

Winddetumel Tests on the Shetland

 ByC. $\boldsymbol{H} . \mathrm{E}$. Warren, $^{\text {B.A. and R. E. W. Harland, B.A. }}$

Crown Copyright Reserved

KONDON: HIS MAJESTY'S STATIONERY OFFICE

PRICE 4 S $6 d \mathrm{NET}$

Wind-tunnel Tests on the Shetland

C. H. E. Warren, B.A. and R. E. W. Harland, B.A.
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply
\section*{Reports and Memoranda No. 2571*}
October, 1942

[^0]Conclusions. -The lift and drag increments due to the flaps suggest that their design is satisfactory, and no modifications have been recommended.

There is a sufficient margin of stick-fixed longitudinal stability without slipstream at normal speeds, but with flaps up there is a loss in stability near the stall. With flaps down there are appreciable changes in longitudinal stability and trim.

The values of $-l_{v}(0 \cdot 105)$ and $n_{v}(0 \cdot 068)$ give a somewhat high value to the $-l_{v} / n_{v}$ ratio.
The effectiveness of the elevators, rudders and ailerons appears to be satisfactory, although the upgoing aileron stalls at about 15 deg.
The return-flow nacelles as designed reduced $C_{L \text { max }}$, but they were modified to maintain the same $C_{L \text { max }}$ as the normal nacelles. The modified nacelles have a destablising effect $0 \cdot 045 \bar{c}$ greater than the normal nacelles, due mainly to the changed plan form of the wing.

1. Introduction.-Wind-tunnel tests have been made to obtain aerodynamic data on the Shetland (Short-Saro R.14/40). The Shetland has four Centaurus engines; and as an alternative to the normal nose-entry engine cooling, tests have been included on a proposed scheme for return-flow cooling.

The tests were made without slipstream in the $11 \frac{1}{2} \times 8 \frac{1}{2} \mathrm{ft}$ closed-jet wind tunnel at the Royal Aircraft Establishment between March and June, 1942.'

[^1]2. Range of Investigation - The measurements made were as follows:-
(1) Lift and drag with the flaps at $0,15,30,40,45$ and 50 deg over the complete flight range, in order to determine the optimum flap settings for take-off and landing.
(2) Lift, drag and pitching moment with flaps at 0 deg over the complete flight range, for various conditions of the model, to enable an analysis of the drag and longitudinal stability to be made, including the effect of Reynolds number on longitudinal stability.
(3) The effects of flaps at 30 and 50 deg on longitudinal stability and trim.
(4) The effectiveness of the tailplane and elevators.
(5) Yawing and rolling moments at a wing incidence of 7 deg with flaps at 0,30 and 50 deg for various conditions of the model, to determine the directional and lateral stability.
(6) Rudder effectiveness at a wing incidence of 7 deg.
(7) Aileron effectiveness at three incidences.
(8) Effect of aileron droop on lift and drag with flaps at 30 deg.
(9) Effect of the return-flow nacelles on lift, and longitudinal stability.

In addition, measurements were made of the drags of nacelles and gun turrets.
The majority of the tests were made with no transition wire on the hull, but as inconsistent drag results were obtained some check tests were made with transition on the hull fixed at $0 \cdot 05 l$ by means of a wire. It is considered that only the drag results would be appreciably affectedby the uncertainty of the hull transition.

The tests were made at a wind speed of $120 \mathrm{ft} / \mathrm{sec}$ except where otherwise stated. The results of the tests are given in tables and figures at the end of the report. The usual wind-tunnel constraint corrections have been applied, but in general no allowance has been made for scale effects.
3. Conditions of Test.-The main particulars of the model are given in Table 1 and Figs. 1 and 2; the layout of the return-flow nacelles is shown in Figs. 3 and 4. In Fig. 1 are shown the disposition of the gun turrets, the A.S.V. fairings on the lower surface of the wing near the tips, and the position of the mine bays in the wing. Turrets were represented by their block outline; and the mine bays, when closed, by grooves along their leading edges approximately $1 \frac{1}{4} \mathrm{in}$. deep (full-scale dimension). The open condition of the mine bays was represented by removing wooden blocks which left wells about 6.7 in . deep (full-scale) in the lower surface of the wing.

Unless otherwise stated, the test condition of the model was as follows:-cooling gills 0 deg, mid-upper turret removed, nose turret faired in, A.S.V. fairings removed, mine bays closed, and no transition wire on the hull. Wing-tip floats were not represented on the model.
4. Results.-4.1. Fffect of Flaps on Lift and Drag. (Tables 2, 3, 4; Figs. 5, 6, 7).-The increase in lift coefficient due to the flaps has been plotted against flap angle and is shown in Fig. 5. These increments have been taken at an incidence of 10 deg from the no-lift angle without flaps, in accordance with the practice adopted in R. \& M. 2545^{1}. By comparison with the results given in this reference, the increments in lift are satisfactory for the type of flap used. The flaps give their maximum C_{L} increment of 0.75 at an angle of 50 deg. Lift coefficient, for various conditions of the model with flaps 0 and 50 deg, has been plotted against wing incidence in Fig. 7.

The increase in profile-drag coefficient $\Delta C_{D 0}$ due to the flaps is plotted against flap angle in Fig. 6. $C_{D 0}$ has been obtained from the measured drag coefficient by subtracting the minimum induced drag coefficient $C_{D i}=C_{L}^{2} / \pi A$. The increments have been taken at an incidence of 6 deg from the no-lift angle without flaps in accordance with R. \& M. 2545^{1}.

The effect on the lift and drag characteristics of drooping the ailerons at take-off was investigated, using a flap setting of 30 deg . Drooping to 10 deg with flaps 30 deg gave a lift increment of 0.08 , equivalent to an increase in flap angle of 6 deg. The profile-drag coefficient was decreased by 0.003 . Drooping to 15 deg gave a lift increment of 0.11 , equivalent to an increase in flap angle of 8 deg ; but the drag coefficient was only reduced by $0 \cdot 0015$. These effects are shown in Figs. 5 and 6.
4.2. Drag Analysis. (Tables 2, 3, 5; Fig. 9).-The main use that can be made of the model drag results lies in the study of the variation of the profile drag with lift. Writing $C_{D 0}=$ const $+k C_{L}{ }^{2}, k$ is given from Fig. 9 by the slope of $C_{D 0}$ against $C_{L}{ }^{2}$. Mean values of k over the range of C_{L} from 0.3 to 0.9 for various conditions are as follows :-

Condition					.		

It was found that the wire on the hull to fix its transition did not affect the values of k.
4.21. Hull drag.-The profile drag of the model hull with the nose turret faired in was 317 lb full-scale at $100 \mathrm{ft} / \mathrm{sec}$ E.A.S. at $C_{L}=0 \cdot 4$. This was with transition on the hull fixed at $0.05 \times$ length at a Reynolds number $R=4.75$ millions.
4.22. Nacelle drags.-The $1 / 18$ scale nacelles were too small to measure the flow through them, and thus correct their drag to the required flow to correspond to flight conditions. As measured on the model at $C_{L}=0.4$, the drag of the two inner nacelles was 80 lb , and of the two outer nacelles 60 lb . As the baffe plates on all the nacelles were similar, it can be accepted that the inner nacelles have 20 lb more drag than the outer ones at $C_{L}=0.4$.

