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Summary. 
It is found experimentally that the value of K 1 in the spectrum formula (o(kl) = K 1 e2/3k1-5/3 is 

constant down to a microscale Reynolds number Rex of about 100, both in homogeneous turbulence 
and in shear flow: this value of Rex is much less than that usually predicted. The result can be used to 
derive dissipation from medium-frequency spectra at moderate laboratory Reynolds numbers. 

The inertial subrange is the part of the wave-number spectrum where both the supply and the dis - 
sipation of turbulent energy per octave are small compared with the rate of energy transfer through the 
spectrum, the latter being equal to the total viscous dissipation at high wave numbers, e. Dimensional 
arguments t show that, for instance, the longitudinal wave-number spectral density of the u-component 
fluctuations in this range is ~ll(kt)  = K 1 e2/akl-5/3 where K 1 is a universal constant and ~b u is the 

spectral density of u~ uj: the v- and w-component spectra are 4/3 times this. It is usually stated that an 

inertial subrange occurs only at large values of the Reynolds number Re~ - x~ u 2 2Iv (the microscale 2 
will be defined for present purposes by e = 15 v u2/22), and cannot be observed in ordinary laboratory 
experiments: previous theoretical estimates for the required Reynolds number are discussed in Ref. 2, 
of which this note is a revision and condensation. 

In Fig. 1 are plotted the apparent value of K 1 obtained by drawing a - 5 / 3  power law tangent to 
experimental spectra in grid turbulence, channel flow, jets and the inner and outer parts of boundary 
layersa-~a: where possible, direct dissipation measurements have been used, but the tagged symbols 
were obtained by using the emperical formula for dissipation in a boundary layer, e = (z/p)3/2/L, where 
L/6 is to a first approximation a universal function of y/6 (an assumption justified a posteriori in Ref. 14). 
Although the scatter is rather large it appears that K t is constant for all flows down to Rex ~- 100, 
compared with theoretical values between 250 (Corrsin 15) and 1730 (Stewart and Townsend3): note 
that the usual Reynolds number based on mean flow scales is proportional to Re 2. In a boundary layer, 
Rex equals 100 when u~y/v equals 250 (say, y = 0.1 in. at a free stream velocity of 100 ft/sec in air). Once 
K ~ deviates from its constant value the behaviour may depend on the type of l]ow. 

The practical implication of Fig. 1 is that dissipation can be obtained very easily from medium- 
frequency spectrum measurements in the laboratory, a much easier task than measuring spectra in the 
dissipation range itself, which requires about ten times the frequency response and also very short wires. 
I f K  1 is taken as 0.5 -t-0.05 the uncertainty of dissipation measurement is _ 15 per cent which is certainly 
no more than the uncertainty of direct measurements in laboratory conditions. 

The ostensible physical implication of Fig. 1 is that an inertial subrange occurs if the energy-containing 
length scale of the flow (conservatively taken as the dissipation length parameter L which is about 0-16 
in the outer part of a boundary layer) is 100 times the Kolmom~rm___ lentil1 ~c~flc 1 (~3 ,r~. il~i~ figure 
follows from the definitions of I and L if Rex = 100 and z = 0.4 u 2. It is certain that all the attributes of 
an inertial subrange will not occur at such moderate Reynolds numbers, at least in a shear flow. The 
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shear correlation coefficient q~12(k)/[@l l(k) ~b22(k)] ½ may be of the order of 0.2 in the 'inertial' range and 
several sets of measurements show that the v-component spectral density, and possibly that of the 
w-component, may be less than 4/3 ~bll: anisotropy of intensity is inseparable from non-zero shear 
stress as the distinction between the two depends on the axes, and this vitiates some of the remarks in 
Ref. 2. The simplest way of interpreting the results is to suppose that the reduction in spectral density 
below the subrange value at low Reynolds numbers is opposed by the production of turbulent energy, 
which first appears in the u-component. The truth is probably more complicated and, despite the further 
speculations in Ref. 2, all that we can be sure of at present is that Fig. 1 demonstrates a very useful 
empirical fact. 
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LIST OF SYMBOLS 

Defined by q~lt(kl) = K 1 ~z/3 k1-5 /3  

Wave number magnitude 

Longitudinal wave~tiumber 

Dissipation length parameter, ('c/p)3/2/8 
Typical length scale of energy-containing eddies 

Turbulence Reynolds number, ~ u  2 2Iv -"- 10[-(~/p) =* L/v]  ~* 

Velocity fluctuations in x, y, z directions 

Velocity scale of dissipating eddies, (re,) 1/4 

Dissipation rate 

Turbulence microscale, defined by e = 15v u2/2 2 and equal to [uZ/(au/Ox)Z] ~ 
sipating eddies are isotropic 

Kinematic viscosity 

Turbulent shear stress, - p uv 

Spectral density of u~ uj 

1, 2, 3 for x, y, z directions 

if the dis- 
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FIG. 1. Variation of subrange factor K 1 with turbulence Reynolds number (numbers indicate 
References). 
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