
0-2  

STATION I! 

( 

0 

0 

0 

0 

0 

0 

0 

O 

O 

O 
O 

oO 
0 O 

O C t ,  , ® ® o O  ~, 

0 .4  0-6 0"8 

4 

12 L3 

G 
@ 

O C 
Q O 

® 0 

@ 

O 

O 

O 

14 

4 

C 
© 

O 

® 

® 0 0 

@ 0 ® 

0 0 0 

I, o 
- 0 0 C 

o~1 o / o O  
ooO .,~oo -o@ ~oo¢ 

• 0 I-0 I ' 0  I -0  

15 c 

I0 
0 

0 Q 

0 ® 

O, ® 

0 Q 

0 Q 
® 

Q 
® 

I'O 
co& 

I-O 

G 

O 
G 

@ 

O 

_] 

I-O 

fco FIG. 14. Profi les o ~ on the 90 degree convex wall. 



T~ 
.q" 

5 ~ 

© 

> 
T 

v 

• 0 0  8 - 

® 

,O07  - 

,006  - 

' 0 0 5  

,OO4 

,OO3 

,OO2 

'OOI 

0 

(~-~u)  radians 
• 0 .25 "50 "75 bOO 1.25 

I i I i I I 

equa t ion (14 ) \  .-- 

measured 
® 

+ -P 4- + q- .+ 
II 12 13 14 15 16 

s ta t  ion s 

. m~sured / - 

- ' 0 0 7  

I I I I 1 I , 006  
O 6 12 18 24 30 

[ x -X l j )  inches 

'009 

"00~ 

FIG. 15. O and A* developments on the 90 degree 
convex wall. 

~V < 3 '  

\ 

FIG. 16. Co-ordinate system and notation. 



R. & M, No. 3599 

(C) Crown copyright 1969 

Published by 
HER MAJESTY'S STATIONERY OFFICE 

To be purchased from 
49 High Holborn, London w.c.l  

13A Castle Street, Edinburgh EH2 3AR 
109 St. Mary Street, Cardiff CFI 1JW 

Brazennose Street, Manchester M60 8AS 
50 Fairfa× Street, Bristol 8sl 3DE 
258 Broad Street, Birmingham 1 

7 Linenhail Street, Belfast BT2 8A',' 
or through any bookseller 

R. & M° No. 3599 

SBN 11 470200 4 