The drag of an outer nacelle has been estimated from the results of previous tests on a larger scale model to be about 17 lb with the correct cooling flow. The present results may be used to extend this to cover the range of C_{L}, and to give the drag of the inner nacelles. Using the values of k given above we get:-

Two outer nacelles (gills 0 deg), drag $=34+68 C_{L}{ }^{2} 1 \mathrm{bb}$ at $100 \mathrm{ft} / \mathrm{sec}$.
Two inner nacelles (gills 0 deg), drag $=46+119 C_{L^{2}}{ }^{2} \mathrm{lb}$ at $100 \mathrm{ft} / \mathrm{sec}$.
All four nacelles (gills 0 deg), drag $=80+187 C_{L}{ }^{2} \mathrm{lb}$ at $100 \mathrm{ft} / \mathrm{sec}$.
4.23. Tail unit drag.-The drag of the tail unit was measured at zero tailplane lift, and the results were:-

Drag in lb full-scale at $100 \mathrm{ft} / \mathrm{sec}$ E.A.S.

Tailplane only	Fin only	Complete tail unit
45	40	84

These results indicate that there is negligible fin-tailplane interference drag.
4.24. Turvet drags.-To get the full gun movement of the F.N. 66 nose turret it would be necessary to cut back the hull leaving a recess. Methods of closing this gap were under consideration by the firm, and the main tests were made with the recess faired. The drag of opening this recess was, however, measured and a value of about 26 lb obtained. These tests were made over a range of wind speeds up to $200 \mathrm{ft} / \mathrm{sec}$ at a C_{L} of $0 \cdot 7$, but no systematic scale effect was found. Similarly the drag of the F.N. 36 mid-upper turret was about 22 lb (measured with the tail unit on), corresponding to $2 \cdot 2 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$ frontal area. This value is low, and cannot be accepted as reliable.

No attempt was made to measure the drag of the F.N. 59 rear turret.

4.3. Longitudinal Stability and Trim. (Tables 2, 3, 6, 7, 8, 9, 10, 11 ; Figs. 10, 11, 12, 13, 15).

4.31. Complete model.-From Fig. 10 the positions of the neutral point stick-fixed without slipstream for the complete model, under the main conditions of flight, are as follows:-

C_{L}						
Flaps	$0 \cdot 1$	0.4	0.7	$1 \cdot 0$	$1 \cdot 3$	$1 \cdot 6$
0		0.410	0.430	0.442	0.438	0.338
30°			0.398	0.406	0.420	
50°			0.384	0.398	0.406	0.420

The model was tested at a C.G. position of $0 \cdot 398 \bar{c}(3 \cdot 4 \mathrm{ft}$ full-scale ahead of the datum). Since the tests were completed a revised estimate has given the aft C.G. position as being at $0 \cdot 335 \bar{c}$ (4.5 ft full-scale ahead of the datum) corresponding to an all-up weight of $120,000 \mathrm{Ib}$. At this position there is a margin of static stability, with flaps 0 deg, of about $0 \cdot 1 \bar{c}$ except near the stall. This margin will probably be reduced by the effects of slipstream, of freeing the stick, and by scale effect. To determine the scale effect at the Reynolds number of the tunnel, tests of the complete model were made at 40,120 and $200 \mathrm{ft} / \mathrm{sec}$ ($R=\frac{1}{4}$, $\frac{3}{4}$ and $1 \frac{1}{4}$ millions respectively, based on \bar{c}), and the results are shown in Fig. 12. There is a slight forward movement of neutral point with Reynolds number, as follows :-

Reynolds number (millions)	0.25	0.75	1.25
Neutral point $\left(C_{L}=0.4\right)$	0.438	0.430
	0.430				

With flaps lowered there is less stability at the smaller incidences but little change near maximum lift. The C.G. position for landing was stated by the firm to be at the forward limit of $0 \cdot 292 \bar{c}(5 \cdot 25 \mathrm{ft} \cdot$ full-scale ahead of the datumı) corresponding to a landing weight of $80,000 \mathrm{lb}$.

There is a nose-up pitching moment due to lowering the flaps; at a C_{L} of $1 \cdot 0$ this is equivalent to a change in elevator angle to trim of 6 deg for flaps at 30 deg, and 8 deg for flaps at 50 deg.
The pitching-moment curve corrected to the revised aft limit $(0 \cdot 335 \bar{c}$ aft of the leading edge, $0 \cdot 142 \bar{c}$ below the mean chord) is shown in Fig. 12. A second curve is drawn for the same fore-and-aft C.G., but with the vertical position on the mean chord. The linearity of this curve shows that the curvature of the C_{m} against C_{L} curve below the stall for the correct C.G. position is due to the low position of the C.G. relative to the wing.

With flaps 0 deg there is marked instability near the stall, but as the stall is gradual (see Fig. 7) this may not be serious. The instability is more clearly shown in Fig. 15, where pitching moments have been measured past the stall with tail on and tail off. It will be seen that the pitching moment without tail (without nacelles) does not fall off until a wing incidence of 23 deg ; whereas there is usually an increase in nose-down pitching moment when the wing begins to stall, which in this case occurs at about 16 deg (see Fig. 7).
4.32. Analysis.-Tests were made to compare the contributions of the various parts of the model to $C_{m 0}$, and their effect on longitudinal stability. The results obtained from Fig. 13 are as follows :

The value of $C_{i n 0}$ for the wing alone agrees well with the value of -0.049 obtained on the Short B. $8 / 41$ which has the same wing section ${ }^{2}$; and the rearward movement of the aerodynamic centre with increasing lift coefficient is due to the distance of the C.G. below the mean chord (see Fig. 12).

In Fig. 13 the effect of opening the mine bays is shown. To represent mine bays open, wooden blocks were removed from the lower surface of the wing (see Fig. 1), leaving wells about $6 \cdot 7 \mathrm{in}$. deep (full-scale dimension). They have little effect on stability, but cause a change of trim equivalent to 1 deg of elevator.

From the two tables given above, it will be seen that the contribution of the tail to stability is about $0.23 \bar{c}$. The corresponding values of $\partial C_{m} / \partial \alpha_{T}$ and of $d \varepsilon / d \alpha$ are -0.0255 per degree and 0.28 respectively. Lowering the flaps to 30 deg and 50 deg increased $d \varepsilon / d \alpha$ to 0.40 in each case.
4.4. Directional and Lateral Stability (Table 13; Figs. 17, 18).-Yawing and rolling moments and side-force were measured over a range of angles of sideslip for various conditions of the model at a wing incidence of 7 deg. The results, averaged over positive and negative angles of sideslip, are plotted in Figs. 17 and 18. Mean values of n_{v}, l_{v} and y_{v} over $\pm 5 \mathrm{deg}$ of sideslip, corrected to the revised C.G. position ($0 \cdot 335 \bar{c}$ aft of the leading edge, $0 \cdot 142 \overline{\bar{c}}$ below the mean chord) are as follows :-

$\begin{gathered} \text { Flaps } \\ \text { deg } \end{gathered}$	Condition				n_{0}	$l v$	y_{v}
0	Complete model	\ldots		\cdots	0.068	-0.105	-0.31
0	Complete model with A.S.V. fairings	.		.		-0.105	-0.31
0	Complete model less nacelles . .	\ldots			$0 \cdot 072$	-0.105	-0.30
0	Complete model less tailplane					-0.105	-0.31
0	Complete model less fin and tailplane				-0.058	-0.096	-0.15
30	Complete model			\cdots	0.098	-0.104	-0.375
50	Complete model . . .				0.111	-0.109	-0.405

For the complete model with flap 0 deg, the value of $l_{v}(-0 \cdot 105)$ is high compared with $n_{v}(0 \cdot 068)$ by comparison with the collected data given in Ref. 3, but the value of n_{v} is about the same as for the Sunderland, for which $n_{v}=0.077$.
4.5. Control Effectiveness. (Tables 12, 14, 15; Figs. 16, 19, 20).-In Fig. 16 are given the pitching moments due to elevators. The mean value of a_{2} / a_{1} over a range of elevator angles of $\pm 10 \mathrm{deg}$ is 0.59 .

Yawing moments due to the rudder at a wing incidence of 7 deg are given in Fig. 19 at different angles of sideslip. The rudder power shows no falling off up to $\pm 20 \mathrm{deg}$; the yawing moment produced by 20 deg of rudder is given by $\Delta C_{n}=0.0175$ ($n_{\xi}=\overline{0} .050$).

Yawing and rolling moments due to one aileron at wing incidences of 3,7 and 11 deg are given in Fig. 20. Up to $\pm 10 \mathrm{deg}$ the aileron rolling moment is linear and independent of incidence, but the upgoing aileron stalls at about 15 deg. Ailerons at 10 deg produce a total rolling moment of $\Delta C_{l}=0.0304\left(l_{5}=-0 \cdot 174\right)$. A few check tests showed that lowering the flaps had no effect on the aileron effectiveness. The A.S.V. fairings were also found to have negligible effect on the rolling moments produced by the ailerons.
4.6. Effect of Return-flow Nacelles on Lift and Pitching Moment. (Tables 3, 4, 9; Figs. 8, 13, 15). -The effect of the return-flow nacelles on lift is shown in Fig. 8. With the layout as designed (see Fig. 3) there was a loss of $0 \cdot 1$ in $C_{L \max }$ with flaps 0 deg, compared with that obtained with normal nacelles, and tufts showed that this was due to an early breakaway of the flow from the upper surface of the wing, behind the gap between the middle pair of entries on each wing. The effect of thickening the upper surfaces of the middle two entries was tried, and this gave a very slight improvement. By fairing in the gap between the middle pair of entries to a line parallel to the wing leading edge, but leaving sufficient lip to the entries to avoid entry loss (see Figs. 3 and 4), the loss in $C_{L \text { max }}$ was eliminated. It was found that the thickening on the upper surface of the middle pair of entries was still required even with the gap between them faired in: but a similar thickening on the innermost and outermost entries gave no improvement. The return-flow scheme in this final form was used in all the subsequent tests on the return-flow nacelles, and is referred to as " modified."

Measurements of drag obtained with the return-flow nacelles have no real application, as the entries undoubtedly caused a change in the transition on the wing.

The return-flow units were found to have a larger destabilising effect than the normal nacelles (see Fig. 14). The shift in neutral point over the useful range of C_{L} is $0 \cdot 06 \bar{c}$ due to the unmodified return-flow system, and $0.065 \bar{c}$ after the modifications described above, compared with about $0.02 \bar{c}$ due to the normal nacelles. Most of this difference is accounted for by the change in plan form of the wing due to the return-flow entries, and the modified leading edge, as indicated in the following table.

Condition		Extra forward shift of neutral point due to return-flow entries	
		Experimental	Predicted from the results of Ref. 4

REFERENCES

Note on the Lift and Profile Drag Effects of Split and Slotted Flaps. R. \& M. 2545. September, 1941.

Wind Tunnel Tests on the Short B.8/41. R.A.E. Report No. Aero. 1772. August, 1942. (To be published).

Notes on the Relationship between Rolling and Yawing Moments due to Sideslip. A.R.C. 5060. March, 1941.
Note on Pitching Moment Changes due to a Nacelle on a Wing. R.A.E. Report No. B.A. 1494. August, 1938. (Unpublished).

Note on the Yawing Moment Measurements, Rudder Fixed and Free, on Three Aeroplanes. R. \& M. 2534. July, 1941.

TABLE• 1

Model Data
Scale: 1/18

Datum:

Model Scale
Full Scale*
The main step at the keel (see Fig. 1).
Wing :

Gross area S 1166 sq in	2624 sq ft
Span b					$100 \cdot 2$ in	$150 \cdot 3 \mathrm{ft}$
Mean chord $\dagger S / b=\bar{c}$.	.				$11 \cdot 64$ in	$17 \cdot 46 \mathrm{ft}$
Aspect ratio $b / \bar{c}=A$.				.	
Angle to hull datum	.				.	
Dihedral	.					
Sweepback of quarter-chord line	-					
Section .	\ldots				Göttin	dified
Root chord					$17 \cdot 32$ in	$25 \cdot 98 \mathrm{ft}$
Root thickness ratio						
Theoretical tip thickness ratio						
Mean thickness ratio						
Mean quarter-chord point ahead	datum \dagger	.	.	\cdots	$3 \cdot 785$ in	$5 \cdot 68 \mathrm{ft}$

Tail:

(Tail setting α_{T} is relative to the wing-root chord)
Fin:
Net area above hull deck $S^{\prime \prime}{ }_{n} \quad . \quad . . \quad . . \quad . . \quad . \quad . . \quad 105 \cdot 5 \mathrm{sq}$ in 237.5 sq ft
Height above hull deck 13.53 in 20.3 ft
Mean thickness ratio $13 \frac{1}{2}$ per cent
Arm (C.G. to mean quarter-chord point) $l^{\prime \prime} \quad$. $34 \cdot 5 \mathrm{in} .51 .9 \mathrm{ft}$
Volume coefficient $S_{n}^{\prime \prime} Z^{\prime \prime} / S b=\bar{V}^{\prime \prime} \ldots$... 0.0312

* Not necessarily exactly the same as the full-scale aircraft.
\dagger The position of the mean chord is obtained by making its quarter-chord point coincide with the mean quarter-chord point of the wing.

The mean quarter-chord point of the wing is at (\bar{x}, \bar{z}), such that

$$
\begin{aligned}
& \bar{x}=\int_{-b / 2}^{+b / 2} c x d y / \int_{-b / 2}^{+b / 2} c d y \\
& \bar{z}=\int_{-b / 2}^{+b / 2} c z d y / \int_{-b / 2}^{+b / 2} c d y
\end{aligned}
$$

where c is the local chord at a station,
x, y, z, are the coordinate of the local quarter-chord point referred to wing-root chord axes.
The integrations extend across the centre section of the wing intercepted by the hall, formed by joining the leading and trailing edges at the wing roots by straight lines.
N.B. $S=\int_{-\frac{1}{2} b}^{+\frac{1}{2} b} c d y$ is the gross (plan) area of the wing.

TABLE 1 (contd.)

C.G. Position of Test:								
Distance ahead of hull datum		.	.	.		$2 \cdot 26$ in		3.4 ft
Distance above hull datum						$9 \cdot 86$ in		14.8 ft
Distance behind leading-edge mean	chord			-			$0 \cdot 398 \bar{c}$	
Distance below mean chord		;		.			$0 \cdot 142 \bar{c}$	
Elevators:							*	
Area ahead of hinge line	19.2 sq in		$43 \cdot 2 \mathrm{sq} \mathrm{ft}$
Area behind hinge line		41.8 sq in		$94 \cdot 0 \mathrm{sq} \mathrm{ft}$
Gap at the nose		0.04 in		0.7 in
Rudder:								
Area ahead of hinge line	11.6 sq in		$26 \cdot 1 \mathrm{sq} \mathrm{ft}$
Area behind hinge line		25.2 sq in		56.7 sq ft
Gap at the nose	-	\cdots	.	.	.	0.05 in		0.9 in
Ailerons:								
Type		.	\ldots	.	.		Frise	
Area ahead of hinge line	.	.	\cdots	.	.	$25 \cdot 0$ sq in		56.2 sq ft
Area behind-hinge line	.	.	.	\ldots	.	67.2 sq in		151.2 sq ft
Span/wing span	.	.		\ldots	\cdots		$0 \cdot 422$	
Flaps:								
Type	.	.	\ldots	.	.		Slotted	.
Chord/wing chord--inboard end			$0 \cdot 188$	
outboard end	\cdots	.					0.278	
Span/wing span ..	\cdot	.	.	.	\cdots		$0 \cdot 455$	
Gills :								
Normal nacelles.								
Chord		.	.	.	-	0.54 in		$9 \cdot 7 \mathrm{in}$
Exit area for gills 0 deg		.	.	.	-	1.31 sq in.		$2 \cdot 95 \mathrm{sq} \mathrm{ft}$
Exit area for gills 14 deg	$2 \cdot 54 \mathrm{sq}$ in		$5.72 \mathrm{sq} . \mathrm{ft}$
Exit area for gills 24 deg	\cdot	$3 \cdot 46 \mathrm{sq}$ in		$7 \cdot 79 \mathrm{sq} \mathrm{ft}$
Return-flow nacelles.								
Chord		$0 \cdot 54$ in		$9 \cdot 7$ in
Exit area for gills 0 deg	\therefore	, 0.51 sq in		$1 \cdot 15 \mathrm{sq} \mathrm{ft}$
Exit area for gills 25 deg	-	\cdots		.	.	$2 \cdot 46 \mathrm{sq}$ in		$5 \cdot 53 \mathrm{sq} \mathrm{ft}$

Engines:
These were represented by baffle plates having a free area ratio of $0 \cdot 13$.

TABLE 2
Lift, Drag and Pitching Moment due to Flaps-Wing + Hull + Normal Nacelles

Condition.	c deg	C_{L}	$C_{D 0}$	$C_{n k}$
Flaps 0 deg	-1.1	0.060	0:0269	-0.0601
	0	0.152	$0 \cdot 0261$	
	- $2 \cdot 1$	$0 \cdot 300$	$0 \cdot 0255$	-0.0071
	$3 \cdot 1$	0.386	$0 \cdot 0254$	
	$5 \cdot 2$	$0 \cdot 545$	$0 \cdot 0262$	$+0.0430$
	${ }^{\prime} 773$	0.715	0.0281	
	- 8.3	0.783	0.0306	$0 \cdot 0910$
	$9 \cdot 4$	$0 \cdot 882$	$0 \cdot 0332$	
	$11 \cdot 5$	1.038	$0 \cdot 0395$	$0 \cdot 1313$
	$13 \cdot 6$	1-174	$0 \cdot 0504$	$0 \cdot 1535$
	$15 \cdot 6$	$1 \cdot 283$	$0 \cdot 0695$	0.1749
	$17 \cdot 6$	$1 \cdot 320$		
	$18 \cdot 7$	$1 \cdot 334$		
	19.7	$1 \cdot 340$		
	$20 \cdot 6$	$1 \cdot 276$		
$\text { Flaps } 15 \text { deg . . }$	$-1 \cdot 0$	$0 \cdot 243$	$0 \cdot 0316$	
	$+3 \cdot 2$	0.609	0.0305	
	$7 \cdot 4$	0.971	$0 \cdot 0352$	
	11.6	1:301.	0.0482	
	13.7	$1 \cdot 443$	$0 \cdot 0609$	
	15.8	1.529		
	.170	1.559		
	$17 \cdot 8$	1.529		
	18.9	1.494		:
Flaps 30 deg	-2.9	$0 \cdot 293$	0:0444	
	-0:8	0.500	$0 \cdot 0436$	$\bigcirc 0.0828$
	$+1 \cdot 3$	0.681	$0 \cdot 0441$	-0.0502
:	3.4	0.878	$0 \cdot 0450$	-0.0187
\%	$5 \cdot 5$	1.074	$0 \cdot 0467$	+0.0118
	$7 \cdot 6$	$1 \cdot 261$	$0 \cdot 0500$	$0 \cdot 0406$
	9.7	$1 \cdot 425$	$0 \cdot 0550$	$0 \cdot 0692$
	11.8	$1 \cdot 574$	$0 \cdot 0662$	$0 \cdot 0985$
	$12 \cdot 8$	1.624		$0 \cdot 1126$
	$13 \cdot 8$	$1 \cdot 666$	$0 \cdot 0846$	$0 \cdot 1261$
	14:9	1.714	$0 \cdot 0983$	0. 1402
\because	15:9	1.758	$0 \cdot 1161$	- \because
	16:9	1.761		.
\%	$17 \cdot 4$	1.739		
	17.9	$1 \cdot 714$		
Flaps 30 deg Ailèröns drooped 10 deg	-18	$0 \cdot 505$	$0 \cdot 0413$	
	$+1 \cdot 4$	0.801	$0 \cdot 0413$	
	$4 \cdot 5$	1.071	$0 \cdot 0433$	
	7.7	$1 \cdot 349$	$0 \cdot 0477$	
	10.8	1-590'	$0 \cdot 0572$	
	13.9	$1 \cdot 758$	$0 \cdot 0817$	
	14.9	$1 \cdot 785$		
	$15 \cdot 9$	1-800		..
	16.9 17.9	1.805 1.785		
	$17 \cdot 9$	$1 \cdot 785$		

TABLE 3
Lift, Drag and Pitching Moment with Flaps 0 deg

Condition	a. deg	C_{L}	$C_{D 0}$	C_{m}
Wing alone .	$-2 \cdot 3$	$0 \cdot 038$	$0 \cdot 0128$	-0.0428
	$+0.9$	$0 \cdot 276$	$0 \cdot 0118$	-0.0028
	$4 \cdot 0$	$0 \cdot 511$	$0 \cdot 0117$	$+0.0328$
	$7 \cdot 1$	$0 \cdot 755$	$0 \cdot 0129$	$0 \cdot 0644$
	$10 \cdot 2$	$0 \cdot 977$	$0 \cdot 0156$	$0 \cdot 0910$
	$12 \cdot 3$	$1 \cdot 111$	$0 \cdot 0183$	$0 \cdot 1054$
	$14 \cdot 4$	$1 \cdot 222$		
	$15 \cdot 9$	1.275		
	$16 \cdot 9$	$1 \cdot 289$		
	$17 \cdot 8$	$1 \cdot 297$		
	$18 \cdot 9$	$1 \cdot 290$		
	$19 \cdot 9$	$1 \cdot 272$		
Wing + hull . .	$-2 \cdot 1$	-0.019	$0 \cdot 0238$	-0.0776
	0	$+0 \cdot 149$	$0 \cdot 0227$	-0.0458
	$1 \cdot 0$	$0 \cdot 230$	$0 \cdot 0218$	-0.0306
	$2 \cdot 1$	$0 \cdot 311$	$0 \cdot 0212$	-0.0157
	$4 \cdot 2$	$0 \cdot 467$	$0 \cdot 0208$	+0.0145
	$5 \cdot 2$	0.555	$0 \cdot 0212$	$0 \cdot 0281$
	$7 \cdot 3$	$0 \cdot 719$	$0 \cdot 0220$	$0 \cdot 0570$
	$8 \cdot 3$	0.793	$0 \cdot 0228$	$0 \cdot 0690$
	10-4	0.954		$0 \cdot 0921$
	11.5	1.010	$0 \cdot 0285$	0. 1053
	12.5	$1 \cdot 084$		0.1161
	$13 \cdot 6$	$1 \cdot 155$	0.0327	$0 \cdot 1266$
	14.6	$1 \cdot 211$		$0 \cdot 1354$
	$15 \cdot 6$	$1 \cdot 249$		$0 \cdot 1441$
	$16 \cdot 6$	$1 \cdot 278$		$0 \cdot 1528$
	$17 \cdot 6$	$1 \cdot 290$		0-1586
	$18 \cdot 6$	$1 \cdot 301$		$0 \cdot 1683$
	$19 \cdot 6$	$1 \cdot 302$		$0 \cdot 1732$
	$20 \cdot 6$	$1 \cdot 299$		0.1793
	$21 \cdot 6$	$1 \cdot 281$		0-1874
	$22 \cdot 6$	$1 \cdot 287$		0.1909
	$23 \cdot 6$	1.255		0.1979
	$24 \cdot 5$	$1 \cdot 213$		0.1888
Wing + hull + inner normal nacelles only	$-1 \cdot 1$	$0 \cdot 060$	$0 \cdot 0257$	-0.0604
	$+2 \cdot 1$	$0 \cdot 301$	$0 \cdot 0238$	-0.0128
	$5 \cdot 2$	0.534	0.0236	$+0.0340$
	$8 \cdot 3$	$0 \cdot 788$	$0 \cdot 0270$	0.0816
	11.5	$1 \cdot 022$	0.0346	$0 \cdot 1176$
	13.6	$1 \cdot 160$	$0 \cdot 0415$	$0 \cdot 1405$
	$15 \cdot 6$	$1 \cdot 264$	$0 \cdot 0591$	$0 \cdot 1625$
	$17 \cdot 6$	$1 \cdot 320$		
	18.9	$1 \cdot 316$		
	$19 \cdot 6$	1.316		
	$20 \cdot 6$	$1 \cdot 310$		

TABLE 3 (contd.)

Condition	$\alpha \mathrm{deg}$	C_{L}	$C_{D 0}$	C_{m}
$\begin{aligned} & \text { Wing }+ \text { hull }+ \\ & \text { return-flow } \\ & \text { nacelles } \\ & \text { (modified) } \end{aligned}$	$-1 \cdot 1$	$0 \cdot 049$		-0.0744
	0	0.144		
	$2 \cdot 1$	0. 296		-0.0107
	$3 \cdot 1$	$0 \cdot 381$		
	$5 \cdot 2$	$0 \cdot 549$		$+0.0508$
	$7 \cdot 3$	$0 \cdot 713$		
	$8 \cdot 3$	0.785		$0 \cdot 1055$
	9:4	$0 \cdot 869$		
	11.5	$1 \cdot 033$		$0 \cdot 1552$
	$13 \cdot 6$	1-166		$0 \cdot 1810$
	$15 \cdot 6$	1.239		
	$17 \cdot 6$	$1 \cdot 312$		
	$19 \cdot 2$	$1 \cdot 334$		
	$20 \cdot 2$	$1 \cdot 334$		
	$21 \cdot 1$	1-327		
Wing + hall + return-flow nacelles (modified) Gills 25 deg	-1.1	$0 \cdot 063$		-
	$+2 \cdot 1$	$0 \cdot 293$		
	$5 \cdot 2$	$0 \cdot 542$		
	$8 \cdot 3$	$0 \cdot 778$		
	11.5	1.001		
	$13 \cdot 6$	1-133		
	$15 \cdot 7$	1-193		
	$16 \cdot 9$	$1 \cdot 240$		
	$17 \cdot 6$	$1 \cdot 262$		
	$18 \cdot 6$	$1 \cdot 284$		
	$19 \cdot 9$	$1 \cdot 302$		
	$21 \cdot 1$	1.268		

TABLE 4
Lift and Drag with Flaps 50 deg

Condition	α deg	C_{J}	$C_{D 0}$
Wing + hull ..	$-2 \cdot 8$	0.575	
	$+0 \cdot 4$	0.857	
	$3 \cdot 5$	$1 \cdot 113$	
	$6 \cdot 7$	1.359	
	$9 \cdot 8$	$1 \cdot 612$	
	$13 \cdot 1$	$1 \cdot 850$	
	$14 \cdot 0$	$1 \cdot 888$	
	$15 \cdot 0$	1.941	
	$16 \cdot 0$	1.974	
	$17 \cdot 0$	1.983	
	$18 \cdot 0$	1.933	
	$19 \cdot 0$	1.859	

TABLE 4 (conta.)

Condition	α deg	C_{L}	$C^{\text {D }}$
Wing + hull + normal nacelles Gills 24 deg	-0.7	0.744	0.0758
	$+3 \cdot 5$	$1 \cdot 116$	$0 \cdot 0787$
	$7 \cdot 7$	1-464	$0 \cdot 0830$
	11.9	$1 \cdot 790$	$0 \cdot 0990$
	$14 \cdot 1$	1.887	0.1233
	$15 \cdot 0$	1.901	
	$16 \cdot 1$	$1 \cdot 909$	
	$17 \cdot 0$	1.819	
Wing + hull + returnflow nacelles (modified)	$7 \cdot 7$	1.489	
	$10 \cdot 9$	1.758	
	$13 \cdot 0$	1.878	
	$14 \cdot 0$	1.921	
	$15 \cdot 0$	1.955	
	$15 \cdot 5$	1.955	
	$16 \cdot 0$	1.921	
Wing + hull + returnflow nacelles (modified) Gills 25 deg	$7 \cdot 7$	1.492	
	10.9	$1 \cdot 747$	
	$13 \cdot 0$	1.869	-
	$14 \cdot 0$	1.912	
	$15 \cdot 0$	1.942	
	$16 \cdot 0$	1.882	

TABLE 5
Lift and Drag with Flaps 0 deg
Transition wire on hull at $0 \cdot 05 l$

Condition	$\boldsymbol{\alpha} \mathrm{deg}$	C_{L}	$C_{D 0}$
Wing + hull ..	0	$0 \cdot 151$	$0 \cdot 0224$
	$3 \cdot 1$	$0 \cdot 393$	$0 \cdot 0208$
	$5 \cdot 2$	$0 \cdot 556$	$0 \cdot 0210$
	$7 \cdot 3$	$0 \cdot 715$	$0 \cdot 0226$
	$9 \cdot 4$	0.868	$0 \cdot 0243$
	$11 \cdot 5$	1.021	$0 \cdot 0281$
Wing + hull + normal nacelles.	0	$0 \cdot 139$	$0 \cdot 0265$
	$3 \cdot 1$	$0 \cdot 377$	$0 \cdot 0254$
	$4 \cdot 2$	$0 \cdot 459$	$0 \cdot 0259$
	$5 \cdot 2$	$0 \cdot 542$	$0 \cdot 0264$
	$6 \cdot 3$	$0 \cdot 627$	$0 \cdot 0278$
	$7 \cdot 3$	$0 \cdot 706$	$0 \cdot 0292$
	$9 \cdot 4$	0. 871	0.0332
	$11 \cdot 5$	$1 \cdot 030$	$0 \cdot 0400$
Wing + hull + normal nacelles, entries and exits sealed.	0	$0 \cdot 144$	$0 \cdot 0244$
	$3 \cdot 1$	$0 \cdot 390$	0.0232
	$5 \cdot 2$	$0 \cdot 553$	$0 \cdot 0237$
	$7 \cdot 3$	$0 \cdot 717$	0.0258
	$9 \cdot 4$	$0 \cdot 873$	$0 \cdot 0287$
	$11 \cdot 5$	$1 \cdot 040$	$0 \cdot 0341$

TABLE 6
Pitching Moment with Flaps 0 deg-Complete Model with Normal Nacelles

Condition	α deg	C_{L}	C_{m}
$\alpha_{\mu}=-3 \cdot 1$ deg	$-1 \cdot 1$	$0 \cdot 022$	$0 \cdot 0694$
	$+2 \cdot 1$	0.288	$0 \cdot 0655$
	$5 \cdot 2$	0.555	$0 \cdot 0562$
	$8 \cdot 3$	0.824	$0 \cdot 0474$
	$11 \cdot 5$	1.084	$0 \cdot 0327$
	$13 \cdot 6$	$1 \cdot 221$	0.0318
$\alpha_{T}=-2 \cdot 1 \operatorname{deg}$	$-1 \cdot 1$	$0 \cdot 021$	$0 \cdot 0469$
	0	$0 \cdot 116$	$0 \cdot 0442$
	$2 \cdot 1$	$0 \cdot 303$	$0 \cdot 0406$
	$5 \cdot 2$	$0 \cdot 564$	$0 \cdot 0324$
	$8 \cdot 3$	0.818	$0 \cdot 0221$
	$9 \cdot 4$	0.911	$0 \cdot 0177$
	11.5	1.084	$0 \cdot 0090$
	$12 \cdot 5$	$1 \cdot 165$	$0 \cdot 0069$
	$13 \cdot 6$	1.235	$0 \cdot 0087$
	14.6	$1 \cdot 290$	$0 \cdot 0093$
	$15 \cdot 6$	$1 \cdot 320$	$0 \cdot 0124$
	$16 \cdot 6$	$1 \cdot 360$	$0 \cdot 0165$
	$17 \cdot 6$	$1 \cdot 367$	$0 \cdot 0201$
	$18 \cdot 7$	$1 \cdot 369$	$0 \cdot 0275$
	$19 \cdot 6$	$1 \cdot 330$	$0 \cdot 0096$
	$20 \cdot 6$	$1 \cdot 327$	$0 \cdot 0029$
$\begin{gathered} \alpha_{P}=-2 \cdot 1 \mathrm{deg} \\ \text { Mine bays open } \end{gathered}$	$-1 \cdot 1$	0.073	0.0599
	$+2 \cdot 1$	$0 \cdot 338$	$0 \cdot 0585$
	$5 \cdot 2$	0.593	0.0496
	$8 \cdot 3$	$0 \cdot 857$	0.0397
	$11 \cdot 5$	1-107	$0 \cdot 0187$
	$13 \cdot 6$	$1 \cdot 254$	$0 \cdot 0178$
$\alpha_{T}=-1 \cdot 1 \mathrm{deg}$	$-1 \cdot 1$		$0 \cdot 0193$
	0	$0 \cdot 124$	0.0194
	$2 \cdot 1$	$0 \cdot 304$	0.0153
	$5 \cdot 2$	0.561	$+0.0070$
	$8 \cdot 3$	$0 \cdot 834$	-0.0053
	$9 \cdot 4$	0.914	-0.0098
	11.5	$1 \cdot 087$	-0.0114
	$12 \cdot 5$	1.170	-0.0110
	$13 \cdot 6$	$1 \cdot 242$	-0.0093
	$14 \cdot 6$	$1 \cdot 298$	-0.0071
	$15 \cdot 6$	$1 \cdot 333$	-0.0047
	$16 \cdot 6$	$1 \cdot 359$	-0.0060
	$17 \cdot 6$	$1 \cdot 371$	-0.0026
	18.7	$1 \cdot 384$	$+0 \cdot 0061$

TABLE 7
Scale Effect on Pitching Moment with Flaps 0 deg-Complete Model with Normal Nacelles

Transition wire on hull at $0.05 l$
$\alpha_{T}=-2 \cdot 1 \mathrm{deg}$

	Tunnel Speed $\mathrm{ft} / \mathrm{sec}$	α deg	C_{L}	C_{m}
40	$-1 \cdot 1$	0.012	$0 \cdot 0520$
		$+1.0$	$0 \cdot 187$	$0 \cdot 0408$
		$3 \cdot 1$	$0 \cdot 372$	0.0324
		$5 \cdot 2$	$0 \cdot 560$	0.0242
		$7 \cdot 3$	$0 \cdot 735$	$0 \cdot 0178$
120	. .	$-1 \cdot 1$	$0 \cdot 024$	$0 \cdot 0469$
		$+1 \cdot 0$	$0 \cdot 195$	$0 \cdot 0442$
		$3 \cdot 1$	$0 \cdot 385$	$0 \cdot 0364$
		$4 \cdot 2$		$0 \cdot 0344$
		$5 \cdot 2$	0.555	$0 \cdot 0327$
		$6 \cdot 3$		0.0289
		$7 \cdot 3$	0.731	$0 \cdot 0263$
200	. .	$-1 \cdot 1$	0.026	$0 \cdot 0462$
		$+1 \cdot 0$	$0 \cdot 198$	$0 \cdot 0435$
		$3 \cdot 1$	$0 \cdot 381$	$0 \cdot 0387$
		$5 \cdot 2$ $7 \cdot 3$	$0 \cdot 554$	0.0321
		$7 \cdot 3$	$0 \cdot 734$	$0 \cdot 0259$

TABLE 8
Pitching Moment with Flaps 0 degComplete Model less Nacelles

Condition	α deg	C_{L}	C_{m}
$\alpha_{2}=-2 \cdot 1 \mathrm{deg}$	0	$0 \cdot 105$	$0 \cdot 0425$
	$3 \cdot 1$	$0 \cdot 368$	$0 \cdot 0321$
	$5 \cdot 2$	$0 \cdot 513$	$0 \cdot 0235$
	$7 \cdot 3$	$0 \cdot 731$	+0.0097
	$11 \cdot 5$	1-059	-0.0248
	$13 \cdot 6$	1. 195	-0.0386
	$14 \cdot 6$	1-269	-0.0452
	$15 \cdot 6$	$1 \cdot 301$	-0.0447
	$16 \cdot 6$	$1 \cdot 329$	-0.0453
	$17 \cdot 6$	$1 \cdot 350$	-0.0463
	$18 \cdot 6$	$1 \cdot 357$	-0.0430
	$19 \cdot 6$	1-357	-0.0379
	$20 \cdot 6$	$1 \cdot 357$	-0.0305
	$21 \cdot 6$	$1 \cdot 357$	-0.0220
	$22 \cdot 6$	1-362	-0.0232
	$23 \cdot 6$	1-333	-0.0354
	$24 \cdot 3$	1-322	-0.0572

TABLE 9
Pitching Moment with Flaps 0 deg-Complete Model with Retwrn-flow Nacelles

Condition	α deg	C_{L}	C_{m}
$\alpha_{T}=-2 \cdot 1 \cdot \mathrm{deg}$.	$-1 \cdot 1$	0.011	0.0328
	$+1 \cdot 0$	0.192	0.0384
	$2 \cdot 1$ $3 \cdot 1$	0.280 0.377	0.0393 0.0407
	${ }_{5} \cdot 2$	0.559	0.0433
	$6 \cdot 3$	$0 \cdot 638$	0.0435
	$9 \cdot 4$	0.912	0.0419
	11.5	1.084	0.0414
	$13 \cdot 6$	1.232	0.0455
	$14 \cdot 6$	1.268	0.0486
	$15 \cdot 6$	$1 \cdot 329$	0.0545
	$17 \cdot 6$	1.371	0.0667
	$19 \cdot 7$	1-382	0.0764

TABLE 10
Pitching Moment with Flaps 30 deg-Complete Model with Normal Nacelles

Condition	α deg	C_{L}	C_{m}
$\alpha_{T}=-3 \cdot 1 \cdot \mathrm{deg}$	$-1 \cdot 9$	$0 \cdot 309$	$0 \cdot 1243$
	$+0 \cdot 2$	$0 \cdot 511$	$0 \cdot 1258$
	$2 \cdot 3$	0.719	$0 \cdot 1274$
	$5 \cdot 5$	1.032	0-1265
	$8 \cdot 7$	$1 \cdot 326$	$0 \cdot 1224$
	$11 \cdot 8$	$1 \cdot 570$	$0 \cdot 1123$
$\alpha_{T}=-2 \cdot 1 \mathrm{deg}$	-0.8	0.423	0.1028
	$+0.2$	$0 \cdot 522$	$0 \cdot 1051$
	0.8	0.578	$0 \cdot 1058$
	$1 \cdot 3$	$0 \cdot 621$	0. 1066
	$2 \cdot 3$	$0 \cdot 728$	$0 \cdot 1058$
	$5 \cdot 5$	1.033	0.1038
	$8 \cdot 7$	1.333	$0 \cdot 0992$
	$11 \cdot 8$	1.569	0.0903
	$13 \cdot 8$	1.693	$0 \cdot 0826$
$\alpha_{T}=-1 \cdot 1 \mathrm{deg}$	-1.9	$0 \cdot 342$	$0 \cdot 0755$
	+0.2	$0 \cdot 544$	$0 \cdot 0763$
	$2 \cdot 3$	0.748	0.0770
	$5 \cdot 5$	1.046	0.0776
	$8 \cdot 7$	$1 \cdot 337$	$0 \cdot 0725$
	$11 \cdot 8$	1.580	$0 \cdot 0627$

TABLE 11
Pitching Moment with Flaps 50 deg-Complete Model with Normal Nacelles

Condition	$\alpha \mathrm{deg}$	C_{L}	$C_{\text {m }}$
$\alpha_{T}=-3 \cdot 1 \mathrm{deg}$	$-1 \cdot 7$	$0 \cdot 568$	$0 \cdot 1499$
	$+0 \cdot 4$	$0 \cdot 764$	$0 \cdot 1531$
	$2 \cdot 5$	0.962	$0 \cdot 1542$
	$5 \cdot 6$	1-258	$0 \cdot 1546$
	$8 \cdot 8$	1.538	$0 \cdot 1514$
	$11 \cdot 9$	1-804	0.1453
$\alpha_{T}=-2 \cdot 1 \mathrm{deg}$	-1.7	0.564	$0 \cdot 1256$
	$+0 \cdot 4$	0.767	0. 1295
	$2 \cdot 5$	0.963	$0 \cdot 1299$
	$5 \cdot 6$	$1 \cdot 253$	0. 1284
	$8 \cdot 8$	1.530	$0 \cdot 1249$
	$11 \cdot 9$	$1 \cdot 795$	$0 \cdot 1183$
	$13 \cdot 0$	1-870	$0 \cdot 1180$
	$14 \cdot 0$	1.900	$0 \cdot 1189$
	$15 \cdot 0$	1.930	$0 \cdot 1177$
	$16 \cdot 0$	1.960	$0 \cdot 1162$
	$17 \cdot 0$	$1 \cdot 914$	$\left\{\begin{array}{l}0.1252 \\ 0.1282\end{array}\right.$
	$17 \cdot 9$	1.820	0.1282 0.1343
$\alpha_{T}=-1 \cdot 1 \mathrm{deg}$	$-1 \cdot 7$	$0 \cdot 584$	$0 \cdot 1030$
	$+0.4$	0.776	$0 \cdot 1051$
	$2 \cdot 5$	0.978	$0 \cdot 1036$
	$5 \cdot 6$	$1 \cdot 272$	$0 \cdot 1027$
	$8 \cdot 8$	1.541	0.1004
	. $11 \cdot 9$	1-808	$0 \cdot 0930$

TABLE 12
Pitching Moment due to Elevators-Complete Model with Normal Nacelles and $\alpha_{T}=-2 \cdot 1 \mathrm{deg}-F l a p s 0 \mathrm{deg}$

Elevator Angle	$\alpha \mathrm{deg}$	C_{L}	C_{m}
$\eta=-20 \mathrm{deg}$	0	$0 \cdot 017$	$0 \cdot 3016$
	$2 \cdot 1$	$0 \cdot 177$	$0 \cdot 3207$
	$5 \cdot 2$	0.444	$0 \cdot 3217$
	$8 \cdot 3$	0.718	$0 \cdot 3014$
	$9 \cdot 9$	$0 \cdot 851$	$0 \cdot 2965$
	$11 \cdot 5$	0.985	$0 \cdot 2940$
	$14 \cdot 6$	1-199	$0 \cdot 2816$
$\eta=-10 \mathrm{deg}$	$-1 \cdot 1$	-0.027	$0 \cdot 1888$
	$+2 \cdot 1$	+0.234	$0 \cdot 1937$
	$5 \cdot 2$	0.505	$0 \cdot 1826$
	$8 \cdot 3$	0.761	$0 \cdot 1730$
	11.5	1.022	$0 \cdot 1561$
	$13 \cdot 6$	1.188	$0 \cdot 1471$

TABLE 12 (contd.)

Elevator: Angle	$\alpha \mathrm{deg}$	C_{L}	$C_{\text {w }}$
$\eta=10 \mathrm{deg} .$.	$-1 \cdot 1$	$0 \cdot 066$	-0.0932
	$+2 \cdot 1$	$0 \cdot 342$	-0.1044
	$5 \cdot 2$	$0 \cdot 608$	-0.1188
	$8 \cdot 3$	$0 \cdot 866$	-0.1282
	11.5	$1 \cdot 113$	-0.1249
	$13 \cdot 6$	$1 \cdot 270$	-0.1086
$\eta=20 \mathrm{deg} .$.	$-1 \cdot 1$	$0 \cdot 122$	-0.2213
	$+2 \cdot 1$	$0 \cdot 388$	-0.2304
	$5 \cdot 2$	$0 \cdot 655$	-0.2603
	$8 \cdot 3$	0.918	-0.2604
	$11 \cdot 5$	1-161	-0.2300
	$13 \cdot 6$	1-314	$-0 \cdot 2061$

TABLE 13
Yawing and Rolling Moments and Side-ForceComplete Model with Normal Nacelles and $\alpha_{T}=-2 \cdot 1 \mathrm{deg}, \alpha \bumpeq 7 \mathrm{deg}$

Condition	$\beta \mathrm{deg}$	C_{n}	C	C_{T}
Flaps 0 deg	0	0	0	0
	2	$0 \cdot 0022$	-0.0036	-0.022
	5	$0 \cdot 0054$	-0.0092	-0.057
	7	$0 \cdot 0083$	-0.0131	-0.084
	10	$0 \cdot 0132$	-0.0184	-0.133
Flaps 30 deg	0	0	0	0
	2	$0 \cdot 0033$	-0.0036	-0.026
	5	$0 \cdot 0077$	-0.0090	-0.065
	7	0.0122	--0-0128	-0.095
	10	$0 \cdot 0181$	-0.0182	$-0 \cdot 148$
Flaps 50 deg . .				
	2	$0 \cdot 0036$	-0.0035	$-0 \cdot 028$
	5	$0 \cdot 0093$	-0.0096	-0.069
	7	$0 \cdot 0132$	-0.0136	-0.101
	10	$0 \cdot 0204$	-0.0188	-0.156
Flaps 0 deg, Nacelles off.	0	- 0		
	2	$0 \cdot 0024$	$-0 \cdot 0039$	-0.022
	5	0.0058	-0.0091	-0.056
	7	$0 \cdot 0087$	-0.0126	-0.082
Flaps 0 deg A.S.V. fairings on.	0		0	0
	2		-0.0036	-0.022
	5		-0.0079	-0.059
	7		-0.0132	-0.084

TABLE 13 (contd.)

Condition	β deg	C_{n}	C_{2}	C_{T}
Flaps 0 deg ..	0		0	0
Tail off, but fin	2		-0.0037	-0.022
on	5		-0.0091	-0.057
	7		-0.0131	-0.084
Flaps 0 deg ..	0	0	0	0
Tail and fin off	2	-0.0022	-0.0034	-0.010
	7	-0.0051	-0.0083	-0.027
	10	-0.0068	-0.0113	-0.042

TABLE 14
Yawing Moment due to Rudder-Complete Model with Normal Nacelles and $\alpha_{T}=$ $-2 \cdot 1 \mathrm{deg} —$ Flaps $0 \mathrm{deg}, \alpha \bumpeq 7 \mathrm{deg}$

	C_{n}	
$\beta \mathrm{deg}$	Rudder angle 	
	$\zeta=10 \mathrm{deg}$	$\zeta=20 \mathrm{deg}$
-10	-0.0204	-0.0277
-7	-0.0157	-0.0235
-5	-0.0137	-0.0218
-2	-0.0112	-0.0200
0	-0.0081	-0.0179
2	-0.0066	-0.0151
5	-0.0031	-0.0119
7	-0.0005	-0.0092
10	+0.0050	-0.0038

TABLE 15
Yawing and Rolling Moments due to Aiteron-Complete Model with Normal Nacelles and $\alpha_{T}=-2 \cdot 1$ deg-Flaps 0 deg

Moments given are due to displacing one aileron.
Yawing moment is positive when the wing tends to drag.
Rolling moment is positive when the wing tends to drop.

Aileron Angle $\xi \mathrm{deg}$	Approxi- mate α deg	C_{n}	C_{l}	
20 down	\ldots	3	0.0022	-0.0259
		7	0.0022	-0.0265
		11	0.0033	-0.0250
10 down	\ldots	3	0.0009	-0.0151
		7	0.0013	-0.0146
		11	0.0016	-0.0146
10 up..	\ldots	3	+0.0001	0.0158
		7	-0.0003	0.0153
		11	-0.0010	0.0157
15 up..	.	3	0.0005	0.0219
		7	+0.0002	0.0189
		11	-0.0009	0.0199
20 up..	\ldots	3	0.0021	0.0194
		7	0.0010	0.0214
		11	0.0004	0.0178

Fig. 1. General Arrangement cf Shetland Model.

Fig. 6. Drag Due to Flaps.

Fig. 7. Lift with Normal Nacelles.

Fig. 8. Effect of Return-flow Nacelles on Lift.

Fig. 9. Drag with Normal Nacelles-Flaps 0 deg.

Fig. 10. Pitching Moment Due to Flaps: C_{m} against C_{L}.

21

COMPLETE MODEL
WITH NORMAL NACELLES
$\alpha_{T}=-21^{\circ}$

管

Fig. 12. Scale Effect and Effect of C.G. Position on Pitching Moment: Flaps 0 deg.

Fig. 13. Analysis of Pitching Moments with Flaps 0 deg.

Fig. 14. Effect of Nacelles on Pitching Moment
C_{m} against C_{L} : Flaps 0 deg.

> ——— WITH NORMAL NACELLES WITH RETURN-FLOW NACELLES (MODIFIED) WITH RETURN-FLOW NACELLES (UNMODIFIED)

Fig. 15. Effect of Nacelles on Pitching Moment C_{m} against α : Flaps 0 deg.
C.G.AT $0.398 \overline{\mathrm{C}}$

Fig. 16. Pitching Moment Due to Elevators.

Fig. 17. Yawing and Rolling Moments : $\alpha=7$ deg.

N

Fig. 19. Yawing Moment Due to Rudder.

COMPLETE MODEL WITH NORMAL NACELLES

Fig. 20. Yawing and Rolling Moments Due to One Aileron.

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1934-35 Vol. I. Aerodynamics. 4os. (40s. 8d.)
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 8d.)
1935-36 Vol. I. Aerodynamics. 30s. (30s. 7 d.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. 10d.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40 s. (40s. 9 d .)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6 rs.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews, 50s. (5is.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 305. (305. 9d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. IId.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64s. 2d.)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1933-34	Is. 6d. (1s. 8d.)	
1934-35	1s.6d. (1s. 8d.)	
$\begin{gathered} \text { April } \begin{array}{c} \text { I } 1935 \\ 1937 \end{array} ~ \end{gathered}$	December 31, 1936. $2 s$. (2s. 2d.)	4s. (4s. $4^{d .}$)
1938	Is. 6 d. (Is. 8d.)	
1939-48	In the press	

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-
December 1, 1936-June 30, 1939. R. 8 c M. No. 1850 . is. 3 d. (is. 5 d .)
July I, I939-June 30, 1945.
R. $8 \subset$ M. No. 1950.

Is. (Is. 2d.)
July I, I945-June 30, 1946.
R. 8 M . No. 2050 .

Is. ($\mathrm{Is} . \mathrm{I}$ d.)
July I, 1946 - December 31, 1946.
R. 8 M M. No. 2150 .

Is. $3^{d .}$ (1 s. 4 d.)
January I, 1947 - June 30 , 194.7.
R. 88 M. No. ${ }_{22} 50$.

Is. 3 d. (I s. 4 d .)
Prices in brackets include postage.
Obtainable from
His Majesty's Stationery Office
York House, Kingsway, London, w.c. 2429 Oxford Street, london, w. 1 P.O. Box 569, LONDON, S.E. 1

13 a Castle Street, EDinburgh, 21 St. Andrew's Crescent, Cardiff
39 King Street, Manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast or through any bookseller.

[^0]: Summary.-Wind-tunnel tests were needed to obtain aerodynamic data on the Shetland.
 Range of Investigation.-The following measurements were made :-

 1. Lift, drag and pitching moment for various conditions of the model over the complete flight range, with flaps up and down.
 2. Directional and lateral stability.
 3. Elevator, rudder and aileron effectiveness.
 4. Effect of return-flow nacelles on lift and pitching moment.
[^1]: * R.A.E. Report No. Aero. 1780.

